blob: 24da335482d42173525e67826e33168ad32706d6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <test_progs.h>
#include <bpf/btf.h>
static int duration = 0;
void btf_dump_printf(void *ctx, const char *fmt, va_list args)
{
vfprintf(ctx, fmt, args);
}
static struct btf_dump_test_case {
const char *name;
const char *file;
bool known_ptr_sz;
} btf_dump_test_cases[] = {
{"btf_dump: syntax", "btf_dump_test_case_syntax", true},
{"btf_dump: ordering", "btf_dump_test_case_ordering", false},
{"btf_dump: padding", "btf_dump_test_case_padding", true},
{"btf_dump: packing", "btf_dump_test_case_packing", true},
{"btf_dump: bitfields", "btf_dump_test_case_bitfields", true},
{"btf_dump: multidim", "btf_dump_test_case_multidim", false},
{"btf_dump: namespacing", "btf_dump_test_case_namespacing", false},
};
static int btf_dump_all_types(const struct btf *btf, void *ctx)
{
size_t type_cnt = btf__type_cnt(btf);
struct btf_dump *d;
int err = 0, id;
d = btf_dump__new(btf, btf_dump_printf, ctx, NULL);
err = libbpf_get_error(d);
if (err)
return err;
for (id = 1; id < type_cnt; id++) {
err = btf_dump__dump_type(d, id);
if (err)
goto done;
}
done:
btf_dump__free(d);
return err;
}
static int test_btf_dump_case(int n, struct btf_dump_test_case *t)
{
char test_file[256], out_file[256], diff_cmd[1024];
struct btf *btf = NULL;
int err = 0, fd = -1;
FILE *f = NULL;
snprintf(test_file, sizeof(test_file), "%s.bpf.o", t->file);
btf = btf__parse_elf(test_file, NULL);
if (!ASSERT_OK_PTR(btf, "btf_parse_elf")) {
err = -PTR_ERR(btf);
btf = NULL;
goto done;
}
/* tests with t->known_ptr_sz have no "long" or "unsigned long" type,
* so it's impossible to determine correct pointer size; but if they
* do, it should be 8 regardless of host architecture, becaues BPF
* target is always 64-bit
*/
if (!t->known_ptr_sz) {
btf__set_pointer_size(btf, 8);
} else {
CHECK(btf__pointer_size(btf) != 8, "ptr_sz", "exp %d, got %zu\n",
8, btf__pointer_size(btf));
}
snprintf(out_file, sizeof(out_file), "/tmp/%s.output.XXXXXX", t->file);
fd = mkstemp(out_file);
if (!ASSERT_GE(fd, 0, "create_tmp")) {
err = fd;
goto done;
}
f = fdopen(fd, "w");
if (CHECK(f == NULL, "open_tmp", "failed to open file: %s(%d)\n",
strerror(errno), errno)) {
close(fd);
goto done;
}
err = btf_dump_all_types(btf, f);
fclose(f);
close(fd);
if (CHECK(err, "btf_dump", "failure during C dumping: %d\n", err)) {
goto done;
}
snprintf(test_file, sizeof(test_file), "progs/%s.c", t->file);
if (access(test_file, R_OK) == -1)
/*
* When the test is run with O=, kselftest copies TEST_FILES
* without preserving the directory structure.
*/
snprintf(test_file, sizeof(test_file), "%s.c", t->file);
/*
* Diff test output and expected test output, contained between
* START-EXPECTED-OUTPUT and END-EXPECTED-OUTPUT lines in test case.
* For expected output lines, everything before '*' is stripped out.
* Also lines containing comment start and comment end markers are
* ignored.
*/
snprintf(diff_cmd, sizeof(diff_cmd),
"awk '/START-EXPECTED-OUTPUT/{out=1;next} "
"/END-EXPECTED-OUTPUT/{out=0} "
"/\\/\\*|\\*\\//{next} " /* ignore comment start/end lines */
"out {sub(/^[ \\t]*\\*/, \"\"); print}' '%s' | diff -u - '%s'",
test_file, out_file);
err = system(diff_cmd);
if (CHECK(err, "diff",
"differing test output, output=%s, err=%d, diff cmd:\n%s\n",
out_file, err, diff_cmd))
goto done;
remove(out_file);
done:
btf__free(btf);
return err;
}
static char *dump_buf;
static size_t dump_buf_sz;
static FILE *dump_buf_file;
static void test_btf_dump_incremental(void)
{
struct btf *btf = NULL;
struct btf_dump *d = NULL;
int id, err, i;
dump_buf_file = open_memstream(&dump_buf, &dump_buf_sz);
if (!ASSERT_OK_PTR(dump_buf_file, "dump_memstream"))
return;
btf = btf__new_empty();
if (!ASSERT_OK_PTR(btf, "new_empty"))
goto err_out;
d = btf_dump__new(btf, btf_dump_printf, dump_buf_file, NULL);
if (!ASSERT_OK(libbpf_get_error(d), "btf_dump__new"))
goto err_out;
/* First, generate BTF corresponding to the following C code:
*
* enum x;
*
* enum x { X = 1 };
*
* enum { Y = 1 };
*
* struct s;
*
* struct s { int x; };
*
*/
id = btf__add_enum(btf, "x", 4);
ASSERT_EQ(id, 1, "enum_declaration_id");
id = btf__add_enum(btf, "x", 4);
ASSERT_EQ(id, 2, "named_enum_id");
err = btf__add_enum_value(btf, "X", 1);
ASSERT_OK(err, "named_enum_val_ok");
id = btf__add_enum(btf, NULL, 4);
ASSERT_EQ(id, 3, "anon_enum_id");
err = btf__add_enum_value(btf, "Y", 1);
ASSERT_OK(err, "anon_enum_val_ok");
id = btf__add_int(btf, "int", 4, BTF_INT_SIGNED);
ASSERT_EQ(id, 4, "int_id");
id = btf__add_fwd(btf, "s", BTF_FWD_STRUCT);
ASSERT_EQ(id, 5, "fwd_id");
id = btf__add_struct(btf, "s", 4);
ASSERT_EQ(id, 6, "struct_id");
err = btf__add_field(btf, "x", 4, 0, 0);
ASSERT_OK(err, "field_ok");
for (i = 1; i < btf__type_cnt(btf); i++) {
err = btf_dump__dump_type(d, i);
ASSERT_OK(err, "dump_type_ok");
}
fflush(dump_buf_file);
dump_buf[dump_buf_sz] = 0; /* some libc implementations don't do this */
ASSERT_STREQ(dump_buf,
"enum x;\n"
"\n"
"enum x {\n"
" X = 1,\n"
"};\n"
"\n"
"enum {\n"
" Y = 1,\n"
"};\n"
"\n"
"struct s;\n"
"\n"
"struct s {\n"
" int x;\n"
"};\n\n", "c_dump1");
/* Now, after dumping original BTF, append another struct that embeds
* anonymous enum. It also has a name conflict with the first struct:
*
* struct s___2 {
* enum { VAL___2 = 1 } x;
* struct s s;
* };
*
* This will test that btf_dump'er maintains internal state properly.
* Note that VAL___2 enum value. It's because we've already emitted
* that enum as a global anonymous enum, so btf_dump will ensure that
* enum values don't conflict;
*
*/
fseek(dump_buf_file, 0, SEEK_SET);
id = btf__add_struct(btf, "s", 4);
ASSERT_EQ(id, 7, "struct_id");
err = btf__add_field(btf, "x", 2, 0, 0);
ASSERT_OK(err, "field_ok");
err = btf__add_field(btf, "y", 3, 32, 0);
ASSERT_OK(err, "field_ok");
err = btf__add_field(btf, "s", 6, 64, 0);
ASSERT_OK(err, "field_ok");
for (i = 1; i < btf__type_cnt(btf); i++) {
err = btf_dump__dump_type(d, i);
ASSERT_OK(err, "dump_type_ok");
}
fflush(dump_buf_file);
dump_buf[dump_buf_sz] = 0; /* some libc implementations don't do this */
ASSERT_STREQ(dump_buf,
"struct s___2 {\n"
" enum x x;\n"
" enum {\n"
" Y___2 = 1,\n"
" } y;\n"
" struct s s;\n"
"};\n\n" , "c_dump1");
err_out:
fclose(dump_buf_file);
free(dump_buf);
btf_dump__free(d);
btf__free(btf);
}
#define STRSIZE 4096
static void btf_dump_snprintf(void *ctx, const char *fmt, va_list args)
{
char *s = ctx, new[STRSIZE];
vsnprintf(new, STRSIZE, fmt, args);
if (strlen(s) < STRSIZE)
strncat(s, new, STRSIZE - strlen(s) - 1);
}
static int btf_dump_data(struct btf *btf, struct btf_dump *d,
char *name, char *prefix, __u64 flags, void *ptr,
size_t ptr_sz, char *str, const char *expected_val)
{
DECLARE_LIBBPF_OPTS(btf_dump_type_data_opts, opts);
size_t type_sz;
__s32 type_id;
int ret = 0;
if (flags & BTF_F_COMPACT)
opts.compact = true;
if (flags & BTF_F_NONAME)
opts.skip_names = true;
if (flags & BTF_F_ZERO)
opts.emit_zeroes = true;
if (prefix) {
ASSERT_STRNEQ(name, prefix, strlen(prefix),
"verify prefix match");
name += strlen(prefix) + 1;
}
type_id = btf__find_by_name(btf, name);
if (!ASSERT_GE(type_id, 0, "find type id"))
return -ENOENT;
type_sz = btf__resolve_size(btf, type_id);
str[0] = '\0';
ret = btf_dump__dump_type_data(d, type_id, ptr, ptr_sz, &opts);
if (type_sz <= ptr_sz) {
if (!ASSERT_EQ(ret, type_sz, "failed/unexpected type_sz"))
return -EINVAL;
} else {
if (!ASSERT_EQ(ret, -E2BIG, "failed to return -E2BIG"))
return -EINVAL;
}
if (!ASSERT_STREQ(str, expected_val, "ensure expected/actual match"))
return -EFAULT;
return 0;
}
#define TEST_BTF_DUMP_DATA(_b, _d, _prefix, _str, _type, _flags, \
_expected, ...) \
do { \
char __ptrtype[64] = #_type; \
char *_ptrtype = (char *)__ptrtype; \
_type _ptrdata = __VA_ARGS__; \
void *_ptr = &_ptrdata; \
\
(void) btf_dump_data(_b, _d, _ptrtype, _prefix, _flags, \
_ptr, sizeof(_type), _str, \
_expected); \
} while (0)
/* Use where expected data string matches its stringified declaration */
#define TEST_BTF_DUMP_DATA_C(_b, _d, _prefix, _str, _type, _flags, \
...) \
TEST_BTF_DUMP_DATA(_b, _d, _prefix, _str, _type, _flags, \
"(" #_type ")" #__VA_ARGS__, __VA_ARGS__)
/* overflow test; pass typesize < expected type size, ensure E2BIG returned */
#define TEST_BTF_DUMP_DATA_OVER(_b, _d, _prefix, _str, _type, _type_sz, \
_expected, ...) \
do { \
char __ptrtype[64] = #_type; \
char *_ptrtype = (char *)__ptrtype; \
_type _ptrdata = __VA_ARGS__; \
void *_ptr = &_ptrdata; \
\
(void) btf_dump_data(_b, _d, _ptrtype, _prefix, 0, \
_ptr, _type_sz, _str, _expected); \
} while (0)
#define TEST_BTF_DUMP_VAR(_b, _d, _prefix, _str, _var, _type, _flags, \
_expected, ...) \
do { \
_type _ptrdata = __VA_ARGS__; \
void *_ptr = &_ptrdata; \
\
(void) btf_dump_data(_b, _d, _var, _prefix, _flags, \
_ptr, sizeof(_type), _str, \
_expected); \
} while (0)
static void test_btf_dump_int_data(struct btf *btf, struct btf_dump *d,
char *str)
{
#ifdef __SIZEOF_INT128__
unsigned __int128 i = 0xffffffffffffffff;
/* this dance is required because we cannot directly initialize
* a 128-bit value to anything larger than a 64-bit value.
*/
i = (i << 64) | (i - 1);
#endif
/* simple int */
TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, int, BTF_F_COMPACT, 1234);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_NONAME,
"1234", 1234);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, 0, "(int)1234", 1234);
/* zero value should be printed at toplevel */
TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT, "(int)0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_NONAME,
"0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_ZERO,
"(int)0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, int,
BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO,
"0", 0);
TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, int, BTF_F_COMPACT, -4567);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_NONAME,
"-4567", -4567);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, 0, "(int)-4567", -4567);
TEST_BTF_DUMP_DATA_OVER(btf, d, NULL, str, int, sizeof(int)-1, "", 1);
#ifdef __SIZEOF_INT128__
/* gcc encode unsigned __int128 type with name "__int128 unsigned" in dwarf,
* and clang encode it with name "unsigned __int128" in dwarf.
* Do an availability test for either variant before doing actual test.
*/
if (btf__find_by_name(btf, "unsigned __int128") > 0) {
TEST_BTF_DUMP_DATA(btf, d, NULL, str, unsigned __int128, BTF_F_COMPACT,
"(unsigned __int128)0xffffffffffffffff",
0xffffffffffffffff);
ASSERT_OK(btf_dump_data(btf, d, "unsigned __int128", NULL, 0, &i, 16, str,
"(unsigned __int128)0xfffffffffffffffffffffffffffffffe"),
"dump unsigned __int128");
} else if (btf__find_by_name(btf, "__int128 unsigned") > 0) {
TEST_BTF_DUMP_DATA(btf, d, NULL, str, __int128 unsigned, BTF_F_COMPACT,
"(__int128 unsigned)0xffffffffffffffff",
0xffffffffffffffff);
ASSERT_OK(btf_dump_data(btf, d, "__int128 unsigned", NULL, 0, &i, 16, str,
"(__int128 unsigned)0xfffffffffffffffffffffffffffffffe"),
"dump unsigned __int128");
} else {
ASSERT_TRUE(false, "unsigned_int128_not_found");
}
#endif
}
static void test_btf_dump_float_data(struct btf *btf, struct btf_dump *d,
char *str)
{
float t1 = 1.234567;
float t2 = -1.234567;
float t3 = 0.0;
double t4 = 5.678912;
double t5 = -5.678912;
double t6 = 0.0;
long double t7 = 9.876543;
long double t8 = -9.876543;
long double t9 = 0.0;
/* since the kernel does not likely have any float types in its BTF, we
* will need to add some of various sizes.
*/
ASSERT_GT(btf__add_float(btf, "test_float", 4), 0, "add float");
ASSERT_OK(btf_dump_data(btf, d, "test_float", NULL, 0, &t1, 4, str,
"(test_float)1.234567"), "dump float");
ASSERT_OK(btf_dump_data(btf, d, "test_float", NULL, 0, &t2, 4, str,
"(test_float)-1.234567"), "dump float");
ASSERT_OK(btf_dump_data(btf, d, "test_float", NULL, 0, &t3, 4, str,
"(test_float)0.000000"), "dump float");
ASSERT_GT(btf__add_float(btf, "test_double", 8), 0, "add_double");
ASSERT_OK(btf_dump_data(btf, d, "test_double", NULL, 0, &t4, 8, str,
"(test_double)5.678912"), "dump double");
ASSERT_OK(btf_dump_data(btf, d, "test_double", NULL, 0, &t5, 8, str,
"(test_double)-5.678912"), "dump double");
ASSERT_OK(btf_dump_data(btf, d, "test_double", NULL, 0, &t6, 8, str,
"(test_double)0.000000"), "dump double");
ASSERT_GT(btf__add_float(btf, "test_long_double", 16), 0, "add long double");
ASSERT_OK(btf_dump_data(btf, d, "test_long_double", NULL, 0, &t7, 16,
str, "(test_long_double)9.876543"),
"dump long_double");
ASSERT_OK(btf_dump_data(btf, d, "test_long_double", NULL, 0, &t8, 16,
str, "(test_long_double)-9.876543"),
"dump long_double");
ASSERT_OK(btf_dump_data(btf, d, "test_long_double", NULL, 0, &t9, 16,
str, "(test_long_double)0.000000"),
"dump long_double");
}
static void test_btf_dump_char_data(struct btf *btf, struct btf_dump *d,
char *str)
{
/* simple char */
TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, char, BTF_F_COMPACT, 100);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT | BTF_F_NONAME,
"100", 100);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, 0, "(char)100", 100);
/* zero value should be printed at toplevel */
TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT,
"(char)0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT | BTF_F_NONAME,
"0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT | BTF_F_ZERO,
"(char)0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO,
"0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, 0, "(char)0", 0);
TEST_BTF_DUMP_DATA_OVER(btf, d, NULL, str, char, sizeof(char)-1, "", 100);
}
static void test_btf_dump_typedef_data(struct btf *btf, struct btf_dump *d,
char *str)
{
/* simple typedef */
TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, uint64_t, BTF_F_COMPACT, 100);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT | BTF_F_NONAME,
"1", 1);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, 0, "(u64)1", 1);
/* zero value should be printed at toplevel */
TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT, "(u64)0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT | BTF_F_NONAME,
"0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT | BTF_F_ZERO,
"(u64)0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64,
BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO,
"0", 0);
TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, 0, "(u64)0", 0);
/* typedef struct */
TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, atomic_t, BTF_F_COMPACT,
{.counter = (int)1,});
TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT | BTF_F_NONAME,
"{1,}", { .counter = 1 });
TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, 0,
"(atomic_t){\n"
" .counter = (int)1,\n"
"}",
{.counter = 1,});
/* typedef with 0 value should be printed at toplevel */
TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT, "(atomic_t){}",
{.counter = 0,});
TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT | BTF_F_NONAME,
"{}", {.counter = 0,});
TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, 0,
"(atomic_t){\n"
"}",
{.counter = 0,});
TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT | BTF_F_ZERO,
"(atomic_t){.counter = (int)0,}",
{.counter = 0,});
TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t,
BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO,
"{0,}", {.counter = 0,});
TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_ZERO,
"(atomic_t){\n"
" .counter = (int)0,\n"
"}",
{ .counter = 0,});
/* overflow should show type but not value since it overflows */
TEST_BTF_DUMP_DATA_OVER(btf, d, NULL, str, atomic_t, sizeof(atomic_t)-1,
"(atomic_t){\n", { .counter = 1});
}
static void test_btf_dump_enum_data(struct btf *btf, struct btf_dump *d,
char *str)
{
/* enum where enum value does (and does not) exist */
TEST_BTF_DUMP_DATA_C(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT,
BPF_MAP_CREATE);
TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT,
"(enum bpf_cmd)BPF_MAP_CREATE", 0);
TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd,
BTF_F_COMPACT | BTF_F_NONAME,
"BPF_MAP_CREATE",
BPF_MAP_CREATE);
TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, 0,
"(enum bpf_cmd)BPF_MAP_CREATE",
BPF_MAP_CREATE);
TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd,
BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO,
"BPF_MAP_CREATE", 0);
TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd,
BTF_F_COMPACT | BTF_F_ZERO,
"(enum bpf_cmd)BPF_MAP_CREATE",
BPF_MAP_CREATE);
TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd,
BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO,
"BPF_MAP_CREATE", BPF_MAP_CREATE);
TEST_BTF_DUMP_DATA_C(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT, 2000);
TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd,
BTF_F_COMPACT | BTF_F_NONAME,
"2000", 2000);
TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, 0,
"(enum bpf_cmd)2000", 2000);
TEST_BTF_DUMP_DATA_OVER(btf, d, "enum", str, enum bpf_cmd,
sizeof(enum bpf_cmd) - 1, "", BPF_MAP_CREATE);
}
static void test_btf_dump_struct_data(struct btf *btf, struct btf_dump *d,
char *str)
{
DECLARE_LIBBPF_OPTS(btf_dump_type_data_opts, opts);
char zero_data[512] = { };
char type_data[512];
void *fops = type_data;
void *skb = type_data;
size_t type_sz;
__s32 type_id;
char *cmpstr;
int ret;
memset(type_data, 255, sizeof(type_data));
/* simple struct */
TEST_BTF_DUMP_DATA_C(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT,
{.name_off = (__u32)3,.val = (__s32)-1,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum,
BTF_F_COMPACT | BTF_F_NONAME,
"{3,-1,}",
{ .name_off = 3, .val = -1,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, 0,
"(struct btf_enum){\n"
" .name_off = (__u32)3,\n"
" .val = (__s32)-1,\n"
"}",
{ .name_off = 3, .val = -1,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum,
BTF_F_COMPACT | BTF_F_NONAME,
"{-1,}",
{ .name_off = 0, .val = -1,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum,
BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO,
"{0,-1,}",
{ .name_off = 0, .val = -1,});
/* empty struct should be printed */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT,
"(struct btf_enum){}",
{ .name_off = 0, .val = 0,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum,
BTF_F_COMPACT | BTF_F_NONAME,
"{}",
{ .name_off = 0, .val = 0,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, 0,
"(struct btf_enum){\n"
"}",
{ .name_off = 0, .val = 0,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum,
BTF_F_COMPACT | BTF_F_ZERO,
"(struct btf_enum){.name_off = (__u32)0,.val = (__s32)0,}",
{ .name_off = 0, .val = 0,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum,
BTF_F_ZERO,
"(struct btf_enum){\n"
" .name_off = (__u32)0,\n"
" .val = (__s32)0,\n"
"}",
{ .name_off = 0, .val = 0,});
/* struct with pointers */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct list_head, BTF_F_COMPACT,
"(struct list_head){.next = (struct list_head *)0x1,}",
{ .next = (struct list_head *)1 });
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct list_head, 0,
"(struct list_head){\n"
" .next = (struct list_head *)0x1,\n"
"}",
{ .next = (struct list_head *)1 });
/* NULL pointer should not be displayed */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct list_head, BTF_F_COMPACT,
"(struct list_head){}",
{ .next = (struct list_head *)0 });
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct list_head, 0,
"(struct list_head){\n"
"}",
{ .next = (struct list_head *)0 });
/* struct with function pointers */
type_id = btf__find_by_name(btf, "file_operations");
if (ASSERT_GT(type_id, 0, "find type id")) {
type_sz = btf__resolve_size(btf, type_id);
str[0] = '\0';
ret = btf_dump__dump_type_data(d, type_id, fops, type_sz, &opts);
ASSERT_EQ(ret, type_sz,
"unexpected return value dumping file_operations");
cmpstr =
"(struct file_operations){\n"
" .owner = (struct module *)0xffffffffffffffff,\n"
" .llseek = (loff_t (*)(struct file *, loff_t, int))0xffffffffffffffff,";
ASSERT_STRNEQ(str, cmpstr, strlen(cmpstr), "file_operations");
}
/* struct with char array */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, BTF_F_COMPACT,
"(struct bpf_prog_info){.name = (char[16])['f','o','o',],}",
{ .name = "foo",});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info,
BTF_F_COMPACT | BTF_F_NONAME,
"{['f','o','o',],}",
{.name = "foo",});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, 0,
"(struct bpf_prog_info){\n"
" .name = (char[16])[\n"
" 'f',\n"
" 'o',\n"
" 'o',\n"
" ],\n"
"}",
{.name = "foo",});
/* leading null char means do not display string */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, BTF_F_COMPACT,
"(struct bpf_prog_info){}",
{.name = {'\0', 'f', 'o', 'o'}});
/* handle non-printable characters */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, BTF_F_COMPACT,
"(struct bpf_prog_info){.name = (char[16])[1,2,3,],}",
{ .name = {1, 2, 3, 0}});
/* struct with non-char array */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, BTF_F_COMPACT,
"(struct __sk_buff){.cb = (__u32[5])[1,2,3,4,5,],}",
{ .cb = {1, 2, 3, 4, 5,},});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff,
BTF_F_COMPACT | BTF_F_NONAME,
"{[1,2,3,4,5,],}",
{ .cb = { 1, 2, 3, 4, 5},});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, 0,
"(struct __sk_buff){\n"
" .cb = (__u32[5])[\n"
" 1,\n"
" 2,\n"
" 3,\n"
" 4,\n"
" 5,\n"
" ],\n"
"}",
{ .cb = { 1, 2, 3, 4, 5},});
/* For non-char, arrays, show non-zero values only */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, BTF_F_COMPACT,
"(struct __sk_buff){.cb = (__u32[5])[0,0,1,0,0,],}",
{ .cb = { 0, 0, 1, 0, 0},});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, 0,
"(struct __sk_buff){\n"
" .cb = (__u32[5])[\n"
" 0,\n"
" 0,\n"
" 1,\n"
" 0,\n"
" 0,\n"
" ],\n"
"}",
{ .cb = { 0, 0, 1, 0, 0},});
/* struct with bitfields */
TEST_BTF_DUMP_DATA_C(btf, d, "struct", str, struct bpf_insn, BTF_F_COMPACT,
{.code = (__u8)1,.dst_reg = (__u8)0x2,.src_reg = (__u8)0x3,.off = (__s16)4,.imm = (__s32)5,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_insn,
BTF_F_COMPACT | BTF_F_NONAME,
"{1,0x2,0x3,4,5,}",
{ .code = 1, .dst_reg = 0x2, .src_reg = 0x3, .off = 4,
.imm = 5,});
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_insn, 0,
"(struct bpf_insn){\n"
" .code = (__u8)1,\n"
" .dst_reg = (__u8)0x2,\n"
" .src_reg = (__u8)0x3,\n"
" .off = (__s16)4,\n"
" .imm = (__s32)5,\n"
"}",
{.code = 1, .dst_reg = 2, .src_reg = 3, .off = 4, .imm = 5});
/* zeroed bitfields should not be displayed */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_insn, BTF_F_COMPACT,
"(struct bpf_insn){.dst_reg = (__u8)0x1,}",
{ .code = 0, .dst_reg = 1});
/* struct with enum bitfield */
type_id = btf__find_by_name(btf, "fs_context");
if (ASSERT_GT(type_id, 0, "find fs_context")) {
type_sz = btf__resolve_size(btf, type_id);
str[0] = '\0';
opts.emit_zeroes = true;
ret = btf_dump__dump_type_data(d, type_id, zero_data, type_sz, &opts);
ASSERT_EQ(ret, type_sz,
"unexpected return value dumping fs_context");
ASSERT_NEQ(strstr(str, "FS_CONTEXT_FOR_MOUNT"), NULL,
"bitfield value not present");
}
/* struct with nested anon union */
TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_sock_ops, BTF_F_COMPACT,
"(struct bpf_sock_ops){.op = (__u32)1,(union){.args = (__u32[4])[1,2,3,4,],.reply = (__u32)1,.replylong = (__u32[4])[1,2,3,4,],},}",
{ .op = 1, .args = { 1, 2, 3, 4}});
/* union with nested struct */
TEST_BTF_DUMP_DATA(btf, d, "union", str, union bpf_iter_link_info, BTF_F_COMPACT,
"(union bpf_iter_link_info){.map = (struct){.map_fd = (__u32)1,},.cgroup = (struct){.order = (enum bpf_cgroup_iter_order)BPF_CGROUP_ITER_SELF_ONLY,.cgroup_fd = (__u32)1,},.task = (struct){.tid = (__u32)1,.pid = (__u32)1,},}",
{ .cgroup = { .order = 1, .cgroup_fd = 1, }});
/* struct skb with nested structs/unions; because type output is so
* complex, we don't do a string comparison, just verify we return
* the type size as the amount of data displayed.
*/
type_id = btf__find_by_name(btf, "sk_buff");
if (ASSERT_GT(type_id, 0, "find struct sk_buff")) {
type_sz = btf__resolve_size(btf, type_id);
str[0] = '\0';
ret = btf_dump__dump_type_data(d, type_id, skb, type_sz, &opts);
ASSERT_EQ(ret, type_sz,
"unexpected return value dumping sk_buff");
}
/* overflow bpf_sock_ops struct with final element nonzero/zero.
* Regardless of the value of the final field, we don't have all the
* data we need to display it, so we should trigger an overflow.
* In other words overflow checking should trump "is field zero?"
* checks because if we've overflowed, it shouldn't matter what the
* field is - we can't trust its value so shouldn't display it.
*/
TEST_BTF_DUMP_DATA_OVER(btf, d, "struct", str, struct bpf_sock_ops,
sizeof(struct bpf_sock_ops) - 1,
"(struct bpf_sock_ops){\n\t.op = (__u32)1,\n",
{ .op = 1, .skb_tcp_flags = 2});
TEST_BTF_DUMP_DATA_OVER(btf, d, "struct", str, struct bpf_sock_ops,
sizeof(struct bpf_sock_ops) - 1,
"(struct bpf_sock_ops){\n\t.op = (__u32)1,\n",
{ .op = 1, .skb_tcp_flags = 0});
}
static void test_btf_dump_var_data(struct btf *btf, struct btf_dump *d,
char *str)
{
#if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__)
TEST_BTF_DUMP_VAR(btf, d, NULL, str, "cpu_number", int, BTF_F_COMPACT,
"int cpu_number = (int)100", 100);
#endif
TEST_BTF_DUMP_VAR(btf, d, NULL, str, "cpu_profile_flip", int, BTF_F_COMPACT,
"static int cpu_profile_flip = (int)2", 2);
}
static void test_btf_datasec(struct btf *btf, struct btf_dump *d, char *str,
const char *name, const char *expected_val,
void *data, size_t data_sz)
{
DECLARE_LIBBPF_OPTS(btf_dump_type_data_opts, opts);
int ret = 0, cmp;
size_t secsize;
__s32 type_id;
opts.compact = true;
type_id = btf__find_by_name(btf, name);
if (!ASSERT_GT(type_id, 0, "find type id"))
return;
secsize = btf__resolve_size(btf, type_id);
ASSERT_EQ(secsize, 0, "verify section size");
str[0] = '\0';
ret = btf_dump__dump_type_data(d, type_id, data, data_sz, &opts);
ASSERT_EQ(ret, 0, "unexpected return value");
cmp = strcmp(str, expected_val);
ASSERT_EQ(cmp, 0, "ensure expected/actual match");
}
static void test_btf_dump_datasec_data(char *str)
{
struct btf *btf;
char license[4] = "GPL";
struct btf_dump *d;
btf = btf__parse("xdping_kern.bpf.o", NULL);
if (!ASSERT_OK_PTR(btf, "xdping_kern.bpf.o BTF not found"))
return;
d = btf_dump__new(btf, btf_dump_snprintf, str, NULL);
if (!ASSERT_OK_PTR(d, "could not create BTF dump"))
goto out;
test_btf_datasec(btf, d, str, "license",
"SEC(\"license\") char[4] _license = (char[4])['G','P','L',];",
license, sizeof(license));
out:
btf_dump__free(d);
btf__free(btf);
}
void test_btf_dump() {
char str[STRSIZE];
struct btf_dump *d;
struct btf *btf;
int i;
for (i = 0; i < ARRAY_SIZE(btf_dump_test_cases); i++) {
struct btf_dump_test_case *t = &btf_dump_test_cases[i];
if (!test__start_subtest(t->name))
continue;
test_btf_dump_case(i, &btf_dump_test_cases[i]);
}
if (test__start_subtest("btf_dump: incremental"))
test_btf_dump_incremental();
btf = libbpf_find_kernel_btf();
if (!ASSERT_OK_PTR(btf, "no kernel BTF found"))
return;
d = btf_dump__new(btf, btf_dump_snprintf, str, NULL);
if (!ASSERT_OK_PTR(d, "could not create BTF dump"))
return;
/* Verify type display for various types. */
if (test__start_subtest("btf_dump: int_data"))
test_btf_dump_int_data(btf, d, str);
if (test__start_subtest("btf_dump: float_data"))
test_btf_dump_float_data(btf, d, str);
if (test__start_subtest("btf_dump: char_data"))
test_btf_dump_char_data(btf, d, str);
if (test__start_subtest("btf_dump: typedef_data"))
test_btf_dump_typedef_data(btf, d, str);
if (test__start_subtest("btf_dump: enum_data"))
test_btf_dump_enum_data(btf, d, str);
if (test__start_subtest("btf_dump: struct_data"))
test_btf_dump_struct_data(btf, d, str);
if (test__start_subtest("btf_dump: var_data"))
test_btf_dump_var_data(btf, d, str);
btf_dump__free(d);
btf__free(btf);
if (test__start_subtest("btf_dump: datasec_data"))
test_btf_dump_datasec_data(str);
}