| // SPDX-License-Identifier: GPL-2.0-only |
| /* CAN driver for Geschwister Schneider USB/CAN devices |
| * and bytewerk.org candleLight USB CAN interfaces. |
| * |
| * Copyright (C) 2013-2016 Geschwister Schneider Technologie-, |
| * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt). |
| * Copyright (C) 2016 Hubert Denkmair |
| * |
| * Many thanks to all socketcan devs! |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clocksource.h> |
| #include <linux/ethtool.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/signal.h> |
| #include <linux/timecounter.h> |
| #include <linux/units.h> |
| #include <linux/usb.h> |
| #include <linux/workqueue.h> |
| |
| #include <linux/can.h> |
| #include <linux/can/dev.h> |
| #include <linux/can/error.h> |
| |
| /* Device specific constants */ |
| #define USB_GS_USB_1_VENDOR_ID 0x1d50 |
| #define USB_GS_USB_1_PRODUCT_ID 0x606f |
| |
| #define USB_CANDLELIGHT_VENDOR_ID 0x1209 |
| #define USB_CANDLELIGHT_PRODUCT_ID 0x2323 |
| |
| #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2 |
| #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f |
| |
| #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0 |
| #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8 |
| |
| #define GS_USB_ENDPOINT_IN 1 |
| #define GS_USB_ENDPOINT_OUT 2 |
| |
| /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts |
| * for timer overflow (will be after ~71 minutes) |
| */ |
| #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ) |
| #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800 |
| static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC < |
| CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2); |
| |
| /* Device specific constants */ |
| enum gs_usb_breq { |
| GS_USB_BREQ_HOST_FORMAT = 0, |
| GS_USB_BREQ_BITTIMING, |
| GS_USB_BREQ_MODE, |
| GS_USB_BREQ_BERR, |
| GS_USB_BREQ_BT_CONST, |
| GS_USB_BREQ_DEVICE_CONFIG, |
| GS_USB_BREQ_TIMESTAMP, |
| GS_USB_BREQ_IDENTIFY, |
| GS_USB_BREQ_GET_USER_ID, |
| GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID, |
| GS_USB_BREQ_SET_USER_ID, |
| GS_USB_BREQ_DATA_BITTIMING, |
| GS_USB_BREQ_BT_CONST_EXT, |
| GS_USB_BREQ_SET_TERMINATION, |
| GS_USB_BREQ_GET_TERMINATION, |
| }; |
| |
| enum gs_can_mode { |
| /* reset a channel. turns it off */ |
| GS_CAN_MODE_RESET = 0, |
| /* starts a channel */ |
| GS_CAN_MODE_START |
| }; |
| |
| enum gs_can_state { |
| GS_CAN_STATE_ERROR_ACTIVE = 0, |
| GS_CAN_STATE_ERROR_WARNING, |
| GS_CAN_STATE_ERROR_PASSIVE, |
| GS_CAN_STATE_BUS_OFF, |
| GS_CAN_STATE_STOPPED, |
| GS_CAN_STATE_SLEEPING |
| }; |
| |
| enum gs_can_identify_mode { |
| GS_CAN_IDENTIFY_OFF = 0, |
| GS_CAN_IDENTIFY_ON |
| }; |
| |
| enum gs_can_termination_state { |
| GS_CAN_TERMINATION_STATE_OFF = 0, |
| GS_CAN_TERMINATION_STATE_ON |
| }; |
| |
| #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED |
| #define GS_USB_TERMINATION_ENABLED 120 |
| |
| /* data types passed between host and device */ |
| |
| /* The firmware on the original USB2CAN by Geschwister Schneider |
| * Technologie Entwicklungs- und Vertriebs UG exchanges all data |
| * between the host and the device in host byte order. This is done |
| * with the struct gs_host_config::byte_order member, which is sent |
| * first to indicate the desired byte order. |
| * |
| * The widely used open source firmware candleLight doesn't support |
| * this feature and exchanges the data in little endian byte order. |
| */ |
| struct gs_host_config { |
| __le32 byte_order; |
| } __packed; |
| |
| struct gs_device_config { |
| u8 reserved1; |
| u8 reserved2; |
| u8 reserved3; |
| u8 icount; |
| __le32 sw_version; |
| __le32 hw_version; |
| } __packed; |
| |
| #define GS_CAN_MODE_NORMAL 0 |
| #define GS_CAN_MODE_LISTEN_ONLY BIT(0) |
| #define GS_CAN_MODE_LOOP_BACK BIT(1) |
| #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2) |
| #define GS_CAN_MODE_ONE_SHOT BIT(3) |
| #define GS_CAN_MODE_HW_TIMESTAMP BIT(4) |
| /* GS_CAN_FEATURE_IDENTIFY BIT(5) */ |
| /* GS_CAN_FEATURE_USER_ID BIT(6) */ |
| #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) |
| #define GS_CAN_MODE_FD BIT(8) |
| /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */ |
| /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */ |
| /* GS_CAN_FEATURE_TERMINATION BIT(11) */ |
| |
| struct gs_device_mode { |
| __le32 mode; |
| __le32 flags; |
| } __packed; |
| |
| struct gs_device_state { |
| __le32 state; |
| __le32 rxerr; |
| __le32 txerr; |
| } __packed; |
| |
| struct gs_device_bittiming { |
| __le32 prop_seg; |
| __le32 phase_seg1; |
| __le32 phase_seg2; |
| __le32 sjw; |
| __le32 brp; |
| } __packed; |
| |
| struct gs_identify_mode { |
| __le32 mode; |
| } __packed; |
| |
| struct gs_device_termination_state { |
| __le32 state; |
| } __packed; |
| |
| #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0) |
| #define GS_CAN_FEATURE_LOOP_BACK BIT(1) |
| #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2) |
| #define GS_CAN_FEATURE_ONE_SHOT BIT(3) |
| #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4) |
| #define GS_CAN_FEATURE_IDENTIFY BIT(5) |
| #define GS_CAN_FEATURE_USER_ID BIT(6) |
| #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) |
| #define GS_CAN_FEATURE_FD BIT(8) |
| #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) |
| #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10) |
| #define GS_CAN_FEATURE_TERMINATION BIT(11) |
| #define GS_CAN_FEATURE_MASK GENMASK(11, 0) |
| |
| /* internal quirks - keep in GS_CAN_FEATURE space for now */ |
| |
| /* CANtact Pro original firmware: |
| * BREQ DATA_BITTIMING overlaps with GET_USER_ID |
| */ |
| #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31) |
| |
| struct gs_device_bt_const { |
| __le32 feature; |
| __le32 fclk_can; |
| __le32 tseg1_min; |
| __le32 tseg1_max; |
| __le32 tseg2_min; |
| __le32 tseg2_max; |
| __le32 sjw_max; |
| __le32 brp_min; |
| __le32 brp_max; |
| __le32 brp_inc; |
| } __packed; |
| |
| struct gs_device_bt_const_extended { |
| __le32 feature; |
| __le32 fclk_can; |
| __le32 tseg1_min; |
| __le32 tseg1_max; |
| __le32 tseg2_min; |
| __le32 tseg2_max; |
| __le32 sjw_max; |
| __le32 brp_min; |
| __le32 brp_max; |
| __le32 brp_inc; |
| |
| __le32 dtseg1_min; |
| __le32 dtseg1_max; |
| __le32 dtseg2_min; |
| __le32 dtseg2_max; |
| __le32 dsjw_max; |
| __le32 dbrp_min; |
| __le32 dbrp_max; |
| __le32 dbrp_inc; |
| } __packed; |
| |
| #define GS_CAN_FLAG_OVERFLOW BIT(0) |
| #define GS_CAN_FLAG_FD BIT(1) |
| #define GS_CAN_FLAG_BRS BIT(2) |
| #define GS_CAN_FLAG_ESI BIT(3) |
| |
| struct classic_can { |
| u8 data[8]; |
| } __packed; |
| |
| struct classic_can_ts { |
| u8 data[8]; |
| __le32 timestamp_us; |
| } __packed; |
| |
| struct classic_can_quirk { |
| u8 data[8]; |
| u8 quirk; |
| } __packed; |
| |
| struct canfd { |
| u8 data[64]; |
| } __packed; |
| |
| struct canfd_ts { |
| u8 data[64]; |
| __le32 timestamp_us; |
| } __packed; |
| |
| struct canfd_quirk { |
| u8 data[64]; |
| u8 quirk; |
| } __packed; |
| |
| struct gs_host_frame { |
| u32 echo_id; |
| __le32 can_id; |
| |
| u8 can_dlc; |
| u8 channel; |
| u8 flags; |
| u8 reserved; |
| |
| union { |
| DECLARE_FLEX_ARRAY(struct classic_can, classic_can); |
| DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts); |
| DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk); |
| DECLARE_FLEX_ARRAY(struct canfd, canfd); |
| DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts); |
| DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk); |
| }; |
| } __packed; |
| /* The GS USB devices make use of the same flags and masks as in |
| * linux/can.h and linux/can/error.h, and no additional mapping is necessary. |
| */ |
| |
| /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */ |
| #define GS_MAX_TX_URBS 10 |
| /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */ |
| #define GS_MAX_RX_URBS 30 |
| /* Maximum number of interfaces the driver supports per device. |
| * Current hardware only supports 3 interfaces. The future may vary. |
| */ |
| #define GS_MAX_INTF 3 |
| |
| struct gs_tx_context { |
| struct gs_can *dev; |
| unsigned int echo_id; |
| }; |
| |
| struct gs_can { |
| struct can_priv can; /* must be the first member */ |
| |
| struct gs_usb *parent; |
| |
| struct net_device *netdev; |
| struct usb_device *udev; |
| struct usb_interface *iface; |
| |
| struct can_bittiming_const bt_const, data_bt_const; |
| unsigned int channel; /* channel number */ |
| |
| /* time counter for hardware timestamps */ |
| struct cyclecounter cc; |
| struct timecounter tc; |
| spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */ |
| struct delayed_work timestamp; |
| |
| u32 feature; |
| unsigned int hf_size_tx; |
| |
| /* This lock prevents a race condition between xmit and receive. */ |
| spinlock_t tx_ctx_lock; |
| struct gs_tx_context tx_context[GS_MAX_TX_URBS]; |
| |
| struct usb_anchor tx_submitted; |
| atomic_t active_tx_urbs; |
| }; |
| |
| /* usb interface struct */ |
| struct gs_usb { |
| struct gs_can *canch[GS_MAX_INTF]; |
| struct usb_anchor rx_submitted; |
| struct usb_device *udev; |
| unsigned int hf_size_rx; |
| u8 active_channels; |
| }; |
| |
| /* 'allocate' a tx context. |
| * returns a valid tx context or NULL if there is no space. |
| */ |
| static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev) |
| { |
| int i = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->tx_ctx_lock, flags); |
| |
| for (; i < GS_MAX_TX_URBS; i++) { |
| if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) { |
| dev->tx_context[i].echo_id = i; |
| spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); |
| return &dev->tx_context[i]; |
| } |
| } |
| |
| spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); |
| return NULL; |
| } |
| |
| /* releases a tx context |
| */ |
| static void gs_free_tx_context(struct gs_tx_context *txc) |
| { |
| txc->echo_id = GS_MAX_TX_URBS; |
| } |
| |
| /* Get a tx context by id. |
| */ |
| static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev, |
| unsigned int id) |
| { |
| unsigned long flags; |
| |
| if (id < GS_MAX_TX_URBS) { |
| spin_lock_irqsave(&dev->tx_ctx_lock, flags); |
| if (dev->tx_context[id].echo_id == id) { |
| spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); |
| return &dev->tx_context[id]; |
| } |
| spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); |
| } |
| return NULL; |
| } |
| |
| static int gs_cmd_reset(struct gs_can *dev) |
| { |
| struct gs_device_mode dm = { |
| .mode = GS_CAN_MODE_RESET, |
| }; |
| |
| return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, |
| GS_USB_BREQ_MODE, |
| USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| dev->channel, 0, &dm, sizeof(dm), 1000, |
| GFP_KERNEL); |
| } |
| |
| static inline int gs_usb_get_timestamp(const struct gs_can *dev, |
| u32 *timestamp_p) |
| { |
| __le32 timestamp; |
| int rc; |
| |
| rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0, |
| GS_USB_BREQ_TIMESTAMP, |
| USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| dev->channel, 0, |
| ×tamp, sizeof(timestamp), |
| USB_CTRL_GET_TIMEOUT, |
| GFP_KERNEL); |
| if (rc) |
| return rc; |
| |
| *timestamp_p = le32_to_cpu(timestamp); |
| |
| return 0; |
| } |
| |
| static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock) |
| { |
| struct gs_can *dev = container_of(cc, struct gs_can, cc); |
| u32 timestamp = 0; |
| int err; |
| |
| lockdep_assert_held(&dev->tc_lock); |
| |
| /* drop lock for synchronous USB transfer */ |
| spin_unlock_bh(&dev->tc_lock); |
| err = gs_usb_get_timestamp(dev, ×tamp); |
| spin_lock_bh(&dev->tc_lock); |
| if (err) |
| netdev_err(dev->netdev, |
| "Error %d while reading timestamp. HW timestamps may be inaccurate.", |
| err); |
| |
| return timestamp; |
| } |
| |
| static void gs_usb_timestamp_work(struct work_struct *work) |
| { |
| struct delayed_work *delayed_work = to_delayed_work(work); |
| struct gs_can *dev; |
| |
| dev = container_of(delayed_work, struct gs_can, timestamp); |
| spin_lock_bh(&dev->tc_lock); |
| timecounter_read(&dev->tc); |
| spin_unlock_bh(&dev->tc_lock); |
| |
| schedule_delayed_work(&dev->timestamp, |
| GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); |
| } |
| |
| static void gs_usb_skb_set_timestamp(struct gs_can *dev, |
| struct sk_buff *skb, u32 timestamp) |
| { |
| struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); |
| u64 ns; |
| |
| spin_lock_bh(&dev->tc_lock); |
| ns = timecounter_cyc2time(&dev->tc, timestamp); |
| spin_unlock_bh(&dev->tc_lock); |
| |
| hwtstamps->hwtstamp = ns_to_ktime(ns); |
| } |
| |
| static void gs_usb_timestamp_init(struct gs_can *dev) |
| { |
| struct cyclecounter *cc = &dev->cc; |
| |
| cc->read = gs_usb_timestamp_read; |
| cc->mask = CYCLECOUNTER_MASK(32); |
| cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ); |
| cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift); |
| |
| spin_lock_init(&dev->tc_lock); |
| spin_lock_bh(&dev->tc_lock); |
| timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns()); |
| spin_unlock_bh(&dev->tc_lock); |
| |
| INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work); |
| schedule_delayed_work(&dev->timestamp, |
| GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); |
| } |
| |
| static void gs_usb_timestamp_stop(struct gs_can *dev) |
| { |
| cancel_delayed_work_sync(&dev->timestamp); |
| } |
| |
| static void gs_update_state(struct gs_can *dev, struct can_frame *cf) |
| { |
| struct can_device_stats *can_stats = &dev->can.can_stats; |
| |
| if (cf->can_id & CAN_ERR_RESTARTED) { |
| dev->can.state = CAN_STATE_ERROR_ACTIVE; |
| can_stats->restarts++; |
| } else if (cf->can_id & CAN_ERR_BUSOFF) { |
| dev->can.state = CAN_STATE_BUS_OFF; |
| can_stats->bus_off++; |
| } else if (cf->can_id & CAN_ERR_CRTL) { |
| if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) || |
| (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) { |
| dev->can.state = CAN_STATE_ERROR_WARNING; |
| can_stats->error_warning++; |
| } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) || |
| (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) { |
| dev->can.state = CAN_STATE_ERROR_PASSIVE; |
| can_stats->error_passive++; |
| } else { |
| dev->can.state = CAN_STATE_ERROR_ACTIVE; |
| } |
| } |
| } |
| |
| static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb, |
| const struct gs_host_frame *hf) |
| { |
| u32 timestamp; |
| |
| if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)) |
| return; |
| |
| if (hf->flags & GS_CAN_FLAG_FD) |
| timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us); |
| else |
| timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us); |
| |
| gs_usb_skb_set_timestamp(dev, skb, timestamp); |
| |
| return; |
| } |
| |
| static void gs_usb_receive_bulk_callback(struct urb *urb) |
| { |
| struct gs_usb *usbcan = urb->context; |
| struct gs_can *dev; |
| struct net_device *netdev; |
| int rc; |
| struct net_device_stats *stats; |
| struct gs_host_frame *hf = urb->transfer_buffer; |
| struct gs_tx_context *txc; |
| struct can_frame *cf; |
| struct canfd_frame *cfd; |
| struct sk_buff *skb; |
| |
| BUG_ON(!usbcan); |
| |
| switch (urb->status) { |
| case 0: /* success */ |
| break; |
| case -ENOENT: |
| case -ESHUTDOWN: |
| return; |
| default: |
| /* do not resubmit aborted urbs. eg: when device goes down */ |
| return; |
| } |
| |
| /* device reports out of range channel id */ |
| if (hf->channel >= GS_MAX_INTF) |
| goto device_detach; |
| |
| dev = usbcan->canch[hf->channel]; |
| |
| netdev = dev->netdev; |
| stats = &netdev->stats; |
| |
| if (!netif_device_present(netdev)) |
| return; |
| |
| if (hf->echo_id == -1) { /* normal rx */ |
| if (hf->flags & GS_CAN_FLAG_FD) { |
| skb = alloc_canfd_skb(dev->netdev, &cfd); |
| if (!skb) |
| return; |
| |
| cfd->can_id = le32_to_cpu(hf->can_id); |
| cfd->len = can_fd_dlc2len(hf->can_dlc); |
| if (hf->flags & GS_CAN_FLAG_BRS) |
| cfd->flags |= CANFD_BRS; |
| if (hf->flags & GS_CAN_FLAG_ESI) |
| cfd->flags |= CANFD_ESI; |
| |
| memcpy(cfd->data, hf->canfd->data, cfd->len); |
| } else { |
| skb = alloc_can_skb(dev->netdev, &cf); |
| if (!skb) |
| return; |
| |
| cf->can_id = le32_to_cpu(hf->can_id); |
| can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode); |
| |
| memcpy(cf->data, hf->classic_can->data, 8); |
| |
| /* ERROR frames tell us information about the controller */ |
| if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG) |
| gs_update_state(dev, cf); |
| } |
| |
| gs_usb_set_timestamp(dev, skb, hf); |
| |
| netdev->stats.rx_packets++; |
| netdev->stats.rx_bytes += hf->can_dlc; |
| |
| netif_rx(skb); |
| } else { /* echo_id == hf->echo_id */ |
| if (hf->echo_id >= GS_MAX_TX_URBS) { |
| netdev_err(netdev, |
| "Unexpected out of range echo id %u\n", |
| hf->echo_id); |
| goto resubmit_urb; |
| } |
| |
| txc = gs_get_tx_context(dev, hf->echo_id); |
| |
| /* bad devices send bad echo_ids. */ |
| if (!txc) { |
| netdev_err(netdev, |
| "Unexpected unused echo id %u\n", |
| hf->echo_id); |
| goto resubmit_urb; |
| } |
| |
| skb = dev->can.echo_skb[hf->echo_id]; |
| gs_usb_set_timestamp(dev, skb, hf); |
| |
| netdev->stats.tx_packets++; |
| netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id, |
| NULL); |
| |
| gs_free_tx_context(txc); |
| |
| atomic_dec(&dev->active_tx_urbs); |
| |
| netif_wake_queue(netdev); |
| } |
| |
| if (hf->flags & GS_CAN_FLAG_OVERFLOW) { |
| skb = alloc_can_err_skb(netdev, &cf); |
| if (!skb) |
| goto resubmit_urb; |
| |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->len = CAN_ERR_DLC; |
| cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; |
| stats->rx_over_errors++; |
| stats->rx_errors++; |
| netif_rx(skb); |
| } |
| |
| resubmit_urb: |
| usb_fill_bulk_urb(urb, usbcan->udev, |
| usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN), |
| hf, dev->parent->hf_size_rx, |
| gs_usb_receive_bulk_callback, usbcan); |
| |
| rc = usb_submit_urb(urb, GFP_ATOMIC); |
| |
| /* USB failure take down all interfaces */ |
| if (rc == -ENODEV) { |
| device_detach: |
| for (rc = 0; rc < GS_MAX_INTF; rc++) { |
| if (usbcan->canch[rc]) |
| netif_device_detach(usbcan->canch[rc]->netdev); |
| } |
| } |
| } |
| |
| static int gs_usb_set_bittiming(struct net_device *netdev) |
| { |
| struct gs_can *dev = netdev_priv(netdev); |
| struct can_bittiming *bt = &dev->can.bittiming; |
| struct gs_device_bittiming dbt = { |
| .prop_seg = cpu_to_le32(bt->prop_seg), |
| .phase_seg1 = cpu_to_le32(bt->phase_seg1), |
| .phase_seg2 = cpu_to_le32(bt->phase_seg2), |
| .sjw = cpu_to_le32(bt->sjw), |
| .brp = cpu_to_le32(bt->brp), |
| }; |
| |
| /* request bit timings */ |
| return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, |
| GS_USB_BREQ_BITTIMING, |
| USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| dev->channel, 0, &dbt, sizeof(dbt), 1000, |
| GFP_KERNEL); |
| } |
| |
| static int gs_usb_set_data_bittiming(struct net_device *netdev) |
| { |
| struct gs_can *dev = netdev_priv(netdev); |
| struct can_bittiming *bt = &dev->can.data_bittiming; |
| struct gs_device_bittiming dbt = { |
| .prop_seg = cpu_to_le32(bt->prop_seg), |
| .phase_seg1 = cpu_to_le32(bt->phase_seg1), |
| .phase_seg2 = cpu_to_le32(bt->phase_seg2), |
| .sjw = cpu_to_le32(bt->sjw), |
| .brp = cpu_to_le32(bt->brp), |
| }; |
| u8 request = GS_USB_BREQ_DATA_BITTIMING; |
| |
| if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO) |
| request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING; |
| |
| /* request data bit timings */ |
| return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, |
| request, |
| USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| dev->channel, 0, &dbt, sizeof(dbt), 1000, |
| GFP_KERNEL); |
| } |
| |
| static void gs_usb_xmit_callback(struct urb *urb) |
| { |
| struct gs_tx_context *txc = urb->context; |
| struct gs_can *dev = txc->dev; |
| struct net_device *netdev = dev->netdev; |
| |
| if (urb->status) |
| netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id); |
| } |
| |
| static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| struct gs_can *dev = netdev_priv(netdev); |
| struct net_device_stats *stats = &dev->netdev->stats; |
| struct urb *urb; |
| struct gs_host_frame *hf; |
| struct can_frame *cf; |
| struct canfd_frame *cfd; |
| int rc; |
| unsigned int idx; |
| struct gs_tx_context *txc; |
| |
| if (can_dev_dropped_skb(netdev, skb)) |
| return NETDEV_TX_OK; |
| |
| /* find an empty context to keep track of transmission */ |
| txc = gs_alloc_tx_context(dev); |
| if (!txc) |
| return NETDEV_TX_BUSY; |
| |
| /* create a URB, and a buffer for it */ |
| urb = usb_alloc_urb(0, GFP_ATOMIC); |
| if (!urb) |
| goto nomem_urb; |
| |
| hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC); |
| if (!hf) { |
| netdev_err(netdev, "No memory left for USB buffer\n"); |
| goto nomem_hf; |
| } |
| |
| idx = txc->echo_id; |
| |
| if (idx >= GS_MAX_TX_URBS) { |
| netdev_err(netdev, "Invalid tx context %u\n", idx); |
| goto badidx; |
| } |
| |
| hf->echo_id = idx; |
| hf->channel = dev->channel; |
| hf->flags = 0; |
| hf->reserved = 0; |
| |
| if (can_is_canfd_skb(skb)) { |
| cfd = (struct canfd_frame *)skb->data; |
| |
| hf->can_id = cpu_to_le32(cfd->can_id); |
| hf->can_dlc = can_fd_len2dlc(cfd->len); |
| hf->flags |= GS_CAN_FLAG_FD; |
| if (cfd->flags & CANFD_BRS) |
| hf->flags |= GS_CAN_FLAG_BRS; |
| if (cfd->flags & CANFD_ESI) |
| hf->flags |= GS_CAN_FLAG_ESI; |
| |
| memcpy(hf->canfd->data, cfd->data, cfd->len); |
| } else { |
| cf = (struct can_frame *)skb->data; |
| |
| hf->can_id = cpu_to_le32(cf->can_id); |
| hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode); |
| |
| memcpy(hf->classic_can->data, cf->data, cf->len); |
| } |
| |
| usb_fill_bulk_urb(urb, dev->udev, |
| usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT), |
| hf, dev->hf_size_tx, |
| gs_usb_xmit_callback, txc); |
| |
| urb->transfer_flags |= URB_FREE_BUFFER; |
| usb_anchor_urb(urb, &dev->tx_submitted); |
| |
| can_put_echo_skb(skb, netdev, idx, 0); |
| |
| atomic_inc(&dev->active_tx_urbs); |
| |
| rc = usb_submit_urb(urb, GFP_ATOMIC); |
| if (unlikely(rc)) { /* usb send failed */ |
| atomic_dec(&dev->active_tx_urbs); |
| |
| can_free_echo_skb(netdev, idx, NULL); |
| gs_free_tx_context(txc); |
| |
| usb_unanchor_urb(urb); |
| |
| if (rc == -ENODEV) { |
| netif_device_detach(netdev); |
| } else { |
| netdev_err(netdev, "usb_submit failed (err=%d)\n", rc); |
| stats->tx_dropped++; |
| } |
| } else { |
| /* Slow down tx path */ |
| if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS) |
| netif_stop_queue(netdev); |
| } |
| |
| /* let usb core take care of this urb */ |
| usb_free_urb(urb); |
| |
| return NETDEV_TX_OK; |
| |
| badidx: |
| kfree(hf); |
| nomem_hf: |
| usb_free_urb(urb); |
| |
| nomem_urb: |
| gs_free_tx_context(txc); |
| dev_kfree_skb(skb); |
| stats->tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| |
| static int gs_can_open(struct net_device *netdev) |
| { |
| struct gs_can *dev = netdev_priv(netdev); |
| struct gs_usb *parent = dev->parent; |
| struct gs_device_mode dm = { |
| .mode = cpu_to_le32(GS_CAN_MODE_START), |
| }; |
| struct gs_host_frame *hf; |
| u32 ctrlmode; |
| u32 flags = 0; |
| int rc, i; |
| |
| rc = open_candev(netdev); |
| if (rc) |
| return rc; |
| |
| ctrlmode = dev->can.ctrlmode; |
| if (ctrlmode & CAN_CTRLMODE_FD) { |
| flags |= GS_CAN_MODE_FD; |
| |
| if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) |
| dev->hf_size_tx = struct_size(hf, canfd_quirk, 1); |
| else |
| dev->hf_size_tx = struct_size(hf, canfd, 1); |
| } else { |
| if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) |
| dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1); |
| else |
| dev->hf_size_tx = struct_size(hf, classic_can, 1); |
| } |
| |
| if (!parent->active_channels) { |
| for (i = 0; i < GS_MAX_RX_URBS; i++) { |
| struct urb *urb; |
| u8 *buf; |
| |
| /* alloc rx urb */ |
| urb = usb_alloc_urb(0, GFP_KERNEL); |
| if (!urb) |
| return -ENOMEM; |
| |
| /* alloc rx buffer */ |
| buf = kmalloc(dev->parent->hf_size_rx, |
| GFP_KERNEL); |
| if (!buf) { |
| netdev_err(netdev, |
| "No memory left for USB buffer\n"); |
| usb_free_urb(urb); |
| return -ENOMEM; |
| } |
| |
| /* fill, anchor, and submit rx urb */ |
| usb_fill_bulk_urb(urb, |
| dev->udev, |
| usb_rcvbulkpipe(dev->udev, |
| GS_USB_ENDPOINT_IN), |
| buf, |
| dev->parent->hf_size_rx, |
| gs_usb_receive_bulk_callback, parent); |
| urb->transfer_flags |= URB_FREE_BUFFER; |
| |
| usb_anchor_urb(urb, &parent->rx_submitted); |
| |
| rc = usb_submit_urb(urb, GFP_KERNEL); |
| if (rc) { |
| if (rc == -ENODEV) |
| netif_device_detach(dev->netdev); |
| |
| netdev_err(netdev, |
| "usb_submit failed (err=%d)\n", rc); |
| |
| usb_unanchor_urb(urb); |
| usb_free_urb(urb); |
| break; |
| } |
| |
| /* Drop reference, |
| * USB core will take care of freeing it |
| */ |
| usb_free_urb(urb); |
| } |
| } |
| |
| /* flags */ |
| if (ctrlmode & CAN_CTRLMODE_LOOPBACK) |
| flags |= GS_CAN_MODE_LOOP_BACK; |
| else if (ctrlmode & CAN_CTRLMODE_LISTENONLY) |
| flags |= GS_CAN_MODE_LISTEN_ONLY; |
| |
| /* Controller is not allowed to retry TX |
| * this mode is unavailable on atmels uc3c hardware |
| */ |
| if (ctrlmode & CAN_CTRLMODE_ONE_SHOT) |
| flags |= GS_CAN_MODE_ONE_SHOT; |
| |
| if (ctrlmode & CAN_CTRLMODE_3_SAMPLES) |
| flags |= GS_CAN_MODE_TRIPLE_SAMPLE; |
| |
| /* if hardware supports timestamps, enable it */ |
| if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) |
| flags |= GS_CAN_MODE_HW_TIMESTAMP; |
| |
| /* start polling timestamp */ |
| if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) |
| gs_usb_timestamp_init(dev); |
| |
| /* finally start device */ |
| dev->can.state = CAN_STATE_ERROR_ACTIVE; |
| dm.flags = cpu_to_le32(flags); |
| rc = usb_control_msg_send(interface_to_usbdev(dev->iface), 0, |
| GS_USB_BREQ_MODE, |
| USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| dev->channel, 0, &dm, sizeof(dm), 1000, |
| GFP_KERNEL); |
| if (rc) { |
| netdev_err(netdev, "Couldn't start device (err=%d)\n", rc); |
| if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) |
| gs_usb_timestamp_stop(dev); |
| dev->can.state = CAN_STATE_STOPPED; |
| return rc; |
| } |
| |
| parent->active_channels++; |
| if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) |
| netif_start_queue(netdev); |
| |
| return 0; |
| } |
| |
| static int gs_can_close(struct net_device *netdev) |
| { |
| int rc; |
| struct gs_can *dev = netdev_priv(netdev); |
| struct gs_usb *parent = dev->parent; |
| |
| netif_stop_queue(netdev); |
| |
| /* stop polling timestamp */ |
| if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) |
| gs_usb_timestamp_stop(dev); |
| |
| /* Stop polling */ |
| parent->active_channels--; |
| if (!parent->active_channels) { |
| usb_kill_anchored_urbs(&parent->rx_submitted); |
| } |
| |
| /* Stop sending URBs */ |
| usb_kill_anchored_urbs(&dev->tx_submitted); |
| atomic_set(&dev->active_tx_urbs, 0); |
| |
| /* reset the device */ |
| rc = gs_cmd_reset(dev); |
| if (rc < 0) |
| netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc); |
| |
| /* reset tx contexts */ |
| for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { |
| dev->tx_context[rc].dev = dev; |
| dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; |
| } |
| |
| /* close the netdev */ |
| close_candev(netdev); |
| |
| return 0; |
| } |
| |
| static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| const struct gs_can *dev = netdev_priv(netdev); |
| |
| if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) |
| return can_eth_ioctl_hwts(netdev, ifr, cmd); |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static const struct net_device_ops gs_usb_netdev_ops = { |
| .ndo_open = gs_can_open, |
| .ndo_stop = gs_can_close, |
| .ndo_start_xmit = gs_can_start_xmit, |
| .ndo_change_mtu = can_change_mtu, |
| .ndo_eth_ioctl = gs_can_eth_ioctl, |
| }; |
| |
| static int gs_usb_set_identify(struct net_device *netdev, bool do_identify) |
| { |
| struct gs_can *dev = netdev_priv(netdev); |
| struct gs_identify_mode imode; |
| |
| if (do_identify) |
| imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON); |
| else |
| imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF); |
| |
| return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, |
| GS_USB_BREQ_IDENTIFY, |
| USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| dev->channel, 0, &imode, sizeof(imode), 100, |
| GFP_KERNEL); |
| } |
| |
| /* blink LED's for finding the this interface */ |
| static int gs_usb_set_phys_id(struct net_device *netdev, |
| enum ethtool_phys_id_state state) |
| { |
| const struct gs_can *dev = netdev_priv(netdev); |
| int rc = 0; |
| |
| if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY)) |
| return -EOPNOTSUPP; |
| |
| switch (state) { |
| case ETHTOOL_ID_ACTIVE: |
| rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON); |
| break; |
| case ETHTOOL_ID_INACTIVE: |
| rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF); |
| break; |
| default: |
| break; |
| } |
| |
| return rc; |
| } |
| |
| static int gs_usb_get_ts_info(struct net_device *netdev, |
| struct ethtool_ts_info *info) |
| { |
| struct gs_can *dev = netdev_priv(netdev); |
| |
| /* report if device supports HW timestamps */ |
| if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) |
| return can_ethtool_op_get_ts_info_hwts(netdev, info); |
| |
| return ethtool_op_get_ts_info(netdev, info); |
| } |
| |
| static const struct ethtool_ops gs_usb_ethtool_ops = { |
| .set_phys_id = gs_usb_set_phys_id, |
| .get_ts_info = gs_usb_get_ts_info, |
| }; |
| |
| static int gs_usb_get_termination(struct net_device *netdev, u16 *term) |
| { |
| struct gs_can *dev = netdev_priv(netdev); |
| struct gs_device_termination_state term_state; |
| int rc; |
| |
| rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0, |
| GS_USB_BREQ_GET_TERMINATION, |
| USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| dev->channel, 0, |
| &term_state, sizeof(term_state), 1000, |
| GFP_KERNEL); |
| if (rc) |
| return rc; |
| |
| if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON)) |
| *term = GS_USB_TERMINATION_ENABLED; |
| else |
| *term = GS_USB_TERMINATION_DISABLED; |
| |
| return 0; |
| } |
| |
| static int gs_usb_set_termination(struct net_device *netdev, u16 term) |
| { |
| struct gs_can *dev = netdev_priv(netdev); |
| struct gs_device_termination_state term_state; |
| |
| if (term == GS_USB_TERMINATION_ENABLED) |
| term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON); |
| else |
| term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF); |
| |
| return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, |
| GS_USB_BREQ_SET_TERMINATION, |
| USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| dev->channel, 0, |
| &term_state, sizeof(term_state), 1000, |
| GFP_KERNEL); |
| } |
| |
| static const u16 gs_usb_termination_const[] = { |
| GS_USB_TERMINATION_DISABLED, |
| GS_USB_TERMINATION_ENABLED |
| }; |
| |
| static struct gs_can *gs_make_candev(unsigned int channel, |
| struct usb_interface *intf, |
| struct gs_device_config *dconf) |
| { |
| struct gs_can *dev; |
| struct net_device *netdev; |
| int rc; |
| struct gs_device_bt_const_extended bt_const_extended; |
| struct gs_device_bt_const bt_const; |
| u32 feature; |
| |
| /* fetch bit timing constants */ |
| rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, |
| GS_USB_BREQ_BT_CONST, |
| USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| channel, 0, &bt_const, sizeof(bt_const), 1000, |
| GFP_KERNEL); |
| |
| if (rc) { |
| dev_err(&intf->dev, |
| "Couldn't get bit timing const for channel %d (%pe)\n", |
| channel, ERR_PTR(rc)); |
| return ERR_PTR(rc); |
| } |
| |
| /* create netdev */ |
| netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS); |
| if (!netdev) { |
| dev_err(&intf->dev, "Couldn't allocate candev\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| dev = netdev_priv(netdev); |
| |
| netdev->netdev_ops = &gs_usb_netdev_ops; |
| netdev->ethtool_ops = &gs_usb_ethtool_ops; |
| |
| netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */ |
| |
| /* dev setup */ |
| strcpy(dev->bt_const.name, KBUILD_MODNAME); |
| dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min); |
| dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max); |
| dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min); |
| dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max); |
| dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max); |
| dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min); |
| dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max); |
| dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc); |
| |
| dev->udev = interface_to_usbdev(intf); |
| dev->iface = intf; |
| dev->netdev = netdev; |
| dev->channel = channel; |
| |
| init_usb_anchor(&dev->tx_submitted); |
| atomic_set(&dev->active_tx_urbs, 0); |
| spin_lock_init(&dev->tx_ctx_lock); |
| for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { |
| dev->tx_context[rc].dev = dev; |
| dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; |
| } |
| |
| /* can setup */ |
| dev->can.state = CAN_STATE_STOPPED; |
| dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can); |
| dev->can.bittiming_const = &dev->bt_const; |
| dev->can.do_set_bittiming = gs_usb_set_bittiming; |
| |
| dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC; |
| |
| feature = le32_to_cpu(bt_const.feature); |
| dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature); |
| if (feature & GS_CAN_FEATURE_LISTEN_ONLY) |
| dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY; |
| |
| if (feature & GS_CAN_FEATURE_LOOP_BACK) |
| dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK; |
| |
| if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE) |
| dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; |
| |
| if (feature & GS_CAN_FEATURE_ONE_SHOT) |
| dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT; |
| |
| if (feature & GS_CAN_FEATURE_FD) { |
| dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD; |
| /* The data bit timing will be overwritten, if |
| * GS_CAN_FEATURE_BT_CONST_EXT is set. |
| */ |
| dev->can.data_bittiming_const = &dev->bt_const; |
| dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming; |
| } |
| |
| if (feature & GS_CAN_FEATURE_TERMINATION) { |
| rc = gs_usb_get_termination(netdev, &dev->can.termination); |
| if (rc) { |
| dev->feature &= ~GS_CAN_FEATURE_TERMINATION; |
| |
| dev_info(&intf->dev, |
| "Disabling termination support for channel %d (%pe)\n", |
| channel, ERR_PTR(rc)); |
| } else { |
| dev->can.termination_const = gs_usb_termination_const; |
| dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const); |
| dev->can.do_set_termination = gs_usb_set_termination; |
| } |
| } |
| |
| /* The CANtact Pro from LinkLayer Labs is based on the |
| * LPC54616 µC, which is affected by the NXP LPC USB transfer |
| * erratum. However, the current firmware (version 2) doesn't |
| * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the |
| * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround |
| * this issue. |
| * |
| * For the GS_USB_BREQ_DATA_BITTIMING USB control message the |
| * CANtact Pro firmware uses a request value, which is already |
| * used by the candleLight firmware for a different purpose |
| * (GS_USB_BREQ_GET_USER_ID). Set the feature |
| * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this |
| * issue. |
| */ |
| if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) && |
| dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) && |
| dev->udev->manufacturer && dev->udev->product && |
| !strcmp(dev->udev->manufacturer, "LinkLayer Labs") && |
| !strcmp(dev->udev->product, "CANtact Pro") && |
| (le32_to_cpu(dconf->sw_version) <= 2)) |
| dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX | |
| GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO; |
| |
| /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */ |
| if (!(le32_to_cpu(dconf->sw_version) > 1 && |
| feature & GS_CAN_FEATURE_IDENTIFY)) |
| dev->feature &= ~GS_CAN_FEATURE_IDENTIFY; |
| |
| /* fetch extended bit timing constants if device has feature |
| * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT |
| */ |
| if (feature & GS_CAN_FEATURE_FD && |
| feature & GS_CAN_FEATURE_BT_CONST_EXT) { |
| rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, |
| GS_USB_BREQ_BT_CONST_EXT, |
| USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| channel, 0, &bt_const_extended, |
| sizeof(bt_const_extended), |
| 1000, GFP_KERNEL); |
| if (rc) { |
| dev_err(&intf->dev, |
| "Couldn't get extended bit timing const for channel %d (%pe)\n", |
| channel, ERR_PTR(rc)); |
| goto out_free_candev; |
| } |
| |
| strcpy(dev->data_bt_const.name, KBUILD_MODNAME); |
| dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min); |
| dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max); |
| dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min); |
| dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max); |
| dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max); |
| dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min); |
| dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max); |
| dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc); |
| |
| dev->can.data_bittiming_const = &dev->data_bt_const; |
| } |
| |
| SET_NETDEV_DEV(netdev, &intf->dev); |
| |
| rc = register_candev(dev->netdev); |
| if (rc) { |
| dev_err(&intf->dev, |
| "Couldn't register candev for channel %d (%pe)\n", |
| channel, ERR_PTR(rc)); |
| goto out_free_candev; |
| } |
| |
| return dev; |
| |
| out_free_candev: |
| free_candev(dev->netdev); |
| return ERR_PTR(rc); |
| } |
| |
| static void gs_destroy_candev(struct gs_can *dev) |
| { |
| unregister_candev(dev->netdev); |
| usb_kill_anchored_urbs(&dev->tx_submitted); |
| free_candev(dev->netdev); |
| } |
| |
| static int gs_usb_probe(struct usb_interface *intf, |
| const struct usb_device_id *id) |
| { |
| struct usb_device *udev = interface_to_usbdev(intf); |
| struct gs_host_frame *hf; |
| struct gs_usb *dev; |
| struct gs_host_config hconf = { |
| .byte_order = cpu_to_le32(0x0000beef), |
| }; |
| struct gs_device_config dconf; |
| unsigned int icount, i; |
| int rc; |
| |
| /* send host config */ |
| rc = usb_control_msg_send(udev, 0, |
| GS_USB_BREQ_HOST_FORMAT, |
| USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| 1, intf->cur_altsetting->desc.bInterfaceNumber, |
| &hconf, sizeof(hconf), 1000, |
| GFP_KERNEL); |
| if (rc) { |
| dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc); |
| return rc; |
| } |
| |
| /* read device config */ |
| rc = usb_control_msg_recv(udev, 0, |
| GS_USB_BREQ_DEVICE_CONFIG, |
| USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, |
| 1, intf->cur_altsetting->desc.bInterfaceNumber, |
| &dconf, sizeof(dconf), 1000, |
| GFP_KERNEL); |
| if (rc) { |
| dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n", |
| rc); |
| return rc; |
| } |
| |
| icount = dconf.icount + 1; |
| dev_info(&intf->dev, "Configuring for %u interfaces\n", icount); |
| |
| if (icount > GS_MAX_INTF) { |
| dev_err(&intf->dev, |
| "Driver cannot handle more that %u CAN interfaces\n", |
| GS_MAX_INTF); |
| return -EINVAL; |
| } |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) |
| return -ENOMEM; |
| |
| init_usb_anchor(&dev->rx_submitted); |
| |
| usb_set_intfdata(intf, dev); |
| dev->udev = udev; |
| |
| for (i = 0; i < icount; i++) { |
| unsigned int hf_size_rx = 0; |
| |
| dev->canch[i] = gs_make_candev(i, intf, &dconf); |
| if (IS_ERR_OR_NULL(dev->canch[i])) { |
| /* save error code to return later */ |
| rc = PTR_ERR(dev->canch[i]); |
| |
| /* on failure destroy previously created candevs */ |
| icount = i; |
| for (i = 0; i < icount; i++) |
| gs_destroy_candev(dev->canch[i]); |
| |
| usb_kill_anchored_urbs(&dev->rx_submitted); |
| kfree(dev); |
| return rc; |
| } |
| dev->canch[i]->parent = dev; |
| |
| /* set RX packet size based on FD and if hardware |
| * timestamps are supported. |
| */ |
| if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) { |
| if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) |
| hf_size_rx = struct_size(hf, canfd_ts, 1); |
| else |
| hf_size_rx = struct_size(hf, canfd, 1); |
| } else { |
| if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) |
| hf_size_rx = struct_size(hf, classic_can_ts, 1); |
| else |
| hf_size_rx = struct_size(hf, classic_can, 1); |
| } |
| dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx); |
| } |
| |
| return 0; |
| } |
| |
| static void gs_usb_disconnect(struct usb_interface *intf) |
| { |
| struct gs_usb *dev = usb_get_intfdata(intf); |
| unsigned int i; |
| |
| usb_set_intfdata(intf, NULL); |
| |
| if (!dev) { |
| dev_err(&intf->dev, "Disconnect (nodata)\n"); |
| return; |
| } |
| |
| for (i = 0; i < GS_MAX_INTF; i++) |
| if (dev->canch[i]) |
| gs_destroy_candev(dev->canch[i]); |
| |
| usb_kill_anchored_urbs(&dev->rx_submitted); |
| kfree(dev); |
| } |
| |
| static const struct usb_device_id gs_usb_table[] = { |
| { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID, |
| USB_GS_USB_1_PRODUCT_ID, 0) }, |
| { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID, |
| USB_CANDLELIGHT_PRODUCT_ID, 0) }, |
| { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID, |
| USB_CES_CANEXT_FD_PRODUCT_ID, 0) }, |
| { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID, |
| USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) }, |
| {} /* Terminating entry */ |
| }; |
| |
| MODULE_DEVICE_TABLE(usb, gs_usb_table); |
| |
| static struct usb_driver gs_usb_driver = { |
| .name = KBUILD_MODNAME, |
| .probe = gs_usb_probe, |
| .disconnect = gs_usb_disconnect, |
| .id_table = gs_usb_table, |
| }; |
| |
| module_usb_driver(gs_usb_driver); |
| |
| MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>"); |
| MODULE_DESCRIPTION( |
| "Socket CAN device driver for Geschwister Schneider Technologie-, " |
| "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n" |
| "and bytewerk.org candleLight USB CAN interfaces."); |
| MODULE_LICENSE("GPL v2"); |