blob: 5d0a809dc2df9313f5b57aab753ced84a2c96d28 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <linux/dma-buf.h>
#include <linux/dma-heap.h>
#include <drm/drm.h>
#include "../kselftest.h"
#define DEVPATH "/dev/dma_heap"
static int check_vgem(int fd)
{
drm_version_t version = { 0 };
char name[5];
int ret;
version.name_len = 4;
version.name = name;
ret = ioctl(fd, DRM_IOCTL_VERSION, &version);
if (ret || version.name_len != 4)
return 0;
name[4] = '\0';
return !strcmp(name, "vgem");
}
static int open_vgem(void)
{
int i, fd;
const char *drmstr = "/dev/dri/card";
fd = -1;
for (i = 0; i < 16; i++) {
char name[80];
snprintf(name, 80, "%s%u", drmstr, i);
fd = open(name, O_RDWR);
if (fd < 0)
continue;
if (!check_vgem(fd)) {
close(fd);
fd = -1;
continue;
} else {
break;
}
}
return fd;
}
static int import_vgem_fd(int vgem_fd, int dma_buf_fd, uint32_t *handle)
{
struct drm_prime_handle import_handle = {
.fd = dma_buf_fd,
.flags = 0,
.handle = 0,
};
int ret;
ret = ioctl(vgem_fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &import_handle);
if (ret == 0)
*handle = import_handle.handle;
return ret;
}
static void close_handle(int vgem_fd, uint32_t handle)
{
struct drm_gem_close close = {
.handle = handle,
};
ioctl(vgem_fd, DRM_IOCTL_GEM_CLOSE, &close);
}
static int dmabuf_heap_open(char *name)
{
int ret, fd;
char buf[256];
ret = snprintf(buf, 256, "%s/%s", DEVPATH, name);
if (ret < 0)
ksft_exit_fail_msg("snprintf failed! %d\n", ret);
fd = open(buf, O_RDWR);
if (fd < 0)
ksft_exit_fail_msg("open %s failed: %s\n", buf, strerror(errno));
return fd;
}
static int dmabuf_heap_alloc_fdflags(int fd, size_t len, unsigned int fd_flags,
unsigned int heap_flags, int *dmabuf_fd)
{
struct dma_heap_allocation_data data = {
.len = len,
.fd = 0,
.fd_flags = fd_flags,
.heap_flags = heap_flags,
};
int ret;
if (!dmabuf_fd)
return -EINVAL;
ret = ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data);
if (ret < 0)
return ret;
*dmabuf_fd = (int)data.fd;
return ret;
}
static int dmabuf_heap_alloc(int fd, size_t len, unsigned int flags,
int *dmabuf_fd)
{
return dmabuf_heap_alloc_fdflags(fd, len, O_RDWR | O_CLOEXEC, flags,
dmabuf_fd);
}
static int dmabuf_sync(int fd, int start_stop)
{
struct dma_buf_sync sync = {
.flags = start_stop | DMA_BUF_SYNC_RW,
};
return ioctl(fd, DMA_BUF_IOCTL_SYNC, &sync);
}
#define ONE_MEG (1024 * 1024)
static void test_alloc_and_import(char *heap_name)
{
int heap_fd = -1, dmabuf_fd = -1, importer_fd = -1;
uint32_t handle = 0;
void *p = NULL;
int ret;
heap_fd = dmabuf_heap_open(heap_name);
ksft_print_msg("Testing allocation and importing:\n");
ret = dmabuf_heap_alloc(heap_fd, ONE_MEG, 0, &dmabuf_fd);
if (ret) {
ksft_test_result_fail("FAIL (Allocation Failed!) %d\n", ret);
return;
}
/* mmap and write a simple pattern */
p = mmap(NULL, ONE_MEG, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd, 0);
if (p == MAP_FAILED) {
ksft_test_result_fail("FAIL (mmap() failed): %s\n", strerror(errno));
goto close_and_return;
}
dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_START);
memset(p, 1, ONE_MEG / 2);
memset((char *)p + ONE_MEG / 2, 0, ONE_MEG / 2);
dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_END);
importer_fd = open_vgem();
if (importer_fd < 0) {
ksft_test_result_skip("Could not open vgem %d\n", importer_fd);
} else {
ret = import_vgem_fd(importer_fd, dmabuf_fd, &handle);
ksft_test_result(ret >= 0, "Import buffer %d\n", ret);
}
ret = dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_START);
if (ret < 0) {
ksft_print_msg("FAIL (DMA_BUF_SYNC_START failed!) %d\n", ret);
goto out;
}
memset(p, 0xff, ONE_MEG);
ret = dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_END);
if (ret < 0) {
ksft_print_msg("FAIL (DMA_BUF_SYNC_END failed!) %d\n", ret);
goto out;
}
close_handle(importer_fd, handle);
ksft_test_result_pass("%s dmabuf sync succeeded\n", __func__);
return;
out:
ksft_test_result_fail("%s dmabuf sync failed\n", __func__);
munmap(p, ONE_MEG);
close(importer_fd);
close_and_return:
close(dmabuf_fd);
close(heap_fd);
}
static void test_alloc_zeroed(char *heap_name, size_t size)
{
int heap_fd = -1, dmabuf_fd[32];
int i, j, k, ret;
void *p = NULL;
char *c;
ksft_print_msg("Testing alloced %ldk buffers are zeroed:\n", size / 1024);
heap_fd = dmabuf_heap_open(heap_name);
/* Allocate and fill a bunch of buffers */
for (i = 0; i < 32; i++) {
ret = dmabuf_heap_alloc(heap_fd, size, 0, &dmabuf_fd[i]);
if (ret) {
ksft_test_result_fail("FAIL (Allocation (%i) failed) %d\n", i, ret);
goto close_and_return;
}
/* mmap and fill with simple pattern */
p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd[i], 0);
if (p == MAP_FAILED) {
ksft_test_result_fail("FAIL (mmap() failed!): %s\n", strerror(errno));
goto close_and_return;
}
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_START);
memset(p, 0xff, size);
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END);
munmap(p, size);
}
/* close them all */
for (i = 0; i < 32; i++)
close(dmabuf_fd[i]);
ksft_test_result_pass("Allocate and fill a bunch of buffers\n");
/* Allocate and validate all buffers are zeroed */
for (i = 0; i < 32; i++) {
ret = dmabuf_heap_alloc(heap_fd, size, 0, &dmabuf_fd[i]);
if (ret < 0) {
ksft_test_result_fail("FAIL (Allocation (%i) failed) %d\n", i, ret);
goto close_and_return;
}
/* mmap and validate everything is zero */
p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd[i], 0);
if (p == MAP_FAILED) {
ksft_test_result_fail("FAIL (mmap() failed!): %s\n", strerror(errno));
goto close_and_return;
}
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_START);
c = (char *)p;
for (j = 0; j < size; j++) {
if (c[j] != 0) {
ksft_print_msg("FAIL (Allocated buffer not zeroed @ %i)\n", j);
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END);
munmap(p, size);
goto out;
}
}
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END);
munmap(p, size);
}
out:
ksft_test_result(i == 32, "Allocate and validate all buffers are zeroed\n");
close_and_return:
/* close them all */
for (k = 0; k < i; k++)
close(dmabuf_fd[k]);
close(heap_fd);
return;
}
/* Test the ioctl version compatibility w/ a smaller structure then expected */
static int dmabuf_heap_alloc_older(int fd, size_t len, unsigned int flags,
int *dmabuf_fd)
{
int ret;
unsigned int older_alloc_ioctl;
struct dma_heap_allocation_data_smaller {
__u64 len;
__u32 fd;
__u32 fd_flags;
} data = {
.len = len,
.fd = 0,
.fd_flags = O_RDWR | O_CLOEXEC,
};
older_alloc_ioctl = _IOWR(DMA_HEAP_IOC_MAGIC, 0x0,
struct dma_heap_allocation_data_smaller);
if (!dmabuf_fd)
return -EINVAL;
ret = ioctl(fd, older_alloc_ioctl, &data);
if (ret < 0)
return ret;
*dmabuf_fd = (int)data.fd;
return ret;
}
/* Test the ioctl version compatibility w/ a larger structure then expected */
static int dmabuf_heap_alloc_newer(int fd, size_t len, unsigned int flags,
int *dmabuf_fd)
{
int ret;
unsigned int newer_alloc_ioctl;
struct dma_heap_allocation_data_bigger {
__u64 len;
__u32 fd;
__u32 fd_flags;
__u64 heap_flags;
__u64 garbage1;
__u64 garbage2;
__u64 garbage3;
} data = {
.len = len,
.fd = 0,
.fd_flags = O_RDWR | O_CLOEXEC,
.heap_flags = flags,
.garbage1 = 0xffffffff,
.garbage2 = 0x88888888,
.garbage3 = 0x11111111,
};
newer_alloc_ioctl = _IOWR(DMA_HEAP_IOC_MAGIC, 0x0,
struct dma_heap_allocation_data_bigger);
if (!dmabuf_fd)
return -EINVAL;
ret = ioctl(fd, newer_alloc_ioctl, &data);
if (ret < 0)
return ret;
*dmabuf_fd = (int)data.fd;
return ret;
}
static void test_alloc_compat(char *heap_name)
{
int ret, heap_fd = -1, dmabuf_fd = -1;
heap_fd = dmabuf_heap_open(heap_name);
ksft_print_msg("Testing (theoretical) older alloc compat:\n");
ret = dmabuf_heap_alloc_older(heap_fd, ONE_MEG, 0, &dmabuf_fd);
if (dmabuf_fd >= 0)
close(dmabuf_fd);
ksft_test_result(!ret, "dmabuf_heap_alloc_older\n");
ksft_print_msg("Testing (theoretical) newer alloc compat:\n");
ret = dmabuf_heap_alloc_newer(heap_fd, ONE_MEG, 0, &dmabuf_fd);
if (dmabuf_fd >= 0)
close(dmabuf_fd);
ksft_test_result(!ret, "dmabuf_heap_alloc_newer\n");
close(heap_fd);
}
static void test_alloc_errors(char *heap_name)
{
int heap_fd = -1, dmabuf_fd = -1;
int ret;
heap_fd = dmabuf_heap_open(heap_name);
ksft_print_msg("Testing expected error cases:\n");
ret = dmabuf_heap_alloc(0, ONE_MEG, 0x111111, &dmabuf_fd);
ksft_test_result(ret, "Error expected on invalid fd %d\n", ret);
ret = dmabuf_heap_alloc(heap_fd, ONE_MEG, 0x111111, &dmabuf_fd);
ksft_test_result(ret, "Error expected on invalid heap flags %d\n", ret);
ret = dmabuf_heap_alloc_fdflags(heap_fd, ONE_MEG,
~(O_RDWR | O_CLOEXEC), 0, &dmabuf_fd);
ksft_test_result(ret, "Error expected on invalid heap flags %d\n", ret);
if (dmabuf_fd >= 0)
close(dmabuf_fd);
close(heap_fd);
}
static int numer_of_heaps(void)
{
DIR *d = opendir(DEVPATH);
struct dirent *dir;
int heaps = 0;
while ((dir = readdir(d))) {
if (!strncmp(dir->d_name, ".", 2))
continue;
if (!strncmp(dir->d_name, "..", 3))
continue;
heaps++;
}
return heaps;
}
int main(void)
{
struct dirent *dir;
DIR *d;
ksft_print_header();
d = opendir(DEVPATH);
if (!d) {
ksft_print_msg("No %s directory?\n", DEVPATH);
return KSFT_SKIP;
}
ksft_set_plan(11 * numer_of_heaps());
while ((dir = readdir(d))) {
if (!strncmp(dir->d_name, ".", 2))
continue;
if (!strncmp(dir->d_name, "..", 3))
continue;
ksft_print_msg("Testing heap: %s\n", dir->d_name);
ksft_print_msg("=======================================\n");
test_alloc_and_import(dir->d_name);
test_alloc_zeroed(dir->d_name, 4 * 1024);
test_alloc_zeroed(dir->d_name, ONE_MEG);
test_alloc_compat(dir->d_name);
test_alloc_errors(dir->d_name);
}
closedir(d);
ksft_finished();
}