| // SPDX-License-Identifier: GPL-2.0 |
| #include <fcntl.h> |
| #include <pthread.h> |
| #include <sched.h> |
| #include <semaphore.h> |
| #include <signal.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| |
| #include <linux/compiler.h> |
| |
| #include <test_util.h> |
| #include <kvm_util.h> |
| #include <processor.h> |
| |
| /* |
| * s390x needs at least 1MB alignment, and the x86_64 MOVE/DELETE tests need a |
| * 2MB sized and aligned region so that the initial region corresponds to |
| * exactly one large page. |
| */ |
| #define MEM_REGION_SIZE 0x200000 |
| |
| #ifdef __x86_64__ |
| /* |
| * Somewhat arbitrary location and slot, intended to not overlap anything. |
| */ |
| #define MEM_REGION_GPA 0xc0000000 |
| #define MEM_REGION_SLOT 10 |
| |
| static const uint64_t MMIO_VAL = 0xbeefull; |
| |
| extern const uint64_t final_rip_start; |
| extern const uint64_t final_rip_end; |
| |
| static sem_t vcpu_ready; |
| |
| static inline uint64_t guest_spin_on_val(uint64_t spin_val) |
| { |
| uint64_t val; |
| |
| do { |
| val = READ_ONCE(*((uint64_t *)MEM_REGION_GPA)); |
| } while (val == spin_val); |
| |
| GUEST_SYNC(0); |
| return val; |
| } |
| |
| static void *vcpu_worker(void *data) |
| { |
| struct kvm_vcpu *vcpu = data; |
| struct kvm_run *run = vcpu->run; |
| struct ucall uc; |
| uint64_t cmd; |
| |
| /* |
| * Loop until the guest is done. Re-enter the guest on all MMIO exits, |
| * which will occur if the guest attempts to access a memslot after it |
| * has been deleted or while it is being moved . |
| */ |
| while (1) { |
| vcpu_run(vcpu); |
| |
| if (run->exit_reason == KVM_EXIT_IO) { |
| cmd = get_ucall(vcpu, &uc); |
| if (cmd != UCALL_SYNC) |
| break; |
| |
| sem_post(&vcpu_ready); |
| continue; |
| } |
| |
| if (run->exit_reason != KVM_EXIT_MMIO) |
| break; |
| |
| TEST_ASSERT(!run->mmio.is_write, "Unexpected exit mmio write"); |
| TEST_ASSERT(run->mmio.len == 8, |
| "Unexpected exit mmio size = %u", run->mmio.len); |
| |
| TEST_ASSERT(run->mmio.phys_addr == MEM_REGION_GPA, |
| "Unexpected exit mmio address = 0x%llx", |
| run->mmio.phys_addr); |
| memcpy(run->mmio.data, &MMIO_VAL, 8); |
| } |
| |
| if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT) |
| REPORT_GUEST_ASSERT(uc); |
| |
| return NULL; |
| } |
| |
| static void wait_for_vcpu(void) |
| { |
| struct timespec ts; |
| |
| TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), |
| "clock_gettime() failed: %d", errno); |
| |
| ts.tv_sec += 2; |
| TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), |
| "sem_timedwait() failed: %d", errno); |
| |
| /* Wait for the vCPU thread to reenter the guest. */ |
| usleep(100000); |
| } |
| |
| static struct kvm_vm *spawn_vm(struct kvm_vcpu **vcpu, pthread_t *vcpu_thread, |
| void *guest_code) |
| { |
| struct kvm_vm *vm; |
| uint64_t *hva; |
| uint64_t gpa; |
| |
| vm = vm_create_with_one_vcpu(vcpu, guest_code); |
| |
| vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS_THP, |
| MEM_REGION_GPA, MEM_REGION_SLOT, |
| MEM_REGION_SIZE / getpagesize(), 0); |
| |
| /* |
| * Allocate and map two pages so that the GPA accessed by guest_code() |
| * stays valid across the memslot move. |
| */ |
| gpa = vm_phy_pages_alloc(vm, 2, MEM_REGION_GPA, MEM_REGION_SLOT); |
| TEST_ASSERT(gpa == MEM_REGION_GPA, "Failed vm_phy_pages_alloc\n"); |
| |
| virt_map(vm, MEM_REGION_GPA, MEM_REGION_GPA, 2); |
| |
| /* Ditto for the host mapping so that both pages can be zeroed. */ |
| hva = addr_gpa2hva(vm, MEM_REGION_GPA); |
| memset(hva, 0, 2 * 4096); |
| |
| pthread_create(vcpu_thread, NULL, vcpu_worker, *vcpu); |
| |
| /* Ensure the guest thread is spun up. */ |
| wait_for_vcpu(); |
| |
| return vm; |
| } |
| |
| |
| static void guest_code_move_memory_region(void) |
| { |
| uint64_t val; |
| |
| GUEST_SYNC(0); |
| |
| /* |
| * Spin until the memory region starts getting moved to a |
| * misaligned address. |
| * Every region move may or may not trigger MMIO, as the |
| * window where the memslot is invalid is usually quite small. |
| */ |
| val = guest_spin_on_val(0); |
| __GUEST_ASSERT(val == 1 || val == MMIO_VAL, |
| "Expected '1' or MMIO ('%lx'), got '%lx'", MMIO_VAL, val); |
| |
| /* Spin until the misaligning memory region move completes. */ |
| val = guest_spin_on_val(MMIO_VAL); |
| __GUEST_ASSERT(val == 1 || val == 0, |
| "Expected '0' or '1' (no MMIO), got '%lx'", val); |
| |
| /* Spin until the memory region starts to get re-aligned. */ |
| val = guest_spin_on_val(0); |
| __GUEST_ASSERT(val == 1 || val == MMIO_VAL, |
| "Expected '1' or MMIO ('%lx'), got '%lx'", MMIO_VAL, val); |
| |
| /* Spin until the re-aligning memory region move completes. */ |
| val = guest_spin_on_val(MMIO_VAL); |
| GUEST_ASSERT_EQ(val, 1); |
| |
| GUEST_DONE(); |
| } |
| |
| static void test_move_memory_region(bool disable_slot_zap_quirk) |
| { |
| pthread_t vcpu_thread; |
| struct kvm_vcpu *vcpu; |
| struct kvm_vm *vm; |
| uint64_t *hva; |
| |
| vm = spawn_vm(&vcpu, &vcpu_thread, guest_code_move_memory_region); |
| |
| if (disable_slot_zap_quirk) |
| vm_enable_cap(vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL); |
| |
| hva = addr_gpa2hva(vm, MEM_REGION_GPA); |
| |
| /* |
| * Shift the region's base GPA. The guest should not see "2" as the |
| * hva->gpa translation is misaligned, i.e. the guest is accessing a |
| * different host pfn. |
| */ |
| vm_mem_region_move(vm, MEM_REGION_SLOT, MEM_REGION_GPA - 4096); |
| WRITE_ONCE(*hva, 2); |
| |
| /* |
| * The guest _might_ see an invalid memslot and trigger MMIO, but it's |
| * a tiny window. Spin and defer the sync until the memslot is |
| * restored and guest behavior is once again deterministic. |
| */ |
| usleep(100000); |
| |
| /* |
| * Note, value in memory needs to be changed *before* restoring the |
| * memslot, else the guest could race the update and see "2". |
| */ |
| WRITE_ONCE(*hva, 1); |
| |
| /* Restore the original base, the guest should see "1". */ |
| vm_mem_region_move(vm, MEM_REGION_SLOT, MEM_REGION_GPA); |
| wait_for_vcpu(); |
| /* Defered sync from when the memslot was misaligned (above). */ |
| wait_for_vcpu(); |
| |
| pthread_join(vcpu_thread, NULL); |
| |
| kvm_vm_free(vm); |
| } |
| |
| static void guest_code_delete_memory_region(void) |
| { |
| struct desc_ptr idt; |
| uint64_t val; |
| |
| /* |
| * Clobber the IDT so that a #PF due to the memory region being deleted |
| * escalates to triple-fault shutdown. Because the memory region is |
| * deleted, there will be no valid mappings. As a result, KVM will |
| * repeatedly intercepts the state-2 page fault that occurs when trying |
| * to vector the guest's #PF. I.e. trying to actually handle the #PF |
| * in the guest will never succeed, and so isn't an option. |
| */ |
| memset(&idt, 0, sizeof(idt)); |
| __asm__ __volatile__("lidt %0" :: "m"(idt)); |
| |
| GUEST_SYNC(0); |
| |
| /* Spin until the memory region is deleted. */ |
| val = guest_spin_on_val(0); |
| GUEST_ASSERT_EQ(val, MMIO_VAL); |
| |
| /* Spin until the memory region is recreated. */ |
| val = guest_spin_on_val(MMIO_VAL); |
| GUEST_ASSERT_EQ(val, 0); |
| |
| /* Spin until the memory region is deleted. */ |
| val = guest_spin_on_val(0); |
| GUEST_ASSERT_EQ(val, MMIO_VAL); |
| |
| asm("1:\n\t" |
| ".pushsection .rodata\n\t" |
| ".global final_rip_start\n\t" |
| "final_rip_start: .quad 1b\n\t" |
| ".popsection"); |
| |
| /* Spin indefinitely (until the code memslot is deleted). */ |
| guest_spin_on_val(MMIO_VAL); |
| |
| asm("1:\n\t" |
| ".pushsection .rodata\n\t" |
| ".global final_rip_end\n\t" |
| "final_rip_end: .quad 1b\n\t" |
| ".popsection"); |
| |
| GUEST_ASSERT(0); |
| } |
| |
| static void test_delete_memory_region(bool disable_slot_zap_quirk) |
| { |
| pthread_t vcpu_thread; |
| struct kvm_vcpu *vcpu; |
| struct kvm_regs regs; |
| struct kvm_run *run; |
| struct kvm_vm *vm; |
| |
| vm = spawn_vm(&vcpu, &vcpu_thread, guest_code_delete_memory_region); |
| |
| if (disable_slot_zap_quirk) |
| vm_enable_cap(vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL); |
| |
| /* Delete the memory region, the guest should not die. */ |
| vm_mem_region_delete(vm, MEM_REGION_SLOT); |
| wait_for_vcpu(); |
| |
| /* Recreate the memory region. The guest should see "0". */ |
| vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS_THP, |
| MEM_REGION_GPA, MEM_REGION_SLOT, |
| MEM_REGION_SIZE / getpagesize(), 0); |
| wait_for_vcpu(); |
| |
| /* Delete the region again so that there's only one memslot left. */ |
| vm_mem_region_delete(vm, MEM_REGION_SLOT); |
| wait_for_vcpu(); |
| |
| /* |
| * Delete the primary memslot. This should cause an emulation error or |
| * shutdown due to the page tables getting nuked. |
| */ |
| vm_mem_region_delete(vm, 0); |
| |
| pthread_join(vcpu_thread, NULL); |
| |
| run = vcpu->run; |
| |
| TEST_ASSERT(run->exit_reason == KVM_EXIT_SHUTDOWN || |
| run->exit_reason == KVM_EXIT_INTERNAL_ERROR, |
| "Unexpected exit reason = %d", run->exit_reason); |
| |
| vcpu_regs_get(vcpu, ®s); |
| |
| /* |
| * On AMD, after KVM_EXIT_SHUTDOWN the VMCB has been reinitialized already, |
| * so the instruction pointer would point to the reset vector. |
| */ |
| if (run->exit_reason == KVM_EXIT_INTERNAL_ERROR) |
| TEST_ASSERT(regs.rip >= final_rip_start && |
| regs.rip < final_rip_end, |
| "Bad rip, expected 0x%lx - 0x%lx, got 0x%llx", |
| final_rip_start, final_rip_end, regs.rip); |
| |
| kvm_vm_free(vm); |
| } |
| |
| static void test_zero_memory_regions(void) |
| { |
| struct kvm_vcpu *vcpu; |
| struct kvm_vm *vm; |
| |
| pr_info("Testing KVM_RUN with zero added memory regions\n"); |
| |
| vm = vm_create_barebones(); |
| vcpu = __vm_vcpu_add(vm, 0); |
| |
| vm_ioctl(vm, KVM_SET_NR_MMU_PAGES, (void *)64ul); |
| vcpu_run(vcpu); |
| TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_INTERNAL_ERROR); |
| |
| kvm_vm_free(vm); |
| } |
| #endif /* __x86_64__ */ |
| |
| static void test_invalid_memory_region_flags(void) |
| { |
| uint32_t supported_flags = KVM_MEM_LOG_DIRTY_PAGES; |
| const uint32_t v2_only_flags = KVM_MEM_GUEST_MEMFD; |
| struct kvm_vm *vm; |
| int r, i; |
| |
| #if defined __aarch64__ || defined __riscv || defined __x86_64__ |
| supported_flags |= KVM_MEM_READONLY; |
| #endif |
| |
| #ifdef __x86_64__ |
| if (kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM)) |
| vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM); |
| else |
| #endif |
| vm = vm_create_barebones(); |
| |
| if (kvm_check_cap(KVM_CAP_MEMORY_ATTRIBUTES) & KVM_MEMORY_ATTRIBUTE_PRIVATE) |
| supported_flags |= KVM_MEM_GUEST_MEMFD; |
| |
| for (i = 0; i < 32; i++) { |
| if ((supported_flags & BIT(i)) && !(v2_only_flags & BIT(i))) |
| continue; |
| |
| r = __vm_set_user_memory_region(vm, 0, BIT(i), |
| 0, MEM_REGION_SIZE, NULL); |
| |
| TEST_ASSERT(r && errno == EINVAL, |
| "KVM_SET_USER_MEMORY_REGION should have failed on v2 only flag 0x%lx", BIT(i)); |
| |
| if (supported_flags & BIT(i)) |
| continue; |
| |
| r = __vm_set_user_memory_region2(vm, 0, BIT(i), |
| 0, MEM_REGION_SIZE, NULL, 0, 0); |
| TEST_ASSERT(r && errno == EINVAL, |
| "KVM_SET_USER_MEMORY_REGION2 should have failed on unsupported flag 0x%lx", BIT(i)); |
| } |
| |
| if (supported_flags & KVM_MEM_GUEST_MEMFD) { |
| int guest_memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE, 0); |
| |
| r = __vm_set_user_memory_region2(vm, 0, |
| KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_GUEST_MEMFD, |
| 0, MEM_REGION_SIZE, NULL, guest_memfd, 0); |
| TEST_ASSERT(r && errno == EINVAL, |
| "KVM_SET_USER_MEMORY_REGION2 should have failed, dirty logging private memory is unsupported"); |
| |
| r = __vm_set_user_memory_region2(vm, 0, |
| KVM_MEM_READONLY | KVM_MEM_GUEST_MEMFD, |
| 0, MEM_REGION_SIZE, NULL, guest_memfd, 0); |
| TEST_ASSERT(r && errno == EINVAL, |
| "KVM_SET_USER_MEMORY_REGION2 should have failed, read-only GUEST_MEMFD memslots are unsupported"); |
| |
| close(guest_memfd); |
| } |
| } |
| |
| /* |
| * Test it can be added memory slots up to KVM_CAP_NR_MEMSLOTS, then any |
| * tentative to add further slots should fail. |
| */ |
| static void test_add_max_memory_regions(void) |
| { |
| int ret; |
| struct kvm_vm *vm; |
| uint32_t max_mem_slots; |
| uint32_t slot; |
| void *mem, *mem_aligned, *mem_extra; |
| size_t alignment; |
| |
| #ifdef __s390x__ |
| /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ |
| alignment = 0x100000; |
| #else |
| alignment = 1; |
| #endif |
| |
| max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); |
| TEST_ASSERT(max_mem_slots > 0, |
| "KVM_CAP_NR_MEMSLOTS should be greater than 0"); |
| pr_info("Allowed number of memory slots: %i\n", max_mem_slots); |
| |
| vm = vm_create_barebones(); |
| |
| /* Check it can be added memory slots up to the maximum allowed */ |
| pr_info("Adding slots 0..%i, each memory region with %dK size\n", |
| (max_mem_slots - 1), MEM_REGION_SIZE >> 10); |
| |
| mem = mmap(NULL, (size_t)max_mem_slots * MEM_REGION_SIZE + alignment, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0); |
| TEST_ASSERT(mem != MAP_FAILED, "Failed to mmap() host"); |
| mem_aligned = (void *)(((size_t) mem + alignment - 1) & ~(alignment - 1)); |
| |
| for (slot = 0; slot < max_mem_slots; slot++) |
| vm_set_user_memory_region(vm, slot, 0, |
| ((uint64_t)slot * MEM_REGION_SIZE), |
| MEM_REGION_SIZE, |
| mem_aligned + (uint64_t)slot * MEM_REGION_SIZE); |
| |
| /* Check it cannot be added memory slots beyond the limit */ |
| mem_extra = mmap(NULL, MEM_REGION_SIZE, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| TEST_ASSERT(mem_extra != MAP_FAILED, "Failed to mmap() host"); |
| |
| ret = __vm_set_user_memory_region(vm, max_mem_slots, 0, |
| (uint64_t)max_mem_slots * MEM_REGION_SIZE, |
| MEM_REGION_SIZE, mem_extra); |
| TEST_ASSERT(ret == -1 && errno == EINVAL, |
| "Adding one more memory slot should fail with EINVAL"); |
| |
| munmap(mem, (size_t)max_mem_slots * MEM_REGION_SIZE + alignment); |
| munmap(mem_extra, MEM_REGION_SIZE); |
| kvm_vm_free(vm); |
| } |
| |
| |
| #ifdef __x86_64__ |
| static void test_invalid_guest_memfd(struct kvm_vm *vm, int memfd, |
| size_t offset, const char *msg) |
| { |
| int r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, |
| MEM_REGION_GPA, MEM_REGION_SIZE, |
| 0, memfd, offset); |
| TEST_ASSERT(r == -1 && errno == EINVAL, "%s", msg); |
| } |
| |
| static void test_add_private_memory_region(void) |
| { |
| struct kvm_vm *vm, *vm2; |
| int memfd, i; |
| |
| pr_info("Testing ADD of KVM_MEM_GUEST_MEMFD memory regions\n"); |
| |
| vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM); |
| |
| test_invalid_guest_memfd(vm, vm->kvm_fd, 0, "KVM fd should fail"); |
| test_invalid_guest_memfd(vm, vm->fd, 0, "VM's fd should fail"); |
| |
| memfd = kvm_memfd_alloc(MEM_REGION_SIZE, false); |
| test_invalid_guest_memfd(vm, memfd, 0, "Regular memfd() should fail"); |
| close(memfd); |
| |
| vm2 = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM); |
| memfd = vm_create_guest_memfd(vm2, MEM_REGION_SIZE, 0); |
| test_invalid_guest_memfd(vm, memfd, 0, "Other VM's guest_memfd() should fail"); |
| |
| vm_set_user_memory_region2(vm2, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, |
| MEM_REGION_GPA, MEM_REGION_SIZE, 0, memfd, 0); |
| close(memfd); |
| kvm_vm_free(vm2); |
| |
| memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE, 0); |
| for (i = 1; i < PAGE_SIZE; i++) |
| test_invalid_guest_memfd(vm, memfd, i, "Unaligned offset should fail"); |
| |
| vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, |
| MEM_REGION_GPA, MEM_REGION_SIZE, 0, memfd, 0); |
| close(memfd); |
| |
| kvm_vm_free(vm); |
| } |
| |
| static void test_add_overlapping_private_memory_regions(void) |
| { |
| struct kvm_vm *vm; |
| int memfd; |
| int r; |
| |
| pr_info("Testing ADD of overlapping KVM_MEM_GUEST_MEMFD memory regions\n"); |
| |
| vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM); |
| |
| memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE * 4, 0); |
| |
| vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, |
| MEM_REGION_GPA, MEM_REGION_SIZE * 2, 0, memfd, 0); |
| |
| vm_set_user_memory_region2(vm, MEM_REGION_SLOT + 1, KVM_MEM_GUEST_MEMFD, |
| MEM_REGION_GPA * 2, MEM_REGION_SIZE * 2, |
| 0, memfd, MEM_REGION_SIZE * 2); |
| |
| /* |
| * Delete the first memslot, and then attempt to recreate it except |
| * with a "bad" offset that results in overlap in the guest_memfd(). |
| */ |
| vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, |
| MEM_REGION_GPA, 0, NULL, -1, 0); |
| |
| /* Overlap the front half of the other slot. */ |
| r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, |
| MEM_REGION_GPA * 2 - MEM_REGION_SIZE, |
| MEM_REGION_SIZE * 2, |
| 0, memfd, 0); |
| TEST_ASSERT(r == -1 && errno == EEXIST, "%s", |
| "Overlapping guest_memfd() bindings should fail with EEXIST"); |
| |
| /* And now the back half of the other slot. */ |
| r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, |
| MEM_REGION_GPA * 2 + MEM_REGION_SIZE, |
| MEM_REGION_SIZE * 2, |
| 0, memfd, 0); |
| TEST_ASSERT(r == -1 && errno == EEXIST, "%s", |
| "Overlapping guest_memfd() bindings should fail with EEXIST"); |
| |
| close(memfd); |
| kvm_vm_free(vm); |
| } |
| #endif |
| |
| int main(int argc, char *argv[]) |
| { |
| #ifdef __x86_64__ |
| int i, loops; |
| int j, disable_slot_zap_quirk = 0; |
| |
| if (kvm_check_cap(KVM_CAP_DISABLE_QUIRKS2) & KVM_X86_QUIRK_SLOT_ZAP_ALL) |
| disable_slot_zap_quirk = 1; |
| /* |
| * FIXME: the zero-memslot test fails on aarch64 and s390x because |
| * KVM_RUN fails with ENOEXEC or EFAULT. |
| */ |
| test_zero_memory_regions(); |
| #endif |
| |
| test_invalid_memory_region_flags(); |
| |
| test_add_max_memory_regions(); |
| |
| #ifdef __x86_64__ |
| if (kvm_has_cap(KVM_CAP_GUEST_MEMFD) && |
| (kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM))) { |
| test_add_private_memory_region(); |
| test_add_overlapping_private_memory_regions(); |
| } else { |
| pr_info("Skipping tests for KVM_MEM_GUEST_MEMFD memory regions\n"); |
| } |
| |
| if (argc > 1) |
| loops = atoi_positive("Number of iterations", argv[1]); |
| else |
| loops = 10; |
| |
| for (j = 0; j <= disable_slot_zap_quirk; j++) { |
| pr_info("Testing MOVE of in-use region, %d loops, slot zap quirk %s\n", |
| loops, j ? "disabled" : "enabled"); |
| for (i = 0; i < loops; i++) |
| test_move_memory_region(!!j); |
| |
| pr_info("Testing DELETE of in-use region, %d loops, slot zap quirk %s\n", |
| loops, j ? "disabled" : "enabled"); |
| for (i = 0; i < loops; i++) |
| test_delete_memory_region(!!j); |
| } |
| #endif |
| |
| return 0; |
| } |