| zram: Compressed RAM based block devices |
| ---------------------------------------- |
| |
| * Introduction |
| |
| The zram module creates RAM based block devices named /dev/zram<id> |
| (<id> = 0, 1, ...). Pages written to these disks are compressed and stored |
| in memory itself. These disks allow very fast I/O and compression provides |
| good amounts of memory savings. Some of the usecases include /tmp storage, |
| use as swap disks, various caches under /var and maybe many more :) |
| |
| Statistics for individual zram devices are exported through sysfs nodes at |
| /sys/block/zram<id>/ |
| |
| * Usage |
| |
| There are several ways to configure and manage zram device(-s): |
| a) using zram and zram_control sysfs attributes |
| b) using zramctl utility, provided by util-linux (util-linux@vger.kernel.org). |
| |
| In this document we will describe only 'manual' zram configuration steps, |
| IOW, zram and zram_control sysfs attributes. |
| |
| In order to get a better idea about zramctl please consult util-linux |
| documentation, zramctl man-page or `zramctl --help'. Please be informed |
| that zram maintainers do not develop/maintain util-linux or zramctl, should |
| you have any questions please contact util-linux@vger.kernel.org |
| |
| Following shows a typical sequence of steps for using zram. |
| |
| WARNING |
| ======= |
| For the sake of simplicity we skip error checking parts in most of the |
| examples below. However, it is your sole responsibility to handle errors. |
| |
| zram sysfs attributes always return negative values in case of errors. |
| The list of possible return codes: |
| -EBUSY -- an attempt to modify an attribute that cannot be changed once |
| the device has been initialised. Please reset device first; |
| -ENOMEM -- zram was not able to allocate enough memory to fulfil your |
| needs; |
| -EINVAL -- invalid input has been provided. |
| |
| If you use 'echo', the returned value that is changed by 'echo' utility, |
| and, in general case, something like: |
| |
| echo 3 > /sys/block/zram0/max_comp_streams |
| if [ $? -ne 0 ]; |
| handle_error |
| fi |
| |
| should suffice. |
| |
| 1) Load Module: |
| modprobe zram num_devices=4 |
| This creates 4 devices: /dev/zram{0,1,2,3} |
| |
| num_devices parameter is optional and tells zram how many devices should be |
| pre-created. Default: 1. |
| |
| 2) Set max number of compression streams |
| Regardless the value passed to this attribute, ZRAM will always |
| allocate multiple compression streams - one per online CPUs - thus |
| allowing several concurrent compression operations. The number of |
| allocated compression streams goes down when some of the CPUs |
| become offline. There is no single-compression-stream mode anymore, |
| unless you are running a UP system or has only 1 CPU online. |
| |
| To find out how many streams are currently available: |
| cat /sys/block/zram0/max_comp_streams |
| |
| 3) Select compression algorithm |
| Using comp_algorithm device attribute one can see available and |
| currently selected (shown in square brackets) compression algorithms, |
| change selected compression algorithm (once the device is initialised |
| there is no way to change compression algorithm). |
| |
| Examples: |
| #show supported compression algorithms |
| cat /sys/block/zram0/comp_algorithm |
| lzo [lz4] |
| |
| #select lzo compression algorithm |
| echo lzo > /sys/block/zram0/comp_algorithm |
| |
| For the time being, the `comp_algorithm' content does not necessarily |
| show every compression algorithm supported by the kernel. We keep this |
| list primarily to simplify device configuration and one can configure |
| a new device with a compression algorithm that is not listed in |
| `comp_algorithm'. The thing is that, internally, ZRAM uses Crypto API |
| and, if some of the algorithms were built as modules, it's impossible |
| to list all of them using, for instance, /proc/crypto or any other |
| method. This, however, has an advantage of permitting the usage of |
| custom crypto compression modules (implementing S/W or H/W compression). |
| |
| 4) Set Disksize |
| Set disk size by writing the value to sysfs node 'disksize'. |
| The value can be either in bytes or you can use mem suffixes. |
| Examples: |
| # Initialize /dev/zram0 with 50MB disksize |
| echo $((50*1024*1024)) > /sys/block/zram0/disksize |
| |
| # Using mem suffixes |
| echo 256K > /sys/block/zram0/disksize |
| echo 512M > /sys/block/zram0/disksize |
| echo 1G > /sys/block/zram0/disksize |
| |
| Note: |
| There is little point creating a zram of greater than twice the size of memory |
| since we expect a 2:1 compression ratio. Note that zram uses about 0.1% of the |
| size of the disk when not in use so a huge zram is wasteful. |
| |
| 5) Set memory limit: Optional |
| Set memory limit by writing the value to sysfs node 'mem_limit'. |
| The value can be either in bytes or you can use mem suffixes. |
| In addition, you could change the value in runtime. |
| Examples: |
| # limit /dev/zram0 with 50MB memory |
| echo $((50*1024*1024)) > /sys/block/zram0/mem_limit |
| |
| # Using mem suffixes |
| echo 256K > /sys/block/zram0/mem_limit |
| echo 512M > /sys/block/zram0/mem_limit |
| echo 1G > /sys/block/zram0/mem_limit |
| |
| # To disable memory limit |
| echo 0 > /sys/block/zram0/mem_limit |
| |
| 6) Activate: |
| mkswap /dev/zram0 |
| swapon /dev/zram0 |
| |
| mkfs.ext4 /dev/zram1 |
| mount /dev/zram1 /tmp |
| |
| 7) Add/remove zram devices |
| |
| zram provides a control interface, which enables dynamic (on-demand) device |
| addition and removal. |
| |
| In order to add a new /dev/zramX device, perform read operation on hot_add |
| attribute. This will return either new device's device id (meaning that you |
| can use /dev/zram<id>) or error code. |
| |
| Example: |
| cat /sys/class/zram-control/hot_add |
| 1 |
| |
| To remove the existing /dev/zramX device (where X is a device id) |
| execute |
| echo X > /sys/class/zram-control/hot_remove |
| |
| 8) Stats: |
| Per-device statistics are exported as various nodes under /sys/block/zram<id>/ |
| |
| A brief description of exported device attributes. For more details please |
| read Documentation/ABI/testing/sysfs-block-zram. |
| |
| Name access description |
| ---- ------ ----------- |
| disksize RW show and set the device's disk size |
| initstate RO shows the initialization state of the device |
| reset WO trigger device reset |
| mem_used_max WO reset the `mem_used_max' counter (see later) |
| mem_limit WO specifies the maximum amount of memory ZRAM can use |
| to store the compressed data |
| max_comp_streams RW the number of possible concurrent compress operations |
| comp_algorithm RW show and change the compression algorithm |
| compact WO trigger memory compaction |
| debug_stat RO this file is used for zram debugging purposes |
| backing_dev RW set up backend storage for zram to write out |
| |
| |
| User space is advised to use the following files to read the device statistics. |
| |
| File /sys/block/zram<id>/stat |
| |
| Represents block layer statistics. Read Documentation/block/stat.txt for |
| details. |
| |
| File /sys/block/zram<id>/io_stat |
| |
| The stat file represents device's I/O statistics not accounted by block |
| layer and, thus, not available in zram<id>/stat file. It consists of a |
| single line of text and contains the following stats separated by |
| whitespace: |
| failed_reads the number of failed reads |
| failed_writes the number of failed writes |
| invalid_io the number of non-page-size-aligned I/O requests |
| notify_free Depending on device usage scenario it may account |
| a) the number of pages freed because of swap slot free |
| notifications or b) the number of pages freed because of |
| REQ_OP_DISCARD requests sent by bio. The former ones are |
| sent to a swap block device when a swap slot is freed, |
| which implies that this disk is being used as a swap disk. |
| The latter ones are sent by filesystem mounted with |
| discard option, whenever some data blocks are getting |
| discarded. |
| |
| File /sys/block/zram<id>/mm_stat |
| |
| The stat file represents device's mm statistics. It consists of a single |
| line of text and contains the following stats separated by whitespace: |
| orig_data_size uncompressed size of data stored in this disk. |
| This excludes same-element-filled pages (same_pages) since |
| no memory is allocated for them. |
| Unit: bytes |
| compr_data_size compressed size of data stored in this disk |
| mem_used_total the amount of memory allocated for this disk. This |
| includes allocator fragmentation and metadata overhead, |
| allocated for this disk. So, allocator space efficiency |
| can be calculated using compr_data_size and this statistic. |
| Unit: bytes |
| mem_limit the maximum amount of memory ZRAM can use to store |
| the compressed data |
| mem_used_max the maximum amount of memory zram have consumed to |
| store the data |
| same_pages the number of same element filled pages written to this disk. |
| No memory is allocated for such pages. |
| pages_compacted the number of pages freed during compaction |
| huge_pages the number of incompressible pages |
| |
| 9) Deactivate: |
| swapoff /dev/zram0 |
| umount /dev/zram1 |
| |
| 10) Reset: |
| Write any positive value to 'reset' sysfs node |
| echo 1 > /sys/block/zram0/reset |
| echo 1 > /sys/block/zram1/reset |
| |
| This frees all the memory allocated for the given device and |
| resets the disksize to zero. You must set the disksize again |
| before reusing the device. |
| |
| * Optional Feature |
| |
| = writeback |
| |
| With incompressible pages, there is no memory saving with zram. |
| Instead, with CONFIG_ZRAM_WRITEBACK, zram can write incompressible page |
| to backing storage rather than keeping it in memory. |
| User should set up backing device via /sys/block/zramX/backing_dev |
| before disksize setting. |
| |
| = memory tracking |
| |
| With CONFIG_ZRAM_MEMORY_TRACKING, user can know information of the |
| zram block. It could be useful to catch cold or incompressible |
| pages of the process with*pagemap. |
| If you enable the feature, you could see block state via |
| /sys/kernel/debug/zram/zram0/block_state". The output is as follows, |
| |
| 300 75.033841 .wh |
| 301 63.806904 s.. |
| 302 63.806919 ..h |
| |
| First column is zram's block index. |
| Second column is access time since the system was booted |
| Third column is state of the block. |
| (s: same page |
| w: written page to backing store |
| h: huge page) |
| |
| First line of above example says 300th block is accessed at 75.033841sec |
| and the block's state is huge so it is written back to the backing |
| storage. It's a debugging feature so anyone shouldn't rely on it to work |
| properly. |
| |
| Nitin Gupta |
| ngupta@vflare.org |