| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Driver for Pondicherry2 memory controller. |
| * |
| * Copyright (c) 2016, Intel Corporation. |
| * |
| * [Derived from sb_edac.c] |
| * |
| * Translation of system physical addresses to DIMM addresses |
| * is a two stage process: |
| * |
| * First the Pondicherry 2 memory controller handles slice and channel interleaving |
| * in "sys2pmi()". This is (almost) completley common between platforms. |
| * |
| * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, |
| * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/edac.h> |
| #include <linux/mmzone.h> |
| #include <linux/smp.h> |
| #include <linux/bitmap.h> |
| #include <linux/math64.h> |
| #include <linux/mod_devicetable.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/intel-family.h> |
| #include <asm/processor.h> |
| #include <asm/mce.h> |
| |
| #include "edac_mc.h" |
| #include "edac_module.h" |
| #include "pnd2_edac.h" |
| |
| #define EDAC_MOD_STR "pnd2_edac" |
| |
| #define APL_NUM_CHANNELS 4 |
| #define DNV_NUM_CHANNELS 2 |
| #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */ |
| |
| enum type { |
| APL, |
| DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ |
| }; |
| |
| struct dram_addr { |
| int chan; |
| int dimm; |
| int rank; |
| int bank; |
| int row; |
| int col; |
| }; |
| |
| struct pnd2_pvt { |
| int dimm_geom[APL_NUM_CHANNELS]; |
| u64 tolm, tohm; |
| }; |
| |
| /* |
| * System address space is divided into multiple regions with |
| * different interleave rules in each. The as0/as1 regions |
| * have no interleaving at all. The as2 region is interleaved |
| * between two channels. The mot region is magic and may overlap |
| * other regions, with its interleave rules taking precedence. |
| * Addresses not in any of these regions are interleaved across |
| * all four channels. |
| */ |
| static struct region { |
| u64 base; |
| u64 limit; |
| u8 enabled; |
| } mot, as0, as1, as2; |
| |
| static struct dunit_ops { |
| char *name; |
| enum type type; |
| int pmiaddr_shift; |
| int pmiidx_shift; |
| int channels; |
| int dimms_per_channel; |
| int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); |
| int (*get_registers)(void); |
| int (*check_ecc)(void); |
| void (*mk_region)(char *name, struct region *rp, void *asym); |
| void (*get_dimm_config)(struct mem_ctl_info *mci); |
| int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, |
| struct dram_addr *daddr, char *msg); |
| } *ops; |
| |
| static struct mem_ctl_info *pnd2_mci; |
| |
| #define PND2_MSG_SIZE 256 |
| |
| /* Debug macros */ |
| #define pnd2_printk(level, fmt, arg...) \ |
| edac_printk(level, "pnd2", fmt, ##arg) |
| |
| #define pnd2_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) |
| |
| #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 |
| #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 |
| #define SELECTOR_DISABLED (-1) |
| #define _4GB (1ul << 32) |
| |
| #define PMI_ADDRESS_WIDTH 31 |
| #define PND_MAX_PHYS_BIT 39 |
| |
| #define APL_ASYMSHIFT 28 |
| #define DNV_ASYMSHIFT 31 |
| #define CH_HASH_MASK_LSB 6 |
| #define SLICE_HASH_MASK_LSB 6 |
| #define MOT_SLC_INTLV_BIT 12 |
| #define LOG2_PMI_ADDR_GRANULARITY 5 |
| #define MOT_SHIFT 24 |
| |
| #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo)) |
| #define U64_LSHIFT(val, s) ((u64)(val) << (s)) |
| |
| /* |
| * On Apollo Lake we access memory controller registers via a |
| * side-band mailbox style interface in a hidden PCI device |
| * configuration space. |
| */ |
| static struct pci_bus *p2sb_bus; |
| #define P2SB_DEVFN PCI_DEVFN(0xd, 0) |
| #define P2SB_ADDR_OFF 0xd0 |
| #define P2SB_DATA_OFF 0xd4 |
| #define P2SB_STAT_OFF 0xd8 |
| #define P2SB_ROUT_OFF 0xda |
| #define P2SB_EADD_OFF 0xdc |
| #define P2SB_HIDE_OFF 0xe1 |
| |
| #define P2SB_BUSY 1 |
| |
| #define P2SB_READ(size, off, ptr) \ |
| pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) |
| #define P2SB_WRITE(size, off, val) \ |
| pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) |
| |
| static bool p2sb_is_busy(u16 *status) |
| { |
| P2SB_READ(word, P2SB_STAT_OFF, status); |
| |
| return !!(*status & P2SB_BUSY); |
| } |
| |
| static int _apl_rd_reg(int port, int off, int op, u32 *data) |
| { |
| int retries = 0xff, ret; |
| u16 status; |
| u8 hidden; |
| |
| /* Unhide the P2SB device, if it's hidden */ |
| P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); |
| if (hidden) |
| P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); |
| |
| if (p2sb_is_busy(&status)) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); |
| P2SB_WRITE(dword, P2SB_DATA_OFF, 0); |
| P2SB_WRITE(dword, P2SB_EADD_OFF, 0); |
| P2SB_WRITE(word, P2SB_ROUT_OFF, 0); |
| P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); |
| |
| while (p2sb_is_busy(&status)) { |
| if (retries-- == 0) { |
| ret = -EBUSY; |
| goto out; |
| } |
| } |
| |
| P2SB_READ(dword, P2SB_DATA_OFF, data); |
| ret = (status >> 1) & 0x3; |
| out: |
| /* Hide the P2SB device, if it was hidden before */ |
| if (hidden) |
| P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); |
| |
| return ret; |
| } |
| |
| static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) |
| { |
| int ret = 0; |
| |
| edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); |
| switch (sz) { |
| case 8: |
| ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); |
| /* fall through */ |
| case 4: |
| ret |= _apl_rd_reg(port, off, op, (u32 *)data); |
| pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, |
| sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static u64 get_mem_ctrl_hub_base_addr(void) |
| { |
| struct b_cr_mchbar_lo_pci lo; |
| struct b_cr_mchbar_hi_pci hi; |
| struct pci_dev *pdev; |
| |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); |
| if (pdev) { |
| pci_read_config_dword(pdev, 0x48, (u32 *)&lo); |
| pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); |
| pci_dev_put(pdev); |
| } else { |
| return 0; |
| } |
| |
| if (!lo.enable) { |
| edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); |
| return 0; |
| } |
| |
| return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); |
| } |
| |
| static u64 get_sideband_reg_base_addr(void) |
| { |
| struct pci_dev *pdev; |
| u32 hi, lo; |
| u8 hidden; |
| |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL); |
| if (pdev) { |
| /* Unhide the P2SB device, if it's hidden */ |
| pci_read_config_byte(pdev, 0xe1, &hidden); |
| if (hidden) |
| pci_write_config_byte(pdev, 0xe1, 0); |
| |
| pci_read_config_dword(pdev, 0x10, &lo); |
| pci_read_config_dword(pdev, 0x14, &hi); |
| lo &= 0xfffffff0; |
| |
| /* Hide the P2SB device, if it was hidden before */ |
| if (hidden) |
| pci_write_config_byte(pdev, 0xe1, hidden); |
| |
| pci_dev_put(pdev); |
| return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0)); |
| } else { |
| return 0xfd000000; |
| } |
| } |
| |
| static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) |
| { |
| struct pci_dev *pdev; |
| char *base; |
| u64 addr; |
| |
| if (op == 4) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); |
| if (!pdev) |
| return -ENODEV; |
| |
| pci_read_config_dword(pdev, off, data); |
| pci_dev_put(pdev); |
| } else { |
| /* MMIO via memory controller hub base address */ |
| if (op == 0 && port == 0x4c) { |
| addr = get_mem_ctrl_hub_base_addr(); |
| if (!addr) |
| return -ENODEV; |
| } else { |
| /* MMIO via sideband register base address */ |
| addr = get_sideband_reg_base_addr(); |
| if (!addr) |
| return -ENODEV; |
| addr += (port << 16); |
| } |
| |
| base = ioremap((resource_size_t)addr, 0x10000); |
| if (!base) |
| return -ENODEV; |
| |
| if (sz == 8) |
| *(u32 *)(data + 4) = *(u32 *)(base + off + 4); |
| *(u32 *)data = *(u32 *)(base + off); |
| |
| iounmap(base); |
| } |
| |
| edac_dbg(2, "Read %s=%.8x_%.8x\n", name, |
| (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); |
| |
| return 0; |
| } |
| |
| #define RD_REGP(regp, regname, port) \ |
| ops->rd_reg(port, \ |
| regname##_offset, \ |
| regname##_r_opcode, \ |
| regp, sizeof(struct regname), \ |
| #regname) |
| |
| #define RD_REG(regp, regname) \ |
| ops->rd_reg(regname ## _port, \ |
| regname##_offset, \ |
| regname##_r_opcode, \ |
| regp, sizeof(struct regname), \ |
| #regname) |
| |
| static u64 top_lm, top_hm; |
| static bool two_slices; |
| static bool two_channels; /* Both PMI channels in one slice enabled */ |
| |
| static u8 sym_chan_mask; |
| static u8 asym_chan_mask; |
| static u8 chan_mask; |
| |
| static int slice_selector = -1; |
| static int chan_selector = -1; |
| static u64 slice_hash_mask; |
| static u64 chan_hash_mask; |
| |
| static void mk_region(char *name, struct region *rp, u64 base, u64 limit) |
| { |
| rp->enabled = 1; |
| rp->base = base; |
| rp->limit = limit; |
| edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); |
| } |
| |
| static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) |
| { |
| if (mask == 0) { |
| pr_info(FW_BUG "MOT mask cannot be zero\n"); |
| return; |
| } |
| if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { |
| pr_info(FW_BUG "MOT mask not power of two\n"); |
| return; |
| } |
| if (base & ~mask) { |
| pr_info(FW_BUG "MOT region base/mask alignment error\n"); |
| return; |
| } |
| rp->base = base; |
| rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); |
| rp->enabled = 1; |
| edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); |
| } |
| |
| static bool in_region(struct region *rp, u64 addr) |
| { |
| if (!rp->enabled) |
| return false; |
| |
| return rp->base <= addr && addr <= rp->limit; |
| } |
| |
| static int gen_sym_mask(struct b_cr_slice_channel_hash *p) |
| { |
| int mask = 0; |
| |
| if (!p->slice_0_mem_disabled) |
| mask |= p->sym_slice0_channel_enabled; |
| |
| if (!p->slice_1_disabled) |
| mask |= p->sym_slice1_channel_enabled << 2; |
| |
| if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) |
| mask &= 0x5; |
| |
| return mask; |
| } |
| |
| static int gen_asym_mask(struct b_cr_slice_channel_hash *p, |
| struct b_cr_asym_mem_region0_mchbar *as0, |
| struct b_cr_asym_mem_region1_mchbar *as1, |
| struct b_cr_asym_2way_mem_region_mchbar *as2way) |
| { |
| const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; |
| int mask = 0; |
| |
| if (as2way->asym_2way_interleave_enable) |
| mask = intlv[as2way->asym_2way_intlv_mode]; |
| if (as0->slice0_asym_enable) |
| mask |= (1 << as0->slice0_asym_channel_select); |
| if (as1->slice1_asym_enable) |
| mask |= (4 << as1->slice1_asym_channel_select); |
| if (p->slice_0_mem_disabled) |
| mask &= 0xc; |
| if (p->slice_1_disabled) |
| mask &= 0x3; |
| if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) |
| mask &= 0x5; |
| |
| return mask; |
| } |
| |
| static struct b_cr_tolud_pci tolud; |
| static struct b_cr_touud_lo_pci touud_lo; |
| static struct b_cr_touud_hi_pci touud_hi; |
| static struct b_cr_asym_mem_region0_mchbar asym0; |
| static struct b_cr_asym_mem_region1_mchbar asym1; |
| static struct b_cr_asym_2way_mem_region_mchbar asym_2way; |
| static struct b_cr_mot_out_base_mchbar mot_base; |
| static struct b_cr_mot_out_mask_mchbar mot_mask; |
| static struct b_cr_slice_channel_hash chash; |
| |
| /* Apollo Lake dunit */ |
| /* |
| * Validated on board with just two DIMMs in the [0] and [2] positions |
| * in this array. Other port number matches documentation, but caution |
| * advised. |
| */ |
| static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; |
| static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; |
| |
| /* Denverton dunit */ |
| static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; |
| static struct d_cr_dsch dsch; |
| static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; |
| static struct d_cr_drp drp[DNV_NUM_CHANNELS]; |
| static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; |
| static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; |
| static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; |
| static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; |
| static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; |
| static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; |
| |
| static void apl_mk_region(char *name, struct region *rp, void *asym) |
| { |
| struct b_cr_asym_mem_region0_mchbar *a = asym; |
| |
| mk_region(name, rp, |
| U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), |
| U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + |
| GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); |
| } |
| |
| static void dnv_mk_region(char *name, struct region *rp, void *asym) |
| { |
| struct b_cr_asym_mem_region_denverton *a = asym; |
| |
| mk_region(name, rp, |
| U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), |
| U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + |
| GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); |
| } |
| |
| static int apl_get_registers(void) |
| { |
| int ret = -ENODEV; |
| int i; |
| |
| if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) |
| return -ENODEV; |
| |
| /* |
| * RD_REGP() will fail for unpopulated or non-existent |
| * DIMM slots. Return success if we find at least one DIMM. |
| */ |
| for (i = 0; i < APL_NUM_CHANNELS; i++) |
| if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| static int dnv_get_registers(void) |
| { |
| int i; |
| |
| if (RD_REG(&dsch, d_cr_dsch)) |
| return -ENODEV; |
| |
| for (i = 0; i < DNV_NUM_CHANNELS; i++) |
| if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || |
| RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || |
| RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || |
| RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || |
| RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || |
| RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || |
| RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || |
| RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| /* |
| * Read all the h/w config registers once here (they don't |
| * change at run time. Figure out which address ranges have |
| * which interleave characteristics. |
| */ |
| static int get_registers(void) |
| { |
| const int intlv[] = { 10, 11, 12, 12 }; |
| |
| if (RD_REG(&tolud, b_cr_tolud_pci) || |
| RD_REG(&touud_lo, b_cr_touud_lo_pci) || |
| RD_REG(&touud_hi, b_cr_touud_hi_pci) || |
| RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || |
| RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || |
| RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || |
| RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || |
| RD_REG(&chash, b_cr_slice_channel_hash)) |
| return -ENODEV; |
| |
| if (ops->get_registers()) |
| return -ENODEV; |
| |
| if (ops->type == DNV) { |
| /* PMI channel idx (always 0) for asymmetric region */ |
| asym0.slice0_asym_channel_select = 0; |
| asym1.slice1_asym_channel_select = 0; |
| /* PMI channel bitmap (always 1) for symmetric region */ |
| chash.sym_slice0_channel_enabled = 0x1; |
| chash.sym_slice1_channel_enabled = 0x1; |
| } |
| |
| if (asym0.slice0_asym_enable) |
| ops->mk_region("as0", &as0, &asym0); |
| |
| if (asym1.slice1_asym_enable) |
| ops->mk_region("as1", &as1, &asym1); |
| |
| if (asym_2way.asym_2way_interleave_enable) { |
| mk_region("as2way", &as2, |
| U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), |
| U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + |
| GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); |
| } |
| |
| if (mot_base.imr_en) { |
| mk_region_mask("mot", &mot, |
| U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), |
| U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); |
| } |
| |
| top_lm = U64_LSHIFT(tolud.tolud, 20); |
| top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); |
| |
| two_slices = !chash.slice_1_disabled && |
| !chash.slice_0_mem_disabled && |
| (chash.sym_slice0_channel_enabled != 0) && |
| (chash.sym_slice1_channel_enabled != 0); |
| two_channels = !chash.ch_1_disabled && |
| !chash.enable_pmi_dual_data_mode && |
| ((chash.sym_slice0_channel_enabled == 3) || |
| (chash.sym_slice1_channel_enabled == 3)); |
| |
| sym_chan_mask = gen_sym_mask(&chash); |
| asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); |
| chan_mask = sym_chan_mask | asym_chan_mask; |
| |
| if (two_slices && !two_channels) { |
| if (chash.hvm_mode) |
| slice_selector = 29; |
| else |
| slice_selector = intlv[chash.interleave_mode]; |
| } else if (!two_slices && two_channels) { |
| if (chash.hvm_mode) |
| chan_selector = 29; |
| else |
| chan_selector = intlv[chash.interleave_mode]; |
| } else if (two_slices && two_channels) { |
| if (chash.hvm_mode) { |
| slice_selector = 29; |
| chan_selector = 30; |
| } else { |
| slice_selector = intlv[chash.interleave_mode]; |
| chan_selector = intlv[chash.interleave_mode] + 1; |
| } |
| } |
| |
| if (two_slices) { |
| if (!chash.hvm_mode) |
| slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; |
| if (!two_channels) |
| slice_hash_mask |= BIT_ULL(slice_selector); |
| } |
| |
| if (two_channels) { |
| if (!chash.hvm_mode) |
| chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; |
| if (!two_slices) |
| chan_hash_mask |= BIT_ULL(chan_selector); |
| } |
| |
| return 0; |
| } |
| |
| /* Get a contiguous memory address (remove the MMIO gap) */ |
| static u64 remove_mmio_gap(u64 sys) |
| { |
| return (sys < _4GB) ? sys : sys - (_4GB - top_lm); |
| } |
| |
| /* Squeeze out one address bit, shift upper part down to fill gap */ |
| static void remove_addr_bit(u64 *addr, int bitidx) |
| { |
| u64 mask; |
| |
| if (bitidx == -1) |
| return; |
| |
| mask = (1ull << bitidx) - 1; |
| *addr = ((*addr >> 1) & ~mask) | (*addr & mask); |
| } |
| |
| /* XOR all the bits from addr specified in mask */ |
| static int hash_by_mask(u64 addr, u64 mask) |
| { |
| u64 result = addr & mask; |
| |
| result = (result >> 32) ^ result; |
| result = (result >> 16) ^ result; |
| result = (result >> 8) ^ result; |
| result = (result >> 4) ^ result; |
| result = (result >> 2) ^ result; |
| result = (result >> 1) ^ result; |
| |
| return (int)result & 1; |
| } |
| |
| /* |
| * First stage decode. Take the system address and figure out which |
| * second stage will deal with it based on interleave modes. |
| */ |
| static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) |
| { |
| u64 contig_addr, contig_base, contig_offset, contig_base_adj; |
| int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : |
| MOT_CHAN_INTLV_BIT_1SLC_2CH; |
| int slice_intlv_bit_rm = SELECTOR_DISABLED; |
| int chan_intlv_bit_rm = SELECTOR_DISABLED; |
| /* Determine if address is in the MOT region. */ |
| bool mot_hit = in_region(&mot, addr); |
| /* Calculate the number of symmetric regions enabled. */ |
| int sym_channels = hweight8(sym_chan_mask); |
| |
| /* |
| * The amount we need to shift the asym base can be determined by the |
| * number of enabled symmetric channels. |
| * NOTE: This can only work because symmetric memory is not supposed |
| * to do a 3-way interleave. |
| */ |
| int sym_chan_shift = sym_channels >> 1; |
| |
| /* Give up if address is out of range, or in MMIO gap */ |
| if (addr >= (1ul << PND_MAX_PHYS_BIT) || |
| (addr >= top_lm && addr < _4GB) || addr >= top_hm) { |
| snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); |
| return -EINVAL; |
| } |
| |
| /* Get a contiguous memory address (remove the MMIO gap) */ |
| contig_addr = remove_mmio_gap(addr); |
| |
| if (in_region(&as0, addr)) { |
| *pmiidx = asym0.slice0_asym_channel_select; |
| |
| contig_base = remove_mmio_gap(as0.base); |
| contig_offset = contig_addr - contig_base; |
| contig_base_adj = (contig_base >> sym_chan_shift) * |
| ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); |
| contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); |
| } else if (in_region(&as1, addr)) { |
| *pmiidx = 2u + asym1.slice1_asym_channel_select; |
| |
| contig_base = remove_mmio_gap(as1.base); |
| contig_offset = contig_addr - contig_base; |
| contig_base_adj = (contig_base >> sym_chan_shift) * |
| ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); |
| contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); |
| } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { |
| bool channel1; |
| |
| mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; |
| *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; |
| channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : |
| hash_by_mask(contig_addr, chan_hash_mask); |
| *pmiidx |= (u32)channel1; |
| |
| contig_base = remove_mmio_gap(as2.base); |
| chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; |
| contig_offset = contig_addr - contig_base; |
| remove_addr_bit(&contig_offset, chan_intlv_bit_rm); |
| contig_addr = (contig_base >> sym_chan_shift) + contig_offset; |
| } else { |
| /* Otherwise we're in normal, boring symmetric mode. */ |
| *pmiidx = 0u; |
| |
| if (two_slices) { |
| bool slice1; |
| |
| if (mot_hit) { |
| slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; |
| slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; |
| } else { |
| slice_intlv_bit_rm = slice_selector; |
| slice1 = hash_by_mask(addr, slice_hash_mask); |
| } |
| |
| *pmiidx = (u32)slice1 << 1; |
| } |
| |
| if (two_channels) { |
| bool channel1; |
| |
| mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : |
| MOT_CHAN_INTLV_BIT_1SLC_2CH; |
| |
| if (mot_hit) { |
| chan_intlv_bit_rm = mot_intlv_bit; |
| channel1 = (addr >> mot_intlv_bit) & 1; |
| } else { |
| chan_intlv_bit_rm = chan_selector; |
| channel1 = hash_by_mask(contig_addr, chan_hash_mask); |
| } |
| |
| *pmiidx |= (u32)channel1; |
| } |
| } |
| |
| /* Remove the chan_selector bit first */ |
| remove_addr_bit(&contig_addr, chan_intlv_bit_rm); |
| /* Remove the slice bit (we remove it second because it must be lower */ |
| remove_addr_bit(&contig_addr, slice_intlv_bit_rm); |
| *pmiaddr = contig_addr; |
| |
| return 0; |
| } |
| |
| /* Translate PMI address to memory (rank, row, bank, column) */ |
| #define C(n) (0x10 | (n)) /* column */ |
| #define B(n) (0x20 | (n)) /* bank */ |
| #define R(n) (0x40 | (n)) /* row */ |
| #define RS (0x80) /* rank */ |
| |
| /* addrdec values */ |
| #define AMAP_1KB 0 |
| #define AMAP_2KB 1 |
| #define AMAP_4KB 2 |
| #define AMAP_RSVD 3 |
| |
| /* dden values */ |
| #define DEN_4Gb 0 |
| #define DEN_8Gb 2 |
| |
| /* dwid values */ |
| #define X8 0 |
| #define X16 1 |
| |
| static struct dimm_geometry { |
| u8 addrdec; |
| u8 dden; |
| u8 dwid; |
| u8 rowbits, colbits; |
| u16 bits[PMI_ADDRESS_WIDTH]; |
| } dimms[] = { |
| { |
| .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, |
| .rowbits = 15, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), |
| R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), |
| R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| 0, 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, |
| .rowbits = 16, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), |
| R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), |
| R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| R(15), 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, |
| .rowbits = 16, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), |
| R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), |
| R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| R(15), 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, |
| .rowbits = 16, .colbits = 11, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), |
| R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), |
| R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13), |
| R(14), R(15), 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, |
| .rowbits = 15, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), |
| R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), |
| R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| 0, 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, |
| .rowbits = 16, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), |
| R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), |
| R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| R(15), 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, |
| .rowbits = 16, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), |
| R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), |
| R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), |
| R(15), 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, |
| .rowbits = 16, .colbits = 11, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), |
| R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), |
| R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13), |
| R(14), R(15), 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, |
| .rowbits = 15, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), |
| B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), |
| R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), |
| 0, 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, |
| .rowbits = 16, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), |
| B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), |
| R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), |
| R(15), 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, |
| .rowbits = 16, .colbits = 10, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), |
| B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), |
| R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), |
| R(15), 0, 0, 0 |
| } |
| }, |
| { |
| .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, |
| .rowbits = 16, .colbits = 11, |
| .bits = { |
| C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), |
| B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), |
| R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13), |
| R(14), R(15), 0, 0 |
| } |
| } |
| }; |
| |
| static int bank_hash(u64 pmiaddr, int idx, int shft) |
| { |
| int bhash = 0; |
| |
| switch (idx) { |
| case 0: |
| bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; |
| break; |
| case 1: |
| bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; |
| bhash ^= ((pmiaddr >> 22) & 1) << 1; |
| break; |
| case 2: |
| bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; |
| break; |
| } |
| |
| return bhash; |
| } |
| |
| static int rank_hash(u64 pmiaddr) |
| { |
| return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; |
| } |
| |
| /* Second stage decode. Compute rank, bank, row & column. */ |
| static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, |
| struct dram_addr *daddr, char *msg) |
| { |
| struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; |
| struct pnd2_pvt *pvt = mci->pvt_info; |
| int g = pvt->dimm_geom[pmiidx]; |
| struct dimm_geometry *d = &dimms[g]; |
| int column = 0, bank = 0, row = 0, rank = 0; |
| int i, idx, type, skiprs = 0; |
| |
| for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { |
| int bit = (pmiaddr >> i) & 1; |
| |
| if (i + skiprs >= PMI_ADDRESS_WIDTH) { |
| snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); |
| return -EINVAL; |
| } |
| |
| type = d->bits[i + skiprs] & ~0xf; |
| idx = d->bits[i + skiprs] & 0xf; |
| |
| /* |
| * On single rank DIMMs ignore the rank select bit |
| * and shift remainder of "bits[]" down one place. |
| */ |
| if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { |
| skiprs = 1; |
| type = d->bits[i + skiprs] & ~0xf; |
| idx = d->bits[i + skiprs] & 0xf; |
| } |
| |
| switch (type) { |
| case C(0): |
| column |= (bit << idx); |
| break; |
| case B(0): |
| bank |= (bit << idx); |
| if (cr_drp0->bahen) |
| bank ^= bank_hash(pmiaddr, idx, d->addrdec); |
| break; |
| case R(0): |
| row |= (bit << idx); |
| break; |
| case RS: |
| rank = bit; |
| if (cr_drp0->rsien) |
| rank ^= rank_hash(pmiaddr); |
| break; |
| default: |
| if (bit) { |
| snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); |
| return -EINVAL; |
| } |
| goto done; |
| } |
| } |
| |
| done: |
| daddr->col = column; |
| daddr->bank = bank; |
| daddr->row = row; |
| daddr->rank = rank; |
| daddr->dimm = 0; |
| |
| return 0; |
| } |
| |
| /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ |
| #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) |
| |
| static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, |
| struct dram_addr *daddr, char *msg) |
| { |
| /* Rank 0 or 1 */ |
| daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); |
| /* Rank 2 or 3 */ |
| daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); |
| |
| /* |
| * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we |
| * flip them if DIMM1 is larger than DIMM0. |
| */ |
| daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; |
| |
| daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); |
| daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); |
| daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); |
| if (dsch.ddr4en) |
| daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); |
| if (dmap1[pmiidx].bxor) { |
| if (dsch.ddr4en) { |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); |
| if (dsch.chan_width == 0) |
| /* 64/72 bit dram channel width */ |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); |
| else |
| /* 32/40 bit dram channel width */ |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); |
| } else { |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); |
| if (dsch.chan_width == 0) |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); |
| else |
| daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); |
| } |
| } |
| |
| daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); |
| daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); |
| if (dmap4[pmiidx].row14 != 31) |
| daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); |
| if (dmap4[pmiidx].row15 != 31) |
| daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); |
| if (dmap4[pmiidx].row16 != 31) |
| daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); |
| if (dmap4[pmiidx].row17 != 31) |
| daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); |
| |
| daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); |
| daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); |
| daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); |
| daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); |
| daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); |
| daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); |
| daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); |
| if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) |
| daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); |
| |
| return 0; |
| } |
| |
| static int check_channel(int ch) |
| { |
| if (drp0[ch].dramtype != 0) { |
| pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); |
| return 1; |
| } else if (drp0[ch].eccen == 0) { |
| pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int apl_check_ecc_active(void) |
| { |
| int i, ret = 0; |
| |
| /* Check dramtype and ECC mode for each present DIMM */ |
| for (i = 0; i < APL_NUM_CHANNELS; i++) |
| if (chan_mask & BIT(i)) |
| ret += check_channel(i); |
| return ret ? -EINVAL : 0; |
| } |
| |
| #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) |
| |
| static int check_unit(int ch) |
| { |
| struct d_cr_drp *d = &drp[ch]; |
| |
| if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { |
| pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int dnv_check_ecc_active(void) |
| { |
| int i, ret = 0; |
| |
| for (i = 0; i < DNV_NUM_CHANNELS; i++) |
| ret += check_unit(i); |
| return ret ? -EINVAL : 0; |
| } |
| |
| static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, |
| struct dram_addr *daddr, char *msg) |
| { |
| u64 pmiaddr; |
| u32 pmiidx; |
| int ret; |
| |
| ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); |
| if (ret) |
| return ret; |
| |
| pmiaddr >>= ops->pmiaddr_shift; |
| /* pmi channel idx to dimm channel idx */ |
| pmiidx >>= ops->pmiidx_shift; |
| daddr->chan = pmiidx; |
| |
| ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); |
| if (ret) |
| return ret; |
| |
| edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", |
| addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); |
| |
| return 0; |
| } |
| |
| static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, |
| struct dram_addr *daddr) |
| { |
| enum hw_event_mc_err_type tp_event; |
| char *optype, msg[PND2_MSG_SIZE]; |
| bool ripv = m->mcgstatus & MCG_STATUS_RIPV; |
| bool overflow = m->status & MCI_STATUS_OVER; |
| bool uc_err = m->status & MCI_STATUS_UC; |
| bool recov = m->status & MCI_STATUS_S; |
| u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); |
| u32 mscod = GET_BITFIELD(m->status, 16, 31); |
| u32 errcode = GET_BITFIELD(m->status, 0, 15); |
| u32 optypenum = GET_BITFIELD(m->status, 4, 6); |
| int rc; |
| |
| tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) : |
| HW_EVENT_ERR_CORRECTED; |
| |
| /* |
| * According with Table 15-9 of the Intel Architecture spec vol 3A, |
| * memory errors should fit in this mask: |
| * 000f 0000 1mmm cccc (binary) |
| * where: |
| * f = Correction Report Filtering Bit. If 1, subsequent errors |
| * won't be shown |
| * mmm = error type |
| * cccc = channel |
| * If the mask doesn't match, report an error to the parsing logic |
| */ |
| if (!((errcode & 0xef80) == 0x80)) { |
| optype = "Can't parse: it is not a mem"; |
| } else { |
| switch (optypenum) { |
| case 0: |
| optype = "generic undef request error"; |
| break; |
| case 1: |
| optype = "memory read error"; |
| break; |
| case 2: |
| optype = "memory write error"; |
| break; |
| case 3: |
| optype = "addr/cmd error"; |
| break; |
| case 4: |
| optype = "memory scrubbing error"; |
| break; |
| default: |
| optype = "reserved"; |
| break; |
| } |
| } |
| |
| /* Only decode errors with an valid address (ADDRV) */ |
| if (!(m->status & MCI_STATUS_ADDRV)) |
| return; |
| |
| rc = get_memory_error_data(mci, m->addr, daddr, msg); |
| if (rc) |
| goto address_error; |
| |
| snprintf(msg, sizeof(msg), |
| "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", |
| overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, |
| errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); |
| |
| edac_dbg(0, "%s\n", msg); |
| |
| /* Call the helper to output message */ |
| edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, |
| m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); |
| |
| return; |
| |
| address_error: |
| edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); |
| } |
| |
| static void apl_get_dimm_config(struct mem_ctl_info *mci) |
| { |
| struct pnd2_pvt *pvt = mci->pvt_info; |
| struct dimm_info *dimm; |
| struct d_cr_drp0 *d; |
| u64 capacity; |
| int i, g; |
| |
| for (i = 0; i < APL_NUM_CHANNELS; i++) { |
| if (!(chan_mask & BIT(i))) |
| continue; |
| |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0); |
| if (!dimm) { |
| edac_dbg(0, "No allocated DIMM for channel %d\n", i); |
| continue; |
| } |
| |
| d = &drp0[i]; |
| for (g = 0; g < ARRAY_SIZE(dimms); g++) |
| if (dimms[g].addrdec == d->addrdec && |
| dimms[g].dden == d->dden && |
| dimms[g].dwid == d->dwid) |
| break; |
| |
| if (g == ARRAY_SIZE(dimms)) { |
| edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); |
| continue; |
| } |
| |
| pvt->dimm_geom[i] = g; |
| capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) * |
| (1ul << dimms[g].colbits); |
| edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); |
| dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); |
| dimm->grain = 32; |
| dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; |
| dimm->mtype = MEM_DDR3; |
| dimm->edac_mode = EDAC_SECDED; |
| snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); |
| } |
| } |
| |
| static const int dnv_dtypes[] = { |
| DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN |
| }; |
| |
| static void dnv_get_dimm_config(struct mem_ctl_info *mci) |
| { |
| int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; |
| struct dimm_info *dimm; |
| struct d_cr_drp *d; |
| u64 capacity; |
| |
| if (dsch.ddr4en) { |
| memtype = MEM_DDR4; |
| banks = 16; |
| colbits = 10; |
| } else { |
| memtype = MEM_DDR3; |
| banks = 8; |
| } |
| |
| for (i = 0; i < DNV_NUM_CHANNELS; i++) { |
| if (dmap4[i].row14 == 31) |
| rowbits = 14; |
| else if (dmap4[i].row15 == 31) |
| rowbits = 15; |
| else if (dmap4[i].row16 == 31) |
| rowbits = 16; |
| else if (dmap4[i].row17 == 31) |
| rowbits = 17; |
| else |
| rowbits = 18; |
| |
| if (memtype == MEM_DDR3) { |
| if (dmap1[i].ca11 != 0x3f) |
| colbits = 12; |
| else |
| colbits = 10; |
| } |
| |
| d = &drp[i]; |
| /* DIMM0 is present if rank0 and/or rank1 is enabled */ |
| ranks_of_dimm[0] = d->rken0 + d->rken1; |
| /* DIMM1 is present if rank2 and/or rank3 is enabled */ |
| ranks_of_dimm[1] = d->rken2 + d->rken3; |
| |
| for (j = 0; j < DNV_MAX_DIMMS; j++) { |
| if (!ranks_of_dimm[j]) |
| continue; |
| |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); |
| if (!dimm) { |
| edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); |
| continue; |
| } |
| |
| capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits); |
| edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); |
| dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); |
| dimm->grain = 32; |
| dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; |
| dimm->mtype = memtype; |
| dimm->edac_mode = EDAC_SECDED; |
| snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); |
| } |
| } |
| } |
| |
| static int pnd2_register_mci(struct mem_ctl_info **ppmci) |
| { |
| struct edac_mc_layer layers[2]; |
| struct mem_ctl_info *mci; |
| struct pnd2_pvt *pvt; |
| int rc; |
| |
| rc = ops->check_ecc(); |
| if (rc < 0) |
| return rc; |
| |
| /* Allocate a new MC control structure */ |
| layers[0].type = EDAC_MC_LAYER_CHANNEL; |
| layers[0].size = ops->channels; |
| layers[0].is_virt_csrow = false; |
| layers[1].type = EDAC_MC_LAYER_SLOT; |
| layers[1].size = ops->dimms_per_channel; |
| layers[1].is_virt_csrow = true; |
| mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); |
| if (!mci) |
| return -ENOMEM; |
| |
| pvt = mci->pvt_info; |
| memset(pvt, 0, sizeof(*pvt)); |
| |
| mci->mod_name = EDAC_MOD_STR; |
| mci->dev_name = ops->name; |
| mci->ctl_name = "Pondicherry2"; |
| |
| /* Get dimm basic config and the memory layout */ |
| ops->get_dimm_config(mci); |
| |
| if (edac_mc_add_mc(mci)) { |
| edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| edac_mc_free(mci); |
| return -EINVAL; |
| } |
| |
| *ppmci = mci; |
| |
| return 0; |
| } |
| |
| static void pnd2_unregister_mci(struct mem_ctl_info *mci) |
| { |
| if (unlikely(!mci || !mci->pvt_info)) { |
| pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); |
| return; |
| } |
| |
| /* Remove MC sysfs nodes */ |
| edac_mc_del_mc(NULL); |
| edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
| edac_mc_free(mci); |
| } |
| |
| /* |
| * Callback function registered with core kernel mce code. |
| * Called once for each logged error. |
| */ |
| static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) |
| { |
| struct mce *mce = (struct mce *)data; |
| struct mem_ctl_info *mci; |
| struct dram_addr daddr; |
| char *type; |
| |
| if (edac_get_report_status() == EDAC_REPORTING_DISABLED) |
| return NOTIFY_DONE; |
| |
| mci = pnd2_mci; |
| if (!mci) |
| return NOTIFY_DONE; |
| |
| /* |
| * Just let mcelog handle it if the error is |
| * outside the memory controller. A memory error |
| * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. |
| * bit 12 has an special meaning. |
| */ |
| if ((mce->status & 0xefff) >> 7 != 1) |
| return NOTIFY_DONE; |
| |
| if (mce->mcgstatus & MCG_STATUS_MCIP) |
| type = "Exception"; |
| else |
| type = "Event"; |
| |
| pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); |
| pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", |
| mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); |
| pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); |
| pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); |
| pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); |
| pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", |
| mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); |
| |
| pnd2_mce_output_error(mci, mce, &daddr); |
| |
| /* Advice mcelog that the error were handled */ |
| return NOTIFY_STOP; |
| } |
| |
| static struct notifier_block pnd2_mce_dec = { |
| .notifier_call = pnd2_mce_check_error, |
| }; |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| /* |
| * Write an address to this file to exercise the address decode |
| * logic in this driver. |
| */ |
| static u64 pnd2_fake_addr; |
| #define PND2_BLOB_SIZE 1024 |
| static char pnd2_result[PND2_BLOB_SIZE]; |
| static struct dentry *pnd2_test; |
| static struct debugfs_blob_wrapper pnd2_blob = { |
| .data = pnd2_result, |
| .size = 0 |
| }; |
| |
| static int debugfs_u64_set(void *data, u64 val) |
| { |
| struct dram_addr daddr; |
| struct mce m; |
| |
| *(u64 *)data = val; |
| m.mcgstatus = 0; |
| /* ADDRV + MemRd + Unknown channel */ |
| m.status = MCI_STATUS_ADDRV + 0x9f; |
| m.addr = val; |
| pnd2_mce_output_error(pnd2_mci, &m, &daddr); |
| snprintf(pnd2_blob.data, PND2_BLOB_SIZE, |
| "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", |
| m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); |
| pnd2_blob.size = strlen(pnd2_blob.data); |
| |
| return 0; |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); |
| |
| static void setup_pnd2_debug(void) |
| { |
| pnd2_test = edac_debugfs_create_dir("pnd2_test"); |
| edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, |
| &pnd2_fake_addr, &fops_u64_wo); |
| debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); |
| } |
| |
| static void teardown_pnd2_debug(void) |
| { |
| debugfs_remove_recursive(pnd2_test); |
| } |
| #else |
| static void setup_pnd2_debug(void) {} |
| static void teardown_pnd2_debug(void) {} |
| #endif /* CONFIG_EDAC_DEBUG */ |
| |
| |
| static int pnd2_probe(void) |
| { |
| int rc; |
| |
| edac_dbg(2, "\n"); |
| rc = get_registers(); |
| if (rc) |
| return rc; |
| |
| return pnd2_register_mci(&pnd2_mci); |
| } |
| |
| static void pnd2_remove(void) |
| { |
| edac_dbg(0, "\n"); |
| pnd2_unregister_mci(pnd2_mci); |
| } |
| |
| static struct dunit_ops apl_ops = { |
| .name = "pnd2/apl", |
| .type = APL, |
| .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY, |
| .pmiidx_shift = 0, |
| .channels = APL_NUM_CHANNELS, |
| .dimms_per_channel = 1, |
| .rd_reg = apl_rd_reg, |
| .get_registers = apl_get_registers, |
| .check_ecc = apl_check_ecc_active, |
| .mk_region = apl_mk_region, |
| .get_dimm_config = apl_get_dimm_config, |
| .pmi2mem = apl_pmi2mem, |
| }; |
| |
| static struct dunit_ops dnv_ops = { |
| .name = "pnd2/dnv", |
| .type = DNV, |
| .pmiaddr_shift = 0, |
| .pmiidx_shift = 1, |
| .channels = DNV_NUM_CHANNELS, |
| .dimms_per_channel = 2, |
| .rd_reg = dnv_rd_reg, |
| .get_registers = dnv_get_registers, |
| .check_ecc = dnv_check_ecc_active, |
| .mk_region = dnv_mk_region, |
| .get_dimm_config = dnv_get_dimm_config, |
| .pmi2mem = dnv_pmi2mem, |
| }; |
| |
| static const struct x86_cpu_id pnd2_cpuids[] = { |
| { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops }, |
| { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT_X, 0, (kernel_ulong_t)&dnv_ops }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); |
| |
| static int __init pnd2_init(void) |
| { |
| const struct x86_cpu_id *id; |
| const char *owner; |
| int rc; |
| |
| edac_dbg(2, "\n"); |
| |
| owner = edac_get_owner(); |
| if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) |
| return -EBUSY; |
| |
| id = x86_match_cpu(pnd2_cpuids); |
| if (!id) |
| return -ENODEV; |
| |
| ops = (struct dunit_ops *)id->driver_data; |
| |
| if (ops->type == APL) { |
| p2sb_bus = pci_find_bus(0, 0); |
| if (!p2sb_bus) |
| return -ENODEV; |
| } |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| rc = pnd2_probe(); |
| if (rc < 0) { |
| pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); |
| return rc; |
| } |
| |
| if (!pnd2_mci) |
| return -ENODEV; |
| |
| mce_register_decode_chain(&pnd2_mce_dec); |
| setup_pnd2_debug(); |
| |
| return 0; |
| } |
| |
| static void __exit pnd2_exit(void) |
| { |
| edac_dbg(2, "\n"); |
| teardown_pnd2_debug(); |
| mce_unregister_decode_chain(&pnd2_mce_dec); |
| pnd2_remove(); |
| } |
| |
| module_init(pnd2_init); |
| module_exit(pnd2_exit); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Tony Luck"); |
| MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller"); |