blob: 8e8b7cd315f7dd05ca48b473c1a62a1605c0de00 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2023 Realtek Corporation
*/
#include "debug.h"
#include "efuse.h"
#include "mac.h"
#include "reg.h"
static void rtw89_enable_efuse_pwr_cut_ddv_be(struct rtw89_dev *rtwdev)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_hal *hal = &rtwdev->hal;
bool aphy_patch = true;
if (chip->chip_id == RTL8922A && hal->cv == CHIP_CAV)
aphy_patch = false;
rtw89_write8_set(rtwdev, R_BE_PMC_DBG_CTRL2, B_BE_SYSON_DIS_PMCR_BE_WRMSK);
if (aphy_patch) {
rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_S);
mdelay(1);
rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_B);
rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_ISO_EB2CORE);
}
rtw89_write32_set(rtwdev, R_BE_EFUSE_CTRL_2_V1, B_BE_EF_BURST);
}
static void rtw89_disable_efuse_pwr_cut_ddv_be(struct rtw89_dev *rtwdev)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_hal *hal = &rtwdev->hal;
bool aphy_patch = true;
if (chip->chip_id == RTL8922A && hal->cv == CHIP_CAV)
aphy_patch = false;
if (aphy_patch) {
rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_ISO_EB2CORE);
rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_B);
mdelay(1);
rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_S);
}
rtw89_write8_clr(rtwdev, R_BE_PMC_DBG_CTRL2, B_BE_SYSON_DIS_PMCR_BE_WRMSK);
rtw89_write32_clr(rtwdev, R_BE_EFUSE_CTRL_2_V1, B_BE_EF_BURST);
}
static int rtw89_dump_physical_efuse_map_ddv_be(struct rtw89_dev *rtwdev, u8 *map,
u32 dump_addr, u32 dump_size)
{
u32 efuse_ctl;
u32 addr;
u32 data;
int ret;
if (!IS_ALIGNED(dump_addr, 4) || !IS_ALIGNED(dump_size, 4)) {
rtw89_err(rtwdev, "Efuse addr 0x%x or size 0x%x not aligned\n",
dump_addr, dump_size);
return -EINVAL;
}
rtw89_enable_efuse_pwr_cut_ddv_be(rtwdev);
for (addr = dump_addr; addr < dump_addr + dump_size; addr += 4, map += 4) {
efuse_ctl = u32_encode_bits(addr, B_BE_EF_ADDR_MASK);
rtw89_write32(rtwdev, R_BE_EFUSE_CTRL, efuse_ctl & ~B_BE_EF_RDY);
ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl,
efuse_ctl & B_BE_EF_RDY, 1, 1000000,
true, rtwdev, R_BE_EFUSE_CTRL);
if (ret)
return -EBUSY;
data = rtw89_read32(rtwdev, R_BE_EFUSE_CTRL_1_V1);
*((__le32 *)map) = cpu_to_le32(data);
}
rtw89_disable_efuse_pwr_cut_ddv_be(rtwdev);
return 0;
}
static int rtw89_dump_physical_efuse_map_dav_be(struct rtw89_dev *rtwdev, u8 *map,
u32 dump_addr, u32 dump_size)
{
u32 addr;
u8 val8;
int err;
int ret;
for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40,
FULL_BIT_MASK);
if (ret)
return ret;
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR, addr & 0xff,
XTAL_SI_LOW_ADDR_MASK);
if (ret)
return ret;
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8,
XTAL_SI_HIGH_ADDR_MASK);
if (ret)
return ret;
ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0,
XTAL_SI_MODE_SEL_MASK);
if (ret)
return ret;
ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err,
!err && (val8 & XTAL_SI_RDY),
1, 10000, false,
rtwdev, XTAL_SI_CTRL, &val8);
if (ret) {
rtw89_warn(rtwdev, "failed to read dav efuse\n");
return ret;
}
ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8);
if (ret)
return ret;
*map++ = val8;
}
return 0;
}
int rtw89_cnv_efuse_state_be(struct rtw89_dev *rtwdev, bool idle)
{
u32 val;
int ret = 0;
if (idle) {
rtw89_write32_set(rtwdev, R_BE_WL_BT_PWR_CTRL, B_BE_BT_DISN_EN);
} else {
rtw89_write32_clr(rtwdev, R_BE_WL_BT_PWR_CTRL, B_BE_BT_DISN_EN);
ret = read_poll_timeout(rtw89_read32_mask, val,
val == MAC_AX_SYS_ACT, 50, 5000,
false, rtwdev, R_BE_IC_PWR_STATE,
B_BE_WHOLE_SYS_PWR_STE_MASK);
if (ret)
rtw89_warn(rtwdev, "failed to convert efuse state\n");
}
return ret;
}
static int rtw89_dump_physical_efuse_map_be(struct rtw89_dev *rtwdev, u8 *map,
u32 dump_addr, u32 dump_size, bool dav)
{
int ret;
if (!map || dump_size == 0)
return 0;
rtw89_cnv_efuse_state_be(rtwdev, false);
if (dav) {
ret = rtw89_dump_physical_efuse_map_dav_be(rtwdev, map,
dump_addr, dump_size);
if (ret)
return ret;
rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "phy_map dav: ", map, dump_size);
} else {
ret = rtw89_dump_physical_efuse_map_ddv_be(rtwdev, map,
dump_addr, dump_size);
if (ret)
return ret;
rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "phy_map ddv: ", map, dump_size);
}
rtw89_cnv_efuse_state_be(rtwdev, true);
return 0;
}
#define EFUSE_HDR_CONST_MASK GENMASK(23, 20)
#define EFUSE_HDR_PAGE_MASK GENMASK(19, 17)
#define EFUSE_HDR_OFFSET_MASK GENMASK(16, 4)
#define EFUSE_HDR_OFFSET_DAV_MASK GENMASK(11, 4)
#define EFUSE_HDR_WORD_EN_MASK GENMASK(3, 0)
#define invalid_efuse_header_be(hdr1, hdr2, hdr3) \
((hdr1) == 0xff || (hdr2) == 0xff || (hdr3) == 0xff)
#define invalid_efuse_content_be(word_en, i) \
(((word_en) & BIT(i)) != 0x0)
#define get_efuse_blk_idx_be(hdr1, hdr2, hdr3) \
(((hdr1) << 16) | ((hdr2) << 8) | (hdr3))
#define block_idx_to_logical_idx_be(blk_idx, i) \
(((blk_idx) << 3) + ((i) << 1))
#define invalid_efuse_header_dav_be(hdr1, hdr2) \
((hdr1) == 0xff || (hdr2) == 0xff)
#define get_efuse_blk_idx_dav_be(hdr1, hdr2) \
(((hdr1) << 8) | (hdr2))
static int rtw89_eeprom_parser_be(struct rtw89_dev *rtwdev,
const u8 *phy_map, u32 phy_size, u8 *log_map,
const struct rtw89_efuse_block_cfg *efuse_block)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
enum rtw89_efuse_block blk_page, page;
u32 size = efuse_block->size;
u32 phy_idx, log_idx;
u32 hdr, page_offset;
u8 hdr1, hdr2, hdr3;
u8 i, val0, val1;
u32 min, max;
u16 blk_idx;
u8 word_en;
page = u32_get_bits(efuse_block->offset, RTW89_EFUSE_BLOCK_ID_MASK);
page_offset = u32_get_bits(efuse_block->offset, RTW89_EFUSE_BLOCK_SIZE_MASK);
min = ALIGN_DOWN(page_offset, 2);
max = ALIGN(page_offset + size, 2);
memset(log_map, 0xff, size);
phy_idx = chip->sec_ctrl_efuse_size;
do {
if (page == RTW89_EFUSE_BLOCK_ADIE) {
hdr1 = phy_map[phy_idx];
hdr2 = phy_map[phy_idx + 1];
if (invalid_efuse_header_dav_be(hdr1, hdr2))
break;
phy_idx += 2;
hdr = get_efuse_blk_idx_dav_be(hdr1, hdr2);
blk_page = RTW89_EFUSE_BLOCK_ADIE;
blk_idx = u32_get_bits(hdr, EFUSE_HDR_OFFSET_DAV_MASK);
word_en = u32_get_bits(hdr, EFUSE_HDR_WORD_EN_MASK);
} else {
hdr1 = phy_map[phy_idx];
hdr2 = phy_map[phy_idx + 1];
hdr3 = phy_map[phy_idx + 2];
if (invalid_efuse_header_be(hdr1, hdr2, hdr3))
break;
phy_idx += 3;
hdr = get_efuse_blk_idx_be(hdr1, hdr2, hdr3);
blk_page = u32_get_bits(hdr, EFUSE_HDR_PAGE_MASK);
blk_idx = u32_get_bits(hdr, EFUSE_HDR_OFFSET_MASK);
word_en = u32_get_bits(hdr, EFUSE_HDR_WORD_EN_MASK);
}
if (blk_idx >= RTW89_EFUSE_MAX_BLOCK_SIZE >> 3) {
rtw89_err(rtwdev, "[ERR]efuse idx:0x%X\n", phy_idx - 3);
rtw89_err(rtwdev, "[ERR]read hdr:0x%X\n", hdr);
return -EINVAL;
}
for (i = 0; i < 4; i++) {
if (invalid_efuse_content_be(word_en, i))
continue;
if (phy_idx >= phy_size - 1)
return -EINVAL;
log_idx = block_idx_to_logical_idx_be(blk_idx, i);
if (blk_page == page && log_idx >= min && log_idx < max) {
val0 = phy_map[phy_idx];
val1 = phy_map[phy_idx + 1];
if (log_idx == min && page_offset > min) {
log_map[log_idx - page_offset + 1] = val1;
} else if (log_idx + 2 == max &&
page_offset + size < max) {
log_map[log_idx - page_offset] = val0;
} else {
log_map[log_idx - page_offset] = val0;
log_map[log_idx - page_offset + 1] = val1;
}
}
phy_idx += 2;
}
} while (phy_idx < phy_size);
return 0;
}
static int rtw89_parse_logical_efuse_block_be(struct rtw89_dev *rtwdev,
const u8 *phy_map, u32 phy_size,
enum rtw89_efuse_block block)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_efuse_block_cfg *efuse_block;
u8 *log_map;
int ret;
efuse_block = &chip->efuse_blocks[block];
log_map = kmalloc(efuse_block->size, GFP_KERNEL);
if (!log_map)
return -ENOMEM;
ret = rtw89_eeprom_parser_be(rtwdev, phy_map, phy_size, log_map, efuse_block);
if (ret) {
rtw89_warn(rtwdev, "failed to dump efuse logical block %d\n", block);
goto out_free;
}
rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, efuse_block->size);
ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map, block);
if (ret) {
rtw89_warn(rtwdev, "failed to read efuse map\n");
goto out_free;
}
out_free:
kfree(log_map);
return ret;
}
int rtw89_parse_efuse_map_be(struct rtw89_dev *rtwdev)
{
u32 phy_size = rtwdev->chip->physical_efuse_size;
u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size;
enum rtw89_efuse_block block;
u8 *phy_map = NULL;
u8 *dav_phy_map = NULL;
int ret;
if (rtw89_read16(rtwdev, R_BE_SYS_WL_EFUSE_CTRL) & B_BE_AUTOLOAD_SUS)
rtwdev->efuse.valid = true;
else
rtw89_warn(rtwdev, "failed to check efuse autoload\n");
phy_map = kmalloc(phy_size, GFP_KERNEL);
if (dav_phy_size)
dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL);
if (!phy_map || (dav_phy_size && !dav_phy_map)) {
ret = -ENOMEM;
goto out_free;
}
ret = rtw89_dump_physical_efuse_map_be(rtwdev, phy_map, 0, phy_size, false);
if (ret) {
rtw89_warn(rtwdev, "failed to dump efuse physical map\n");
goto out_free;
}
ret = rtw89_dump_physical_efuse_map_be(rtwdev, dav_phy_map, 0, dav_phy_size, true);
if (ret) {
rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n");
goto out_free;
}
if (rtwdev->hci.type == RTW89_HCI_TYPE_USB)
block = RTW89_EFUSE_BLOCK_HCI_DIG_USB;
else
block = RTW89_EFUSE_BLOCK_HCI_DIG_PCIE_SDIO;
ret = rtw89_parse_logical_efuse_block_be(rtwdev, phy_map, phy_size, block);
if (ret) {
rtw89_warn(rtwdev, "failed to parse efuse logic block %d\n",
RTW89_EFUSE_BLOCK_HCI_DIG_PCIE_SDIO);
goto out_free;
}
ret = rtw89_parse_logical_efuse_block_be(rtwdev, phy_map, phy_size,
RTW89_EFUSE_BLOCK_RF);
if (ret) {
rtw89_warn(rtwdev, "failed to parse efuse logic block %d\n",
RTW89_EFUSE_BLOCK_RF);
goto out_free;
}
out_free:
kfree(dav_phy_map);
kfree(phy_map);
return ret;
}
int rtw89_parse_phycap_map_be(struct rtw89_dev *rtwdev)
{
u32 phycap_addr = rtwdev->chip->phycap_addr;
u32 phycap_size = rtwdev->chip->phycap_size;
u8 *phycap_map = NULL;
int ret = 0;
if (!phycap_size)
return 0;
phycap_map = kmalloc(phycap_size, GFP_KERNEL);
if (!phycap_map)
return -ENOMEM;
ret = rtw89_dump_physical_efuse_map_be(rtwdev, phycap_map,
phycap_addr, phycap_size, false);
if (ret) {
rtw89_warn(rtwdev, "failed to dump phycap map\n");
goto out_free;
}
ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map);
if (ret) {
rtw89_warn(rtwdev, "failed to read phycap map\n");
goto out_free;
}
out_free:
kfree(phycap_map);
return ret;
}