| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst |
| * |
| * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. |
| * Copyright (c) 2022 Tejun Heo <tj@kernel.org> |
| * Copyright (c) 2022 David Vernet <dvernet@meta.com> |
| */ |
| #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) |
| |
| enum scx_consts { |
| SCX_SLICE_BYPASS = SCX_SLICE_DFL / 4, |
| SCX_DSP_DFL_MAX_BATCH = 32, |
| SCX_DSP_MAX_LOOPS = 32, |
| SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, |
| |
| SCX_EXIT_BT_LEN = 64, |
| SCX_EXIT_MSG_LEN = 1024, |
| SCX_EXIT_DUMP_DFL_LEN = 32768, |
| |
| SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, |
| }; |
| |
| enum scx_exit_kind { |
| SCX_EXIT_NONE, |
| SCX_EXIT_DONE, |
| |
| SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ |
| SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ |
| SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ |
| SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ |
| |
| SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ |
| SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ |
| SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ |
| }; |
| |
| /* |
| * An exit code can be specified when exiting with scx_bpf_exit() or |
| * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN |
| * respectively. The codes are 64bit of the format: |
| * |
| * Bits: [63 .. 48 47 .. 32 31 .. 0] |
| * [ SYS ACT ] [ SYS RSN ] [ USR ] |
| * |
| * SYS ACT: System-defined exit actions |
| * SYS RSN: System-defined exit reasons |
| * USR : User-defined exit codes and reasons |
| * |
| * Using the above, users may communicate intention and context by ORing system |
| * actions and/or system reasons with a user-defined exit code. |
| */ |
| enum scx_exit_code { |
| /* Reasons */ |
| SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, |
| |
| /* Actions */ |
| SCX_ECODE_ACT_RESTART = 1LLU << 48, |
| }; |
| |
| /* |
| * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is |
| * being disabled. |
| */ |
| struct scx_exit_info { |
| /* %SCX_EXIT_* - broad category of the exit reason */ |
| enum scx_exit_kind kind; |
| |
| /* exit code if gracefully exiting */ |
| s64 exit_code; |
| |
| /* textual representation of the above */ |
| const char *reason; |
| |
| /* backtrace if exiting due to an error */ |
| unsigned long *bt; |
| u32 bt_len; |
| |
| /* informational message */ |
| char *msg; |
| |
| /* debug dump */ |
| char *dump; |
| }; |
| |
| /* sched_ext_ops.flags */ |
| enum scx_ops_flags { |
| /* |
| * Keep built-in idle tracking even if ops.update_idle() is implemented. |
| */ |
| SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, |
| |
| /* |
| * By default, if there are no other task to run on the CPU, ext core |
| * keeps running the current task even after its slice expires. If this |
| * flag is specified, such tasks are passed to ops.enqueue() with |
| * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. |
| */ |
| SCX_OPS_ENQ_LAST = 1LLU << 1, |
| |
| /* |
| * An exiting task may schedule after PF_EXITING is set. In such cases, |
| * bpf_task_from_pid() may not be able to find the task and if the BPF |
| * scheduler depends on pid lookup for dispatching, the task will be |
| * lost leading to various issues including RCU grace period stalls. |
| * |
| * To mask this problem, by default, unhashed tasks are automatically |
| * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't |
| * depend on pid lookups and wants to handle these tasks directly, the |
| * following flag can be used. |
| */ |
| SCX_OPS_ENQ_EXITING = 1LLU << 2, |
| |
| /* |
| * If set, only tasks with policy set to SCHED_EXT are attached to |
| * sched_ext. If clear, SCHED_NORMAL tasks are also included. |
| */ |
| SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, |
| |
| /* |
| * CPU cgroup support flags |
| */ |
| SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ |
| |
| SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | |
| SCX_OPS_ENQ_LAST | |
| SCX_OPS_ENQ_EXITING | |
| SCX_OPS_SWITCH_PARTIAL | |
| SCX_OPS_HAS_CGROUP_WEIGHT, |
| }; |
| |
| /* argument container for ops.init_task() */ |
| struct scx_init_task_args { |
| /* |
| * Set if ops.init_task() is being invoked on the fork path, as opposed |
| * to the scheduler transition path. |
| */ |
| bool fork; |
| #ifdef CONFIG_EXT_GROUP_SCHED |
| /* the cgroup the task is joining */ |
| struct cgroup *cgroup; |
| #endif |
| }; |
| |
| /* argument container for ops.exit_task() */ |
| struct scx_exit_task_args { |
| /* Whether the task exited before running on sched_ext. */ |
| bool cancelled; |
| }; |
| |
| /* argument container for ops->cgroup_init() */ |
| struct scx_cgroup_init_args { |
| /* the weight of the cgroup [1..10000] */ |
| u32 weight; |
| }; |
| |
| enum scx_cpu_preempt_reason { |
| /* next task is being scheduled by &sched_class_rt */ |
| SCX_CPU_PREEMPT_RT, |
| /* next task is being scheduled by &sched_class_dl */ |
| SCX_CPU_PREEMPT_DL, |
| /* next task is being scheduled by &sched_class_stop */ |
| SCX_CPU_PREEMPT_STOP, |
| /* unknown reason for SCX being preempted */ |
| SCX_CPU_PREEMPT_UNKNOWN, |
| }; |
| |
| /* |
| * Argument container for ops->cpu_acquire(). Currently empty, but may be |
| * expanded in the future. |
| */ |
| struct scx_cpu_acquire_args {}; |
| |
| /* argument container for ops->cpu_release() */ |
| struct scx_cpu_release_args { |
| /* the reason the CPU was preempted */ |
| enum scx_cpu_preempt_reason reason; |
| |
| /* the task that's going to be scheduled on the CPU */ |
| struct task_struct *task; |
| }; |
| |
| /* |
| * Informational context provided to dump operations. |
| */ |
| struct scx_dump_ctx { |
| enum scx_exit_kind kind; |
| s64 exit_code; |
| const char *reason; |
| u64 at_ns; |
| u64 at_jiffies; |
| }; |
| |
| /** |
| * struct sched_ext_ops - Operation table for BPF scheduler implementation |
| * |
| * Userland can implement an arbitrary scheduling policy by implementing and |
| * loading operations in this table. |
| */ |
| struct sched_ext_ops { |
| /** |
| * select_cpu - Pick the target CPU for a task which is being woken up |
| * @p: task being woken up |
| * @prev_cpu: the cpu @p was on before sleeping |
| * @wake_flags: SCX_WAKE_* |
| * |
| * Decision made here isn't final. @p may be moved to any CPU while it |
| * is getting dispatched for execution later. However, as @p is not on |
| * the rq at this point, getting the eventual execution CPU right here |
| * saves a small bit of overhead down the line. |
| * |
| * If an idle CPU is returned, the CPU is kicked and will try to |
| * dispatch. While an explicit custom mechanism can be added, |
| * select_cpu() serves as the default way to wake up idle CPUs. |
| * |
| * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p |
| * is dispatched, the ops.enqueue() callback will be skipped. Finally, |
| * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the |
| * local DSQ of whatever CPU is returned by this callback. |
| */ |
| s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); |
| |
| /** |
| * enqueue - Enqueue a task on the BPF scheduler |
| * @p: task being enqueued |
| * @enq_flags: %SCX_ENQ_* |
| * |
| * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() |
| * or enqueue on the BPF scheduler. If not directly dispatched, the bpf |
| * scheduler owns @p and if it fails to dispatch @p, the task will |
| * stall. |
| * |
| * If @p was dispatched from ops.select_cpu(), this callback is |
| * skipped. |
| */ |
| void (*enqueue)(struct task_struct *p, u64 enq_flags); |
| |
| /** |
| * dequeue - Remove a task from the BPF scheduler |
| * @p: task being dequeued |
| * @deq_flags: %SCX_DEQ_* |
| * |
| * Remove @p from the BPF scheduler. This is usually called to isolate |
| * the task while updating its scheduling properties (e.g. priority). |
| * |
| * The ext core keeps track of whether the BPF side owns a given task or |
| * not and can gracefully ignore spurious dispatches from BPF side, |
| * which makes it safe to not implement this method. However, depending |
| * on the scheduling logic, this can lead to confusing behaviors - e.g. |
| * scheduling position not being updated across a priority change. |
| */ |
| void (*dequeue)(struct task_struct *p, u64 deq_flags); |
| |
| /** |
| * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs |
| * @cpu: CPU to dispatch tasks for |
| * @prev: previous task being switched out |
| * |
| * Called when a CPU's local dsq is empty. The operation should dispatch |
| * one or more tasks from the BPF scheduler into the DSQs using |
| * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using |
| * scx_bpf_consume(). |
| * |
| * The maximum number of times scx_bpf_dispatch() can be called without |
| * an intervening scx_bpf_consume() is specified by |
| * ops.dispatch_max_batch. See the comments on top of the two functions |
| * for more details. |
| * |
| * When not %NULL, @prev is an SCX task with its slice depleted. If |
| * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in |
| * @prev->scx.flags, it is not enqueued yet and will be enqueued after |
| * ops.dispatch() returns. To keep executing @prev, return without |
| * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. |
| */ |
| void (*dispatch)(s32 cpu, struct task_struct *prev); |
| |
| /** |
| * tick - Periodic tick |
| * @p: task running currently |
| * |
| * This operation is called every 1/HZ seconds on CPUs which are |
| * executing an SCX task. Setting @p->scx.slice to 0 will trigger an |
| * immediate dispatch cycle on the CPU. |
| */ |
| void (*tick)(struct task_struct *p); |
| |
| /** |
| * runnable - A task is becoming runnable on its associated CPU |
| * @p: task becoming runnable |
| * @enq_flags: %SCX_ENQ_* |
| * |
| * This and the following three functions can be used to track a task's |
| * execution state transitions. A task becomes ->runnable() on a CPU, |
| * and then goes through one or more ->running() and ->stopping() pairs |
| * as it runs on the CPU, and eventually becomes ->quiescent() when it's |
| * done running on the CPU. |
| * |
| * @p is becoming runnable on the CPU because it's |
| * |
| * - waking up (%SCX_ENQ_WAKEUP) |
| * - being moved from another CPU |
| * - being restored after temporarily taken off the queue for an |
| * attribute change. |
| * |
| * This and ->enqueue() are related but not coupled. This operation |
| * notifies @p's state transition and may not be followed by ->enqueue() |
| * e.g. when @p is being dispatched to a remote CPU, or when @p is |
| * being enqueued on a CPU experiencing a hotplug event. Likewise, a |
| * task may be ->enqueue()'d without being preceded by this operation |
| * e.g. after exhausting its slice. |
| */ |
| void (*runnable)(struct task_struct *p, u64 enq_flags); |
| |
| /** |
| * running - A task is starting to run on its associated CPU |
| * @p: task starting to run |
| * |
| * See ->runnable() for explanation on the task state notifiers. |
| */ |
| void (*running)(struct task_struct *p); |
| |
| /** |
| * stopping - A task is stopping execution |
| * @p: task stopping to run |
| * @runnable: is task @p still runnable? |
| * |
| * See ->runnable() for explanation on the task state notifiers. If |
| * !@runnable, ->quiescent() will be invoked after this operation |
| * returns. |
| */ |
| void (*stopping)(struct task_struct *p, bool runnable); |
| |
| /** |
| * quiescent - A task is becoming not runnable on its associated CPU |
| * @p: task becoming not runnable |
| * @deq_flags: %SCX_DEQ_* |
| * |
| * See ->runnable() for explanation on the task state notifiers. |
| * |
| * @p is becoming quiescent on the CPU because it's |
| * |
| * - sleeping (%SCX_DEQ_SLEEP) |
| * - being moved to another CPU |
| * - being temporarily taken off the queue for an attribute change |
| * (%SCX_DEQ_SAVE) |
| * |
| * This and ->dequeue() are related but not coupled. This operation |
| * notifies @p's state transition and may not be preceded by ->dequeue() |
| * e.g. when @p is being dispatched to a remote CPU. |
| */ |
| void (*quiescent)(struct task_struct *p, u64 deq_flags); |
| |
| /** |
| * yield - Yield CPU |
| * @from: yielding task |
| * @to: optional yield target task |
| * |
| * If @to is NULL, @from is yielding the CPU to other runnable tasks. |
| * The BPF scheduler should ensure that other available tasks are |
| * dispatched before the yielding task. Return value is ignored in this |
| * case. |
| * |
| * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf |
| * scheduler can implement the request, return %true; otherwise, %false. |
| */ |
| bool (*yield)(struct task_struct *from, struct task_struct *to); |
| |
| /** |
| * core_sched_before - Task ordering for core-sched |
| * @a: task A |
| * @b: task B |
| * |
| * Used by core-sched to determine the ordering between two tasks. See |
| * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on |
| * core-sched. |
| * |
| * Both @a and @b are runnable and may or may not currently be queued on |
| * the BPF scheduler. Should return %true if @a should run before @b. |
| * %false if there's no required ordering or @b should run before @a. |
| * |
| * If not specified, the default is ordering them according to when they |
| * became runnable. |
| */ |
| bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); |
| |
| /** |
| * set_weight - Set task weight |
| * @p: task to set weight for |
| * @weight: new weight [1..10000] |
| * |
| * Update @p's weight to @weight. |
| */ |
| void (*set_weight)(struct task_struct *p, u32 weight); |
| |
| /** |
| * set_cpumask - Set CPU affinity |
| * @p: task to set CPU affinity for |
| * @cpumask: cpumask of cpus that @p can run on |
| * |
| * Update @p's CPU affinity to @cpumask. |
| */ |
| void (*set_cpumask)(struct task_struct *p, |
| const struct cpumask *cpumask); |
| |
| /** |
| * update_idle - Update the idle state of a CPU |
| * @cpu: CPU to udpate the idle state for |
| * @idle: whether entering or exiting the idle state |
| * |
| * This operation is called when @rq's CPU goes or leaves the idle |
| * state. By default, implementing this operation disables the built-in |
| * idle CPU tracking and the following helpers become unavailable: |
| * |
| * - scx_bpf_select_cpu_dfl() |
| * - scx_bpf_test_and_clear_cpu_idle() |
| * - scx_bpf_pick_idle_cpu() |
| * |
| * The user also must implement ops.select_cpu() as the default |
| * implementation relies on scx_bpf_select_cpu_dfl(). |
| * |
| * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle |
| * tracking. |
| */ |
| void (*update_idle)(s32 cpu, bool idle); |
| |
| /** |
| * cpu_acquire - A CPU is becoming available to the BPF scheduler |
| * @cpu: The CPU being acquired by the BPF scheduler. |
| * @args: Acquire arguments, see the struct definition. |
| * |
| * A CPU that was previously released from the BPF scheduler is now once |
| * again under its control. |
| */ |
| void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); |
| |
| /** |
| * cpu_release - A CPU is taken away from the BPF scheduler |
| * @cpu: The CPU being released by the BPF scheduler. |
| * @args: Release arguments, see the struct definition. |
| * |
| * The specified CPU is no longer under the control of the BPF |
| * scheduler. This could be because it was preempted by a higher |
| * priority sched_class, though there may be other reasons as well. The |
| * caller should consult @args->reason to determine the cause. |
| */ |
| void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); |
| |
| /** |
| * init_task - Initialize a task to run in a BPF scheduler |
| * @p: task to initialize for BPF scheduling |
| * @args: init arguments, see the struct definition |
| * |
| * Either we're loading a BPF scheduler or a new task is being forked. |
| * Initialize @p for BPF scheduling. This operation may block and can |
| * be used for allocations, and is called exactly once for a task. |
| * |
| * Return 0 for success, -errno for failure. An error return while |
| * loading will abort loading of the BPF scheduler. During a fork, it |
| * will abort that specific fork. |
| */ |
| s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); |
| |
| /** |
| * exit_task - Exit a previously-running task from the system |
| * @p: task to exit |
| * |
| * @p is exiting or the BPF scheduler is being unloaded. Perform any |
| * necessary cleanup for @p. |
| */ |
| void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); |
| |
| /** |
| * enable - Enable BPF scheduling for a task |
| * @p: task to enable BPF scheduling for |
| * |
| * Enable @p for BPF scheduling. enable() is called on @p any time it |
| * enters SCX, and is always paired with a matching disable(). |
| */ |
| void (*enable)(struct task_struct *p); |
| |
| /** |
| * disable - Disable BPF scheduling for a task |
| * @p: task to disable BPF scheduling for |
| * |
| * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. |
| * Disable BPF scheduling for @p. A disable() call is always matched |
| * with a prior enable() call. |
| */ |
| void (*disable)(struct task_struct *p); |
| |
| /** |
| * dump - Dump BPF scheduler state on error |
| * @ctx: debug dump context |
| * |
| * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. |
| */ |
| void (*dump)(struct scx_dump_ctx *ctx); |
| |
| /** |
| * dump_cpu - Dump BPF scheduler state for a CPU on error |
| * @ctx: debug dump context |
| * @cpu: CPU to generate debug dump for |
| * @idle: @cpu is currently idle without any runnable tasks |
| * |
| * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for |
| * @cpu. If @idle is %true and this operation doesn't produce any |
| * output, @cpu is skipped for dump. |
| */ |
| void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); |
| |
| /** |
| * dump_task - Dump BPF scheduler state for a runnable task on error |
| * @ctx: debug dump context |
| * @p: runnable task to generate debug dump for |
| * |
| * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for |
| * @p. |
| */ |
| void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); |
| |
| #ifdef CONFIG_EXT_GROUP_SCHED |
| /** |
| * cgroup_init - Initialize a cgroup |
| * @cgrp: cgroup being initialized |
| * @args: init arguments, see the struct definition |
| * |
| * Either the BPF scheduler is being loaded or @cgrp created, initialize |
| * @cgrp for sched_ext. This operation may block. |
| * |
| * Return 0 for success, -errno for failure. An error return while |
| * loading will abort loading of the BPF scheduler. During cgroup |
| * creation, it will abort the specific cgroup creation. |
| */ |
| s32 (*cgroup_init)(struct cgroup *cgrp, |
| struct scx_cgroup_init_args *args); |
| |
| /** |
| * cgroup_exit - Exit a cgroup |
| * @cgrp: cgroup being exited |
| * |
| * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit |
| * @cgrp for sched_ext. This operation my block. |
| */ |
| void (*cgroup_exit)(struct cgroup *cgrp); |
| |
| /** |
| * cgroup_prep_move - Prepare a task to be moved to a different cgroup |
| * @p: task being moved |
| * @from: cgroup @p is being moved from |
| * @to: cgroup @p is being moved to |
| * |
| * Prepare @p for move from cgroup @from to @to. This operation may |
| * block and can be used for allocations. |
| * |
| * Return 0 for success, -errno for failure. An error return aborts the |
| * migration. |
| */ |
| s32 (*cgroup_prep_move)(struct task_struct *p, |
| struct cgroup *from, struct cgroup *to); |
| |
| /** |
| * cgroup_move - Commit cgroup move |
| * @p: task being moved |
| * @from: cgroup @p is being moved from |
| * @to: cgroup @p is being moved to |
| * |
| * Commit the move. @p is dequeued during this operation. |
| */ |
| void (*cgroup_move)(struct task_struct *p, |
| struct cgroup *from, struct cgroup *to); |
| |
| /** |
| * cgroup_cancel_move - Cancel cgroup move |
| * @p: task whose cgroup move is being canceled |
| * @from: cgroup @p was being moved from |
| * @to: cgroup @p was being moved to |
| * |
| * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). |
| * Undo the preparation. |
| */ |
| void (*cgroup_cancel_move)(struct task_struct *p, |
| struct cgroup *from, struct cgroup *to); |
| |
| /** |
| * cgroup_set_weight - A cgroup's weight is being changed |
| * @cgrp: cgroup whose weight is being updated |
| * @weight: new weight [1..10000] |
| * |
| * Update @tg's weight to @weight. |
| */ |
| void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); |
| #endif /* CONFIG_CGROUPS */ |
| |
| /* |
| * All online ops must come before ops.cpu_online(). |
| */ |
| |
| /** |
| * cpu_online - A CPU became online |
| * @cpu: CPU which just came up |
| * |
| * @cpu just came online. @cpu will not call ops.enqueue() or |
| * ops.dispatch(), nor run tasks associated with other CPUs beforehand. |
| */ |
| void (*cpu_online)(s32 cpu); |
| |
| /** |
| * cpu_offline - A CPU is going offline |
| * @cpu: CPU which is going offline |
| * |
| * @cpu is going offline. @cpu will not call ops.enqueue() or |
| * ops.dispatch(), nor run tasks associated with other CPUs afterwards. |
| */ |
| void (*cpu_offline)(s32 cpu); |
| |
| /* |
| * All CPU hotplug ops must come before ops.init(). |
| */ |
| |
| /** |
| * init - Initialize the BPF scheduler |
| */ |
| s32 (*init)(void); |
| |
| /** |
| * exit - Clean up after the BPF scheduler |
| * @info: Exit info |
| * |
| * ops.exit() is also called on ops.init() failure, which is a bit |
| * unusual. This is to allow rich reporting through @info on how |
| * ops.init() failed. |
| */ |
| void (*exit)(struct scx_exit_info *info); |
| |
| /** |
| * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch |
| */ |
| u32 dispatch_max_batch; |
| |
| /** |
| * flags - %SCX_OPS_* flags |
| */ |
| u64 flags; |
| |
| /** |
| * timeout_ms - The maximum amount of time, in milliseconds, that a |
| * runnable task should be able to wait before being scheduled. The |
| * maximum timeout may not exceed the default timeout of 30 seconds. |
| * |
| * Defaults to the maximum allowed timeout value of 30 seconds. |
| */ |
| u32 timeout_ms; |
| |
| /** |
| * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default |
| * value of 32768 is used. |
| */ |
| u32 exit_dump_len; |
| |
| /** |
| * hotplug_seq - A sequence number that may be set by the scheduler to |
| * detect when a hotplug event has occurred during the loading process. |
| * If 0, no detection occurs. Otherwise, the scheduler will fail to |
| * load if the sequence number does not match @scx_hotplug_seq on the |
| * enable path. |
| */ |
| u64 hotplug_seq; |
| |
| /** |
| * name - BPF scheduler's name |
| * |
| * Must be a non-zero valid BPF object name including only isalnum(), |
| * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the |
| * BPF scheduler is enabled. |
| */ |
| char name[SCX_OPS_NAME_LEN]; |
| }; |
| |
| enum scx_opi { |
| SCX_OPI_BEGIN = 0, |
| SCX_OPI_NORMAL_BEGIN = 0, |
| SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), |
| SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), |
| SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), |
| SCX_OPI_END = SCX_OP_IDX(init), |
| }; |
| |
| enum scx_wake_flags { |
| /* expose select WF_* flags as enums */ |
| SCX_WAKE_FORK = WF_FORK, |
| SCX_WAKE_TTWU = WF_TTWU, |
| SCX_WAKE_SYNC = WF_SYNC, |
| }; |
| |
| enum scx_enq_flags { |
| /* expose select ENQUEUE_* flags as enums */ |
| SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, |
| SCX_ENQ_HEAD = ENQUEUE_HEAD, |
| SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, |
| |
| /* high 32bits are SCX specific */ |
| |
| /* |
| * Set the following to trigger preemption when calling |
| * scx_bpf_dispatch() with a local dsq as the target. The slice of the |
| * current task is cleared to zero and the CPU is kicked into the |
| * scheduling path. Implies %SCX_ENQ_HEAD. |
| */ |
| SCX_ENQ_PREEMPT = 1LLU << 32, |
| |
| /* |
| * The task being enqueued was previously enqueued on the current CPU's |
| * %SCX_DSQ_LOCAL, but was removed from it in a call to the |
| * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was |
| * invoked in a ->cpu_release() callback, and the task is again |
| * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the |
| * task will not be scheduled on the CPU until at least the next invocation |
| * of the ->cpu_acquire() callback. |
| */ |
| SCX_ENQ_REENQ = 1LLU << 40, |
| |
| /* |
| * The task being enqueued is the only task available for the cpu. By |
| * default, ext core keeps executing such tasks but when |
| * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the |
| * %SCX_ENQ_LAST flag set. |
| * |
| * The BPF scheduler is responsible for triggering a follow-up |
| * scheduling event. Otherwise, Execution may stall. |
| */ |
| SCX_ENQ_LAST = 1LLU << 41, |
| |
| /* high 8 bits are internal */ |
| __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, |
| |
| SCX_ENQ_CLEAR_OPSS = 1LLU << 56, |
| SCX_ENQ_DSQ_PRIQ = 1LLU << 57, |
| }; |
| |
| enum scx_deq_flags { |
| /* expose select DEQUEUE_* flags as enums */ |
| SCX_DEQ_SLEEP = DEQUEUE_SLEEP, |
| |
| /* high 32bits are SCX specific */ |
| |
| /* |
| * The generic core-sched layer decided to execute the task even though |
| * it hasn't been dispatched yet. Dequeue from the BPF side. |
| */ |
| SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, |
| }; |
| |
| enum scx_pick_idle_cpu_flags { |
| SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ |
| }; |
| |
| enum scx_kick_flags { |
| /* |
| * Kick the target CPU if idle. Guarantees that the target CPU goes |
| * through at least one full scheduling cycle before going idle. If the |
| * target CPU can be determined to be currently not idle and going to go |
| * through a scheduling cycle before going idle, noop. |
| */ |
| SCX_KICK_IDLE = 1LLU << 0, |
| |
| /* |
| * Preempt the current task and execute the dispatch path. If the |
| * current task of the target CPU is an SCX task, its ->scx.slice is |
| * cleared to zero before the scheduling path is invoked so that the |
| * task expires and the dispatch path is invoked. |
| */ |
| SCX_KICK_PREEMPT = 1LLU << 1, |
| |
| /* |
| * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will |
| * return after the target CPU finishes picking the next task. |
| */ |
| SCX_KICK_WAIT = 1LLU << 2, |
| }; |
| |
| enum scx_tg_flags { |
| SCX_TG_ONLINE = 1U << 0, |
| SCX_TG_INITED = 1U << 1, |
| }; |
| |
| enum scx_ops_enable_state { |
| SCX_OPS_ENABLING, |
| SCX_OPS_ENABLED, |
| SCX_OPS_DISABLING, |
| SCX_OPS_DISABLED, |
| }; |
| |
| static const char *scx_ops_enable_state_str[] = { |
| [SCX_OPS_ENABLING] = "enabling", |
| [SCX_OPS_ENABLED] = "enabled", |
| [SCX_OPS_DISABLING] = "disabling", |
| [SCX_OPS_DISABLED] = "disabled", |
| }; |
| |
| /* |
| * sched_ext_entity->ops_state |
| * |
| * Used to track the task ownership between the SCX core and the BPF scheduler. |
| * State transitions look as follows: |
| * |
| * NONE -> QUEUEING -> QUEUED -> DISPATCHING |
| * ^ | | |
| * | v v |
| * \-------------------------------/ |
| * |
| * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call |
| * sites for explanations on the conditions being waited upon and why they are |
| * safe. Transitions out of them into NONE or QUEUED must store_release and the |
| * waiters should load_acquire. |
| * |
| * Tracking scx_ops_state enables sched_ext core to reliably determine whether |
| * any given task can be dispatched by the BPF scheduler at all times and thus |
| * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler |
| * to try to dispatch any task anytime regardless of its state as the SCX core |
| * can safely reject invalid dispatches. |
| */ |
| enum scx_ops_state { |
| SCX_OPSS_NONE, /* owned by the SCX core */ |
| SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ |
| SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ |
| SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ |
| |
| /* |
| * QSEQ brands each QUEUED instance so that, when dispatch races |
| * dequeue/requeue, the dispatcher can tell whether it still has a claim |
| * on the task being dispatched. |
| * |
| * As some 32bit archs can't do 64bit store_release/load_acquire, |
| * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on |
| * 32bit machines. The dispatch race window QSEQ protects is very narrow |
| * and runs with IRQ disabled. 30 bits should be sufficient. |
| */ |
| SCX_OPSS_QSEQ_SHIFT = 2, |
| }; |
| |
| /* Use macros to ensure that the type is unsigned long for the masks */ |
| #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) |
| #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) |
| |
| /* |
| * During exit, a task may schedule after losing its PIDs. When disabling the |
| * BPF scheduler, we need to be able to iterate tasks in every state to |
| * guarantee system safety. Maintain a dedicated task list which contains every |
| * task between its fork and eventual free. |
| */ |
| static DEFINE_SPINLOCK(scx_tasks_lock); |
| static LIST_HEAD(scx_tasks); |
| |
| /* ops enable/disable */ |
| static struct kthread_worker *scx_ops_helper; |
| static DEFINE_MUTEX(scx_ops_enable_mutex); |
| DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); |
| DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); |
| static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); |
| static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); |
| static bool scx_ops_init_task_enabled; |
| static bool scx_switching_all; |
| DEFINE_STATIC_KEY_FALSE(__scx_switched_all); |
| |
| static struct sched_ext_ops scx_ops; |
| static bool scx_warned_zero_slice; |
| |
| static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); |
| static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); |
| static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); |
| static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); |
| |
| static struct static_key_false scx_has_op[SCX_OPI_END] = |
| { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; |
| |
| static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); |
| static struct scx_exit_info *scx_exit_info; |
| |
| static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); |
| static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); |
| |
| /* |
| * A monotically increasing sequence number that is incremented every time a |
| * scheduler is enabled. This can be used by to check if any custom sched_ext |
| * scheduler has ever been used in the system. |
| */ |
| static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); |
| |
| /* |
| * The maximum amount of time in jiffies that a task may be runnable without |
| * being scheduled on a CPU. If this timeout is exceeded, it will trigger |
| * scx_ops_error(). |
| */ |
| static unsigned long scx_watchdog_timeout; |
| |
| /* |
| * The last time the delayed work was run. This delayed work relies on |
| * ksoftirqd being able to run to service timer interrupts, so it's possible |
| * that this work itself could get wedged. To account for this, we check that |
| * it's not stalled in the timer tick, and trigger an error if it is. |
| */ |
| static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; |
| |
| static struct delayed_work scx_watchdog_work; |
| |
| /* idle tracking */ |
| #ifdef CONFIG_SMP |
| #ifdef CONFIG_CPUMASK_OFFSTACK |
| #define CL_ALIGNED_IF_ONSTACK |
| #else |
| #define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp |
| #endif |
| |
| static struct { |
| cpumask_var_t cpu; |
| cpumask_var_t smt; |
| } idle_masks CL_ALIGNED_IF_ONSTACK; |
| |
| #endif /* CONFIG_SMP */ |
| |
| /* for %SCX_KICK_WAIT */ |
| static unsigned long __percpu *scx_kick_cpus_pnt_seqs; |
| |
| /* |
| * Direct dispatch marker. |
| * |
| * Non-NULL values are used for direct dispatch from enqueue path. A valid |
| * pointer points to the task currently being enqueued. An ERR_PTR value is used |
| * to indicate that direct dispatch has already happened. |
| */ |
| static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); |
| |
| /* |
| * Dispatch queues. |
| * |
| * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is |
| * to avoid live-locking in bypass mode where all tasks are dispatched to |
| * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't |
| * sufficient, it can be further split. |
| */ |
| static struct scx_dispatch_q **global_dsqs; |
| |
| static const struct rhashtable_params dsq_hash_params = { |
| .key_len = 8, |
| .key_offset = offsetof(struct scx_dispatch_q, id), |
| .head_offset = offsetof(struct scx_dispatch_q, hash_node), |
| }; |
| |
| static struct rhashtable dsq_hash; |
| static LLIST_HEAD(dsqs_to_free); |
| |
| /* dispatch buf */ |
| struct scx_dsp_buf_ent { |
| struct task_struct *task; |
| unsigned long qseq; |
| u64 dsq_id; |
| u64 enq_flags; |
| }; |
| |
| static u32 scx_dsp_max_batch; |
| |
| struct scx_dsp_ctx { |
| struct rq *rq; |
| u32 cursor; |
| u32 nr_tasks; |
| struct scx_dsp_buf_ent buf[]; |
| }; |
| |
| static struct scx_dsp_ctx __percpu *scx_dsp_ctx; |
| |
| /* string formatting from BPF */ |
| struct scx_bstr_buf { |
| u64 data[MAX_BPRINTF_VARARGS]; |
| char line[SCX_EXIT_MSG_LEN]; |
| }; |
| |
| static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); |
| static struct scx_bstr_buf scx_exit_bstr_buf; |
| |
| /* ops debug dump */ |
| struct scx_dump_data { |
| s32 cpu; |
| bool first; |
| s32 cursor; |
| struct seq_buf *s; |
| const char *prefix; |
| struct scx_bstr_buf buf; |
| }; |
| |
| static struct scx_dump_data scx_dump_data = { |
| .cpu = -1, |
| }; |
| |
| /* /sys/kernel/sched_ext interface */ |
| static struct kset *scx_kset; |
| static struct kobject *scx_root_kobj; |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/sched_ext.h> |
| |
| static void process_ddsp_deferred_locals(struct rq *rq); |
| static void scx_bpf_kick_cpu(s32 cpu, u64 flags); |
| static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, |
| s64 exit_code, |
| const char *fmt, ...); |
| |
| #define scx_ops_error_kind(err, fmt, args...) \ |
| scx_ops_exit_kind((err), 0, fmt, ##args) |
| |
| #define scx_ops_exit(code, fmt, args...) \ |
| scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) |
| |
| #define scx_ops_error(fmt, args...) \ |
| scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) |
| |
| #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) |
| |
| static long jiffies_delta_msecs(unsigned long at, unsigned long now) |
| { |
| if (time_after(at, now)) |
| return jiffies_to_msecs(at - now); |
| else |
| return -(long)jiffies_to_msecs(now - at); |
| } |
| |
| /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ |
| static u32 higher_bits(u32 flags) |
| { |
| return ~((1 << fls(flags)) - 1); |
| } |
| |
| /* return the mask with only the highest bit set */ |
| static u32 highest_bit(u32 flags) |
| { |
| int bit = fls(flags); |
| return ((u64)1 << bit) >> 1; |
| } |
| |
| static bool u32_before(u32 a, u32 b) |
| { |
| return (s32)(a - b) < 0; |
| } |
| |
| static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) |
| { |
| return global_dsqs[cpu_to_node(task_cpu(p))]; |
| } |
| |
| static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) |
| { |
| return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); |
| } |
| |
| /* |
| * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX |
| * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate |
| * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check |
| * whether it's running from an allowed context. |
| * |
| * @mask is constant, always inline to cull the mask calculations. |
| */ |
| static __always_inline void scx_kf_allow(u32 mask) |
| { |
| /* nesting is allowed only in increasing scx_kf_mask order */ |
| WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, |
| "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", |
| current->scx.kf_mask, mask); |
| current->scx.kf_mask |= mask; |
| barrier(); |
| } |
| |
| static void scx_kf_disallow(u32 mask) |
| { |
| barrier(); |
| current->scx.kf_mask &= ~mask; |
| } |
| |
| #define SCX_CALL_OP(mask, op, args...) \ |
| do { \ |
| if (mask) { \ |
| scx_kf_allow(mask); \ |
| scx_ops.op(args); \ |
| scx_kf_disallow(mask); \ |
| } else { \ |
| scx_ops.op(args); \ |
| } \ |
| } while (0) |
| |
| #define SCX_CALL_OP_RET(mask, op, args...) \ |
| ({ \ |
| __typeof__(scx_ops.op(args)) __ret; \ |
| if (mask) { \ |
| scx_kf_allow(mask); \ |
| __ret = scx_ops.op(args); \ |
| scx_kf_disallow(mask); \ |
| } else { \ |
| __ret = scx_ops.op(args); \ |
| } \ |
| __ret; \ |
| }) |
| |
| /* |
| * Some kfuncs are allowed only on the tasks that are subjects of the |
| * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such |
| * restrictions, the following SCX_CALL_OP_*() variants should be used when |
| * invoking scx_ops operations that take task arguments. These can only be used |
| * for non-nesting operations due to the way the tasks are tracked. |
| * |
| * kfuncs which can only operate on such tasks can in turn use |
| * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on |
| * the specific task. |
| */ |
| #define SCX_CALL_OP_TASK(mask, op, task, args...) \ |
| do { \ |
| BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ |
| current->scx.kf_tasks[0] = task; \ |
| SCX_CALL_OP(mask, op, task, ##args); \ |
| current->scx.kf_tasks[0] = NULL; \ |
| } while (0) |
| |
| #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ |
| ({ \ |
| __typeof__(scx_ops.op(task, ##args)) __ret; \ |
| BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ |
| current->scx.kf_tasks[0] = task; \ |
| __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ |
| current->scx.kf_tasks[0] = NULL; \ |
| __ret; \ |
| }) |
| |
| #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ |
| ({ \ |
| __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ |
| BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ |
| current->scx.kf_tasks[0] = task0; \ |
| current->scx.kf_tasks[1] = task1; \ |
| __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ |
| current->scx.kf_tasks[0] = NULL; \ |
| current->scx.kf_tasks[1] = NULL; \ |
| __ret; \ |
| }) |
| |
| /* @mask is constant, always inline to cull unnecessary branches */ |
| static __always_inline bool scx_kf_allowed(u32 mask) |
| { |
| if (unlikely(!(current->scx.kf_mask & mask))) { |
| scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", |
| mask, current->scx.kf_mask); |
| return false; |
| } |
| |
| /* |
| * Enforce nesting boundaries. e.g. A kfunc which can be called from |
| * DISPATCH must not be called if we're running DEQUEUE which is nested |
| * inside ops.dispatch(). We don't need to check boundaries for any |
| * blocking kfuncs as the verifier ensures they're only called from |
| * sleepable progs. |
| */ |
| if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && |
| (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { |
| scx_ops_error("cpu_release kfunc called from a nested operation"); |
| return false; |
| } |
| |
| if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && |
| (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { |
| scx_ops_error("dispatch kfunc called from a nested operation"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* see SCX_CALL_OP_TASK() */ |
| static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, |
| struct task_struct *p) |
| { |
| if (!scx_kf_allowed(mask)) |
| return false; |
| |
| if (unlikely((p != current->scx.kf_tasks[0] && |
| p != current->scx.kf_tasks[1]))) { |
| scx_ops_error("called on a task not being operated on"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool scx_kf_allowed_if_unlocked(void) |
| { |
| return !current->scx.kf_mask; |
| } |
| |
| /** |
| * nldsq_next_task - Iterate to the next task in a non-local DSQ |
| * @dsq: user dsq being interated |
| * @cur: current position, %NULL to start iteration |
| * @rev: walk backwards |
| * |
| * Returns %NULL when iteration is finished. |
| */ |
| static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, |
| struct task_struct *cur, bool rev) |
| { |
| struct list_head *list_node; |
| struct scx_dsq_list_node *dsq_lnode; |
| |
| lockdep_assert_held(&dsq->lock); |
| |
| if (cur) |
| list_node = &cur->scx.dsq_list.node; |
| else |
| list_node = &dsq->list; |
| |
| /* find the next task, need to skip BPF iteration cursors */ |
| do { |
| if (rev) |
| list_node = list_node->prev; |
| else |
| list_node = list_node->next; |
| |
| if (list_node == &dsq->list) |
| return NULL; |
| |
| dsq_lnode = container_of(list_node, struct scx_dsq_list_node, |
| node); |
| } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); |
| |
| return container_of(dsq_lnode, struct task_struct, scx.dsq_list); |
| } |
| |
| #define nldsq_for_each_task(p, dsq) \ |
| for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ |
| (p) = nldsq_next_task((dsq), (p), false)) |
| |
| |
| /* |
| * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] |
| * dispatch order. BPF-visible iterator is opaque and larger to allow future |
| * changes without breaking backward compatibility. Can be used with |
| * bpf_for_each(). See bpf_iter_scx_dsq_*(). |
| */ |
| enum scx_dsq_iter_flags { |
| /* iterate in the reverse dispatch order */ |
| SCX_DSQ_ITER_REV = 1U << 16, |
| |
| __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, |
| __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, |
| |
| __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, |
| __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | |
| __SCX_DSQ_ITER_HAS_SLICE | |
| __SCX_DSQ_ITER_HAS_VTIME, |
| }; |
| |
| struct bpf_iter_scx_dsq_kern { |
| struct scx_dsq_list_node cursor; |
| struct scx_dispatch_q *dsq; |
| u64 slice; |
| u64 vtime; |
| } __attribute__((aligned(8))); |
| |
| struct bpf_iter_scx_dsq { |
| u64 __opaque[6]; |
| } __attribute__((aligned(8))); |
| |
| |
| /* |
| * SCX task iterator. |
| */ |
| struct scx_task_iter { |
| struct sched_ext_entity cursor; |
| struct task_struct *locked; |
| struct rq *rq; |
| struct rq_flags rf; |
| }; |
| |
| /** |
| * scx_task_iter_init - Initialize a task iterator |
| * @iter: iterator to init |
| * |
| * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, |
| * @iter must eventually be exited with scx_task_iter_exit(). |
| * |
| * scx_tasks_lock may be released between this and the first next() call or |
| * between any two next() calls. If scx_tasks_lock is released between two |
| * next() calls, the caller is responsible for ensuring that the task being |
| * iterated remains accessible either through RCU read lock or obtaining a |
| * reference count. |
| * |
| * All tasks which existed when the iteration started are guaranteed to be |
| * visited as long as they still exist. |
| */ |
| static void scx_task_iter_init(struct scx_task_iter *iter) |
| { |
| lockdep_assert_held(&scx_tasks_lock); |
| |
| BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & |
| ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); |
| |
| iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; |
| list_add(&iter->cursor.tasks_node, &scx_tasks); |
| iter->locked = NULL; |
| } |
| |
| /** |
| * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator |
| * @iter: iterator to unlock rq for |
| * |
| * If @iter is in the middle of a locked iteration, it may be locking the rq of |
| * the task currently being visited. Unlock the rq if so. This function can be |
| * safely called anytime during an iteration. |
| * |
| * Returns %true if the rq @iter was locking is unlocked. %false if @iter was |
| * not locking an rq. |
| */ |
| static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) |
| { |
| if (iter->locked) { |
| task_rq_unlock(iter->rq, iter->locked, &iter->rf); |
| iter->locked = NULL; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| /** |
| * scx_task_iter_exit - Exit a task iterator |
| * @iter: iterator to exit |
| * |
| * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. |
| * If the iterator holds a task's rq lock, that rq lock is released. See |
| * scx_task_iter_init() for details. |
| */ |
| static void scx_task_iter_exit(struct scx_task_iter *iter) |
| { |
| lockdep_assert_held(&scx_tasks_lock); |
| |
| scx_task_iter_rq_unlock(iter); |
| list_del_init(&iter->cursor.tasks_node); |
| } |
| |
| /** |
| * scx_task_iter_next - Next task |
| * @iter: iterator to walk |
| * |
| * Visit the next task. See scx_task_iter_init() for details. |
| */ |
| static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) |
| { |
| struct list_head *cursor = &iter->cursor.tasks_node; |
| struct sched_ext_entity *pos; |
| |
| lockdep_assert_held(&scx_tasks_lock); |
| |
| list_for_each_entry(pos, cursor, tasks_node) { |
| if (&pos->tasks_node == &scx_tasks) |
| return NULL; |
| if (!(pos->flags & SCX_TASK_CURSOR)) { |
| list_move(cursor, &pos->tasks_node); |
| return container_of(pos, struct task_struct, scx); |
| } |
| } |
| |
| /* can't happen, should always terminate at scx_tasks above */ |
| BUG(); |
| } |
| |
| /** |
| * scx_task_iter_next_locked - Next non-idle task with its rq locked |
| * @iter: iterator to walk |
| * @include_dead: Whether we should include dead tasks in the iteration |
| * |
| * Visit the non-idle task with its rq lock held. Allows callers to specify |
| * whether they would like to filter out dead tasks. See scx_task_iter_init() |
| * for details. |
| */ |
| static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) |
| { |
| struct task_struct *p; |
| |
| scx_task_iter_rq_unlock(iter); |
| |
| while ((p = scx_task_iter_next(iter))) { |
| /* |
| * scx_task_iter is used to prepare and move tasks into SCX |
| * while loading the BPF scheduler and vice-versa while |
| * unloading. The init_tasks ("swappers") should be excluded |
| * from the iteration because: |
| * |
| * - It's unsafe to use __setschduler_prio() on an init_task to |
| * determine the sched_class to use as it won't preserve its |
| * idle_sched_class. |
| * |
| * - ops.init/exit_task() can easily be confused if called with |
| * init_tasks as they, e.g., share PID 0. |
| * |
| * As init_tasks are never scheduled through SCX, they can be |
| * skipped safely. Note that is_idle_task() which tests %PF_IDLE |
| * doesn't work here: |
| * |
| * - %PF_IDLE may not be set for an init_task whose CPU hasn't |
| * yet been onlined. |
| * |
| * - %PF_IDLE can be set on tasks that are not init_tasks. See |
| * play_idle_precise() used by CONFIG_IDLE_INJECT. |
| * |
| * Test for idle_sched_class as only init_tasks are on it. |
| */ |
| if (p->sched_class != &idle_sched_class) |
| break; |
| } |
| if (!p) |
| return NULL; |
| |
| iter->rq = task_rq_lock(p, &iter->rf); |
| iter->locked = p; |
| |
| return p; |
| } |
| |
| static enum scx_ops_enable_state scx_ops_enable_state(void) |
| { |
| return atomic_read(&scx_ops_enable_state_var); |
| } |
| |
| static enum scx_ops_enable_state |
| scx_ops_set_enable_state(enum scx_ops_enable_state to) |
| { |
| return atomic_xchg(&scx_ops_enable_state_var, to); |
| } |
| |
| static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, |
| enum scx_ops_enable_state from) |
| { |
| int from_v = from; |
| |
| return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); |
| } |
| |
| static bool scx_rq_bypassing(struct rq *rq) |
| { |
| return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); |
| } |
| |
| /** |
| * wait_ops_state - Busy-wait the specified ops state to end |
| * @p: target task |
| * @opss: state to wait the end of |
| * |
| * Busy-wait for @p to transition out of @opss. This can only be used when the |
| * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also |
| * has load_acquire semantics to ensure that the caller can see the updates made |
| * in the enqueueing and dispatching paths. |
| */ |
| static void wait_ops_state(struct task_struct *p, unsigned long opss) |
| { |
| do { |
| cpu_relax(); |
| } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); |
| } |
| |
| /** |
| * ops_cpu_valid - Verify a cpu number |
| * @cpu: cpu number which came from a BPF ops |
| * @where: extra information reported on error |
| * |
| * @cpu is a cpu number which came from the BPF scheduler and can be any value. |
| * Verify that it is in range and one of the possible cpus. If invalid, trigger |
| * an ops error. |
| */ |
| static bool ops_cpu_valid(s32 cpu, const char *where) |
| { |
| if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { |
| return true; |
| } else { |
| scx_ops_error("invalid CPU %d%s%s", cpu, |
| where ? " " : "", where ?: ""); |
| return false; |
| } |
| } |
| |
| /** |
| * ops_sanitize_err - Sanitize a -errno value |
| * @ops_name: operation to blame on failure |
| * @err: -errno value to sanitize |
| * |
| * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return |
| * -%EPROTO. This is necessary because returning a rogue -errno up the chain can |
| * cause misbehaviors. For an example, a large negative return from |
| * ops.init_task() triggers an oops when passed up the call chain because the |
| * value fails IS_ERR() test after being encoded with ERR_PTR() and then is |
| * handled as a pointer. |
| */ |
| static int ops_sanitize_err(const char *ops_name, s32 err) |
| { |
| if (err < 0 && err >= -MAX_ERRNO) |
| return err; |
| |
| scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); |
| return -EPROTO; |
| } |
| |
| static void run_deferred(struct rq *rq) |
| { |
| process_ddsp_deferred_locals(rq); |
| } |
| |
| #ifdef CONFIG_SMP |
| static void deferred_bal_cb_workfn(struct rq *rq) |
| { |
| run_deferred(rq); |
| } |
| #endif |
| |
| static void deferred_irq_workfn(struct irq_work *irq_work) |
| { |
| struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); |
| |
| raw_spin_rq_lock(rq); |
| run_deferred(rq); |
| raw_spin_rq_unlock(rq); |
| } |
| |
| /** |
| * schedule_deferred - Schedule execution of deferred actions on an rq |
| * @rq: target rq |
| * |
| * Schedule execution of deferred actions on @rq. Must be called with @rq |
| * locked. Deferred actions are executed with @rq locked but unpinned, and thus |
| * can unlock @rq to e.g. migrate tasks to other rqs. |
| */ |
| static void schedule_deferred(struct rq *rq) |
| { |
| lockdep_assert_rq_held(rq); |
| |
| #ifdef CONFIG_SMP |
| /* |
| * If in the middle of waking up a task, task_woken_scx() will be called |
| * afterwards which will then run the deferred actions, no need to |
| * schedule anything. |
| */ |
| if (rq->scx.flags & SCX_RQ_IN_WAKEUP) |
| return; |
| |
| /* |
| * If in balance, the balance callbacks will be called before rq lock is |
| * released. Schedule one. |
| */ |
| if (rq->scx.flags & SCX_RQ_IN_BALANCE) { |
| queue_balance_callback(rq, &rq->scx.deferred_bal_cb, |
| deferred_bal_cb_workfn); |
| return; |
| } |
| #endif |
| /* |
| * No scheduler hooks available. Queue an irq work. They are executed on |
| * IRQ re-enable which may take a bit longer than the scheduler hooks. |
| * The above WAKEUP and BALANCE paths should cover most of the cases and |
| * the time to IRQ re-enable shouldn't be long. |
| */ |
| irq_work_queue(&rq->scx.deferred_irq_work); |
| } |
| |
| /** |
| * touch_core_sched - Update timestamp used for core-sched task ordering |
| * @rq: rq to read clock from, must be locked |
| * @p: task to update the timestamp for |
| * |
| * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to |
| * implement global or local-DSQ FIFO ordering for core-sched. Should be called |
| * when a task becomes runnable and its turn on the CPU ends (e.g. slice |
| * exhaustion). |
| */ |
| static void touch_core_sched(struct rq *rq, struct task_struct *p) |
| { |
| lockdep_assert_rq_held(rq); |
| |
| #ifdef CONFIG_SCHED_CORE |
| /* |
| * It's okay to update the timestamp spuriously. Use |
| * sched_core_disabled() which is cheaper than enabled(). |
| * |
| * As this is used to determine ordering between tasks of sibling CPUs, |
| * it may be better to use per-core dispatch sequence instead. |
| */ |
| if (!sched_core_disabled()) |
| p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); |
| #endif |
| } |
| |
| /** |
| * touch_core_sched_dispatch - Update core-sched timestamp on dispatch |
| * @rq: rq to read clock from, must be locked |
| * @p: task being dispatched |
| * |
| * If the BPF scheduler implements custom core-sched ordering via |
| * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO |
| * ordering within each local DSQ. This function is called from dispatch paths |
| * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. |
| */ |
| static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) |
| { |
| lockdep_assert_rq_held(rq); |
| |
| #ifdef CONFIG_SCHED_CORE |
| if (SCX_HAS_OP(core_sched_before)) |
| touch_core_sched(rq, p); |
| #endif |
| } |
| |
| static void update_curr_scx(struct rq *rq) |
| { |
| struct task_struct *curr = rq->curr; |
| s64 delta_exec; |
| |
| delta_exec = update_curr_common(rq); |
| if (unlikely(delta_exec <= 0)) |
| return; |
| |
| if (curr->scx.slice != SCX_SLICE_INF) { |
| curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); |
| if (!curr->scx.slice) |
| touch_core_sched(rq, curr); |
| } |
| } |
| |
| static bool scx_dsq_priq_less(struct rb_node *node_a, |
| const struct rb_node *node_b) |
| { |
| const struct task_struct *a = |
| container_of(node_a, struct task_struct, scx.dsq_priq); |
| const struct task_struct *b = |
| container_of(node_b, struct task_struct, scx.dsq_priq); |
| |
| return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); |
| } |
| |
| static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) |
| { |
| /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ |
| WRITE_ONCE(dsq->nr, dsq->nr + delta); |
| } |
| |
| static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, |
| u64 enq_flags) |
| { |
| bool is_local = dsq->id == SCX_DSQ_LOCAL; |
| |
| WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); |
| WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || |
| !RB_EMPTY_NODE(&p->scx.dsq_priq)); |
| |
| if (!is_local) { |
| raw_spin_lock(&dsq->lock); |
| if (unlikely(dsq->id == SCX_DSQ_INVALID)) { |
| scx_ops_error("attempting to dispatch to a destroyed dsq"); |
| /* fall back to the global dsq */ |
| raw_spin_unlock(&dsq->lock); |
| dsq = find_global_dsq(p); |
| raw_spin_lock(&dsq->lock); |
| } |
| } |
| |
| if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && |
| (enq_flags & SCX_ENQ_DSQ_PRIQ))) { |
| /* |
| * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from |
| * their FIFO queues. To avoid confusion and accidentally |
| * starving vtime-dispatched tasks by FIFO-dispatched tasks, we |
| * disallow any internal DSQ from doing vtime ordering of |
| * tasks. |
| */ |
| scx_ops_error("cannot use vtime ordering for built-in DSQs"); |
| enq_flags &= ~SCX_ENQ_DSQ_PRIQ; |
| } |
| |
| if (enq_flags & SCX_ENQ_DSQ_PRIQ) { |
| struct rb_node *rbp; |
| |
| /* |
| * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are |
| * linked to both the rbtree and list on PRIQs, this can only be |
| * tested easily when adding the first task. |
| */ |
| if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && |
| nldsq_next_task(dsq, NULL, false))) |
| scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", |
| dsq->id); |
| |
| p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; |
| rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); |
| |
| /* |
| * Find the previous task and insert after it on the list so |
| * that @dsq->list is vtime ordered. |
| */ |
| rbp = rb_prev(&p->scx.dsq_priq); |
| if (rbp) { |
| struct task_struct *prev = |
| container_of(rbp, struct task_struct, |
| scx.dsq_priq); |
| list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); |
| } else { |
| list_add(&p->scx.dsq_list.node, &dsq->list); |
| } |
| } else { |
| /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ |
| if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) |
| scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", |
| dsq->id); |
| |
| if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) |
| list_add(&p->scx.dsq_list.node, &dsq->list); |
| else |
| list_add_tail(&p->scx.dsq_list.node, &dsq->list); |
| } |
| |
| /* seq records the order tasks are queued, used by BPF DSQ iterator */ |
| dsq->seq++; |
| p->scx.dsq_seq = dsq->seq; |
| |
| dsq_mod_nr(dsq, 1); |
| p->scx.dsq = dsq; |
| |
| /* |
| * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the |
| * direct dispatch path, but we clear them here because the direct |
| * dispatch verdict may be overridden on the enqueue path during e.g. |
| * bypass. |
| */ |
| p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; |
| p->scx.ddsp_enq_flags = 0; |
| |
| /* |
| * We're transitioning out of QUEUEING or DISPATCHING. store_release to |
| * match waiters' load_acquire. |
| */ |
| if (enq_flags & SCX_ENQ_CLEAR_OPSS) |
| atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); |
| |
| if (is_local) { |
| struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); |
| bool preempt = false; |
| |
| if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && |
| rq->curr->sched_class == &ext_sched_class) { |
| rq->curr->scx.slice = 0; |
| preempt = true; |
| } |
| |
| if (preempt || sched_class_above(&ext_sched_class, |
| rq->curr->sched_class)) |
| resched_curr(rq); |
| } else { |
| raw_spin_unlock(&dsq->lock); |
| } |
| } |
| |
| static void task_unlink_from_dsq(struct task_struct *p, |
| struct scx_dispatch_q *dsq) |
| { |
| WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); |
| |
| if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { |
| rb_erase(&p->scx.dsq_priq, &dsq->priq); |
| RB_CLEAR_NODE(&p->scx.dsq_priq); |
| p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; |
| } |
| |
| list_del_init(&p->scx.dsq_list.node); |
| dsq_mod_nr(dsq, -1); |
| } |
| |
| static void dispatch_dequeue(struct rq *rq, struct task_struct *p) |
| { |
| struct scx_dispatch_q *dsq = p->scx.dsq; |
| bool is_local = dsq == &rq->scx.local_dsq; |
| |
| if (!dsq) { |
| /* |
| * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. |
| * Unlinking is all that's needed to cancel. |
| */ |
| if (unlikely(!list_empty(&p->scx.dsq_list.node))) |
| list_del_init(&p->scx.dsq_list.node); |
| |
| /* |
| * When dispatching directly from the BPF scheduler to a local |
| * DSQ, the task isn't associated with any DSQ but |
| * @p->scx.holding_cpu may be set under the protection of |
| * %SCX_OPSS_DISPATCHING. |
| */ |
| if (p->scx.holding_cpu >= 0) |
| p->scx.holding_cpu = -1; |
| |
| return; |
| } |
| |
| if (!is_local) |
| raw_spin_lock(&dsq->lock); |
| |
| /* |
| * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't |
| * change underneath us. |
| */ |
| if (p->scx.holding_cpu < 0) { |
| /* @p must still be on @dsq, dequeue */ |
| task_unlink_from_dsq(p, dsq); |
| } else { |
| /* |
| * We're racing against dispatch_to_local_dsq() which already |
| * removed @p from @dsq and set @p->scx.holding_cpu. Clear the |
| * holding_cpu which tells dispatch_to_local_dsq() that it lost |
| * the race. |
| */ |
| WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); |
| p->scx.holding_cpu = -1; |
| } |
| p->scx.dsq = NULL; |
| |
| if (!is_local) |
| raw_spin_unlock(&dsq->lock); |
| } |
| |
| static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, |
| struct task_struct *p) |
| { |
| struct scx_dispatch_q *dsq; |
| |
| if (dsq_id == SCX_DSQ_LOCAL) |
| return &rq->scx.local_dsq; |
| |
| if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { |
| s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; |
| |
| if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) |
| return find_global_dsq(p); |
| |
| return &cpu_rq(cpu)->scx.local_dsq; |
| } |
| |
| if (dsq_id == SCX_DSQ_GLOBAL) |
| dsq = find_global_dsq(p); |
| else |
| dsq = find_user_dsq(dsq_id); |
| |
| if (unlikely(!dsq)) { |
| scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", |
| dsq_id, p->comm, p->pid); |
| return find_global_dsq(p); |
| } |
| |
| return dsq; |
| } |
| |
| static void mark_direct_dispatch(struct task_struct *ddsp_task, |
| struct task_struct *p, u64 dsq_id, |
| u64 enq_flags) |
| { |
| /* |
| * Mark that dispatch already happened from ops.select_cpu() or |
| * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value |
| * which can never match a valid task pointer. |
| */ |
| __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); |
| |
| /* @p must match the task on the enqueue path */ |
| if (unlikely(p != ddsp_task)) { |
| if (IS_ERR(ddsp_task)) |
| scx_ops_error("%s[%d] already direct-dispatched", |
| p->comm, p->pid); |
| else |
| scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", |
| ddsp_task->comm, ddsp_task->pid, |
| p->comm, p->pid); |
| return; |
| } |
| |
| WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); |
| WARN_ON_ONCE(p->scx.ddsp_enq_flags); |
| |
| p->scx.ddsp_dsq_id = dsq_id; |
| p->scx.ddsp_enq_flags = enq_flags; |
| } |
| |
| static void direct_dispatch(struct task_struct *p, u64 enq_flags) |
| { |
| struct rq *rq = task_rq(p); |
| struct scx_dispatch_q *dsq = |
| find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); |
| |
| touch_core_sched_dispatch(rq, p); |
| |
| p->scx.ddsp_enq_flags |= enq_flags; |
| |
| /* |
| * We are in the enqueue path with @rq locked and pinned, and thus can't |
| * double lock a remote rq and enqueue to its local DSQ. For |
| * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer |
| * the enqueue so that it's executed when @rq can be unlocked. |
| */ |
| if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { |
| unsigned long opss; |
| |
| opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; |
| |
| switch (opss & SCX_OPSS_STATE_MASK) { |
| case SCX_OPSS_NONE: |
| break; |
| case SCX_OPSS_QUEUEING: |
| /* |
| * As @p was never passed to the BPF side, _release is |
| * not strictly necessary. Still do it for consistency. |
| */ |
| atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); |
| break; |
| default: |
| WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", |
| p->comm, p->pid, opss); |
| atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); |
| break; |
| } |
| |
| WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); |
| list_add_tail(&p->scx.dsq_list.node, |
| &rq->scx.ddsp_deferred_locals); |
| schedule_deferred(rq); |
| return; |
| } |
| |
| dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); |
| } |
| |
| static bool scx_rq_online(struct rq *rq) |
| { |
| /* |
| * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates |
| * the online state as seen from the BPF scheduler. cpu_active() test |
| * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will |
| * stay set until the current scheduling operation is complete even if |
| * we aren't locking @rq. |
| */ |
| return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); |
| } |
| |
| static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, |
| int sticky_cpu) |
| { |
| bool bypassing = scx_rq_bypassing(rq); |
| struct task_struct **ddsp_taskp; |
| unsigned long qseq; |
| |
| WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); |
| |
| /* rq migration */ |
| if (sticky_cpu == cpu_of(rq)) |
| goto local_norefill; |
| |
| /* |
| * If !scx_rq_online(), we already told the BPF scheduler that the CPU |
| * is offline and are just running the hotplug path. Don't bother the |
| * BPF scheduler. |
| */ |
| if (!scx_rq_online(rq)) |
| goto local; |
| |
| if (bypassing) |
| goto global; |
| |
| if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) |
| goto direct; |
| |
| /* see %SCX_OPS_ENQ_EXITING */ |
| if (!static_branch_unlikely(&scx_ops_enq_exiting) && |
| unlikely(p->flags & PF_EXITING)) |
| goto local; |
| |
| if (!SCX_HAS_OP(enqueue)) |
| goto global; |
| |
| /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ |
| qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; |
| |
| WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); |
| atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); |
| |
| ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); |
| WARN_ON_ONCE(*ddsp_taskp); |
| *ddsp_taskp = p; |
| |
| SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); |
| |
| *ddsp_taskp = NULL; |
| if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) |
| goto direct; |
| |
| /* |
| * If not directly dispatched, QUEUEING isn't clear yet and dispatch or |
| * dequeue may be waiting. The store_release matches their load_acquire. |
| */ |
| atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); |
| return; |
| |
| direct: |
| direct_dispatch(p, enq_flags); |
| return; |
| |
| local: |
| /* |
| * For task-ordering, slice refill must be treated as implying the end |
| * of the current slice. Otherwise, the longer @p stays on the CPU, the |
| * higher priority it becomes from scx_prio_less()'s POV. |
| */ |
| touch_core_sched(rq, p); |
| p->scx.slice = SCX_SLICE_DFL; |
| local_norefill: |
| dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); |
| return; |
| |
| global: |
| touch_core_sched(rq, p); /* see the comment in local: */ |
| p->scx.slice = bypassing ? SCX_SLICE_BYPASS : SCX_SLICE_DFL; |
| dispatch_enqueue(find_global_dsq(p), p, enq_flags); |
| } |
| |
| static bool task_runnable(const struct task_struct *p) |
| { |
| return !list_empty(&p->scx.runnable_node); |
| } |
| |
| static void set_task_runnable(struct rq *rq, struct task_struct *p) |
| { |
| lockdep_assert_rq_held(rq); |
| |
| if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { |
| p->scx.runnable_at = jiffies; |
| p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; |
| } |
| |
| /* |
| * list_add_tail() must be used. scx_ops_bypass() depends on tasks being |
| * appened to the runnable_list. |
| */ |
| list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); |
| } |
| |
| static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) |
| { |
| list_del_init(&p->scx.runnable_node); |
| if (reset_runnable_at) |
| p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; |
| } |
| |
| static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) |
| { |
| int sticky_cpu = p->scx.sticky_cpu; |
| |
| if (enq_flags & ENQUEUE_WAKEUP) |
| rq->scx.flags |= SCX_RQ_IN_WAKEUP; |
| |
| enq_flags |= rq->scx.extra_enq_flags; |
| |
| if (sticky_cpu >= 0) |
| p->scx.sticky_cpu = -1; |
| |
| /* |
| * Restoring a running task will be immediately followed by |
| * set_next_task_scx() which expects the task to not be on the BPF |
| * scheduler as tasks can only start running through local DSQs. Force |
| * direct-dispatch into the local DSQ by setting the sticky_cpu. |
| */ |
| if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) |
| sticky_cpu = cpu_of(rq); |
| |
| if (p->scx.flags & SCX_TASK_QUEUED) { |
| WARN_ON_ONCE(!task_runnable(p)); |
| goto out; |
| } |
| |
| set_task_runnable(rq, p); |
| p->scx.flags |= SCX_TASK_QUEUED; |
| rq->scx.nr_running++; |
| add_nr_running(rq, 1); |
| |
| if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); |
| |
| if (enq_flags & SCX_ENQ_WAKEUP) |
| touch_core_sched(rq, p); |
| |
| do_enqueue_task(rq, p, enq_flags, sticky_cpu); |
| out: |
| rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; |
| } |
| |
| static void ops_dequeue(struct task_struct *p, u64 deq_flags) |
| { |
| unsigned long opss; |
| |
| /* dequeue is always temporary, don't reset runnable_at */ |
| clr_task_runnable(p, false); |
| |
| /* acquire ensures that we see the preceding updates on QUEUED */ |
| opss = atomic_long_read_acquire(&p->scx.ops_state); |
| |
| switch (opss & SCX_OPSS_STATE_MASK) { |
| case SCX_OPSS_NONE: |
| break; |
| case SCX_OPSS_QUEUEING: |
| /* |
| * QUEUEING is started and finished while holding @p's rq lock. |
| * As we're holding the rq lock now, we shouldn't see QUEUEING. |
| */ |
| BUG(); |
| case SCX_OPSS_QUEUED: |
| if (SCX_HAS_OP(dequeue)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); |
| |
| if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, |
| SCX_OPSS_NONE)) |
| break; |
| fallthrough; |
| case SCX_OPSS_DISPATCHING: |
| /* |
| * If @p is being dispatched from the BPF scheduler to a DSQ, |
| * wait for the transfer to complete so that @p doesn't get |
| * added to its DSQ after dequeueing is complete. |
| * |
| * As we're waiting on DISPATCHING with the rq locked, the |
| * dispatching side shouldn't try to lock the rq while |
| * DISPATCHING is set. See dispatch_to_local_dsq(). |
| * |
| * DISPATCHING shouldn't have qseq set and control can reach |
| * here with NONE @opss from the above QUEUED case block. |
| * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. |
| */ |
| wait_ops_state(p, SCX_OPSS_DISPATCHING); |
| BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); |
| break; |
| } |
| } |
| |
| static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) |
| { |
| if (!(p->scx.flags & SCX_TASK_QUEUED)) { |
| WARN_ON_ONCE(task_runnable(p)); |
| return true; |
| } |
| |
| ops_dequeue(p, deq_flags); |
| |
| /* |
| * A currently running task which is going off @rq first gets dequeued |
| * and then stops running. As we want running <-> stopping transitions |
| * to be contained within runnable <-> quiescent transitions, trigger |
| * ->stopping() early here instead of in put_prev_task_scx(). |
| * |
| * @p may go through multiple stopping <-> running transitions between |
| * here and put_prev_task_scx() if task attribute changes occur while |
| * balance_scx() leaves @rq unlocked. However, they don't contain any |
| * information meaningful to the BPF scheduler and can be suppressed by |
| * skipping the callbacks if the task is !QUEUED. |
| */ |
| if (SCX_HAS_OP(stopping) && task_current(rq, p)) { |
| update_curr_scx(rq); |
| SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); |
| } |
| |
| if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); |
| |
| if (deq_flags & SCX_DEQ_SLEEP) |
| p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; |
| else |
| p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; |
| |
| p->scx.flags &= ~SCX_TASK_QUEUED; |
| rq->scx.nr_running--; |
| sub_nr_running(rq, 1); |
| |
| dispatch_dequeue(rq, p); |
| return true; |
| } |
| |
| static void yield_task_scx(struct rq *rq) |
| { |
| struct task_struct *p = rq->curr; |
| |
| if (SCX_HAS_OP(yield)) |
| SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); |
| else |
| p->scx.slice = 0; |
| } |
| |
| static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) |
| { |
| struct task_struct *from = rq->curr; |
| |
| if (SCX_HAS_OP(yield)) |
| return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); |
| else |
| return false; |
| } |
| |
| static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, |
| struct scx_dispatch_q *src_dsq, |
| struct rq *dst_rq) |
| { |
| struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; |
| |
| /* @dsq is locked and @p is on @dst_rq */ |
| lockdep_assert_held(&src_dsq->lock); |
| lockdep_assert_rq_held(dst_rq); |
| |
| WARN_ON_ONCE(p->scx.holding_cpu >= 0); |
| |
| if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) |
| list_add(&p->scx.dsq_list.node, &dst_dsq->list); |
| else |
| list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); |
| |
| dsq_mod_nr(dst_dsq, 1); |
| p->scx.dsq = dst_dsq; |
| } |
| |
| #ifdef CONFIG_SMP |
| /** |
| * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ |
| * @p: task to move |
| * @enq_flags: %SCX_ENQ_* |
| * @src_rq: rq to move the task from, locked on entry, released on return |
| * @dst_rq: rq to move the task into, locked on return |
| * |
| * Move @p which is currently on @src_rq to @dst_rq's local DSQ. |
| */ |
| static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, |
| struct rq *src_rq, struct rq *dst_rq) |
| { |
| lockdep_assert_rq_held(src_rq); |
| |
| /* the following marks @p MIGRATING which excludes dequeue */ |
| deactivate_task(src_rq, p, 0); |
| set_task_cpu(p, cpu_of(dst_rq)); |
| p->scx.sticky_cpu = cpu_of(dst_rq); |
| |
| raw_spin_rq_unlock(src_rq); |
| raw_spin_rq_lock(dst_rq); |
| |
| /* |
| * We want to pass scx-specific enq_flags but activate_task() will |
| * truncate the upper 32 bit. As we own @rq, we can pass them through |
| * @rq->scx.extra_enq_flags instead. |
| */ |
| WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); |
| WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); |
| dst_rq->scx.extra_enq_flags = enq_flags; |
| activate_task(dst_rq, p, 0); |
| dst_rq->scx.extra_enq_flags = 0; |
| } |
| |
| /* |
| * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two |
| * differences: |
| * |
| * - is_cpu_allowed() asks "Can this task run on this CPU?" while |
| * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to |
| * this CPU?". |
| * |
| * While migration is disabled, is_cpu_allowed() has to say "yes" as the task |
| * must be allowed to finish on the CPU that it's currently on regardless of |
| * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the |
| * BPF scheduler shouldn't attempt to migrate a task which has migration |
| * disabled. |
| * |
| * - The BPF scheduler is bypassed while the rq is offline and we can always say |
| * no to the BPF scheduler initiated migrations while offline. |
| */ |
| static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, |
| bool trigger_error) |
| { |
| int cpu = cpu_of(rq); |
| |
| /* |
| * We don't require the BPF scheduler to avoid dispatching to offline |
| * CPUs mostly for convenience but also because CPUs can go offline |
| * between scx_bpf_dispatch() calls and here. Trigger error iff the |
| * picked CPU is outside the allowed mask. |
| */ |
| if (!task_allowed_on_cpu(p, cpu)) { |
| if (trigger_error) |
| scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", |
| cpu_of(rq), p->comm, p->pid); |
| return false; |
| } |
| |
| if (unlikely(is_migration_disabled(p))) |
| return false; |
| |
| if (!scx_rq_online(rq)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq |
| * @p: target task |
| * @dsq: locked DSQ @p is currently on |
| * @src_rq: rq @p is currently on, stable with @dsq locked |
| * |
| * Called with @dsq locked but no rq's locked. We want to move @p to a different |
| * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is |
| * required when transferring into a local DSQ. Even when transferring into a |
| * non-local DSQ, it's better to use the same mechanism to protect against |
| * dequeues and maintain the invariant that @p->scx.dsq can only change while |
| * @src_rq is locked, which e.g. scx_dump_task() depends on. |
| * |
| * We want to grab @src_rq but that can deadlock if we try while locking @dsq, |
| * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As |
| * this may race with dequeue, which can't drop the rq lock or fail, do a little |
| * dancing from our side. |
| * |
| * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets |
| * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu |
| * would be cleared to -1. While other cpus may have updated it to different |
| * values afterwards, as this operation can't be preempted or recurse, the |
| * holding_cpu can never become this CPU again before we're done. Thus, we can |
| * tell whether we lost to dequeue by testing whether the holding_cpu still |
| * points to this CPU. See dispatch_dequeue() for the counterpart. |
| * |
| * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is |
| * still valid. %false if lost to dequeue. |
| */ |
| static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, |
| struct scx_dispatch_q *dsq, |
| struct rq *src_rq) |
| { |
| s32 cpu = raw_smp_processor_id(); |
| |
| lockdep_assert_held(&dsq->lock); |
| |
| WARN_ON_ONCE(p->scx.holding_cpu >= 0); |
| task_unlink_from_dsq(p, dsq); |
| p->scx.holding_cpu = cpu; |
| |
| raw_spin_unlock(&dsq->lock); |
| raw_spin_rq_lock(src_rq); |
| |
| /* task_rq couldn't have changed if we're still the holding cpu */ |
| return likely(p->scx.holding_cpu == cpu) && |
| !WARN_ON_ONCE(src_rq != task_rq(p)); |
| } |
| |
| static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, |
| struct scx_dispatch_q *dsq, struct rq *src_rq) |
| { |
| raw_spin_rq_unlock(this_rq); |
| |
| if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { |
| move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); |
| return true; |
| } else { |
| raw_spin_rq_unlock(src_rq); |
| raw_spin_rq_lock(this_rq); |
| return false; |
| } |
| } |
| #else /* CONFIG_SMP */ |
| static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } |
| static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool trigger_error) { return false; } |
| static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } |
| #endif /* CONFIG_SMP */ |
| |
| static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) |
| { |
| struct task_struct *p; |
| retry: |
| /* |
| * The caller can't expect to successfully consume a task if the task's |
| * addition to @dsq isn't guaranteed to be visible somehow. Test |
| * @dsq->list without locking and skip if it seems empty. |
| */ |
| if (list_empty(&dsq->list)) |
| return false; |
| |
| raw_spin_lock(&dsq->lock); |
| |
| nldsq_for_each_task(p, dsq) { |
| struct rq *task_rq = task_rq(p); |
| |
| if (rq == task_rq) { |
| task_unlink_from_dsq(p, dsq); |
| move_local_task_to_local_dsq(p, 0, dsq, rq); |
| raw_spin_unlock(&dsq->lock); |
| return true; |
| } |
| |
| if (task_can_run_on_remote_rq(p, rq, false)) { |
| if (likely(consume_remote_task(rq, p, dsq, task_rq))) |
| return true; |
| goto retry; |
| } |
| } |
| |
| raw_spin_unlock(&dsq->lock); |
| return false; |
| } |
| |
| static bool consume_global_dsq(struct rq *rq) |
| { |
| int node = cpu_to_node(cpu_of(rq)); |
| |
| return consume_dispatch_q(rq, global_dsqs[node]); |
| } |
| |
| /** |
| * dispatch_to_local_dsq - Dispatch a task to a local dsq |
| * @rq: current rq which is locked |
| * @dst_dsq: destination DSQ |
| * @p: task to dispatch |
| * @enq_flags: %SCX_ENQ_* |
| * |
| * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local |
| * DSQ. This function performs all the synchronization dancing needed because |
| * local DSQs are protected with rq locks. |
| * |
| * The caller must have exclusive ownership of @p (e.g. through |
| * %SCX_OPSS_DISPATCHING). |
| */ |
| static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, |
| struct task_struct *p, u64 enq_flags) |
| { |
| struct rq *src_rq = task_rq(p); |
| struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); |
| |
| /* |
| * We're synchronized against dequeue through DISPATCHING. As @p can't |
| * be dequeued, its task_rq and cpus_allowed are stable too. |
| * |
| * If dispatching to @rq that @p is already on, no lock dancing needed. |
| */ |
| if (rq == src_rq && rq == dst_rq) { |
| dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); |
| return; |
| } |
| |
| #ifdef CONFIG_SMP |
| if (unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { |
| dispatch_enqueue(find_global_dsq(p), p, |
| enq_flags | SCX_ENQ_CLEAR_OPSS); |
| return; |
| } |
| |
| /* |
| * @p is on a possibly remote @src_rq which we need to lock to move the |
| * task. If dequeue is in progress, it'd be locking @src_rq and waiting |
| * on DISPATCHING, so we can't grab @src_rq lock while holding |
| * DISPATCHING. |
| * |
| * As DISPATCHING guarantees that @p is wholly ours, we can pretend that |
| * we're moving from a DSQ and use the same mechanism - mark the task |
| * under transfer with holding_cpu, release DISPATCHING and then follow |
| * the same protocol. See unlink_dsq_and_lock_src_rq(). |
| */ |
| p->scx.holding_cpu = raw_smp_processor_id(); |
| |
| /* store_release ensures that dequeue sees the above */ |
| atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); |
| |
| /* switch to @src_rq lock */ |
| if (rq != src_rq) { |
| raw_spin_rq_unlock(rq); |
| raw_spin_rq_lock(src_rq); |
| } |
| |
| /* task_rq couldn't have changed if we're still the holding cpu */ |
| if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && |
| !WARN_ON_ONCE(src_rq != task_rq(p))) { |
| /* |
| * If @p is staying on the same rq, there's no need to go |
| * through the full deactivate/activate cycle. Optimize by |
| * abbreviating move_remote_task_to_local_dsq(). |
| */ |
| if (src_rq == dst_rq) { |
| p->scx.holding_cpu = -1; |
| dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); |
| } else { |
| move_remote_task_to_local_dsq(p, enq_flags, |
| src_rq, dst_rq); |
| } |
| |
| /* if the destination CPU is idle, wake it up */ |
| if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) |
| resched_curr(dst_rq); |
| } |
| |
| /* switch back to @rq lock */ |
| if (rq != dst_rq) { |
| raw_spin_rq_unlock(dst_rq); |
| raw_spin_rq_lock(rq); |
| } |
| #else /* CONFIG_SMP */ |
| BUG(); /* control can not reach here on UP */ |
| #endif /* CONFIG_SMP */ |
| } |
| |
| /** |
| * finish_dispatch - Asynchronously finish dispatching a task |
| * @rq: current rq which is locked |
| * @p: task to finish dispatching |
| * @qseq_at_dispatch: qseq when @p started getting dispatched |
| * @dsq_id: destination DSQ ID |
| * @enq_flags: %SCX_ENQ_* |
| * |
| * Dispatching to local DSQs may need to wait for queueing to complete or |
| * require rq lock dancing. As we don't wanna do either while inside |
| * ops.dispatch() to avoid locking order inversion, we split dispatching into |
| * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the |
| * task and its qseq. Once ops.dispatch() returns, this function is called to |
| * finish up. |
| * |
| * There is no guarantee that @p is still valid for dispatching or even that it |
| * was valid in the first place. Make sure that the task is still owned by the |
| * BPF scheduler and claim the ownership before dispatching. |
| */ |
| static void finish_dispatch(struct rq *rq, struct task_struct *p, |
| unsigned long qseq_at_dispatch, |
| u64 dsq_id, u64 enq_flags) |
| { |
| struct scx_dispatch_q *dsq; |
| unsigned long opss; |
| |
| touch_core_sched_dispatch(rq, p); |
| retry: |
| /* |
| * No need for _acquire here. @p is accessed only after a successful |
| * try_cmpxchg to DISPATCHING. |
| */ |
| opss = atomic_long_read(&p->scx.ops_state); |
| |
| switch (opss & SCX_OPSS_STATE_MASK) { |
| case SCX_OPSS_DISPATCHING: |
| case SCX_OPSS_NONE: |
| /* someone else already got to it */ |
| return; |
| case SCX_OPSS_QUEUED: |
| /* |
| * If qseq doesn't match, @p has gone through at least one |
| * dispatch/dequeue and re-enqueue cycle between |
| * scx_bpf_dispatch() and here and we have no claim on it. |
| */ |
| if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) |
| return; |
| |
| /* |
| * While we know @p is accessible, we don't yet have a claim on |
| * it - the BPF scheduler is allowed to dispatch tasks |
| * spuriously and there can be a racing dequeue attempt. Let's |
| * claim @p by atomically transitioning it from QUEUED to |
| * DISPATCHING. |
| */ |
| if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, |
| SCX_OPSS_DISPATCHING))) |
| break; |
| goto retry; |
| case SCX_OPSS_QUEUEING: |
| /* |
| * do_enqueue_task() is in the process of transferring the task |
| * to the BPF scheduler while holding @p's rq lock. As we aren't |
| * holding any kernel or BPF resource that the enqueue path may |
| * depend upon, it's safe to wait. |
| */ |
| wait_ops_state(p, opss); |
| goto retry; |
| } |
| |
| BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); |
| |
| dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); |
| |
| if (dsq->id == SCX_DSQ_LOCAL) |
| dispatch_to_local_dsq(rq, dsq, p, enq_flags); |
| else |
| dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); |
| } |
| |
| static void flush_dispatch_buf(struct rq *rq) |
| { |
| struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); |
| u32 u; |
| |
| for (u = 0; u < dspc->cursor; u++) { |
| struct scx_dsp_buf_ent *ent = &dspc->buf[u]; |
| |
| finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, |
| ent->enq_flags); |
| } |
| |
| dspc->nr_tasks += dspc->cursor; |
| dspc->cursor = 0; |
| } |
| |
| static int balance_one(struct rq *rq, struct task_struct *prev) |
| { |
| struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); |
| bool prev_on_scx = prev->sched_class == &ext_sched_class; |
| int nr_loops = SCX_DSP_MAX_LOOPS; |
| |
| lockdep_assert_rq_held(rq); |
| rq->scx.flags |= SCX_RQ_IN_BALANCE; |
| rq->scx.flags &= ~SCX_RQ_BAL_KEEP; |
| |
| if (static_branch_unlikely(&scx_ops_cpu_preempt) && |
| unlikely(rq->scx.cpu_released)) { |
| /* |
| * If the previous sched_class for the current CPU was not SCX, |
| * notify the BPF scheduler that it again has control of the |
| * core. This callback complements ->cpu_release(), which is |
| * emitted in scx_next_task_picked(). |
| */ |
| if (SCX_HAS_OP(cpu_acquire)) |
| SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); |
| rq->scx.cpu_released = false; |
| } |
| |
| if (prev_on_scx) { |
| update_curr_scx(rq); |
| |
| /* |
| * If @prev is runnable & has slice left, it has priority and |
| * fetching more just increases latency for the fetched tasks. |
| * Tell pick_task_scx() to keep running @prev. If the BPF |
| * scheduler wants to handle this explicitly, it should |
| * implement ->cpu_release(). |
| * |
| * See scx_ops_disable_workfn() for the explanation on the |
| * bypassing test. |
| */ |
| if ((prev->scx.flags & SCX_TASK_QUEUED) && |
| prev->scx.slice && !scx_rq_bypassing(rq)) { |
| rq->scx.flags |= SCX_RQ_BAL_KEEP; |
| goto has_tasks; |
| } |
| } |
| |
| /* if there already are tasks to run, nothing to do */ |
| if (rq->scx.local_dsq.nr) |
| goto has_tasks; |
| |
| if (consume_global_dsq(rq)) |
| goto has_tasks; |
| |
| if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) |
| goto no_tasks; |
| |
| dspc->rq = rq; |
| |
| /* |
| * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, |
| * the local DSQ might still end up empty after a successful |
| * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() |
| * produced some tasks, retry. The BPF scheduler may depend on this |
| * looping behavior to simplify its implementation. |
| */ |
| do { |
| dspc->nr_tasks = 0; |
| |
| SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), |
| prev_on_scx ? prev : NULL); |
| |
| flush_dispatch_buf(rq); |
| |
| if (rq->scx.local_dsq.nr) |
| goto has_tasks; |
| if (consume_global_dsq(rq)) |
| goto has_tasks; |
| |
| /* |
| * ops.dispatch() can trap us in this loop by repeatedly |
| * dispatching ineligible tasks. Break out once in a while to |
| * allow the watchdog to run. As IRQ can't be enabled in |
| * balance(), we want to complete this scheduling cycle and then |
| * start a new one. IOW, we want to call resched_curr() on the |
| * next, most likely idle, task, not the current one. Use |
| * scx_bpf_kick_cpu() for deferred kicking. |
| */ |
| if (unlikely(!--nr_loops)) { |
| scx_bpf_kick_cpu(cpu_of(rq), 0); |
| break; |
| } |
| } while (dspc->nr_tasks); |
| |
| no_tasks: |
| /* |
| * Didn't find another task to run. Keep running @prev unless |
| * %SCX_OPS_ENQ_LAST is in effect. |
| */ |
| if ((prev->scx.flags & SCX_TASK_QUEUED) && |
| (!static_branch_unlikely(&scx_ops_enq_last) || |
| scx_rq_bypassing(rq))) { |
| rq->scx.flags |= SCX_RQ_BAL_KEEP; |
| goto has_tasks; |
| } |
| rq->scx.flags &= ~SCX_RQ_IN_BALANCE; |
| return false; |
| |
| has_tasks: |
| rq->scx.flags &= ~SCX_RQ_IN_BALANCE; |
| return true; |
| } |
| |
| static int balance_scx(struct rq *rq, struct task_struct *prev, |
| struct rq_flags *rf) |
| { |
| int ret; |
| |
| rq_unpin_lock(rq, rf); |
| |
| ret = balance_one(rq, prev); |
| |
| #ifdef CONFIG_SCHED_SMT |
| /* |
| * When core-sched is enabled, this ops.balance() call will be followed |
| * by pick_task_scx() on this CPU and the SMT siblings. Balance the |
| * siblings too. |
| */ |
| if (sched_core_enabled(rq)) { |
| const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); |
| int scpu; |
| |
| for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { |
| struct rq *srq = cpu_rq(scpu); |
| struct task_struct *sprev = srq->curr; |
| |
| WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); |
| update_rq_clock(srq); |
| balance_one(srq, sprev); |
| } |
| } |
| #endif |
| rq_repin_lock(rq, rf); |
| |
| return ret; |
| } |
| |
| static void process_ddsp_deferred_locals(struct rq *rq) |
| { |
| struct task_struct *p; |
| |
| lockdep_assert_rq_held(rq); |
| |
| /* |
| * Now that @rq can be unlocked, execute the deferred enqueueing of |
| * tasks directly dispatched to the local DSQs of other CPUs. See |
| * direct_dispatch(). Keep popping from the head instead of using |
| * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq |
| * temporarily. |
| */ |
| while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, |
| struct task_struct, scx.dsq_list.node))) { |
| struct scx_dispatch_q *dsq; |
| |
| list_del_init(&p->scx.dsq_list.node); |
| |
| dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); |
| if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) |
| dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); |
| } |
| } |
| |
| static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) |
| { |
| if (p->scx.flags & SCX_TASK_QUEUED) { |
| /* |
| * Core-sched might decide to execute @p before it is |
| * dispatched. Call ops_dequeue() to notify the BPF scheduler. |
| */ |
| ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); |
| dispatch_dequeue(rq, p); |
| } |
| |
| p->se.exec_start = rq_clock_task(rq); |
| |
| /* see dequeue_task_scx() on why we skip when !QUEUED */ |
| if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, running, p); |
| |
| clr_task_runnable(p, true); |
| |
| /* |
| * @p is getting newly scheduled or got kicked after someone updated its |
| * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). |
| */ |
| if ((p->scx.slice == SCX_SLICE_INF) != |
| (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { |
| if (p->scx.slice == SCX_SLICE_INF) |
| rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; |
| else |
| rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; |
| |
| sched_update_tick_dependency(rq); |
| |
| /* |
| * For now, let's refresh the load_avgs just when transitioning |
| * in and out of nohz. In the future, we might want to add a |
| * mechanism which calls the following periodically on |
| * tick-stopped CPUs. |
| */ |
| update_other_load_avgs(rq); |
| } |
| } |
| |
| static enum scx_cpu_preempt_reason |
| preempt_reason_from_class(const struct sched_class *class) |
| { |
| #ifdef CONFIG_SMP |
| if (class == &stop_sched_class) |
| return SCX_CPU_PREEMPT_STOP; |
| #endif |
| if (class == &dl_sched_class) |
| return SCX_CPU_PREEMPT_DL; |
| if (class == &rt_sched_class) |
| return SCX_CPU_PREEMPT_RT; |
| return SCX_CPU_PREEMPT_UNKNOWN; |
| } |
| |
| static void switch_class(struct rq *rq, struct task_struct *next) |
| { |
| const struct sched_class *next_class = next->sched_class; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Pairs with the smp_load_acquire() issued by a CPU in |
| * kick_cpus_irq_workfn() who is waiting for this CPU to perform a |
| * resched. |
| */ |
| smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); |
| #endif |
| if (!static_branch_unlikely(&scx_ops_cpu_preempt)) |
| return; |
| |
| /* |
| * The callback is conceptually meant to convey that the CPU is no |
| * longer under the control of SCX. Therefore, don't invoke the callback |
| * if the next class is below SCX (in which case the BPF scheduler has |
| * actively decided not to schedule any tasks on the CPU). |
| */ |
| if (sched_class_above(&ext_sched_class, next_class)) |
| return; |
| |
| /* |
| * At this point we know that SCX was preempted by a higher priority |
| * sched_class, so invoke the ->cpu_release() callback if we have not |
| * done so already. We only send the callback once between SCX being |
| * preempted, and it regaining control of the CPU. |
| * |
| * ->cpu_release() complements ->cpu_acquire(), which is emitted the |
| * next time that balance_scx() is invoked. |
| */ |
| if (!rq->scx.cpu_released) { |
| if (SCX_HAS_OP(cpu_release)) { |
| struct scx_cpu_release_args args = { |
| .reason = preempt_reason_from_class(next_class), |
| .task = next, |
| }; |
| |
| SCX_CALL_OP(SCX_KF_CPU_RELEASE, |
| cpu_release, cpu_of(rq), &args); |
| } |
| rq->scx.cpu_released = true; |
| } |
| } |
| |
| static void put_prev_task_scx(struct rq *rq, struct task_struct *p, |
| struct task_struct *next) |
| { |
| update_curr_scx(rq); |
| |
| /* see dequeue_task_scx() on why we skip when !QUEUED */ |
| if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); |
| |
| if (p->scx.flags & SCX_TASK_QUEUED) { |
| set_task_runnable(rq, p); |
| |
| /* |
| * If @p has slice left and is being put, @p is getting |
| * preempted by a higher priority scheduler class or core-sched |
| * forcing a different task. Leave it at the head of the local |
| * DSQ. |
| */ |
| if (p->scx.slice && !scx_rq_bypassing(rq)) { |
| dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); |
| return; |
| } |
| |
| /* |
| * If @p is runnable but we're about to enter a lower |
| * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell |
| * ops.enqueue() that @p is the only one available for this cpu, |
| * which should trigger an explicit follow-up scheduling event. |
| */ |
| if (sched_class_above(&ext_sched_class, next->sched_class)) { |
| WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); |
| do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); |
| } else { |
| do_enqueue_task(rq, p, 0, -1); |
| } |
| } |
| |
| if (next && next->sched_class != &ext_sched_class) |
| switch_class(rq, next); |
| } |
| |
| static struct task_struct *first_local_task(struct rq *rq) |
| { |
| return list_first_entry_or_null(&rq->scx.local_dsq.list, |
| struct task_struct, scx.dsq_list.node); |
| } |
| |
| static struct task_struct *pick_task_scx(struct rq *rq) |
| { |
| struct task_struct *prev = rq->curr; |
| struct task_struct *p; |
| |
| /* |
| * If balance_scx() is telling us to keep running @prev, replenish slice |
| * if necessary and keep running @prev. Otherwise, pop the first one |
| * from the local DSQ. |
| * |
| * WORKAROUND: |
| * |
| * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just |
| * have gone through balance_scx(). Unfortunately, there currently is a |
| * bug where fair could say yes on balance() but no on pick_task(), |
| * which then ends up calling pick_task_scx() without preceding |
| * balance_scx(). |
| * |
| * For now, ignore cases where $prev is not on SCX. This isn't great and |
| * can theoretically lead to stalls. However, for switch_all cases, this |
| * happens only while a BPF scheduler is being loaded or unloaded, and, |
| * for partial cases, fair will likely keep triggering this CPU. |
| * |
| * Once fair is fixed, restore WARN_ON_ONCE(). |
| */ |
| if ((rq->scx.flags & SCX_RQ_BAL_KEEP) && |
| prev->sched_class == &ext_sched_class) { |
| p = prev; |
| if (!p->scx.slice) |
| p->scx.slice = SCX_SLICE_DFL; |
| } else { |
| p = first_local_task(rq); |
| if (!p) |
| return NULL; |
| |
| if (unlikely(!p->scx.slice)) { |
| if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { |
| printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", |
| p->comm, p->pid); |
| scx_warned_zero_slice = true; |
| } |
| p->scx.slice = SCX_SLICE_DFL; |
| } |
| } |
| |
| return p; |
| } |
| |
| #ifdef CONFIG_SCHED_CORE |
| /** |
| * scx_prio_less - Task ordering for core-sched |
| * @a: task A |
| * @b: task B |
| * |
| * Core-sched is implemented as an additional scheduling layer on top of the |
| * usual sched_class'es and needs to find out the expected task ordering. For |
| * SCX, core-sched calls this function to interrogate the task ordering. |
| * |
| * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used |
| * to implement the default task ordering. The older the timestamp, the higher |
| * prority the task - the global FIFO ordering matching the default scheduling |
| * behavior. |
| * |
| * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to |
| * implement FIFO ordering within each local DSQ. See pick_task_scx(). |
| */ |
| bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, |
| bool in_fi) |
| { |
| /* |
| * The const qualifiers are dropped from task_struct pointers when |
| * calling ops.core_sched_before(). Accesses are controlled by the |
| * verifier. |
| */ |
| if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) |
| return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, |
| (struct task_struct *)a, |
| (struct task_struct *)b); |
| else |
| return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); |
| } |
| #endif /* CONFIG_SCHED_CORE */ |
| |
| #ifdef CONFIG_SMP |
| |
| static bool test_and_clear_cpu_idle(int cpu) |
| { |
| #ifdef CONFIG_SCHED_SMT |
| /* |
| * SMT mask should be cleared whether we can claim @cpu or not. The SMT |
| * cluster is not wholly idle either way. This also prevents |
| * scx_pick_idle_cpu() from getting caught in an infinite loop. |
| */ |
| if (sched_smt_active()) { |
| const struct cpumask *smt = cpu_smt_mask(cpu); |
| |
| /* |
| * If offline, @cpu is not its own sibling and |
| * scx_pick_idle_cpu() can get caught in an infinite loop as |
| * @cpu is never cleared from idle_masks.smt. Ensure that @cpu |
| * is eventually cleared. |
| */ |
| if (cpumask_intersects(smt, idle_masks.smt)) |
| cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); |
| else if (cpumask_test_cpu(cpu, idle_masks.smt)) |
| __cpumask_clear_cpu(cpu, idle_masks.smt); |
| } |
| #endif |
| return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); |
| } |
| |
| static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) |
| { |
| int cpu; |
| |
| retry: |
| if (sched_smt_active()) { |
| cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); |
| if (cpu < nr_cpu_ids) |
| goto found; |
| |
| if (flags & SCX_PICK_IDLE_CORE) |
| return -EBUSY; |
| } |
| |
| cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); |
| if (cpu >= nr_cpu_ids) |
| return -EBUSY; |
| |
| found: |
| if (test_and_clear_cpu_idle(cpu)) |
| return cpu; |
| else |
| goto retry; |
| } |
| |
| static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, |
| u64 wake_flags, bool *found) |
| { |
| s32 cpu; |
| |
| *found = false; |
| |
| if (!static_branch_likely(&scx_builtin_idle_enabled)) { |
| scx_ops_error("built-in idle tracking is disabled"); |
| return prev_cpu; |
| } |
| |
| /* |
| * If WAKE_SYNC, the waker's local DSQ is empty, and the system is |
| * under utilized, wake up @p to the local DSQ of the waker. Checking |
| * only for an empty local DSQ is insufficient as it could give the |
| * wakee an unfair advantage when the system is oversaturated. |
| * Checking only for the presence of idle CPUs is also insufficient as |
| * the local DSQ of the waker could have tasks piled up on it even if |
| * there is an idle core elsewhere on the system. |
| */ |
| cpu = smp_processor_id(); |
| if ((wake_flags & SCX_WAKE_SYNC) && |
| !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && |
| cpu_rq(cpu)->scx.local_dsq.nr == 0) { |
| if (cpumask_test_cpu(cpu, p->cpus_ptr)) |
| goto cpu_found; |
| } |
| |
| /* |
| * If CPU has SMT, any wholly idle CPU is likely a better pick than |
| * partially idle @prev_cpu. |
| */ |
| if (sched_smt_active()) { |
| if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && |
| test_and_clear_cpu_idle(prev_cpu)) { |
| cpu = prev_cpu; |
| goto cpu_found; |
| } |
| |
| cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); |
| if (cpu >= 0) |
| goto cpu_found; |
| } |
| |
| if (test_and_clear_cpu_idle(prev_cpu)) { |
| cpu = prev_cpu; |
| goto cpu_found; |
| } |
| |
| cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); |
| if (cpu >= 0) |
| goto cpu_found; |
| |
| return prev_cpu; |
| |
| cpu_found: |
| *found = true; |
| return cpu; |
| } |
| |
| static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) |
| { |
| /* |
| * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it |
| * can be a good migration opportunity with low cache and memory |
| * footprint. Returning a CPU different than @prev_cpu triggers |
| * immediate rq migration. However, for SCX, as the current rq |
| * association doesn't dictate where the task is going to run, this |
| * doesn't fit well. If necessary, we can later add a dedicated method |
| * which can decide to preempt self to force it through the regular |
| * scheduling path. |
| */ |
| if (unlikely(wake_flags & WF_EXEC)) |
| return prev_cpu; |
| |
| if (SCX_HAS_OP(select_cpu)) { |
| s32 cpu; |
| struct task_struct **ddsp_taskp; |
| |
| ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); |
| WARN_ON_ONCE(*ddsp_taskp); |
| *ddsp_taskp = p; |
| |
| cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, |
| select_cpu, p, prev_cpu, wake_flags); |
| *ddsp_taskp = NULL; |
| if (ops_cpu_valid(cpu, "from ops.select_cpu()")) |
| return cpu; |
| else |
| return prev_cpu; |
| } else { |
| bool found; |
| s32 cpu; |
| |
| cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); |
| if (found) { |
| p->scx.slice = SCX_SLICE_DFL; |
| p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; |
| } |
| return cpu; |
| } |
| } |
| |
| static void task_woken_scx(struct rq *rq, struct task_struct *p) |
| { |
| run_deferred(rq); |
| } |
| |
| static void set_cpus_allowed_scx(struct task_struct *p, |
| struct affinity_context *ac) |
| { |
| set_cpus_allowed_common(p, ac); |
| |
| /* |
| * The effective cpumask is stored in @p->cpus_ptr which may temporarily |
| * differ from the configured one in @p->cpus_mask. Always tell the bpf |
| * scheduler the effective one. |
| * |
| * Fine-grained memory write control is enforced by BPF making the const |
| * designation pointless. Cast it away when calling the operation. |
| */ |
| if (SCX_HAS_OP(set_cpumask)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, |
| (struct cpumask *)p->cpus_ptr); |
| } |
| |
| static void reset_idle_masks(void) |
| { |
| /* |
| * Consider all online cpus idle. Should converge to the actual state |
| * quickly. |
| */ |
| cpumask_copy(idle_masks.cpu, cpu_online_mask); |
| cpumask_copy(idle_masks.smt, cpu_online_mask); |
| } |
| |
| void __scx_update_idle(struct rq *rq, bool idle) |
| { |
| int cpu = cpu_of(rq); |
| |
| if (SCX_HAS_OP(update_idle)) { |
| SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); |
| if (!static_branch_unlikely(&scx_builtin_idle_enabled)) |
| return; |
| } |
| |
| if (idle) |
| cpumask_set_cpu(cpu, idle_masks.cpu); |
| else |
| cpumask_clear_cpu(cpu, idle_masks.cpu); |
| |
| #ifdef CONFIG_SCHED_SMT |
| if (sched_smt_active()) { |
| const struct cpumask *smt = cpu_smt_mask(cpu); |
| |
| if (idle) { |
| /* |
| * idle_masks.smt handling is racy but that's fine as |
| * it's only for optimization and self-correcting. |
| */ |
| for_each_cpu(cpu, smt) { |
| if (!cpumask_test_cpu(cpu, idle_masks.cpu)) |
| return; |
| } |
| cpumask_or(idle_masks.smt, idle_masks.smt, smt); |
| } else { |
| cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); |
| } |
| } |
| #endif |
| } |
| |
| static void handle_hotplug(struct rq *rq, bool online) |
| { |
| int cpu = cpu_of(rq); |
| |
| atomic_long_inc(&scx_hotplug_seq); |
| |
| if (online && SCX_HAS_OP(cpu_online)) |
| SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); |
| else if (!online && SCX_HAS_OP(cpu_offline)) |
| SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); |
| else |
| scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, |
| "cpu %d going %s, exiting scheduler", cpu, |
| online ? "online" : "offline"); |
| } |
| |
| void scx_rq_activate(struct rq *rq) |
| { |
| handle_hotplug(rq, true); |
| } |
| |
| void scx_rq_deactivate(struct rq *rq) |
| { |
| handle_hotplug(rq, false); |
| } |
| |
| static void rq_online_scx(struct rq *rq) |
| { |
| rq->scx.flags |= SCX_RQ_ONLINE; |
| } |
| |
| static void rq_offline_scx(struct rq *rq) |
| { |
| rq->scx.flags &= ~SCX_RQ_ONLINE; |
| } |
| |
| #else /* CONFIG_SMP */ |
| |
| static bool test_and_clear_cpu_idle(int cpu) { return false; } |
| static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } |
| static void reset_idle_masks(void) {} |
| |
| #endif /* CONFIG_SMP */ |
| |
| static bool check_rq_for_timeouts(struct rq *rq) |
| { |
| struct task_struct *p; |
| struct rq_flags rf; |
| bool timed_out = false; |
| |
| rq_lock_irqsave(rq, &rf); |
| list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { |
| unsigned long last_runnable = p->scx.runnable_at; |
| |
| if (unlikely(time_after(jiffies, |
| last_runnable + scx_watchdog_timeout))) { |
| u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); |
| |
| scx_ops_error_kind(SCX_EXIT_ERROR_STALL, |
| "%s[%d] failed to run for %u.%03us", |
| p->comm, p->pid, |
| dur_ms / 1000, dur_ms % 1000); |
| timed_out = true; |
| break; |
| } |
| } |
| rq_unlock_irqrestore(rq, &rf); |
| |
| return timed_out; |
| } |
| |
| static void scx_watchdog_workfn(struct work_struct *work) |
| { |
| int cpu; |
| |
| WRITE_ONCE(scx_watchdog_timestamp, jiffies); |
| |
| for_each_online_cpu(cpu) { |
| if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) |
| break; |
| |
| cond_resched(); |
| } |
| queue_delayed_work(system_unbound_wq, to_delayed_work(work), |
| scx_watchdog_timeout / 2); |
| } |
| |
| void scx_tick(struct rq *rq) |
| { |
| unsigned long last_check; |
| |
| if (!scx_enabled()) |
| return; |
| |
| last_check = READ_ONCE(scx_watchdog_timestamp); |
| if (unlikely(time_after(jiffies, |
| last_check + READ_ONCE(scx_watchdog_timeout)))) { |
| u32 dur_ms = jiffies_to_msecs(jiffies - last_check); |
| |
| scx_ops_error_kind(SCX_EXIT_ERROR_STALL, |
| "watchdog failed to check in for %u.%03us", |
| dur_ms / 1000, dur_ms % 1000); |
| } |
| |
| update_other_load_avgs(rq); |
| } |
| |
| static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) |
| { |
| update_curr_scx(rq); |
| |
| /* |
| * While disabling, always resched and refresh core-sched timestamp as |
| * we can't trust the slice management or ops.core_sched_before(). |
| */ |
| if (scx_rq_bypassing(rq)) { |
| curr->scx.slice = 0; |
| touch_core_sched(rq, curr); |
| } else if (SCX_HAS_OP(tick)) { |
| SCX_CALL_OP(SCX_KF_REST, tick, curr); |
| } |
| |
| if (!curr->scx.slice) |
| resched_curr(rq); |
| } |
| |
| #ifdef CONFIG_EXT_GROUP_SCHED |
| static struct cgroup *tg_cgrp(struct task_group *tg) |
| { |
| /* |
| * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, |
| * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the |
| * root cgroup. |
| */ |
| if (tg && tg->css.cgroup) |
| return tg->css.cgroup; |
| else |
| return &cgrp_dfl_root.cgrp; |
| } |
| |
| #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), |
| |
| #else /* CONFIG_EXT_GROUP_SCHED */ |
| |
| #define SCX_INIT_TASK_ARGS_CGROUP(tg) |
| |
| #endif /* CONFIG_EXT_GROUP_SCHED */ |
| |
| static enum scx_task_state scx_get_task_state(const struct task_struct *p) |
| { |
| return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; |
| } |
| |
| static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) |
| { |
| enum scx_task_state prev_state = scx_get_task_state(p); |
| bool warn = false; |
| |
| BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); |
| |
| switch (state) { |
| case SCX_TASK_NONE: |
| break; |
| case SCX_TASK_INIT: |
| warn = prev_state != SCX_TASK_NONE; |
| break; |
| case SCX_TASK_READY: |
| warn = prev_state == SCX_TASK_NONE; |
| break; |
| case SCX_TASK_ENABLED: |
| warn = prev_state != SCX_TASK_READY; |
| break; |
| default: |
| warn = true; |
| return; |
| } |
| |
| WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", |
| prev_state, state, p->comm, p->pid); |
| |
| p->scx.flags &= ~SCX_TASK_STATE_MASK; |
| p->scx.flags |= state << SCX_TASK_STATE_SHIFT; |
| } |
| |
| static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) |
| { |
| int ret; |
| |
| p->scx.disallow = false; |
| |
| if (SCX_HAS_OP(init_task)) { |
| struct scx_init_task_args args = { |
| SCX_INIT_TASK_ARGS_CGROUP(tg) |
| .fork = fork, |
| }; |
| |
| ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); |
| if (unlikely(ret)) { |
| ret = ops_sanitize_err("init_task", ret); |
| return ret; |
| } |
| } |
| |
| scx_set_task_state(p, SCX_TASK_INIT); |
| |
| if (p->scx.disallow) { |
| if (!fork) { |
| struct rq *rq; |
| struct rq_flags rf; |
| |
| rq = task_rq_lock(p, &rf); |
| |
| /* |
| * We're in the load path and @p->policy will be applied |
| * right after. Reverting @p->policy here and rejecting |
| * %SCHED_EXT transitions from scx_check_setscheduler() |
| * guarantees that if ops.init_task() sets @p->disallow, |
| * @p can never be in SCX. |
| */ |
| if (p->policy == SCHED_EXT) { |
| p->policy = SCHED_NORMAL; |
| atomic_long_inc(&scx_nr_rejected); |
| } |
| |
| task_rq_unlock(rq, p, &rf); |
| } else if (p->policy == SCHED_EXT) { |
| scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", |
| p->comm, p->pid); |
| } |
| } |
| |
| p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; |
| return 0; |
| } |
| |
| static void scx_ops_enable_task(struct task_struct *p) |
| { |
| u32 weight; |
| |
| lockdep_assert_rq_held(task_rq(p)); |
| |
| /* |
| * Set the weight before calling ops.enable() so that the scheduler |
| * doesn't see a stale value if they inspect the task struct. |
| */ |
| if (task_has_idle_policy(p)) |
| weight = WEIGHT_IDLEPRIO; |
| else |
| weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
| |
| p->scx.weight = sched_weight_to_cgroup(weight); |
| |
| if (SCX_HAS_OP(enable)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); |
| scx_set_task_state(p, SCX_TASK_ENABLED); |
| |
| if (SCX_HAS_OP(set_weight)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); |
| } |
| |
| static void scx_ops_disable_task(struct task_struct *p) |
| { |
| lockdep_assert_rq_held(task_rq(p)); |
| WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); |
| |
| if (SCX_HAS_OP(disable)) |
| SCX_CALL_OP(SCX_KF_REST, disable, p); |
| scx_set_task_state(p, SCX_TASK_READY); |
| } |
| |
| static void scx_ops_exit_task(struct task_struct *p) |
| { |
| struct scx_exit_task_args args = { |
| .cancelled = false, |
| }; |
| |
| lockdep_assert_rq_held(task_rq(p)); |
| |
| switch (scx_get_task_state(p)) { |
| case SCX_TASK_NONE: |
| return; |
| case SCX_TASK_INIT: |
| args.cancelled = true; |
| break; |
| case SCX_TASK_READY: |
| break; |
| case SCX_TASK_ENABLED: |
| scx_ops_disable_task(p); |
| break; |
| default: |
| WARN_ON_ONCE(true); |
| return; |
| } |
| |
| if (SCX_HAS_OP(exit_task)) |
| SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); |
| scx_set_task_state(p, SCX_TASK_NONE); |
| } |
| |
| void init_scx_entity(struct sched_ext_entity *scx) |
| { |
| /* |
| * init_idle() calls this function again after fork sequence is |
| * complete. Don't touch ->tasks_node as it's already linked. |
| */ |
| memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); |
| |
| INIT_LIST_HEAD(&scx->dsq_list.node); |
| RB_CLEAR_NODE(&scx->dsq_priq); |
| scx->sticky_cpu = -1; |
| scx->holding_cpu = -1; |
| INIT_LIST_HEAD(&scx->runnable_node); |
| scx->runnable_at = jiffies; |
| scx->ddsp_dsq_id = SCX_DSQ_INVALID; |
| scx->slice = SCX_SLICE_DFL; |
| } |
| |
| void scx_pre_fork(struct task_struct *p) |
| { |
| /* |
| * BPF scheduler enable/disable paths want to be able to iterate and |
| * update all tasks which can become complex when racing forks. As |
| * enable/disable are very cold paths, let's use a percpu_rwsem to |
| * exclude forks. |
| */ |
| percpu_down_read(&scx_fork_rwsem); |
| } |
| |
| int scx_fork(struct task_struct *p) |
| { |
| percpu_rwsem_assert_held(&scx_fork_rwsem); |
| |
| if (scx_ops_init_task_enabled) |
| return scx_ops_init_task(p, task_group(p), true); |
| else |
| return 0; |
| } |
| |
| void scx_post_fork(struct task_struct *p) |
| { |
| if (scx_ops_init_task_enabled) { |
| scx_set_task_state(p, SCX_TASK_READY); |
| |
| /* |
| * Enable the task immediately if it's running on sched_ext. |
| * Otherwise, it'll be enabled in switching_to_scx() if and |
| * when it's ever configured to run with a SCHED_EXT policy. |
| */ |
| if (p->sched_class == &ext_sched_class) { |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| rq = task_rq_lock(p, &rf); |
| scx_ops_enable_task(p); |
| task_rq_unlock(rq, p, &rf); |
| } |
| } |
| |
| spin_lock_irq(&scx_tasks_lock); |
| list_add_tail(&p->scx.tasks_node, &scx_tasks); |
| spin_unlock_irq(&scx_tasks_lock); |
| |
| percpu_up_read(&scx_fork_rwsem); |
| } |
| |
| void scx_cancel_fork(struct task_struct *p) |
| { |
| if (scx_enabled()) { |
| struct rq *rq; |
| struct rq_flags rf; |
| |
| rq = task_rq_lock(p, &rf); |
| WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); |
| scx_ops_exit_task(p); |
| task_rq_unlock(rq, p, &rf); |
| } |
| |
| percpu_up_read(&scx_fork_rwsem); |
| } |
| |
| void sched_ext_free(struct task_struct *p) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&scx_tasks_lock, flags); |
| list_del_init(&p->scx.tasks_node); |
| spin_unlock_irqrestore(&scx_tasks_lock, flags); |
| |
| /* |
| * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> |
| * ENABLED transitions can't race us. Disable ops for @p. |
| */ |
| if (scx_get_task_state(p) != SCX_TASK_NONE) { |
| struct rq_flags rf; |
| struct rq *rq; |
| |
| rq = task_rq_lock(p, &rf); |
| scx_ops_exit_task(p); |
| task_rq_unlock(rq, p, &rf); |
| } |
| } |
| |
| static void reweight_task_scx(struct rq *rq, struct task_struct *p, |
| const struct load_weight *lw) |
| { |
| lockdep_assert_rq_held(task_rq(p)); |
| |
| p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); |
| if (SCX_HAS_OP(set_weight)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); |
| } |
| |
| static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) |
| { |
| } |
| |
| static void switching_to_scx(struct rq *rq, struct task_struct *p) |
| { |
| scx_ops_enable_task(p); |
| |
| /* |
| * set_cpus_allowed_scx() is not called while @p is associated with a |
| * different scheduler class. Keep the BPF scheduler up-to-date. |
| */ |
| if (SCX_HAS_OP(set_cpumask)) |
| SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, |
| (struct cpumask *)p->cpus_ptr); |
| } |
| |
| static void switched_from_scx(struct rq *rq, struct task_struct *p) |
| { |
| scx_ops_disable_task(p); |
| } |
| |
| static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} |
| static void switched_to_scx(struct rq *rq, struct task_struct *p) {} |
| |
| int scx_check_setscheduler(struct task_struct *p, int policy) |
| { |
| lockdep_assert_rq_held(task_rq(p)); |
| |
| /* if disallow, reject transitioning into SCX */ |
| if (scx_enabled() && READ_ONCE(p->scx.disallow) && |
| p->policy != policy && policy == SCHED_EXT) |
| return -EACCES; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| bool scx_can_stop_tick(struct rq *rq) |
| { |
| struct task_struct *p = rq->curr; |
| |
| if (scx_rq_bypassing(rq)) |
| return false; |
| |
| if (p->sched_class != &ext_sched_class) |
| return true; |
| |
| /* |
| * @rq can dispatch from different DSQs, so we can't tell whether it |
| * needs the tick or not by looking at nr_running. Allow stopping ticks |
| * iff the BPF scheduler indicated so. See set_next_task_scx(). |
| */ |
| return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; |
| } |
| #endif |
| |
| #ifdef CONFIG_EXT_GROUP_SCHED |
| |
| DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); |
| static bool scx_cgroup_enabled; |
| static bool cgroup_warned_missing_weight; |
| static bool cgroup_warned_missing_idle; |
| |
| static void scx_cgroup_warn_missing_weight(struct task_group *tg) |
| { |
| if (scx_ops_enable_state() == SCX_OPS_DISABLED || |
| cgroup_warned_missing_weight) |
| return; |
| |
| if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) |
| return; |
| |
| pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", |
| scx_ops.name); |
| cgroup_warned_missing_weight = true; |
| } |
| |
| static void scx_cgroup_warn_missing_idle(struct task_group *tg) |
| { |
| if (!scx_cgroup_enabled || cgroup_warned_missing_idle) |
| return; |
| |
| if (!tg->idle) |
| return; |
| |
| pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", |
| scx_ops.name); |
| cgroup_warned_missing_idle = true; |
| } |
| |
| int scx_tg_online(struct task_group *tg) |
| { |
| int ret = 0; |
| |
| WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); |
| |
| percpu_down_read(&scx_cgroup_rwsem); |
| |
| scx_cgroup_warn_missing_weight(tg); |
| |
| if (scx_cgroup_enabled) { |
| if (SCX_HAS_OP(cgroup_init)) { |
| struct scx_cgroup_init_args args = |
| { .weight = tg->scx_weight }; |
| |
| ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, |
| tg->css.cgroup, &args); |
| if (ret) |
| ret = ops_sanitize_err("cgroup_init", ret); |
| } |
| if (ret == 0) |
| tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; |
| } else { |
| tg->scx_flags |= SCX_TG_ONLINE; |
| } |
| |
| percpu_up_read(&scx_cgroup_rwsem); |
| return ret; |
| } |
| |
| void scx_tg_offline(struct task_group *tg) |
| { |
| WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); |
| |
| percpu_down_read(&scx_cgroup_rwsem); |
| |
| if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) |
| SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); |
| tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); |
| |
| percpu_up_read(&scx_cgroup_rwsem); |
| } |
| |
| int scx_cgroup_can_attach(struct cgroup_taskset *tset) |
| { |
| struct cgroup_subsys_state *css; |
| struct task_struct *p; |
| int ret; |
| |
| /* released in scx_finish/cancel_attach() */ |
| percpu_down_read(&scx_cgroup_rwsem); |
| |
| if (!scx_cgroup_enabled) |
| return 0; |
| |
| cgroup_taskset_for_each(p, css, tset) { |
| struct cgroup *from = tg_cgrp(task_group(p)); |
| struct cgroup *to = tg_cgrp(css_tg(css)); |
| |
| WARN_ON_ONCE(p->scx.cgrp_moving_from); |
| |
| /* |
| * sched_move_task() omits identity migrations. Let's match the |
| * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() |
| * always match one-to-one. |
| */ |
| if (from == to) |
| continue; |
| |
| if (SCX_HAS_OP(cgroup_prep_move)) { |
| ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, |
| p, from, css->cgroup); |
| if (ret) |
| goto err; |
| } |
| |
| p->scx.cgrp_moving_from = from; |
| } |
| |
| return 0; |
| |
| err: |
| cgroup_taskset_for_each(p, css, tset) { |
| if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) |
| SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, |
| p->scx.cgrp_moving_from, css->cgroup); |
| p->scx.cgrp_moving_from = NULL; |
| } |
| |
| percpu_up_read(&scx_cgroup_rwsem); |
| return ops_sanitize_err("cgroup_prep_move", ret); |
| } |
| |
| void scx_move_task(struct task_struct *p) |
| { |
| if (!scx_cgroup_enabled) |
| return; |
| |
| /* |
| * We're called from sched_move_task() which handles both cgroup and |
| * autogroup moves. Ignore the latter. |
| * |
| * Also ignore exiting tasks, because in the exit path tasks transition |
| * from the autogroup to the root group, so task_group_is_autogroup() |
| * alone isn't able to catch exiting autogroup tasks. This is safe for |
| * cgroup_move(), because cgroup migrations never happen for PF_EXITING |
| * tasks. |
| */ |
| if (task_group_is_autogroup(task_group(p)) || (p->flags & PF_EXITING)) |
| return; |
| |
| /* |
| * @p must have ops.cgroup_prep_move() called on it and thus |
| * cgrp_moving_from set. |
| */ |
| if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) |
| SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, |
| p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); |
| p->scx.cgrp_moving_from = NULL; |
| } |
| |
| void scx_cgroup_finish_attach(void) |
| { |
| percpu_up_read(&scx_cgroup_rwsem); |
| } |
| |
| void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) |
| { |
| struct cgroup_subsys_state *css; |
| struct task_struct *p; |
| |
| if (!scx_cgroup_enabled) |
| goto out_unlock; |
| |
| cgroup_taskset_for_each(p, css, tset) { |
| if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) |
| SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, |
| p->scx.cgrp_moving_from, css->cgroup); |
| p->scx.cgrp_moving_from = NULL; |
| } |
| out_unlock: |
| percpu_up_read(&scx_cgroup_rwsem); |
| } |
| |
| void scx_group_set_weight(struct task_group *tg, unsigned long weight) |
| { |
| percpu_down_read(&scx_cgroup_rwsem); |
| |
| if (scx_cgroup_enabled && tg->scx_weight != weight) { |
| if (SCX_HAS_OP(cgroup_set_weight)) |
| SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, |
| tg_cgrp(tg), weight); |
| tg->scx_weight = weight; |
| } |
| |
| percpu_up_read(&scx_cgroup_rwsem); |
| } |
| |
| void scx_group_set_idle(struct task_group *tg, bool idle) |
| { |
| percpu_down_read(&scx_cgroup_rwsem); |
| scx_cgroup_warn_missing_idle(tg); |
| percpu_up_read(&scx_cgroup_rwsem); |
| } |
| |
| static void scx_cgroup_lock(void) |
| { |
| percpu_down_write(&scx_cgroup_rwsem); |
| } |
| |
| static void scx_cgroup_unlock(void) |
| { |
| percpu_up_write(&scx_cgroup_rwsem); |
| } |
| |
| #else /* CONFIG_EXT_GROUP_SCHED */ |
| |
| static inline void scx_cgroup_lock(void) {} |
| static inline void scx_cgroup_unlock(void) {} |
| |
| #endif /* CONFIG_EXT_GROUP_SCHED */ |
| |
| /* |
| * Omitted operations: |
| * |
| * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task |
| * isn't tied to the CPU at that point. Preemption is implemented by resetting |
| * the victim task's slice to 0 and triggering reschedule on the target CPU. |
| * |
| * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. |
| * |
| * - task_fork/dead: We need fork/dead notifications for all tasks regardless of |
| * their current sched_class. Call them directly from sched core instead. |
| */ |
| DEFINE_SCHED_CLASS(ext) = { |
| .enqueue_task = enqueue_task_scx, |
| .dequeue_task = dequeue_task_scx, |
| .yield_task = yield_task_scx, |
| .yield_to_task = yield_to_task_scx, |
| |
| .wakeup_preempt = wakeup_preempt_scx, |
| |
| .balance = balance_scx, |
| .pick_task = pick_task_scx, |
| |
| .put_prev_task = put_prev_task_scx, |
| .set_next_task = set_next_task_scx, |
| |
| #ifdef CONFIG_SMP |
| .select_task_rq = select_task_rq_scx, |
| .task_woken = task_woken_scx, |
| .set_cpus_allowed = set_cpus_allowed_scx, |
| |
| .rq_online = rq_online_scx, |
| .rq_offline = rq_offline_scx, |
| #endif |
| |
| .task_tick = task_tick_scx, |
| |
| .switching_to = switching_to_scx, |
| .switched_from = switched_from_scx, |
| .switched_to = switched_to_scx, |
| .reweight_task = reweight_task_scx, |
| .prio_changed = prio_changed_scx, |
| |
| .update_curr = update_curr_scx, |
| |
| #ifdef CONFIG_UCLAMP_TASK |
| .uclamp_enabled = 1, |
| #endif |
| }; |
| |
| static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) |
| { |
| memset(dsq, 0, sizeof(*dsq)); |
| |
| raw_spin_lock_init(&dsq->lock); |
| INIT_LIST_HEAD(&dsq->list); |
| dsq->id = dsq_id; |
| } |
| |
| static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) |
| { |
| struct scx_dispatch_q *dsq; |
| int ret; |
| |
| if (dsq_id & SCX_DSQ_FLAG_BUILTIN) |
| return ERR_PTR(-EINVAL); |
| |
| dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); |
| if (!dsq) |
| return ERR_PTR(-ENOMEM); |
| |
| init_dsq(dsq, dsq_id); |
| |
| ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, |
| dsq_hash_params); |
| if (ret) { |
| kfree(dsq); |
| return ERR_PTR(ret); |
| } |
| return dsq; |
| } |
| |
| static void free_dsq_irq_workfn(struct irq_work *irq_work) |
| { |
| struct llist_node *to_free = llist_del_all(&dsqs_to_free); |
| struct scx_dispatch_q *dsq, *tmp_dsq; |
| |
| llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) |
| kfree_rcu(dsq, rcu); |
| } |
| |
| static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); |
| |
| static void destroy_dsq(u64 dsq_id) |
| { |
| struct scx_dispatch_q *dsq; |
| unsigned long flags; |
| |
| rcu_read_lock(); |
| |
| dsq = find_user_dsq(dsq_id); |
| if (!dsq) |
| goto out_unlock_rcu; |
| |
| raw_spin_lock_irqsave(&dsq->lock, flags); |
| |
| if (dsq->nr) { |
| scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", |
| dsq->id, dsq->nr); |
| goto out_unlock_dsq; |
| } |
| |
| if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) |
| goto out_unlock_dsq; |
| |
| /* |
| * Mark dead by invalidating ->id to prevent dispatch_enqueue() from |
| * queueing more tasks. As this function can be called from anywhere, |
| * freeing is bounced through an irq work to avoid nesting RCU |
| * operations inside scheduler locks. |
| */ |
| dsq->id = SCX_DSQ_INVALID; |
| llist_add(&dsq->free_node, &dsqs_to_free); |
| irq_work_queue(&free_dsq_irq_work); |
| |
| out_unlock_dsq: |
| raw_spin_unlock_irqrestore(&dsq->lock, flags); |
| out_unlock_rcu: |
| rcu_read_unlock(); |
| } |
| |
| #ifdef CONFIG_EXT_GROUP_SCHED |
| static void scx_cgroup_exit(void) |
| { |
| struct cgroup_subsys_state *css; |
| |
| percpu_rwsem_assert_held(&scx_cgroup_rwsem); |
| |
| scx_cgroup_enabled = false; |
| |
| /* |
| * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk |
| * cgroups and exit all the inited ones, all online cgroups are exited. |
| */ |
| rcu_read_lock(); |
| css_for_each_descendant_post(css, &root_task_group.css) { |
| struct task_group *tg = css_tg(css); |
| |
| if (!(tg->scx_flags & SCX_TG_INITED)) |
| continue; |
| tg->scx_flags &= ~SCX_TG_INITED; |
| |
| if (!scx_ops.cgroup_exit) |
| continue; |
| |
| if (WARN_ON_ONCE(!css_tryget(css))) |
| continue; |
| rcu_read_unlock(); |
| |
| SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); |
| |
| rcu_read_lock(); |
| css_put(css); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static int scx_cgroup_init(void) |
| { |
| struct cgroup_subsys_state *css; |
| int ret; |
| |
| percpu_rwsem_assert_held(&scx_cgroup_rwsem); |
| |
| cgroup_warned_missing_weight = false; |
| cgroup_warned_missing_idle = false; |
| |
| /* |
| * scx_tg_on/offline() are excluded thorugh scx_cgroup_rwsem. If we walk |
| * cgroups and init, all online cgroups are initialized. |
| */ |
| rcu_read_lock(); |
| css_for_each_descendant_pre(css, &root_task_group.css) { |
| struct task_group *tg = css_tg(css); |
| struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; |
| |
| scx_cgroup_warn_missing_weight(tg); |
| scx_cgroup_warn_missing_idle(tg); |
| |
| if ((tg->scx_flags & |
| (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) |
| continue; |
| |
| if (!scx_ops.cgroup_init) { |
| tg->scx_flags |= SCX_TG_INITED; |
| continue; |
| } |
| |
| if (WARN_ON_ONCE(!css_tryget(css))) |
| continue; |
| rcu_read_unlock(); |
| |
| ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, |
| css->cgroup, &args); |
| if (ret) { |
| css_put(css); |
| scx_ops_error("ops.cgroup_init() failed (%d)", ret); |
| return ret; |
| } |
| tg->scx_flags |= SCX_TG_INITED; |
| |
| rcu_read_lock(); |
| css_put(css); |
| } |
| rcu_read_unlock(); |
| |
| WARN_ON_ONCE(scx_cgroup_enabled); |
| scx_cgroup_enabled = true; |
| |
| return 0; |
| } |
| |
| #else |
| static void scx_cgroup_exit(void) {} |
| static int scx_cgroup_init(void) { return 0; } |
| #endif |
| |
| |
| /******************************************************************************** |
| * Sysfs interface and ops enable/disable. |
| */ |
| |
| #define SCX_ATTR(_name) \ |
| static struct kobj_attribute scx_attr_##_name = { \ |
| .attr = { .name = __stringify(_name), .mode = 0444 }, \ |
| .show = scx_attr_##_name##_show, \ |
| } |
| |
| static ssize_t scx_attr_state_show(struct kobject *kobj, |
| struct kobj_attribute *ka, char *buf) |
| { |
| return sysfs_emit(buf, "%s\n", |
| scx_ops_enable_state_str[scx_ops_enable_state()]); |
| } |
| SCX_ATTR(state); |
| |
| static ssize_t scx_attr_switch_all_show(struct kobject *kobj, |
| struct kobj_attribute *ka, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); |
| } |
| SCX_ATTR(switch_all); |
| |
| static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, |
| struct kobj_attribute *ka, char *buf) |
| { |
| return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); |
| } |
| SCX_ATTR(nr_rejected); |
| |
| static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, |
| struct kobj_attribute *ka, char *buf) |
| { |
| return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); |
| } |
| SCX_ATTR(hotplug_seq); |
| |
| static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, |
| struct kobj_attribute *ka, char *buf) |
| { |
| return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); |
| } |
| SCX_ATTR(enable_seq); |
| |
| static struct attribute *scx_global_attrs[] = { |
| &scx_attr_state.attr, |
| &scx_attr_switch_all.attr, |
| &scx_attr_nr_rejected.attr, |
| &scx_attr_hotplug_seq.attr, |
| &scx_attr_enable_seq.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group scx_global_attr_group = { |
| .attrs = scx_global_attrs, |
| }; |
| |
| static void scx_kobj_release(struct kobject *kobj) |
| { |
| kfree(kobj); |
| } |
| |
| static ssize_t scx_attr_ops_show(struct kobject *kobj, |
| struct kobj_attribute *ka, char *buf) |
| { |
| return sysfs_emit(buf, "%s\n", scx_ops.name); |
| } |
| SCX_ATTR(ops); |
| |
| static struct attribute *scx_sched_attrs[] = { |
| &scx_attr_ops.attr, |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(scx_sched); |
| |
| static const struct kobj_type scx_ktype = { |
| .release = scx_kobj_release, |
| .sysfs_ops = &kobj_sysfs_ops, |
| .default_groups = scx_sched_groups, |
| }; |
| |
| static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) |
| { |
| return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); |
| } |
| |
| static const struct kset_uevent_ops scx_uevent_ops = { |
| .uevent = scx_uevent, |
| }; |
| |
| /* |
| * Used by sched_fork() and __setscheduler_prio() to pick the matching |
| * sched_class. dl/rt are already handled. |
| */ |
| bool task_should_scx(struct task_struct *p) |
| { |
| if (!scx_enabled() || |
| unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) |
| return false; |
| if (READ_ONCE(scx_switching_all)) |
| return true; |
| return p->policy == SCHED_EXT; |
| } |
| |
| /** |
| * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress |
| * |
| * Bypassing guarantees that all runnable tasks make forward progress without |
| * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might |
| * be held by tasks that the BPF scheduler is forgetting to run, which |
| * unfortunately also excludes toggling the static branches. |
| * |
| * Let's work around by overriding a couple ops and modifying behaviors based on |
| * the DISABLING state and then cycling the queued tasks through dequeue/enqueue |
| * to force global FIFO scheduling. |
| * |
| * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. |
| * %SCX_OPS_ENQ_LAST is also ignored. |
| * |
| * b. ops.dispatch() is ignored. |
| * |
| * c. balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice |
| * can't be trusted. Whenever a tick triggers, the running task is rotated to |
| * the tail of the queue with core_sched_at touched. |
| * |
| * d. pick_next_task() suppresses zero slice warning. |
| * |
| * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM |
| * operations. |
| * |
| * f. scx_prio_less() reverts to the default core_sched_at order. |
| */ |
| static void scx_ops_bypass(bool bypass) |
| { |
| int depth, cpu; |
| |
| if (bypass) { |
| depth = atomic_inc_return(&scx_ops_bypass_depth); |
| WARN_ON_ONCE(depth <= 0); |
| if (depth != 1) |
| return; |
| } else { |
| depth = atomic_dec_return(&scx_ops_bypass_depth); |
| WARN_ON_ONCE(depth < 0); |
| if (depth != 0) |
| return; |
| } |
| |
| /* |
| * No task property is changing. We just need to make sure all currently |
| * queued tasks are re-queued according to the new scx_rq_bypassing() |
| * state. As an optimization, walk each rq's runnable_list instead of |
| * the scx_tasks list. |
| * |
| * This function can't trust the scheduler and thus can't use |
| * cpus_read_lock(). Walk all possible CPUs instead of online. |
| */ |
| for_each_possible_cpu(cpu) { |
| struct rq *rq = cpu_rq(cpu); |
| struct rq_flags rf; |
| struct task_struct *p, *n; |
| |
| rq_lock_irqsave(rq, &rf); |
| |
| if (bypass) { |
| WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); |
| rq->scx.flags |= SCX_RQ_BYPASSING; |
| } else { |
| WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); |
| rq->scx.flags &= ~SCX_RQ_BYPASSING; |
| } |
| |
| /* |
| * We need to guarantee that no tasks are on the BPF scheduler |
| * while bypassing. Either we see enabled or the enable path |
| * sees scx_rq_bypassing() before moving tasks to SCX. |
| */ |
| if (!scx_enabled()) { |
| rq_unlock_irqrestore(rq, &rf); |
| continue; |
| } |
| |
| /* |
| * The use of list_for_each_entry_safe_reverse() is required |
| * because each task is going to be removed from and added back |
| * to the runnable_list during iteration. Because they're added |
| * to the tail of the list, safe reverse iteration can still |
| * visit all nodes. |
| */ |
| list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, |
| scx.runnable_node) { |
| struct sched_enq_and_set_ctx ctx; |
| |
| /* cycling deq/enq is enough, see the function comment */ |
| sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); |
| sched_enq_and_set_task(&ctx); |
| } |
| |
| rq_unlock_irqrestore(rq, &rf); |
| |
| /* kick to restore ticks */ |
| resched_cpu(cpu); |
| } |
| } |
| |
| static void free_exit_info(struct scx_exit_info *ei) |
| { |
| kfree(ei->dump); |
| kfree(ei->msg); |
| kfree(ei->bt); |
| kfree(ei); |
| } |
| |
| static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) |
| { |
| struct scx_exit_info *ei; |
| |
| ei = kzalloc(sizeof(*ei), GFP_KERNEL); |
| if (!ei) |
| return NULL; |
| |
| ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); |
| ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); |
| ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); |
| |
| if (!ei->bt || !ei->msg || !ei->dump) { |
| free_exit_info(ei); |
| return NULL; |
| } |
| |
| return ei; |
| } |
| |
| static const char *scx_exit_reason(enum scx_exit_kind kind) |
| { |
| switch (kind) { |
| case SCX_EXIT_UNREG: |
| return "unregistered from user space"; |
| case SCX_EXIT_UNREG_BPF: |
| return "unregistered from BPF"; |
| case SCX_EXIT_UNREG_KERN: |
| return "unregistered from the main kernel"; |
| case SCX_EXIT_SYSRQ: |
| return "disabled by sysrq-S"; |
| case SCX_EXIT_ERROR: |
| return "runtime error"; |
| case SCX_EXIT_ERROR_BPF: |
| return "scx_bpf_error"; |
| case SCX_EXIT_ERROR_STALL: |
| return "runnable task stall"; |
| default: |
| return "<UNKNOWN>"; |
| } |
| } |
| |
| static void scx_ops_disable_workfn(struct kthread_work *work) |
| { |
| struct scx_exit_info *ei = scx_exit_info; |
| struct scx_task_iter sti; |
| struct task_struct *p; |
| struct rhashtable_iter rht_iter; |
| struct scx_dispatch_q *dsq; |
| int i, kind; |
| |
| kind = atomic_read(&scx_exit_kind); |
| while (true) { |
| /* |
| * NONE indicates that a new scx_ops has been registered since |
| * disable was scheduled - don't kill the new ops. DONE |
| * indicates that the ops has already been disabled. |
| */ |
| if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) |
| return; |
| if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) |
| break; |
| } |
| ei->kind = kind; |
| ei->reason = scx_exit_reason(ei->kind); |
| |
| /* guarantee forward progress by bypassing scx_ops */ |
| scx_ops_bypass(true); |
| |
| switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { |
| case SCX_OPS_DISABLING: |
| WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); |
| break; |
| case SCX_OPS_DISABLED: |
| pr_warn("sched_ext: ops error detected without ops (%s)\n", |
| scx_exit_info->msg); |
| WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != |
| SCX_OPS_DISABLING); |
| goto done; |
| default: |
| break; |
| } |
| |
| /* |
| * Here, every runnable task is guaranteed to make forward progress and |
| * we can safely use blocking synchronization constructs. Actually |
| * disable ops. |
| */ |
| mutex_lock(&scx_ops_enable_mutex); |
| |
| static_branch_disable(&__scx_switched_all); |
| WRITE_ONCE(scx_switching_all, false); |
| |
| /* |
| * Shut down cgroup support before tasks so that the cgroup attach path |
| * doesn't race against scx_ops_exit_task(). |
| */ |
| scx_cgroup_lock(); |
| scx_cgroup_exit(); |
| scx_cgroup_unlock(); |
| |
| /* |
| * The BPF scheduler is going away. All tasks including %TASK_DEAD ones |
| * must be switched out and exited synchronously. |
| */ |
| percpu_down_write(&scx_fork_rwsem); |
| |
| scx_ops_init_task_enabled = false; |
| |
| spin_lock_irq(&scx_tasks_lock); |
| scx_task_iter_init(&sti); |
| while ((p = scx_task_iter_next_locked(&sti))) { |
| const struct sched_class *old_class = p->sched_class; |
| struct sched_enq_and_set_ctx ctx; |
| |
| sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); |
| |
| p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); |
| __setscheduler_prio(p, p->prio); |
| check_class_changing(task_rq(p), p, old_class); |
| |
| sched_enq_and_set_task(&ctx); |
| |
| check_class_changed(task_rq(p), p, old_class, p->prio); |
| scx_ops_exit_task(p); |
| } |
| scx_task_iter_exit(&sti); |
| spin_unlock_irq(&scx_tasks_lock); |
| percpu_up_write(&scx_fork_rwsem); |
| |
| /* no task is on scx, turn off all the switches and flush in-progress calls */ |
| static_branch_disable(&__scx_ops_enabled); |
| for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) |
| static_branch_disable(&scx_has_op[i]); |
| static_branch_disable(&scx_ops_enq_last); |
| static_branch_disable(&scx_ops_enq_exiting); |
| static_branch_disable(&scx_ops_cpu_preempt); |
| static_branch_disable(&scx_builtin_idle_enabled); |
| synchronize_rcu(); |
| |
| if (ei->kind >= SCX_EXIT_ERROR) { |
| pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", |
| scx_ops.name, ei->reason); |
| |
| if (ei->msg[0] != '\0') |
| pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); |
| #ifdef CONFIG_STACKTRACE |
| stack_trace_print(ei->bt, ei->bt_len, 2); |
| #endif |
| } else { |
| pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", |
| scx_ops.name, ei->reason); |
| } |
| |
| if (scx_ops.exit) |
| SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); |
| |
| cancel_delayed_work_sync(&scx_watchdog_work); |
| |
| /* |
| * Delete the kobject from the hierarchy eagerly in addition to just |
| * dropping a reference. Otherwise, if the object is deleted |
| * asynchronously, sysfs could observe an object of the same name still |
| * in the hierarchy when another scheduler is loaded. |
| */ |
| kobject_del(scx_root_kobj); |
| kobject_put(scx_root_kobj); |
| scx_root_kobj = NULL; |
| |
| memset(&scx_ops, 0, sizeof(scx_ops)); |
| |
| rhashtable_walk_enter(&dsq_hash, &rht_iter); |
| do { |
| rhashtable_walk_start(&rht_iter); |
| |
| while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) |
| destroy_dsq(dsq->id); |
| |
| rhashtable_walk_stop(&rht_iter); |
| } while (dsq == ERR_PTR(-EAGAIN)); |
| rhashtable_walk_exit(&rht_iter); |
| |
| free_percpu(scx_dsp_ctx); |
| scx_dsp_ctx = NULL; |
| scx_dsp_max_batch = 0; |
| |
| free_exit_info(scx_exit_info); |
| scx_exit_info = NULL; |
| |
| mutex_unlock(&scx_ops_enable_mutex); |
| |
| WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != |
| SCX_OPS_DISABLING); |
| done: |
| scx_ops_bypass(false); |
| } |
| |
| static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); |
| |
| static void schedule_scx_ops_disable_work(void) |
| { |
| struct kthread_worker *helper = READ_ONCE(scx_ops_helper); |
| |
| /* |
| * We may be called spuriously before the first bpf_sched_ext_reg(). If |
| * scx_ops_helper isn't set up yet, there's nothing to do. |
| */ |
| if (helper) |
| kthread_queue_work(helper, &scx_ops_disable_work); |
| } |
| |
| static void scx_ops_disable(enum scx_exit_kind kind) |
| { |
| int none = SCX_EXIT_NONE; |
| |
| if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) |
| kind = SCX_EXIT_ERROR; |
| |
| atomic_try_cmpxchg(&scx_exit_kind, &none, kind); |
| |
| schedule_scx_ops_disable_work(); |
| } |
| |
| static void dump_newline(struct seq_buf *s) |
| { |
| trace_sched_ext_dump(""); |
| |
| /* @s may be zero sized and seq_buf triggers WARN if so */ |
| if (s->size) |
| seq_buf_putc(s, '\n'); |
| } |
| |
| static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) |
| { |
| va_list args; |
| |
| #ifdef CONFIG_TRACEPOINTS |
| if (trace_sched_ext_dump_enabled()) { |
| /* protected by scx_dump_state()::dump_lock */ |
| static char line_buf[SCX_EXIT_MSG_LEN]; |
| |
| va_start(args, fmt); |
| vscnprintf(line_buf, sizeof(line_buf), fmt, args); |
| va_end(args); |
| |
| trace_sched_ext_dump(line_buf); |
| } |
| #endif |
| /* @s may be zero sized and seq_buf triggers WARN if so */ |
| if (s->size) { |
| va_start(args, fmt); |
| seq_buf_vprintf(s, fmt, args); |
| va_end(args); |
| |
| seq_buf_putc(s, '\n'); |
| } |
| } |
| |
| static void dump_stack_trace(struct seq_buf *s, const char *prefix, |
| const unsigned long *bt, unsigned int len) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < len; i++) |
| dump_line(s, "%s%pS", prefix, (void *)bt[i]); |
| } |
| |
| static void ops_dump_init(struct seq_buf *s, const char *prefix) |
| { |
| struct scx_dump_data *dd = &scx_dump_data; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ |
| dd->first = true; |
| dd->cursor = 0; |
| dd->s = s; |
| dd->prefix = prefix; |
| } |
| |
| static void ops_dump_flush(void) |
| { |
| struct scx_dump_data *dd = &scx_dump_data; |
| char *line = dd->buf.line; |
| |
| if (!dd->cursor) |
| return; |
| |
| /* |
| * There's something to flush and this is the first line. Insert a blank |
| * line to distinguish ops dump. |
| */ |
| if (dd->first) { |
| dump_newline(dd->s); |
| dd->first = false; |
| } |
| |
| /* |
| * There may be multiple lines in $line. Scan and emit each line |
| * separately. |
| */ |
| while (true) { |
| char *end = line; |
| char c; |
| |
| while (*end != '\n' && *end != '\0') |
| end++; |
| |
| /* |
| * If $line overflowed, it may not have newline at the end. |
| * Always emit with a newline. |
| */ |
| c = *end; |
| *end = '\0'; |
| dump_line(dd->s, "%s%s", dd->prefix, line); |
| if (c == '\0') |
| break; |
| |
| /* move to the next line */ |
| end++; |
| if (*end == '\0') |
| break; |
| line = end; |
| } |
| |
| dd->cursor = 0; |
| } |
| |
| static void ops_dump_exit(void) |
| { |
| ops_dump_flush(); |
| scx_dump_data.cpu = -1; |
| } |
| |
| static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, |
| struct task_struct *p, char marker) |
| { |
| static unsigned long bt[SCX_EXIT_BT_LEN]; |
| char dsq_id_buf[19] = "(n/a)"; |
| unsigned long ops_state = atomic_long_read(&p->scx.ops_state); |
| unsigned int bt_len = 0; |
| |
| if (p->scx.dsq) |
| scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", |
| (unsigned long long)p->scx.dsq->id); |
| |
| dump_newline(s); |
| dump_line(s, " %c%c %s[%d] %+ldms", |
| marker, task_state_to_char(p), p->comm, p->pid, |
| jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); |
| dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", |
| scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, |
| p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, |
| ops_state >> SCX_OPSS_QSEQ_SHIFT); |
| dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", |
| p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, |
| p->scx.dsq_vtime); |
| dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); |
| |
| if (SCX_HAS_OP(dump_task)) { |
| ops_dump_init(s, " "); |
| SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); |
| ops_dump_exit(); |
| } |
| |
| #ifdef CONFIG_STACKTRACE |
| bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); |
| #endif |
| if (bt_len) { |
| dump_newline(s); |
| dump_stack_trace(s, " ", bt, bt_len); |
| } |
| } |
| |
| static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) |
| { |
| static DEFINE_SPINLOCK(dump_lock); |
| static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; |
| struct scx_dump_ctx dctx = { |
| .kind = ei->kind, |
| .exit_code = ei->exit_code, |
| .reason = ei->reason, |
| .at_ns = ktime_get_ns(), |
| .at_jiffies = jiffies, |
| }; |
| struct seq_buf s; |
| unsigned long flags; |
| char *buf; |
| int cpu; |
| |
| spin_lock_irqsave(&dump_lock, flags); |
| |
| seq_buf_init(&s, ei->dump, dump_len); |
| |
| if (ei->kind == SCX_EXIT_NONE) { |
| dump_line(&s, "Debug dump triggered by %s", ei->reason); |
| } else { |
| dump_line(&s, "%s[%d] triggered exit kind %d:", |
| current->comm, current->pid, ei->kind); |
| dump_line(&s, " %s (%s)", ei->reason, ei->msg); |
| dump_newline(&s); |
| dump_line(&s, "Backtrace:"); |
| dump_stack_trace(&s, " ", ei->bt, ei->bt_len); |
| } |
| |
| if (SCX_HAS_OP(dump)) { |
| ops_dump_init(&s, ""); |
| SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); |
| ops_dump_exit(); |
| } |
| |
| dump_newline(&s); |
| dump_line(&s, "CPU states"); |
| dump_line(&s, "----------"); |
| |
| for_each_possible_cpu(cpu) { |
| struct rq *rq = cpu_rq(cpu); |
| struct rq_flags rf; |
| struct task_struct *p; |
| struct seq_buf ns; |
| size_t avail, used; |
| bool idle; |
| |
| rq_lock(rq, &rf); |
| |
| idle = list_empty(&rq->scx.runnable_list) && |
| rq->curr->sched_class == &idle_sched_class; |
| |
| if (idle && !SCX_HAS_OP(dump_cpu)) |
| goto next; |
| |
| /* |
| * We don't yet know whether ops.dump_cpu() will produce output |
| * and we may want to skip the default CPU dump if it doesn't. |
| * Use a nested seq_buf to generate the standard dump so that we |
| * can decide whether to commit later. |
| */ |
| avail = seq_buf_get_buf(&s, &buf); |
| seq_buf_init(&ns, buf, avail); |
| |
| dump_newline(&ns); |
| dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", |
| cpu, rq->scx.nr_running, rq->scx.flags, |
| rq->scx.cpu_released, rq->scx.ops_qseq, |
| rq->scx.pnt_seq); |
| dump_line(&ns, " curr=%s[%d] class=%ps", |
| rq->curr->comm, rq->curr->pid, |
| rq->curr->sched_class); |
| if (!cpumask_empty(rq->scx.cpus_to_kick)) |
| dump_line(&ns, " cpus_to_kick : %*pb", |
| cpumask_pr_args(rq->scx.cpus_to_kick)); |
| if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) |
| dump_line(&ns, " idle_to_kick : %*pb", |
| cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); |
| if (!cpumask_empty(rq->scx.cpus_to_preempt)) |
| dump_line(&ns, " cpus_to_preempt: %*pb", |
| cpumask_pr_args(rq->scx.cpus_to_preempt)); |
| if (!cpumask_empty(rq->scx.cpus_to_wait)) |
| dump_line(&ns, " cpus_to_wait : %*pb", |
| cpumask_pr_args(rq->scx.cpus_to_wait)); |
| |
| used = seq_buf_used(&ns); |
| if (SCX_HAS_OP(dump_cpu)) { |
| ops_dump_init(&ns, " "); |
| SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); |
| ops_dump_exit(); |
| } |
| |
| /* |
| * If idle && nothing generated by ops.dump_cpu(), there's |
| * nothing interesting. Skip. |
| */ |
| if (idle && used == seq_buf_used(&ns)) |
| goto next; |
| |
| /* |
| * $s may already have overflowed when $ns was created. If so, |
| * calling commit on it will trigger BUG. |
| */ |
| if (avail) { |
| seq_buf_commit(&s, seq_buf_used(&ns)); |
| if (seq_buf_has_overflowed(&ns)) |
| seq_buf_set_overflow(&s); |
| } |
| |
| if (rq->curr->sched_class == &ext_sched_class) |
| scx_dump_task(&s, &dctx, rq->curr, '*'); |
| |
| list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) |
| scx_dump_task(&s, &dctx, p, ' '); |
| next: |
| rq_unlock(rq, &rf); |
| } |
| |
| if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) |
| memcpy(ei->dump + dump_len - sizeof(trunc_marker), |
| trunc_marker, sizeof(trunc_marker)); |
| |
| spin_unlock_irqrestore(&dump_lock, flags); |
| } |
| |
| static void scx_ops_error_irq_workfn(struct irq_work *irq_work) |
| { |
| struct scx_exit_info *ei = scx_exit_info; |
| |
| if (ei->kind >= SCX_EXIT_ERROR) |
| scx_dump_state(ei, scx_ops.exit_dump_len); |
| |
| schedule_scx_ops_disable_work(); |
| } |
| |
| static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); |
| |
| static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, |
| s64 exit_code, |
| const char *fmt, ...) |
| { |
| struct scx_exit_info *ei = scx_exit_info; |
| int none = SCX_EXIT_NONE; |
| va_list args; |
| |
| if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) |
| return; |
| |
| ei->exit_code = exit_code; |
| #ifdef CONFIG_STACKTRACE |
| if (kind >= SCX_EXIT_ERROR) |
| ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); |
| #endif |
| va_start(args, fmt); |
| vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); |
| va_end(args); |
| |
| /* |
| * Set ei->kind and ->reason for scx_dump_state(). They'll be set again |
| * in scx_ops_disable_workfn(). |
| */ |
| ei->kind = kind; |
| ei->reason = scx_exit_reason(ei->kind); |
| |
| irq_work_queue(&scx_ops_error_irq_work); |
| } |
| |
| static struct kthread_worker *scx_create_rt_helper(const char *name) |
| { |
| struct kthread_worker *helper; |
| |
| helper = kthread_create_worker(0, name); |
| if (helper) |
| sched_set_fifo(helper->task); |
| return helper; |
| } |
| |
| static void check_hotplug_seq(const struct sched_ext_ops *ops) |
| { |
| unsigned long long global_hotplug_seq; |
| |
| /* |
| * If a hotplug event has occurred between when a scheduler was |
| * initialized, and when we were able to attach, exit and notify user |
| * space about it. |
| */ |
| if (ops->hotplug_seq) { |
| global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); |
| if (ops->hotplug_seq != global_hotplug_seq) { |
| scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, |
| "expected hotplug seq %llu did not match actual %llu", |
| ops->hotplug_seq, global_hotplug_seq); |
| } |
| } |
| } |
| |
| static int validate_ops(const struct sched_ext_ops *ops) |
| { |
| /* |
| * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the |
| * ops.enqueue() callback isn't implemented. |
| */ |
| if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { |
| scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) |
| { |
| struct scx_task_iter sti; |
| struct task_struct *p; |
| unsigned long timeout; |
| int i, cpu, node, ret; |
| |
| if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), |
| cpu_possible_mask)) { |
| pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation"); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&scx_ops_enable_mutex); |
| |
| if (!scx_ops_helper) { |
| WRITE_ONCE(scx_ops_helper, |
| scx_create_rt_helper("sched_ext_ops_helper")); |
| if (!scx_ops_helper) { |
| ret = -ENOMEM; |
| goto err_unlock; |
| } |
| } |
| |
| if (!global_dsqs) { |
| struct scx_dispatch_q **dsqs; |
| |
| dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); |
| if (!dsqs) { |
| ret = -ENOMEM; |
| goto err_unlock; |
| } |
| |
| for_each_node_state(node, N_POSSIBLE) { |
| struct scx_dispatch_q *dsq; |
| |
| dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); |
| if (!dsq) { |
| for_each_node_state(node, N_POSSIBLE) |
| kfree(dsqs[node]); |
| kfree(dsqs); |
| ret = -ENOMEM; |
| goto err_unlock; |
| } |
| |
| init_dsq(dsq, SCX_DSQ_GLOBAL); |
| dsqs[node] = dsq; |
| } |
| |
| global_dsqs = dsqs; |
| } |
| |
| if (scx_ops_enable_state() != SCX_OPS_DISABLED) { |
| ret = -EBUSY; |
| goto err_unlock; |
| } |
| |
| scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); |
| if (!scx_root_kobj) { |
| ret = -ENOMEM; |
| goto err_unlock; |
| } |
| |
| scx_root_kobj->kset = scx_kset; |
| ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); |
| if (ret < 0) |
| goto err; |
| |
| scx_exit_info = alloc_exit_info(ops->exit_dump_len); |
| if (!scx_exit_info) { |
| ret = -ENOMEM; |
| goto err_del; |
| } |
| |
| /* |
| * Set scx_ops, transition to ENABLING and clear exit info to arm the |
| * disable path. Failure triggers full disabling from here on. |
| */ |
| scx_ops = *ops; |
| |
| WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != |
| SCX_OPS_DISABLED); |
| |
| atomic_set(&scx_exit_kind, SCX_EXIT_NONE); |
| scx_warned_zero_slice = false; |
| |
| atomic_long_set(&scx_nr_rejected, 0); |
| |
| for_each_possible_cpu(cpu) |
| cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; |
| |
| /* |
| * Keep CPUs stable during enable so that the BPF scheduler can track |
| * online CPUs by watching ->on/offline_cpu() after ->init(). |
| */ |
| cpus_read_lock(); |
| |
| if (scx_ops.init) { |
| ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); |
| if (ret) { |
| ret = ops_sanitize_err("init", ret); |
| cpus_read_unlock(); |
| scx_ops_error("ops.init() failed (%d)", ret); |
| goto err_disable; |
| } |
| } |
| |
| for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) |
| if (((void (**)(void))ops)[i]) |
| static_branch_enable_cpuslocked(&scx_has_op[i]); |
| |
| check_hotplug_seq(ops); |
| cpus_read_unlock(); |
| |
| ret = validate_ops(ops); |
| if (ret) |
| goto err_disable; |
| |
| WARN_ON_ONCE(scx_dsp_ctx); |
| scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; |
| scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, |
| scx_dsp_max_batch), |
| __alignof__(struct scx_dsp_ctx)); |
| if (!scx_dsp_ctx) { |
| ret = -ENOMEM; |
| goto err_disable; |
| } |
| |
| if (ops->timeout_ms) |
| timeout = msecs_to_jiffies(ops->timeout_ms); |
| else |
| timeout = SCX_WATCHDOG_MAX_TIMEOUT; |
| |
| WRITE_ONCE(scx_watchdog_timeout, timeout); |
| WRITE_ONCE(scx_watchdog_timestamp, jiffies); |
| queue_delayed_work(system_unbound_wq, &scx_watchdog_work, |
| scx_watchdog_timeout / 2); |
| |
| /* |
| * Once __scx_ops_enabled is set, %current can be switched to SCX |
| * anytime. This can lead to stalls as some BPF schedulers (e.g. |
| * userspace scheduling) may not function correctly before all tasks are |
| * switched. Init in bypass mode to guarantee forward progress. |
| */ |
| scx_ops_bypass(true); |
| |
| for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) |
| if (((void (**)(void))ops)[i]) |
| static_branch_enable(&scx_has_op[i]); |
| |
| if (ops->flags & SCX_OPS_ENQ_LAST) |
| static_branch_enable(&scx_ops_enq_last); |
| |
| if (ops->flags & SCX_OPS_ENQ_EXITING) |
| static_branch_enable(&scx_ops_enq_exiting); |
| if (scx_ops.cpu_acquire || scx_ops.cpu_release) |
| static_branch_enable(&scx_ops_cpu_preempt); |
| |
| if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { |
| reset_idle_masks(); |
| static_branch_enable(&scx_builtin_idle_enabled); |
| } else { |
| static_branch_disable(&scx_builtin_idle_enabled); |
| } |
| |
| /* |
| * Lock out forks, cgroup on/offlining and moves before opening the |
| * floodgate so that they don't wander into the operations prematurely. |
| */ |
| percpu_down_write(&scx_fork_rwsem); |
| |
| WARN_ON_ONCE(scx_ops_init_task_enabled); |
| scx_ops_init_task_enabled = true; |
| |
| /* |
| * Enable ops for every task. Fork is excluded by scx_fork_rwsem |
| * preventing new tasks from being added. No need to exclude tasks |
| * leaving as sched_ext_free() can handle both prepped and enabled |
| * tasks. Prep all tasks first and then enable them with preemption |
| * disabled. |
| * |
| * All cgroups should be initialized before scx_ops_init_task() so that |
| * the BPF scheduler can reliably track each task's cgroup membership |
| * from scx_ops_init_task(). Lock out cgroup on/offlining and task |
| * migrations while tasks are being initialized so that |
| * scx_cgroup_can_attach() never sees uninitialized tasks. |
| */ |
| scx_cgroup_lock(); |
| ret = scx_cgroup_init(); |
| if (ret) |
| goto err_disable_unlock_all; |
| |
| spin_lock_irq(&scx_tasks_lock); |
| scx_task_iter_init(&sti); |
| while ((p = scx_task_iter_next_locked(&sti))) { |
| /* |
| * @p may already be dead, have lost all its usages counts and |
| * be waiting for RCU grace period before being freed. @p can't |
| * be initialized for SCX in such cases and should be ignored. |
| */ |
| if (!tryget_task_struct(p)) |
| continue; |
| |
| scx_task_iter_rq_unlock(&sti); |
| spin_unlock_irq(&scx_tasks_lock); |
| |
| ret = scx_ops_init_task(p, task_group(p), false); |
| if (ret) { |
| put_task_struct(p); |
| spin_lock_irq(&scx_tasks_lock); |
| scx_task_iter_exit(&sti); |
| spin_unlock_irq(&scx_tasks_lock); |
| scx_ops_error("ops.init_task() failed (%d) for %s[%d]", |
| ret, p->comm, p->pid); |
| goto err_disable_unlock_all; |
| } |
| |
| scx_set_task_state(p, SCX_TASK_READY); |
| |
| put_task_struct(p); |
| spin_lock_irq(&scx_tasks_lock); |
| } |
| scx_task_iter_exit(&sti); |
| spin_unlock_irq(&scx_tasks_lock); |
| scx_cgroup_unlock(); |
| percpu_up_write(&scx_fork_rwsem); |
| |
| /* |
| * All tasks are READY. It's safe to turn on scx_enabled() and switch |
| * all eligible tasks. |
| */ |
| WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); |
| static_branch_enable(&__scx_ops_enabled); |
| |
| /* |
| * We're fully committed and can't fail. The task READY -> ENABLED |
| * transitions here are synchronized against sched_ext_free() through |
| * scx_tasks_lock. |
| */ |
| percpu_down_write(&scx_fork_rwsem); |
| spin_lock_irq(&scx_tasks_lock); |
| scx_task_iter_init(&sti); |
| while ((p = scx_task_iter_next_locked(&sti))) { |
| const struct sched_class *old_class = p->sched_class; |
| struct sched_enq_and_set_ctx ctx; |
| |
| sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); |
| |
| __setscheduler_prio(p, p->prio); |
| check_class_changing(task_rq(p), p, old_class); |
| |
| sched_enq_and_set_task(&ctx); |
| |
| check_class_changed(task_rq(p), p, old_class, p->prio); |
| } |
| scx_task_iter_exit(&sti); |
| spin_unlock_irq(&scx_tasks_lock); |
| percpu_up_write(&scx_fork_rwsem); |
| |
| scx_ops_bypass(false); |
| |
| if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { |
| WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); |
| goto err_disable; |
| } |
| |
| if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) |
| static_branch_enable(&__scx_switched_all); |
| |
| pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", |
| scx_ops.name, scx_switched_all() ? "" : " (partial)"); |
| kobject_uevent(scx_root_kobj, KOBJ_ADD); |
| mutex_unlock(&scx_ops_enable_mutex); |
| |
| atomic_long_inc(&scx_enable_seq); |
| |
| return 0; |
| |
| err_del: |
| kobject_del(scx_root_kobj); |
| err: |
| kobject_put(scx_root_kobj); |
| scx_root_kobj = NULL; |
| if (scx_exit_info) { |
| free_exit_info(scx_exit_info); |
| scx_exit_info = NULL; |
| } |
| err_unlock: |
| mutex_unlock(&scx_ops_enable_mutex); |
| return ret; |
| |
| err_disable_unlock_all: |
| scx_cgroup_unlock(); |
| percpu_up_write(&scx_fork_rwsem); |
| scx_ops_bypass(false); |
| err_disable: |
| mutex_unlock(&scx_ops_enable_mutex); |
| /* |
| * Returning an error code here would not pass all the error information |
| * to userspace. Record errno using scx_ops_error() for cases |
| * scx_ops_error() wasn't already invoked and exit indicating success so |
| * that the error is notified through ops.exit() with all the details. |
| * |
| * Flush scx_ops_disable_work to ensure that error is reported before |
| * init completion. |
| */ |
| scx_ops_error("scx_ops_enable() failed (%d)", ret); |
| kthread_flush_work(&scx_ops_disable_work); |
| return 0; |
| } |
| |
| |
| /******************************************************************************** |
| * bpf_struct_ops plumbing. |
| */ |
| #include <linux/bpf_verifier.h> |
| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| |
| extern struct btf *btf_vmlinux; |
| static const struct btf_type *task_struct_type; |
| static u32 task_struct_type_id; |
| |
| static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, |
| enum bpf_access_type type, |
| const struct bpf_prog *prog, |
| struct bpf_insn_access_aux *info) |
| { |
| struct btf *btf = bpf_get_btf_vmlinux(); |
| const struct bpf_struct_ops_desc *st_ops_desc; |
| const struct btf_member *member; |
| const struct btf_type *t; |
| u32 btf_id, member_idx; |
| const char *mname; |
| |
| /* struct_ops op args are all sequential, 64-bit numbers */ |
| if (off != arg_n * sizeof(__u64)) |
| return false; |
| |
| /* btf_id should be the type id of struct sched_ext_ops */ |
| btf_id = prog->aux->attach_btf_id; |
| st_ops_desc = bpf_struct_ops_find(btf, btf_id); |
| if (!st_ops_desc) |
| return false; |
| |
| /* BTF type of struct sched_ext_ops */ |
| t = st_ops_desc->type; |
| |
| member_idx = prog->expected_attach_type; |
| if (member_idx >= btf_type_vlen(t)) |
| return false; |
| |
| /* |
| * Get the member name of this struct_ops program, which corresponds to |
| * a field in struct sched_ext_ops. For example, the member name of the |
| * dispatch struct_ops program (callback) is "dispatch". |
| */ |
| member = &btf_type_member(t)[member_idx]; |
| mname = btf_name_by_offset(btf_vmlinux, member->name_off); |
| |
| if (!strcmp(mname, op)) { |
| /* |
| * The value is a pointer to a type (struct task_struct) given |
| * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), |
| * however, can be a NULL (PTR_MAYBE_NULL). The BPF program |
| * should check the pointer to make sure it is not NULL before |
| * using it, or the verifier will reject the program. |
| * |
| * Longer term, this is something that should be addressed by |
| * BTF, and be fully contained within the verifier. |
| */ |
| info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; |
| info->btf = btf_vmlinux; |
| info->btf_id = task_struct_type_id; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool bpf_scx_is_valid_access(int off, int size, |
| enum bpf_access_type type, |
| const struct bpf_prog *prog, |
| struct bpf_insn_access_aux *info) |
| { |
| if (type != BPF_READ) |
| return false; |
| if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || |
| set_arg_maybe_null("yield", 1, off, size, type, prog, info)) |
| return true; |
| if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) |
| return false; |
| if (off % size != 0) |
| return false; |
| |
| return btf_ctx_access(off, size, type, prog, info); |
| } |
| |
| static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, |
| const struct bpf_reg_state *reg, int off, |
| int size) |
| { |
| const struct btf_type *t; |
| |
| t = btf_type_by_id(reg->btf, reg->btf_id); |
| if (t == task_struct_type) { |
| if (off >= offsetof(struct task_struct, scx.slice) && |
| off + size <= offsetofend(struct task_struct, scx.slice)) |
| return SCALAR_VALUE; |
| if (off >= offsetof(struct task_struct, scx.dsq_vtime) && |
| off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) |
| return SCALAR_VALUE; |
| if (off >= offsetof(struct task_struct, scx.disallow) && |
| off + size <= offsetofend(struct task_struct, scx.disallow)) |
| return SCALAR_VALUE; |
| } |
| |
| return -EACCES; |
| } |
| |
| static const struct bpf_func_proto * |
| bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) |
| { |
| switch (func_id) { |
| case BPF_FUNC_task_storage_get: |
| return &bpf_task_storage_get_proto; |
| case BPF_FUNC_task_storage_delete: |
| return &bpf_task_storage_delete_proto; |
| default: |
| return bpf_base_func_proto(func_id, prog); |
| } |
| } |
| |
| static const struct bpf_verifier_ops bpf_scx_verifier_ops = { |
| .get_func_proto = bpf_scx_get_func_proto, |
| .is_valid_access = bpf_scx_is_valid_access, |
| .btf_struct_access = bpf_scx_btf_struct_access, |
| }; |
| |
| static int bpf_scx_init_member(const struct btf_type *t, |
| const struct btf_member *member, |
| void *kdata, const void *udata) |
| { |
| const struct sched_ext_ops *uops = udata; |
| struct sched_ext_ops *ops = kdata; |
| u32 moff = __btf_member_bit_offset(t, member) / 8; |
| int ret; |
| |
| switch (moff) { |
| case offsetof(struct sched_ext_ops, dispatch_max_batch): |
| if (*(u32 *)(udata + moff) > INT_MAX) |
| return -E2BIG; |
| ops->dispatch_max_batch = *(u32 *)(udata + moff); |
| return 1; |
| case offsetof(struct sched_ext_ops, flags): |
| if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) |
| return -EINVAL; |
| ops->flags = *(u64 *)(udata + moff); |
| return 1; |
| case offsetof(struct sched_ext_ops, name): |
| ret = bpf_obj_name_cpy(ops->name, uops->name, |
| sizeof(ops->name)); |
| if (ret < 0) |
| return ret; |
| if (ret == 0) |
| return -EINVAL; |
| return 1; |
| case offsetof(struct sched_ext_ops, timeout_ms): |
| if (msecs_to_jiffies(*(u32 *)(udata + moff)) > |
| SCX_WATCHDOG_MAX_TIMEOUT) |
| return -E2BIG; |
| ops->timeout_ms = *(u32 *)(udata + moff); |
| return 1; |
| case offsetof(struct sched_ext_ops, exit_dump_len): |
| ops->exit_dump_len = |
| *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; |
| return 1; |
| case offsetof(struct sched_ext_ops, hotplug_seq): |
| ops->hotplug_seq = *(u64 *)(udata + moff); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int bpf_scx_check_member(const struct btf_type *t, |
| const struct btf_member *member, |
| const struct bpf_prog *prog) |
| { |
| u32 moff = __btf_member_bit_offset(t, member) / 8; |
| |
| switch (moff) { |
| case offsetof(struct sched_ext_ops, init_task): |
| #ifdef CONFIG_EXT_GROUP_SCHED |
| case offsetof(struct sched_ext_ops, cgroup_init): |
| case offsetof(struct sched_ext_ops, cgroup_exit): |
| case offsetof(struct sched_ext_ops, cgroup_prep_move): |
| #endif |
| case offsetof(struct sched_ext_ops, cpu_online): |
| case offsetof(struct sched_ext_ops, cpu_offline): |
| case offsetof(struct sched_ext_ops, init): |
| case offsetof(struct sched_ext_ops, exit): |
| break; |
| default: |
| if (prog->sleepable) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int bpf_scx_reg(void *kdata, struct bpf_link *link) |
| { |
| return scx_ops_enable(kdata, link); |
| } |
| |
| static void bpf_scx_unreg(void *kdata, struct bpf_link *link) |
| { |
| scx_ops_disable(SCX_EXIT_UNREG); |
| kthread_flush_work(&scx_ops_disable_work); |
| } |
| |
| static int bpf_scx_init(struct btf *btf) |
| { |
| s32 type_id; |
| |
| type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); |
| if (type_id < 0) |
| return -EINVAL; |
| task_struct_type = btf_type_by_id(btf, type_id); |
| task_struct_type_id = type_id; |
| |
| return 0; |
| } |
| |
| static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) |
| { |
| /* |
| * sched_ext does not support updating the actively-loaded BPF |
| * scheduler, as registering a BPF scheduler can always fail if the |
| * scheduler returns an error code for e.g. ops.init(), ops.init_task(), |
| * etc. Similarly, we can always race with unregistration happening |
| * elsewhere, such as with sysrq. |
| */ |
| return -EOPNOTSUPP; |
| } |
| |
| static int bpf_scx_validate(void *kdata) |
| { |
| return 0; |
| } |
| |
| static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } |
| static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} |
| static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} |
| static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} |
| static void tick_stub(struct task_struct *p) {} |
| static void runnable_stub(struct task_struct *p, u64 enq_flags) {} |
| static void running_stub(struct task_struct *p) {} |
| static void stopping_stub(struct task_struct *p, bool runnable) {} |
| static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} |
| static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } |
| static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } |
| static void set_weight_stub(struct task_struct *p, u32 weight) {} |
| static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} |
| static void update_idle_stub(s32 cpu, bool idle) {} |
| static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} |
| static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} |
| static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } |
| static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} |
| static void enable_stub(struct task_struct *p) {} |
| static void disable_stub(struct task_struct *p) {} |
| #ifdef CONFIG_EXT_GROUP_SCHED |
| static s32 cgroup_init_stub(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } |
| static void cgroup_exit_stub(struct cgroup *cgrp) {} |
| static s32 cgroup_prep_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } |
| static void cgroup_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} |
| static void cgroup_cancel_move_stub(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} |
| static void cgroup_set_weight_stub(struct cgroup *cgrp, u32 weight) {} |
| #endif |
| static void cpu_online_stub(s32 cpu) {} |
| static void cpu_offline_stub(s32 cpu) {} |
| static s32 init_stub(void) { return -EINVAL; } |
| static void exit_stub(struct scx_exit_info *info) {} |
| static void dump_stub(struct scx_dump_ctx *ctx) {} |
| static void dump_cpu_stub(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} |
| static void dump_task_stub(struct scx_dump_ctx *ctx, struct task_struct *p) {} |
| |
| static struct sched_ext_ops __bpf_ops_sched_ext_ops = { |
| .select_cpu = select_cpu_stub, |
| .enqueue = enqueue_stub, |
| .dequeue = dequeue_stub, |
| .dispatch = dispatch_stub, |
| .tick = tick_stub, |
| .runnable = runnable_stub, |
| .running = running_stub, |
| .stopping = stopping_stub, |
| .quiescent = quiescent_stub, |
| .yield = yield_stub, |
| .core_sched_before = core_sched_before_stub, |
| .set_weight = set_weight_stub, |
| .set_cpumask = set_cpumask_stub, |
| .update_idle = update_idle_stub, |
| .cpu_acquire = cpu_acquire_stub, |
| .cpu_release = cpu_release_stub, |
| .init_task = init_task_stub, |
| .exit_task = exit_task_stub, |
| .enable = enable_stub, |
| .disable = disable_stub, |
| #ifdef CONFIG_EXT_GROUP_SCHED |
| .cgroup_init = cgroup_init_stub, |
| .cgroup_exit = cgroup_exit_stub, |
| .cgroup_prep_move = cgroup_prep_move_stub, |
| .cgroup_move = cgroup_move_stub, |
| .cgroup_cancel_move = cgroup_cancel_move_stub, |
| .cgroup_set_weight = cgroup_set_weight_stub, |
| #endif |
| .cpu_online = cpu_online_stub, |
| .cpu_offline = cpu_offline_stub, |
| .init = init_stub, |
| .exit = exit_stub, |
| .dump = dump_stub, |
| .dump_cpu = dump_cpu_stub, |
| .dump_task = dump_task_stub, |
| }; |
| |
| static struct bpf_struct_ops bpf_sched_ext_ops = { |
| .verifier_ops = &bpf_scx_verifier_ops, |
| .reg = bpf_scx_reg, |
| .unreg = bpf_scx_unreg, |
| .check_member = bpf_scx_check_member, |
| .init_member = bpf_scx_init_member, |
| .init = bpf_scx_init, |
| .update = bpf_scx_update, |
| .validate = bpf_scx_validate, |
| .name = "sched_ext_ops", |
| .owner = THIS_MODULE, |
| .cfi_stubs = &__bpf_ops_sched_ext_ops |
| }; |
| |
| |
| /******************************************************************************** |
| * System integration and init. |
| */ |
| |
| static void sysrq_handle_sched_ext_reset(u8 key) |
| { |
| if (scx_ops_helper) |
| scx_ops_disable(SCX_EXIT_SYSRQ); |
| else |
| pr_info("sched_ext: BPF scheduler not yet used\n"); |
| } |
| |
| static const struct sysrq_key_op sysrq_sched_ext_reset_op = { |
| .handler = sysrq_handle_sched_ext_reset, |
| .help_msg = "reset-sched-ext(S)", |
| .action_msg = "Disable sched_ext and revert all tasks to CFS", |
| .enable_mask = SYSRQ_ENABLE_RTNICE, |
| }; |
| |
| static void sysrq_handle_sched_ext_dump(u8 key) |
| { |
| struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; |
| |
| if (scx_enabled()) |
| scx_dump_state(&ei, 0); |
| } |
| |
| static const struct sysrq_key_op sysrq_sched_ext_dump_op = { |
| .handler = sysrq_handle_sched_ext_dump, |
| .help_msg = "dump-sched-ext(D)", |
| .action_msg = "Trigger sched_ext debug dump", |
| .enable_mask = SYSRQ_ENABLE_RTNICE, |
| }; |
| |
| static bool can_skip_idle_kick(struct rq *rq) |
| { |
| lockdep_assert_rq_held(rq); |
| |
| /* |
| * We can skip idle kicking if @rq is going to go through at least one |
| * full SCX scheduling cycle before going idle. Just checking whether |
| * curr is not idle is insufficient because we could be racing |
| * balance_one() trying to pull the next task from a remote rq, which |
| * may fail, and @rq may become idle afterwards. |
| * |
| * The race window is small and we don't and can't guarantee that @rq is |
| * only kicked while idle anyway. Skip only when sure. |
| */ |
| return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); |
| } |
| |
| static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| struct scx_rq *this_scx = &this_rq->scx; |
| bool should_wait = false; |
| unsigned long flags; |
| |
| raw_spin_rq_lock_irqsave(rq, flags); |
| |
| /* |
| * During CPU hotplug, a CPU may depend on kicking itself to make |
| * forward progress. Allow kicking self regardless of online state. |
| */ |
| if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { |
| if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { |
| if (rq->curr->sched_class == &ext_sched_class) |
| rq->curr->scx.slice = 0; |
| cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); |
| } |
| |
| if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { |
| pseqs[cpu] = rq->scx.pnt_seq; |
| should_wait = true; |
| } |
| |
| resched_curr(rq); |
| } else { |
| cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); |
| cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); |
| } |
| |
| raw_spin_rq_unlock_irqrestore(rq, flags); |
| |
| return should_wait; |
| } |
| |
| static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long flags; |
| |
| raw_spin_rq_lock_irqsave(rq, flags); |
| |
| if (!can_skip_idle_kick(rq) && |
| (cpu_online(cpu) || cpu == cpu_of(this_rq))) |
| resched_curr(rq); |
| |
| raw_spin_rq_unlock_irqrestore(rq, flags); |
| } |
| |
| static void kick_cpus_irq_workfn(struct irq_work *irq_work) |
| { |
| struct rq *this_rq = this_rq(); |
| struct scx_rq *this_scx = &this_rq->scx; |
| unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); |
| bool should_wait = false; |
| s32 cpu; |
| |
| for_each_cpu(cpu, this_scx->cpus_to_kick) { |
| should_wait |= kick_one_cpu(cpu, this_rq, pseqs); |
| cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); |
| cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); |
| } |
| |
| for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { |
| kick_one_cpu_if_idle(cpu, this_rq); |
| cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); |
| } |
| |
| if (!should_wait) |
| return; |
| |
| for_each_cpu(cpu, this_scx->cpus_to_wait) { |
| unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; |
| |
| if (cpu != cpu_of(this_rq)) { |
| /* |
| * Pairs with smp_store_release() issued by this CPU in |
| * scx_next_task_picked() on the resched path. |
| * |
| * We busy-wait here to guarantee that no other task can |
| * be scheduled on our core before the target CPU has |
| * entered the resched path. |
| */ |
| while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) |
| cpu_relax(); |
| } |
| |
| cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); |
| } |
| } |
| |
| /** |
| * print_scx_info - print out sched_ext scheduler state |
| * @log_lvl: the log level to use when printing |
| * @p: target task |
| * |
| * If a sched_ext scheduler is enabled, print the name and state of the |
| * scheduler. If @p is on sched_ext, print further information about the task. |
| * |
| * This function can be safely called on any task as long as the task_struct |
| * itself is accessible. While safe, this function isn't synchronized and may |
| * print out mixups or garbages of limited length. |
| */ |
| void print_scx_info(const char *log_lvl, struct task_struct *p) |
| { |
| enum scx_ops_enable_state state = scx_ops_enable_state(); |
| const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; |
| char runnable_at_buf[22] = "?"; |
| struct sched_class *class; |
| unsigned long runnable_at; |
| |
| if (state == SCX_OPS_DISABLED) |
| return; |
| |
| /* |
| * Carefully check if the task was running on sched_ext, and then |
| * carefully copy the time it's been runnable, and its state. |
| */ |
| if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || |
| class != &ext_sched_class) { |
| printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, |
| scx_ops_enable_state_str[state], all); |
| return; |
| } |
| |
| if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, |
| sizeof(runnable_at))) |
| scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", |
| jiffies_delta_msecs(runnable_at, jiffies)); |
| |
| /* print everything onto one line to conserve console space */ |
| printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", |
| log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, |
| runnable_at_buf); |
| } |
| |
| static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) |
| { |
| /* |
| * SCX schedulers often have userspace components which are sometimes |
| * involved in critial scheduling paths. PM operations involve freezing |
| * userspace which can lead to scheduling misbehaviors including stalls. |
| * Let's bypass while PM operations are in progress. |
| */ |
| switch (event) { |
| case PM_HIBERNATION_PREPARE: |
| case PM_SUSPEND_PREPARE: |
| case PM_RESTORE_PREPARE: |
| scx_ops_bypass(true); |
| break; |
| case PM_POST_HIBERNATION: |
| case PM_POST_SUSPEND: |
| case PM_POST_RESTORE: |
| scx_ops_bypass(false); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block scx_pm_notifier = { |
| .notifier_call = scx_pm_handler, |
| }; |
| |
| void __init init_sched_ext_class(void) |
| { |
| s32 cpu, v; |
| |
| /* |
| * The following is to prevent the compiler from optimizing out the enum |
| * definitions so that BPF scheduler implementations can use them |
| * through the generated vmlinux.h. |
| */ |
| WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | |
| SCX_TG_ONLINE); |
| |
| BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); |
| #ifdef CONFIG_SMP |
| BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); |
| BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); |
| #endif |
| scx_kick_cpus_pnt_seqs = |
| __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, |
| __alignof__(scx_kick_cpus_pnt_seqs[0])); |
| BUG_ON(!scx_kick_cpus_pnt_seqs); |
| |
| for_each_possible_cpu(cpu) { |
| struct rq *rq = cpu_rq(cpu); |
| |
| init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); |
| INIT_LIST_HEAD(&rq->scx.runnable_list); |
| INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); |
| |
| BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); |
| BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); |
| BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); |
| BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); |
| init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); |
| init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); |
| |
| if (cpu_online(cpu)) |
| cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; |
| } |
| |
| register_sysrq_key('S', &sysrq_sched_ext_reset_op); |
| register_sysrq_key('D', &sysrq_sched_ext_dump_op); |
| INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); |
| } |
| |
| |
| /******************************************************************************** |
| * Helpers that can be called from the BPF scheduler. |
| */ |
| #include <linux/btf_ids.h> |
| |
| __bpf_kfunc_start_defs(); |
| |
| /** |
| * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() |
| * @p: task_struct to select a CPU for |
| * @prev_cpu: CPU @p was on previously |
| * @wake_flags: %SCX_WAKE_* flags |
| * @is_idle: out parameter indicating whether the returned CPU is idle |
| * |
| * Can only be called from ops.select_cpu() if the built-in CPU selection is |
| * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. |
| * @p, @prev_cpu and @wake_flags match ops.select_cpu(). |
| * |
| * Returns the picked CPU with *@is_idle indicating whether the picked CPU is |
| * currently idle and thus a good candidate for direct dispatching. |
| */ |
| __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, |
| u64 wake_flags, bool *is_idle) |
| { |
| if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { |
| *is_idle = false; |
| return prev_cpu; |
| } |
| #ifdef CONFIG_SMP |
| return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); |
| #else |
| *is_idle = false; |
| return prev_cpu; |
| #endif |
| } |
| |
| __bpf_kfunc_end_defs(); |
| |
| BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) |
| BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) |
| BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) |
| |
| static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { |
| .owner = THIS_MODULE, |
| .set = &scx_kfunc_ids_select_cpu, |
| }; |
| |
| static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) |
| { |
| if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) |
| return false; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| if (unlikely(!p)) { |
| scx_ops_error("called with NULL task"); |
| return false; |
| } |
| |
| if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { |
| scx_ops_error("invalid enq_flags 0x%llx", enq_flags); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) |
| { |
| struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); |
| struct task_struct *ddsp_task; |
| |
| ddsp_task = __this_cpu_read(direct_dispatch_task); |
| if (ddsp_task) { |
| mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); |
| return; |
| } |
| |
| if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { |
| scx_ops_error("dispatch buffer overflow"); |
| return; |
| } |
| |
| dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ |
| .task = p, |
| .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, |
| .dsq_id = dsq_id, |
| .enq_flags = enq_flags, |
| }; |
| } |
| |
| __bpf_kfunc_start_defs(); |
| |
| /** |
| * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ |
| * @p: task_struct to dispatch |
| * @dsq_id: DSQ to dispatch to |
| * @slice: duration @p can run for in nsecs, 0 to keep the current value |
| * @enq_flags: SCX_ENQ_* |
| * |
| * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe |
| * to call this function spuriously. Can be called from ops.enqueue(), |
| * ops.select_cpu(), and ops.dispatch(). |
| * |
| * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch |
| * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be |
| * used to target the local DSQ of a CPU other than the enqueueing one. Use |
| * ops.select_cpu() to be on the target CPU in the first place. |
| * |
| * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p |
| * will be directly dispatched to the corresponding dispatch queue after |
| * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be |
| * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). |
| * @enq_flags are OR'd with the enqueue flags on the enqueue path before the |
| * task is dispatched. |
| * |
| * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id |
| * and this function can be called upto ops.dispatch_max_batch times to dispatch |
| * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the |
| * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. |
| * |
| * This function doesn't have any locking restrictions and may be called under |
| * BPF locks (in the future when BPF introduces more flexible locking). |
| * |
| * @p is allowed to run for @slice. The scheduling path is triggered on slice |
| * exhaustion. If zero, the current residual slice is maintained. If |
| * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with |
| * scx_bpf_kick_cpu() to trigger scheduling. |
| */ |
| __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, |
| u64 enq_flags) |
| { |
| if (!scx_dispatch_preamble(p, enq_flags)) |
| return; |
| |
| if (slice) |
| p->scx.slice = slice; |
| else |
| p->scx.slice = p->scx.slice ?: 1; |
| |
| scx_dispatch_commit(p, dsq_id, enq_flags); |
| } |
| |
| /** |
| * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ |
| * @p: task_struct to dispatch |
| * @dsq_id: DSQ to dispatch to |
| * @slice: duration @p can run for in nsecs, 0 to keep the current value |
| * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ |
| * @enq_flags: SCX_ENQ_* |
| * |
| * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. |
| * Tasks queued into the priority queue are ordered by @vtime and always |
| * consumed after the tasks in the FIFO queue. All other aspects are identical |
| * to scx_bpf_dispatch(). |
| * |
| * @vtime ordering is according to time_before64() which considers wrapping. A |
| * numerically larger vtime may indicate an earlier position in the ordering and |
| * vice-versa. |
| */ |
| __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, |
| u64 slice, u64 vtime, u64 enq_flags) |
| { |
| if (!scx_dispatch_preamble(p, enq_flags)) |
| return; |
| |
| if (slice) |
| p->scx.slice = slice; |
| else |
| p->scx.slice = p->scx.slice ?: 1; |
| |
| p->scx.dsq_vtime = vtime; |
| |
| scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); |
| } |
| |
| __bpf_kfunc_end_defs(); |
| |
| BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) |
| BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) |
| |
| static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { |
| .owner = THIS_MODULE, |
| .set = &scx_kfunc_ids_enqueue_dispatch, |
| }; |
| |
| static bool scx_dispatch_from_dsq(struct bpf_iter_scx_dsq_kern *kit, |
| struct task_struct *p, u64 dsq_id, |
| u64 enq_flags) |
| { |
| struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; |
| struct rq *this_rq, *src_rq, *dst_rq, *locked_rq; |
| bool dispatched = false; |
| bool in_balance; |
| unsigned long flags; |
| |
| if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) |
| return false; |
| |
| /* |
| * Can be called from either ops.dispatch() locking this_rq() or any |
| * context where no rq lock is held. If latter, lock @p's task_rq which |
| * we'll likely need anyway. |
| */ |
| src_rq = task_rq(p); |
| |
| local_irq_save(flags); |
| this_rq = this_rq(); |
| in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; |
| |
| if (in_balance) { |
| if (this_rq != src_rq) { |
| raw_spin_rq_unlock(this_rq); |
| raw_spin_rq_lock(src_rq); |
| } |
| } else { |
| raw_spin_rq_lock(src_rq); |
| } |
| |
| locked_rq = src_rq; |
| raw_spin_lock(&src_dsq->lock); |
| |
| /* |
| * Did someone else get to it? @p could have already left $src_dsq, got |
| * re-enqueud, or be in the process of being consumed by someone else. |
| */ |
| if (unlikely(p->scx.dsq != src_dsq || |
| u32_before(kit->cursor.priv, p->scx.dsq_seq) || |
| p->scx.holding_cpu >= 0) || |
| WARN_ON_ONCE(src_rq != task_rq(p))) { |
| raw_spin_unlock(&src_dsq->lock); |
| goto out; |
| } |
| |
| /* @p is still on $src_dsq and stable, determine the destination */ |
| dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); |
| |
| if (dst_dsq->id == SCX_DSQ_LOCAL) { |
| dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); |
| if (!task_can_run_on_remote_rq(p, dst_rq, true)) { |
| dst_dsq = find_global_dsq(p); |
| dst_rq = src_rq; |
| } |
| } else { |
| /* no need to migrate if destination is a non-local DSQ */ |
| dst_rq = src_rq; |
| } |
| |
| /* |
| * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different |
| * CPU, @p will be migrated. |
| */ |
| if (dst_dsq->id == SCX_DSQ_LOCAL) { |
| /* @p is going from a non-local DSQ to a local DSQ */ |
| if (src_rq == dst_rq) { |
| task_unlink_from_dsq(p, src_dsq); |
| move_local_task_to_local_dsq(p, enq_flags, |
| src_dsq, dst_rq); |
| raw_spin_unlock(&src_dsq->lock); |
| } else { |
| raw_spin_unlock(&src_dsq->lock); |
| move_remote_task_to_local_dsq(p, enq_flags, |
| src_rq, dst_rq); |
| locked_rq = dst_rq; |
| } |
| } else { |
| /* |
| * @p is going from a non-local DSQ to a non-local DSQ. As |
| * $src_dsq is already locked, do an abbreviated dequeue. |
| */ |
| task_unlink_from_dsq(p, src_dsq); |
| p->scx.dsq = NULL; |
| raw_spin_unlock(&src_dsq->lock); |
| |
| if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) |
| p->scx.dsq_vtime = kit->vtime; |
| dispatch_enqueue(dst_dsq, p, enq_flags); |
| } |
| |
| if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) |
| p->scx.slice = kit->slice; |
| |
| dispatched = true; |
| out: |
| if (in_balance) { |
| if (this_rq != locked_rq) { |
| raw_spin_rq_unlock(locked_rq); |
| raw_spin_rq_lock(this_rq); |
| } |
| } else { |
| raw_spin_rq_unlock_irqrestore(locked_rq, flags); |
| } |
| |
| kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | |
| __SCX_DSQ_ITER_HAS_VTIME); |
| return dispatched; |
| } |
| |
| __bpf_kfunc_start_defs(); |
| |
| /** |
| * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots |
| * |
| * Can only be called from ops.dispatch(). |
| */ |
| __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) |
| { |
| if (!scx_kf_allowed(SCX_KF_DISPATCH)) |
| return 0; |
| |
| return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); |
| } |
| |
| /** |
| * scx_bpf_dispatch_cancel - Cancel the latest dispatch |
| * |
| * Cancel the latest dispatch. Can be called multiple times to cancel further |
| * dispatches. Can only be called from ops.dispatch(). |
| */ |
| __bpf_kfunc void scx_bpf_dispatch_cancel(void) |
| { |
| struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); |
| |
| if (!scx_kf_allowed(SCX_KF_DISPATCH)) |
| return; |
| |
| if (dspc->cursor > 0) |
| dspc->cursor--; |
| else |
| scx_ops_error("dispatch buffer underflow"); |
| } |
| |
| /** |
| * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ |
| * @dsq_id: DSQ to consume |
| * |
| * Consume a task from the non-local DSQ identified by @dsq_id and transfer it |
| * to the current CPU's local DSQ for execution. Can only be called from |
| * ops.dispatch(). |
| * |
| * This function flushes the in-flight dispatches from scx_bpf_dispatch() before |
| * trying to consume the specified DSQ. It may also grab rq locks and thus can't |
| * be called under any BPF locks. |
| * |
| * Returns %true if a task has been consumed, %false if there isn't any task to |
| * consume. |
| */ |
| __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) |
| { |
| struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); |
| struct scx_dispatch_q *dsq; |
| |
| if (!scx_kf_allowed(SCX_KF_DISPATCH)) |
| return false; |
| |
| flush_dispatch_buf(dspc->rq); |
| |
| dsq = find_user_dsq(dsq_id); |
| if (unlikely(!dsq)) { |
| scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); |
| return false; |
| } |
| |
| if (consume_dispatch_q(dspc->rq, dsq)) { |
| /* |
| * A successfully consumed task can be dequeued before it starts |
| * running while the CPU is trying to migrate other dispatched |
| * tasks. Bump nr_tasks to tell balance_scx() to retry on empty |
| * local DSQ. |
| */ |
| dspc->nr_tasks++; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| /** |
| * scx_bpf_dispatch_from_dsq_set_slice - Override slice when dispatching from DSQ |
| * @it__iter: DSQ iterator in progress |
| * @slice: duration the dispatched task can run for in nsecs |
| * |
| * Override the slice of the next task that will be dispatched from @it__iter |
| * using scx_bpf_dispatch_from_dsq[_vtime](). If this function is not called, |
| * the previous slice duration is kept. |
| */ |
| __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( |
| struct bpf_iter_scx_dsq *it__iter, u64 slice) |
| { |
| struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; |
| |
| kit->slice = slice; |
| kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; |
| } |
| |
| /** |
| * scx_bpf_dispatch_from_dsq_set_vtime - Override vtime when dispatching from DSQ |
| * @it__iter: DSQ iterator in progress |
| * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ |
| * |
| * Override the vtime of the next task that will be dispatched from @it__iter |
| * using scx_bpf_dispatch_from_dsq_vtime(). If this function is not called, the |
| * previous slice vtime is kept. If scx_bpf_dispatch_from_dsq() is used to |
| * dispatch the next task, the override is ignored and cleared. |
| */ |
| __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( |
| struct bpf_iter_scx_dsq *it__iter, u64 vtime) |
| { |
| struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; |
| |
| kit->vtime = vtime; |
| kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; |
| } |
| |
| /** |
| * scx_bpf_dispatch_from_dsq - Move a task from DSQ iteration to a DSQ |
| * @it__iter: DSQ iterator in progress |
| * @p: task to transfer |
| * @dsq_id: DSQ to move @p to |
| * @enq_flags: SCX_ENQ_* |
| * |
| * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ |
| * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can |
| * be the destination. |
| * |
| * For the transfer to be successful, @p must still be on the DSQ and have been |
| * queued before the DSQ iteration started. This function doesn't care whether |
| * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have |
| * been queued before the iteration started. |
| * |
| * @p's slice is kept by default. Use scx_bpf_dispatch_from_dsq_set_slice() to |
| * update. |
| * |
| * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq |
| * lock (e.g. BPF timers or SYSCALL programs). |
| * |
| * Returns %true if @p has been consumed, %false if @p had already been consumed |
| * or dequeued. |
| */ |
| __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, |
| struct task_struct *p, u64 dsq_id, |
| u64 enq_flags) |
| { |
| return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, |
| p, dsq_id, enq_flags); |
| } |
| |
| /** |
| * scx_bpf_dispatch_vtime_from_dsq - Move a task from DSQ iteration to a PRIQ DSQ |
| * @it__iter: DSQ iterator in progress |
| * @p: task to transfer |
| * @dsq_id: DSQ to move @p to |
| * @enq_flags: SCX_ENQ_* |
| * |
| * Transfer @p which is on the DSQ currently iterated by @it__iter to the |
| * priority queue of the DSQ specified by @dsq_id. The destination must be a |
| * user DSQ as only user DSQs support priority queue. |
| * |
| * @p's slice and vtime are kept by default. Use |
| * scx_bpf_dispatch_from_dsq_set_slice() and |
| * scx_bpf_dispatch_from_dsq_set_vtime() to update. |
| * |
| * All other aspects are identical to scx_bpf_dispatch_from_dsq(). See |
| * scx_bpf_dispatch_vtime() for more information on @vtime. |
| */ |
| __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, |
| struct task_struct *p, u64 dsq_id, |
| u64 enq_flags) |
| { |
| return scx_dispatch_from_dsq((struct bpf_iter_scx_dsq_kern *)it__iter, |
| p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); |
| } |
| |
| __bpf_kfunc_end_defs(); |
| |
| BTF_KFUNCS_START(scx_kfunc_ids_dispatch) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) |
| BTF_ID_FLAGS(func, scx_bpf_consume) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) |
| BTF_KFUNCS_END(scx_kfunc_ids_dispatch) |
| |
| static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { |
| .owner = THIS_MODULE, |
| .set = &scx_kfunc_ids_dispatch, |
| }; |
| |
| __bpf_kfunc_start_defs(); |
| |
| /** |
| * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ |
| * |
| * Iterate over all of the tasks currently enqueued on the local DSQ of the |
| * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of |
| * processed tasks. Can only be called from ops.cpu_release(). |
| */ |
| __bpf_kfunc u32 scx_bpf_reenqueue_local(void) |
| { |
| LIST_HEAD(tasks); |
| u32 nr_enqueued = 0; |
| struct rq *rq; |
| struct task_struct *p, *n; |
| |
| if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) |
| return 0; |
| |
| rq = cpu_rq(smp_processor_id()); |
| lockdep_assert_rq_held(rq); |
| |
| /* |
| * The BPF scheduler may choose to dispatch tasks back to |
| * @rq->scx.local_dsq. Move all candidate tasks off to a private list |
| * first to avoid processing the same tasks repeatedly. |
| */ |
| list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, |
| scx.dsq_list.node) { |
| /* |
| * If @p is being migrated, @p's current CPU may not agree with |
| * its allowed CPUs and the migration_cpu_stop is about to |
| * deactivate and re-activate @p anyway. Skip re-enqueueing. |
| * |
| * While racing sched property changes may also dequeue and |
| * re-enqueue a migrating task while its current CPU and allowed |
| * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to |
| * the current local DSQ for running tasks and thus are not |
| * visible to the BPF scheduler. |
| */ |
| if (p->migration_pending) |
| continue; |
| |
| dispatch_dequeue(rq, p); |
| list_add_tail(&p->scx.dsq_list.node, &tasks); |
| } |
| |
| list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { |
| list_del_init(&p->scx.dsq_list.node); |
| do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); |
| nr_enqueued++; |
| } |
| |
| return nr_enqueued; |
| } |
| |
| __bpf_kfunc_end_defs(); |
| |
| BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) |
| BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) |
| BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) |
| |
| static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { |
| .owner = THIS_MODULE, |
| .set = &scx_kfunc_ids_cpu_release, |
| }; |
| |
| __bpf_kfunc_start_defs(); |
| |
| /** |
| * scx_bpf_create_dsq - Create a custom DSQ |
| * @dsq_id: DSQ to create |
| * @node: NUMA node to allocate from |
| * |
| * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable |
| * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. |
| */ |
| __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) |
| { |
| if (unlikely(node >= (int)nr_node_ids || |
| (node < 0 && node != NUMA_NO_NODE))) |
| return -EINVAL; |
| return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); |
| } |
| |
| __bpf_kfunc_end_defs(); |
| |
| BTF_KFUNCS_START(scx_kfunc_ids_unlocked) |
| BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) |
| BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) |
| BTF_KFUNCS_END(scx_kfunc_ids_unlocked) |
| |
| static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { |
| .owner = THIS_MODULE, |
| .set = &scx_kfunc_ids_unlocked, |
| }; |
| |
| __bpf_kfunc_start_defs(); |
| |
| /** |
| * scx_bpf_kick_cpu - Trigger reschedule on a CPU |
| * @cpu: cpu to kick |
| * @flags: %SCX_KICK_* flags |
| * |
| * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or |
| * trigger rescheduling on a busy CPU. This can be called from any online |
| * scx_ops operation and the actual kicking is performed asynchronously through |
| * an irq work. |
| */ |
| __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) |
| { |
| struct rq *this_rq; |
| unsigned long irq_flags; |
| |
| if (!ops_cpu_valid(cpu, NULL)) |
| return; |
| |
| local_irq_save(irq_flags); |
| |
| this_rq = this_rq(); |
| |
| /* |
| * While bypassing for PM ops, IRQ handling may not be online which can |
| * lead to irq_work_queue() malfunction such as infinite busy wait for |
| * IRQ status update. Suppress kicking. |
| */ |
| if (scx_rq_bypassing(this_rq)) |
| goto out; |
| |
| /* |
| * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting |
| * rq locks. We can probably be smarter and avoid bouncing if called |
| * from ops which don't hold a rq lock. |
| */ |
| if (flags & SCX_KICK_IDLE) { |
| struct rq *target_rq = cpu_rq(cpu); |
| |
| if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) |
| scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); |
| |
| if (raw_spin_rq_trylock(target_rq)) { |
| if (can_skip_idle_kick(target_rq)) { |
| raw_spin_rq_unlock(target_rq); |
| goto out; |
| } |
| raw_spin_rq_unlock(target_rq); |
| } |
| cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); |
| } else { |
| cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); |
| |
| if (flags & SCX_KICK_PREEMPT) |
| cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); |
| if (flags & SCX_KICK_WAIT) |
| cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); |
| } |
| |
| irq_work_queue(&this_rq->scx.kick_cpus_irq_work); |
| out: |
| local_irq_restore(irq_flags); |
| } |
| |
| /** |
| * scx_bpf_dsq_nr_queued - Return the number of queued tasks |
| * @dsq_id: id of the DSQ |
| * |
| * Return the number of tasks in the DSQ matching @dsq_id. If not found, |
| * -%ENOENT is returned. |
| */ |
| __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) |
| { |
| struct scx_dispatch_q *dsq; |
| s32 ret; |
| |
| preempt_disable(); |
| |
| if (dsq_id == SCX_DSQ_LOCAL) { |
| ret = READ_ONCE(this_rq()->scx.local_dsq.nr); |
| goto out; |
| } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { |
| s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; |
| |
| if (ops_cpu_valid(cpu, NULL)) { |
| ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); |
| goto out; |
| } |
| } else { |
| dsq = find_user_dsq(dsq_id); |
| if (dsq) { |
| ret = READ_ONCE(dsq->nr); |
| goto out; |
| } |
| } |
| ret = -ENOENT; |
| out: |
| preempt_enable(); |
| return ret; |
| } |
| |
| /** |
| * scx_bpf_destroy_dsq - Destroy a custom DSQ |
| * @dsq_id: DSQ to destroy |
| * |
| * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with |
| * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is |
| * empty and no further tasks are dispatched to it. Ignored if called on a DSQ |
| * which doesn't exist. Can be called from any online scx_ops operations. |
| */ |
| __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) |
| { |
| destroy_dsq(dsq_id); |
| } |
| |
| /** |
| * bpf_iter_scx_dsq_new - Create a DSQ iterator |
| * @it: iterator to initialize |
| * @dsq_id: DSQ to iterate |
| * @flags: %SCX_DSQ_ITER_* |
| * |
| * Initialize BPF iterator @it which can be used with bpf_for_each() to walk |
| * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes |
| * tasks which are already queued when this function is invoked. |
| */ |
| __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, |
| u64 flags) |
| { |
| struct bpf_iter_scx_dsq_kern *kit = (void *)it; |
| |
| BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > |
| sizeof(struct bpf_iter_scx_dsq)); |
| BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != |
| __alignof__(struct bpf_iter_scx_dsq)); |
| |
| if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) |
| return -EINVAL; |
| |
| kit->dsq = find_user_dsq(dsq_id); |
| if (!kit->dsq) |
| return -ENOENT; |
| |
| INIT_LIST_HEAD(&kit->cursor.node); |
| kit->cursor.flags |= SCX_DSQ_LNODE_ITER_CURSOR | flags; |
| kit->cursor.priv = READ_ONCE(kit->dsq->seq); |
| |
| return 0; |
| } |
| |
| /** |
| * bpf_iter_scx_dsq_next - Progress a DSQ iterator |
| * @it: iterator to progress |
| * |
| * Return the next task. See bpf_iter_scx_dsq_new(). |
| */ |
| __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) |
| { |
| struct bpf_iter_scx_dsq_kern *kit = (void *)it; |
| bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; |
| struct task_struct *p; |
| unsigned long flags; |
| |
| if (!kit->dsq) |
| return NULL; |
| |
| raw_spin_lock_irqsave(&kit->dsq->lock, flags); |
| |
| if (list_empty(&kit->cursor.node)) |
| p = NULL; |
| else |
| p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); |
| |
| /* |
| * Only tasks which were queued before the iteration started are |
| * visible. This bounds BPF iterations and guarantees that vtime never |
| * jumps in the other direction while iterating. |
| */ |
| do { |
| p = nldsq_next_task(kit->dsq, p, rev); |
| } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); |
| |
| if (p) { |
| if (rev) |
| list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); |
| else |
| list_move(&kit->cursor.node, &p->scx.dsq_list.node); |
| } else { |
| list_del_init(&kit->cursor.node); |
| } |
| |
| raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); |
| |
| return p; |
| } |
| |
| /** |
| * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator |
| * @it: iterator to destroy |
| * |
| * Undo scx_iter_scx_dsq_new(). |
| */ |
| __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) |
| { |
| struct bpf_iter_scx_dsq_kern *kit = (void *)it; |
| |
| if (!kit->dsq) |
| return; |
| |
| if (!list_empty(&kit->cursor.node)) { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&kit->dsq->lock, flags); |
| list_del_init(&kit->cursor.node); |
| raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); |
| } |
| kit->dsq = NULL; |
| } |
| |
| __bpf_kfunc_end_defs(); |
| |
| static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, |
| char *fmt, unsigned long long *data, u32 data__sz) |
| { |
| struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; |
| s32 ret; |
| |
| if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || |
| (data__sz && !data)) { |
| scx_ops_error("invalid data=%p and data__sz=%u", |
| (void *)data, data__sz); |
| return -EINVAL; |
| } |
| |
| ret = copy_from_kernel_nofault(data_buf, data, data__sz); |
| if (ret < 0) { |
| scx_ops_error("failed to read data fields (%d)", ret); |
| return ret; |
| } |
| |
| ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, |
| &bprintf_data); |
| if (ret < 0) { |
| scx_ops_error("format preparation failed (%d)", ret); |
| return ret; |
| } |
| |
| ret = bstr_printf(line_buf, line_size, fmt, |
| bprintf_data.bin_args); |
| bpf_bprintf_cleanup(&bprintf_data); |
| if (ret < 0) { |
| scx_ops_error("(\"%s\", %p, %u) failed to format", |
| fmt, data, data__sz); |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static s32 bstr_format(struct scx_bstr_buf *buf, |
| char *fmt, unsigned long long *data, u32 data__sz) |
| { |
| return __bstr_format(buf->data, buf->line, sizeof(buf->line), |
| fmt, data, data__sz); |
| } |
| |
| __bpf_kfunc_start_defs(); |
| |
| /** |
| * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. |
| * @exit_code: Exit value to pass to user space via struct scx_exit_info. |
| * @fmt: error message format string |
| * @data: format string parameters packaged using ___bpf_fill() macro |
| * @data__sz: @data len, must end in '__sz' for the verifier |
| * |
| * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops |
| * disabling. |
| */ |
| __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, |
| unsigned long long *data, u32 data__sz) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); |
| if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) |
| scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", |
| scx_exit_bstr_buf.line); |
| raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); |
| } |
| |
| /** |
| * scx_bpf_error_bstr - Indicate fatal error |
| * @fmt: error message format string |
| * @data: format string parameters packaged using ___bpf_fill() macro |
| * @data__sz: @data len, must end in '__sz' for the verifier |
| * |
| * Indicate that the BPF scheduler encountered a fatal error and initiate ops |
| * disabling. |
| */ |
| __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, |
| u32 data__sz) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); |
| if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) |
| scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", |
| scx_exit_bstr_buf.line); |
| raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); |
| } |
| |
| /** |
| * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler |
| * @fmt: format string |
| * @data: format string parameters packaged using ___bpf_fill() macro |
| * @data__sz: @data len, must end in '__sz' for the verifier |
| * |
| * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and |
| * dump_task() to generate extra debug dump specific to the BPF scheduler. |
| * |
| * The extra dump may be multiple lines. A single line may be split over |
| * multiple calls. The last line is automatically terminated. |
| */ |
| __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, |
| u32 data__sz) |
| { |
| struct scx_dump_data *dd = &scx_dump_data; |
| struct scx_bstr_buf *buf = &dd->buf; |
| s32 ret; |
| |
| if (raw_smp_processor_id() != dd->cpu) { |
| scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); |
| return; |
| } |
| |
| /* append the formatted string to the line buf */ |
| ret = __bstr_format(buf->data, buf->line + dd->cursor, |
| sizeof(buf->line) - dd->cursor, fmt, data, data__sz); |
| if (ret < 0) { |
| dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", |
| dd->prefix, fmt, data, data__sz, ret); |
| return; |
| } |
| |
| dd->cursor += ret; |
| dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); |
| |
| if (!dd->cursor) |
| return; |
| |
| /* |
| * If the line buf overflowed or ends in a newline, flush it into the |
| * dump. This is to allow the caller to generate a single line over |
| * multiple calls. As ops_dump_flush() can also handle multiple lines in |
| * the line buf, the only case which can lead to an unexpected |
| * truncation is when the caller keeps generating newlines in the middle |
| * instead of the end consecutively. Don't do that. |
| */ |
| if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') |
| ops_dump_flush(); |
| } |
| |
| /** |
| * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU |
| * @cpu: CPU of interest |
| * |
| * Return the maximum relative capacity of @cpu in relation to the most |
| * performant CPU in the system. The return value is in the range [1, |
| * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). |
| */ |
| __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) |
| { |
| if (ops_cpu_valid(cpu, NULL)) |
| return arch_scale_cpu_capacity(cpu); |
| else |
| return SCX_CPUPERF_ONE; |
| } |
| |
| /** |
| * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU |
| * @cpu: CPU of interest |
| * |
| * Return the current relative performance of @cpu in relation to its maximum. |
| * The return value is in the range [1, %SCX_CPUPERF_ONE]. |
| * |
| * The current performance level of a CPU in relation to the maximum performance |
| * available in the system can be calculated as follows: |
| * |
| * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE |
| * |
| * The result is in the range [1, %SCX_CPUPERF_ONE]. |
| */ |
| __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) |
| { |
| if (ops_cpu_valid(cpu, NULL)) |
| return arch_scale_freq_capacity(cpu); |
| else |
| return SCX_CPUPERF_ONE; |
| } |
| |
| /** |
| * scx_bpf_cpuperf_set - Set the relative performance target of a CPU |
| * @cpu: CPU of interest |
| * @perf: target performance level [0, %SCX_CPUPERF_ONE] |
| * @flags: %SCX_CPUPERF_* flags |
| * |
| * Set the target performance level of @cpu to @perf. @perf is in linear |
| * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the |
| * schedutil cpufreq governor chooses the target frequency. |
| * |
| * The actual performance level chosen, CPU grouping, and the overhead and |
| * latency of the operations are dependent on the hardware and cpufreq driver in |
| * use. Consult hardware and cpufreq documentation for more information. The |
| * current performance level can be monitored using scx_bpf_cpuperf_cur(). |
| */ |
| __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) |
| { |
| if (unlikely(perf > SCX_CPUPERF_ONE)) { |
| scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); |
| return; |
| } |
| |
| if (ops_cpu_valid(cpu, NULL)) { |
| struct rq *rq = cpu_rq(cpu); |
| |
| rq->scx.cpuperf_target = perf; |
| |
| rcu_read_lock_sched_notrace(); |
| cpufreq_update_util(cpu_rq(cpu), 0); |
| rcu_read_unlock_sched_notrace(); |
| } |
| } |
| |
| /** |
| * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs |
| * |
| * All valid CPU IDs in the system are smaller than the returned value. |
| */ |
| __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) |
| { |
| return nr_cpu_ids; |
| } |
| |
| /** |
| * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask |
| */ |
| __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) |
| { |
| return cpu_possible_mask; |
| } |
| |
| /** |
| * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask |
| */ |
| __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) |
| { |
| return cpu_online_mask; |
| } |
| |
| /** |
| * scx_bpf_put_cpumask - Release a possible/online cpumask |
| * @cpumask: cpumask to release |
| */ |
| __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) |
| { |
| /* |
| * Empty function body because we aren't actually acquiring or releasing |
| * a reference to a global cpumask, which is read-only in the caller and |
| * is never released. The acquire / release semantics here are just used |
| * to make the cpumask is a trusted pointer in the caller. |
| */ |
| } |
| |
| /** |
| * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking |
| * per-CPU cpumask. |
| * |
| * Returns NULL if idle tracking is not enabled, or running on a UP kernel. |
| */ |
| __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) |
| { |
| if (!static_branch_likely(&scx_builtin_idle_enabled)) { |
| scx_ops_error("built-in idle tracking is disabled"); |
| return cpu_none_mask; |
| } |
| |
| #ifdef CONFIG_SMP |
| return idle_masks.cpu; |
| #else |
| return cpu_none_mask; |
| #endif |
| } |
| |
| /** |
| * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, |
| * per-physical-core cpumask. Can be used to determine if an entire physical |
| * core is free. |
| * |
| * Returns NULL if idle tracking is not enabled, or running on a UP kernel. |
| */ |
| __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) |
| { |
| if (!static_branch_likely(&scx_builtin_idle_enabled)) { |
| scx_ops_error("built-in idle tracking is disabled"); |
| return cpu_none_mask; |
| } |
| |
| #ifdef CONFIG_SMP |
| if (sched_smt_active()) |
| return idle_masks.smt; |
| else |
| return idle_masks.cpu; |
| #else |
| return cpu_none_mask; |
| #endif |
| } |
| |
| /** |
| * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to |
| * either the percpu, or SMT idle-tracking cpumask. |
| */ |
| __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) |
| { |
| /* |
| * Empty function body because we aren't actually acquiring or releasing |
| * a reference to a global idle cpumask, which is read-only in the |
| * caller and is never released. The acquire / release semantics here |
| * are just used to make the cpumask a trusted pointer in the caller. |
| */ |
| } |
| |
| /** |
| * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state |
| * @cpu: cpu to test and clear idle for |
| * |
| * Returns %true if @cpu was idle and its idle state was successfully cleared. |
| * %false otherwise. |
| * |
| * Unavailable if ops.update_idle() is implemented and |
| * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. |
| */ |
| __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) |
| { |
| if (!static_branch_likely(&scx_builtin_idle_enabled)) { |
| scx_ops_error("built-in idle tracking is disabled"); |
| return false; |
| } |
| |
| if (ops_cpu_valid(cpu, NULL)) |
| return test_and_clear_cpu_idle(cpu); |
| else |
| return false; |
| } |
| |
| /** |
| * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu |
| * @cpus_allowed: Allowed cpumask |
| * @flags: %SCX_PICK_IDLE_CPU_* flags |
| * |
| * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu |
| * number on success. -%EBUSY if no matching cpu was found. |
| * |
| * Idle CPU tracking may race against CPU scheduling state transitions. For |
| * example, this function may return -%EBUSY as CPUs are transitioning into the |
| * idle state. If the caller then assumes that there will be dispatch events on |
| * the CPUs as they were all busy, the scheduler may end up stalling with CPUs |
| * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and |
| * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch |
| * event in the near future. |
| * |
| * Unavailable if ops.update_idle() is implemented and |
| * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. |
| */ |
| __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, |
| u64 flags) |
| { |
| if (!static_branch_likely(&scx_builtin_idle_enabled)) { |
| scx_ops_error("built-in idle tracking is disabled"); |
| return -EBUSY; |
| } |
| |
| return scx_pick_idle_cpu(cpus_allowed, flags); |
| } |
| |
| /** |
| * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU |
| * @cpus_allowed: Allowed cpumask |
| * @flags: %SCX_PICK_IDLE_CPU_* flags |
| * |
| * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any |
| * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu |
| * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is |
| * empty. |
| * |
| * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not |
| * set, this function can't tell which CPUs are idle and will always pick any |
| * CPU. |
| */ |
| __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, |
| u64 flags) |
| { |
| s32 cpu; |
| |
| if (static_branch_likely(&scx_builtin_idle_enabled)) { |
| cpu = scx_pick_idle_cpu(cpus_allowed, flags); |
| if (cpu >= 0) |
| return cpu; |
| } |
| |
| cpu = cpumask_any_distribute(cpus_allowed); |
| if (cpu < nr_cpu_ids) |
| return cpu; |
| else |
| return -EBUSY; |
| } |
| |
| /** |
| * scx_bpf_task_running - Is task currently running? |
| * @p: task of interest |
| */ |
| __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) |
| { |
| return task_rq(p)->curr == p; |
| } |
| |
| /** |
| * scx_bpf_task_cpu - CPU a task is currently associated with |
| * @p: task of interest |
| */ |
| __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) |
| { |
| return task_cpu(p); |
| } |
| |
| /** |
| * scx_bpf_cpu_rq - Fetch the rq of a CPU |
| * @cpu: CPU of the rq |
| */ |
| __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) |
| { |
| if (!ops_cpu_valid(cpu, NULL)) |
| return NULL; |
| |
| return cpu_rq(cpu); |
| } |
| |
| /** |
| * scx_bpf_task_cgroup - Return the sched cgroup of a task |
| * @p: task of interest |
| * |
| * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with |
| * from the scheduler's POV. SCX operations should use this function to |
| * determine @p's current cgroup as, unlike following @p->cgroups, |
| * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all |
| * rq-locked operations. Can be called on the parameter tasks of rq-locked |
| * operations. The restriction guarantees that @p's rq is locked by the caller. |
| */ |
| #ifdef CONFIG_CGROUP_SCHED |
| __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) |
| { |
| struct task_group *tg = p->sched_task_group; |
| struct cgroup *cgrp = &cgrp_dfl_root.cgrp; |
| |
| if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) |
| goto out; |
| |
| /* |
| * A task_group may either be a cgroup or an autogroup. In the latter |
| * case, @tg->css.cgroup is %NULL. A task_group can't become the other |
| * kind once created. |
| */ |
| if (tg && tg->css.cgroup) |
| cgrp = tg->css.cgroup; |
| else |
| cgrp = &cgrp_dfl_root.cgrp; |
| out: |
| cgroup_get(cgrp); |
| return cgrp; |
| } |
| #endif |
| |
| __bpf_kfunc_end_defs(); |
| |
| BTF_KFUNCS_START(scx_kfunc_ids_any) |
| BTF_ID_FLAGS(func, scx_bpf_kick_cpu) |
| BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) |
| BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) |
| BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) |
| BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) |
| BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) |
| BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) |
| BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) |
| BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) |
| BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) |
| BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) |
| BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) |
| BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) |
| BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) |
| BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) |
| BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) |
| BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) |
| BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) |
| BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) |
| BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) |
| BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) |
| BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) |
| BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) |
| BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) |
| BTF_ID_FLAGS(func, scx_bpf_cpu_rq) |
| #ifdef CONFIG_CGROUP_SCHED |
| BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) |
| #endif |
| BTF_KFUNCS_END(scx_kfunc_ids_any) |
| |
| static const struct btf_kfunc_id_set scx_kfunc_set_any = { |
| .owner = THIS_MODULE, |
| .set = &scx_kfunc_ids_any, |
| }; |
| |
| static int __init scx_init(void) |
| { |
| int ret; |
| |
| /* |
| * kfunc registration can't be done from init_sched_ext_class() as |
| * register_btf_kfunc_id_set() needs most of the system to be up. |
| * |
| * Some kfuncs are context-sensitive and can only be called from |
| * specific SCX ops. They are grouped into BTF sets accordingly. |
| * Unfortunately, BPF currently doesn't have a way of enforcing such |
| * restrictions. Eventually, the verifier should be able to enforce |
| * them. For now, register them the same and make each kfunc explicitly |
| * check using scx_kf_allowed(). |
| */ |
| if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, |
| &scx_kfunc_set_select_cpu)) || |
| (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, |
| &scx_kfunc_set_enqueue_dispatch)) || |
| (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, |
| &scx_kfunc_set_dispatch)) || |
| (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, |
| &scx_kfunc_set_cpu_release)) || |
| (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, |
| &scx_kfunc_set_unlocked)) || |
| (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, |
| &scx_kfunc_set_unlocked)) || |
| (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, |
| &scx_kfunc_set_any)) || |
| (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, |
| &scx_kfunc_set_any)) || |
| (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, |
| &scx_kfunc_set_any))) { |
| pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); |
| return ret; |
| } |
| |
| ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); |
| if (ret) { |
| pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); |
| return ret; |
| } |
| |
| ret = register_pm_notifier(&scx_pm_notifier); |
| if (ret) { |
| pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); |
| return ret; |
| } |
| |
| scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); |
| if (!scx_kset) { |
| pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); |
| return -ENOMEM; |
| } |
| |
| ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); |
| if (ret < 0) { |
| pr_err("sched_ext: Failed to add global attributes\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| __initcall(scx_init); |