| // SPDX-License-Identifier: GPL-2.0 |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/prctl.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/sched/idle.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/init.h> |
| #include <linux/export.h> |
| #include <linux/pm.h> |
| #include <linux/tick.h> |
| #include <linux/random.h> |
| #include <linux/user-return-notifier.h> |
| #include <linux/dmi.h> |
| #include <linux/utsname.h> |
| #include <linux/stackprotector.h> |
| #include <linux/cpuidle.h> |
| #include <linux/acpi.h> |
| #include <linux/elf-randomize.h> |
| #include <trace/events/power.h> |
| #include <linux/hw_breakpoint.h> |
| #include <asm/cpu.h> |
| #include <asm/apic.h> |
| #include <linux/uaccess.h> |
| #include <asm/mwait.h> |
| #include <asm/fpu/internal.h> |
| #include <asm/debugreg.h> |
| #include <asm/nmi.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mce.h> |
| #include <asm/vm86.h> |
| #include <asm/switch_to.h> |
| #include <asm/desc.h> |
| #include <asm/prctl.h> |
| #include <asm/spec-ctrl.h> |
| #include <asm/io_bitmap.h> |
| #include <asm/proto.h> |
| #include <asm/frame.h> |
| |
| #include "process.h" |
| |
| /* |
| * per-CPU TSS segments. Threads are completely 'soft' on Linux, |
| * no more per-task TSS's. The TSS size is kept cacheline-aligned |
| * so they are allowed to end up in the .data..cacheline_aligned |
| * section. Since TSS's are completely CPU-local, we want them |
| * on exact cacheline boundaries, to eliminate cacheline ping-pong. |
| */ |
| __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { |
| .x86_tss = { |
| /* |
| * .sp0 is only used when entering ring 0 from a lower |
| * privilege level. Since the init task never runs anything |
| * but ring 0 code, there is no need for a valid value here. |
| * Poison it. |
| */ |
| .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, |
| |
| #ifdef CONFIG_X86_32 |
| .sp1 = TOP_OF_INIT_STACK, |
| |
| .ss0 = __KERNEL_DS, |
| .ss1 = __KERNEL_CS, |
| #endif |
| .io_bitmap_base = IO_BITMAP_OFFSET_INVALID, |
| }, |
| }; |
| EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); |
| |
| DEFINE_PER_CPU(bool, __tss_limit_invalid); |
| EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); |
| |
| /* |
| * this gets called so that we can store lazy state into memory and copy the |
| * current task into the new thread. |
| */ |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| { |
| memcpy(dst, src, arch_task_struct_size); |
| #ifdef CONFIG_VM86 |
| dst->thread.vm86 = NULL; |
| #endif |
| |
| return fpu__copy(dst, src); |
| } |
| |
| /* |
| * Free thread data structures etc.. |
| */ |
| void exit_thread(struct task_struct *tsk) |
| { |
| struct thread_struct *t = &tsk->thread; |
| struct fpu *fpu = &t->fpu; |
| |
| if (test_thread_flag(TIF_IO_BITMAP)) |
| io_bitmap_exit(tsk); |
| |
| free_vm86(t); |
| |
| fpu__drop(fpu); |
| } |
| |
| static int set_new_tls(struct task_struct *p, unsigned long tls) |
| { |
| struct user_desc __user *utls = (struct user_desc __user *)tls; |
| |
| if (in_ia32_syscall()) |
| return do_set_thread_area(p, -1, utls, 0); |
| else |
| return do_set_thread_area_64(p, ARCH_SET_FS, tls); |
| } |
| |
| int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg, |
| struct task_struct *p, unsigned long tls) |
| { |
| struct inactive_task_frame *frame; |
| struct fork_frame *fork_frame; |
| struct pt_regs *childregs; |
| int ret = 0; |
| |
| childregs = task_pt_regs(p); |
| fork_frame = container_of(childregs, struct fork_frame, regs); |
| frame = &fork_frame->frame; |
| |
| frame->bp = encode_frame_pointer(childregs); |
| frame->ret_addr = (unsigned long) ret_from_fork; |
| p->thread.sp = (unsigned long) fork_frame; |
| p->thread.io_bitmap = NULL; |
| memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); |
| |
| #ifdef CONFIG_X86_64 |
| current_save_fsgs(); |
| p->thread.fsindex = current->thread.fsindex; |
| p->thread.fsbase = current->thread.fsbase; |
| p->thread.gsindex = current->thread.gsindex; |
| p->thread.gsbase = current->thread.gsbase; |
| |
| savesegment(es, p->thread.es); |
| savesegment(ds, p->thread.ds); |
| #else |
| p->thread.sp0 = (unsigned long) (childregs + 1); |
| /* |
| * Clear all status flags including IF and set fixed bit. 64bit |
| * does not have this initialization as the frame does not contain |
| * flags. The flags consistency (especially vs. AC) is there |
| * ensured via objtool, which lacks 32bit support. |
| */ |
| frame->flags = X86_EFLAGS_FIXED; |
| #endif |
| |
| /* Kernel thread ? */ |
| if (unlikely(p->flags & PF_KTHREAD)) { |
| memset(childregs, 0, sizeof(struct pt_regs)); |
| kthread_frame_init(frame, sp, arg); |
| return 0; |
| } |
| |
| frame->bx = 0; |
| *childregs = *current_pt_regs(); |
| childregs->ax = 0; |
| if (sp) |
| childregs->sp = sp; |
| |
| #ifdef CONFIG_X86_32 |
| task_user_gs(p) = get_user_gs(current_pt_regs()); |
| #endif |
| |
| if (unlikely(p->flags & PF_IO_WORKER)) { |
| /* |
| * An IO thread is a user space thread, but it doesn't |
| * return to ret_after_fork(). |
| * |
| * In order to indicate that to tools like gdb, |
| * we reset the stack and instruction pointers. |
| * |
| * It does the same kernel frame setup to return to a kernel |
| * function that a kernel thread does. |
| */ |
| childregs->sp = 0; |
| childregs->ip = 0; |
| kthread_frame_init(frame, sp, arg); |
| return 0; |
| } |
| |
| /* Set a new TLS for the child thread? */ |
| if (clone_flags & CLONE_SETTLS) |
| ret = set_new_tls(p, tls); |
| |
| if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP))) |
| io_bitmap_share(p); |
| |
| return ret; |
| } |
| |
| void flush_thread(void) |
| { |
| struct task_struct *tsk = current; |
| |
| flush_ptrace_hw_breakpoint(tsk); |
| memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); |
| |
| fpu__clear_all(&tsk->thread.fpu); |
| } |
| |
| void disable_TSC(void) |
| { |
| preempt_disable(); |
| if (!test_and_set_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| cr4_set_bits(X86_CR4_TSD); |
| preempt_enable(); |
| } |
| |
| static void enable_TSC(void) |
| { |
| preempt_disable(); |
| if (test_and_clear_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| cr4_clear_bits(X86_CR4_TSD); |
| preempt_enable(); |
| } |
| |
| int get_tsc_mode(unsigned long adr) |
| { |
| unsigned int val; |
| |
| if (test_thread_flag(TIF_NOTSC)) |
| val = PR_TSC_SIGSEGV; |
| else |
| val = PR_TSC_ENABLE; |
| |
| return put_user(val, (unsigned int __user *)adr); |
| } |
| |
| int set_tsc_mode(unsigned int val) |
| { |
| if (val == PR_TSC_SIGSEGV) |
| disable_TSC(); |
| else if (val == PR_TSC_ENABLE) |
| enable_TSC(); |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| DEFINE_PER_CPU(u64, msr_misc_features_shadow); |
| |
| static void set_cpuid_faulting(bool on) |
| { |
| u64 msrval; |
| |
| msrval = this_cpu_read(msr_misc_features_shadow); |
| msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; |
| msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); |
| this_cpu_write(msr_misc_features_shadow, msrval); |
| wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); |
| } |
| |
| static void disable_cpuid(void) |
| { |
| preempt_disable(); |
| if (!test_and_set_thread_flag(TIF_NOCPUID)) { |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOCPUID in the current running context. |
| */ |
| set_cpuid_faulting(true); |
| } |
| preempt_enable(); |
| } |
| |
| static void enable_cpuid(void) |
| { |
| preempt_disable(); |
| if (test_and_clear_thread_flag(TIF_NOCPUID)) { |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOCPUID in the current running context. |
| */ |
| set_cpuid_faulting(false); |
| } |
| preempt_enable(); |
| } |
| |
| static int get_cpuid_mode(void) |
| { |
| return !test_thread_flag(TIF_NOCPUID); |
| } |
| |
| static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) |
| { |
| if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT)) |
| return -ENODEV; |
| |
| if (cpuid_enabled) |
| enable_cpuid(); |
| else |
| disable_cpuid(); |
| |
| return 0; |
| } |
| |
| /* |
| * Called immediately after a successful exec. |
| */ |
| void arch_setup_new_exec(void) |
| { |
| /* If cpuid was previously disabled for this task, re-enable it. */ |
| if (test_thread_flag(TIF_NOCPUID)) |
| enable_cpuid(); |
| |
| /* |
| * Don't inherit TIF_SSBD across exec boundary when |
| * PR_SPEC_DISABLE_NOEXEC is used. |
| */ |
| if (test_thread_flag(TIF_SSBD) && |
| task_spec_ssb_noexec(current)) { |
| clear_thread_flag(TIF_SSBD); |
| task_clear_spec_ssb_disable(current); |
| task_clear_spec_ssb_noexec(current); |
| speculation_ctrl_update(task_thread_info(current)->flags); |
| } |
| } |
| |
| #ifdef CONFIG_X86_IOPL_IOPERM |
| static inline void switch_to_bitmap(unsigned long tifp) |
| { |
| /* |
| * Invalidate I/O bitmap if the previous task used it. This prevents |
| * any possible leakage of an active I/O bitmap. |
| * |
| * If the next task has an I/O bitmap it will handle it on exit to |
| * user mode. |
| */ |
| if (tifp & _TIF_IO_BITMAP) |
| tss_invalidate_io_bitmap(); |
| } |
| |
| static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm) |
| { |
| /* |
| * Copy at least the byte range of the incoming tasks bitmap which |
| * covers the permitted I/O ports. |
| * |
| * If the previous task which used an I/O bitmap had more bits |
| * permitted, then the copy needs to cover those as well so they |
| * get turned off. |
| */ |
| memcpy(tss->io_bitmap.bitmap, iobm->bitmap, |
| max(tss->io_bitmap.prev_max, iobm->max)); |
| |
| /* |
| * Store the new max and the sequence number of this bitmap |
| * and a pointer to the bitmap itself. |
| */ |
| tss->io_bitmap.prev_max = iobm->max; |
| tss->io_bitmap.prev_sequence = iobm->sequence; |
| } |
| |
| /** |
| * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode |
| */ |
| void native_tss_update_io_bitmap(void) |
| { |
| struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); |
| struct thread_struct *t = ¤t->thread; |
| u16 *base = &tss->x86_tss.io_bitmap_base; |
| |
| if (!test_thread_flag(TIF_IO_BITMAP)) { |
| native_tss_invalidate_io_bitmap(); |
| return; |
| } |
| |
| if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) { |
| *base = IO_BITMAP_OFFSET_VALID_ALL; |
| } else { |
| struct io_bitmap *iobm = t->io_bitmap; |
| |
| /* |
| * Only copy bitmap data when the sequence number differs. The |
| * update time is accounted to the incoming task. |
| */ |
| if (tss->io_bitmap.prev_sequence != iobm->sequence) |
| tss_copy_io_bitmap(tss, iobm); |
| |
| /* Enable the bitmap */ |
| *base = IO_BITMAP_OFFSET_VALID_MAP; |
| } |
| |
| /* |
| * Make sure that the TSS limit is covering the IO bitmap. It might have |
| * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O |
| * access from user space to trigger a #GP because tbe bitmap is outside |
| * the TSS limit. |
| */ |
| refresh_tss_limit(); |
| } |
| #else /* CONFIG_X86_IOPL_IOPERM */ |
| static inline void switch_to_bitmap(unsigned long tifp) { } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| |
| struct ssb_state { |
| struct ssb_state *shared_state; |
| raw_spinlock_t lock; |
| unsigned int disable_state; |
| unsigned long local_state; |
| }; |
| |
| #define LSTATE_SSB 0 |
| |
| static DEFINE_PER_CPU(struct ssb_state, ssb_state); |
| |
| void speculative_store_bypass_ht_init(void) |
| { |
| struct ssb_state *st = this_cpu_ptr(&ssb_state); |
| unsigned int this_cpu = smp_processor_id(); |
| unsigned int cpu; |
| |
| st->local_state = 0; |
| |
| /* |
| * Shared state setup happens once on the first bringup |
| * of the CPU. It's not destroyed on CPU hotunplug. |
| */ |
| if (st->shared_state) |
| return; |
| |
| raw_spin_lock_init(&st->lock); |
| |
| /* |
| * Go over HT siblings and check whether one of them has set up the |
| * shared state pointer already. |
| */ |
| for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { |
| if (cpu == this_cpu) |
| continue; |
| |
| if (!per_cpu(ssb_state, cpu).shared_state) |
| continue; |
| |
| /* Link it to the state of the sibling: */ |
| st->shared_state = per_cpu(ssb_state, cpu).shared_state; |
| return; |
| } |
| |
| /* |
| * First HT sibling to come up on the core. Link shared state of |
| * the first HT sibling to itself. The siblings on the same core |
| * which come up later will see the shared state pointer and link |
| * themselves to the state of this CPU. |
| */ |
| st->shared_state = st; |
| } |
| |
| /* |
| * Logic is: First HT sibling enables SSBD for both siblings in the core |
| * and last sibling to disable it, disables it for the whole core. This how |
| * MSR_SPEC_CTRL works in "hardware": |
| * |
| * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL |
| */ |
| static __always_inline void amd_set_core_ssb_state(unsigned long tifn) |
| { |
| struct ssb_state *st = this_cpu_ptr(&ssb_state); |
| u64 msr = x86_amd_ls_cfg_base; |
| |
| if (!static_cpu_has(X86_FEATURE_ZEN)) { |
| msr |= ssbd_tif_to_amd_ls_cfg(tifn); |
| wrmsrl(MSR_AMD64_LS_CFG, msr); |
| return; |
| } |
| |
| if (tifn & _TIF_SSBD) { |
| /* |
| * Since this can race with prctl(), block reentry on the |
| * same CPU. |
| */ |
| if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) |
| return; |
| |
| msr |= x86_amd_ls_cfg_ssbd_mask; |
| |
| raw_spin_lock(&st->shared_state->lock); |
| /* First sibling enables SSBD: */ |
| if (!st->shared_state->disable_state) |
| wrmsrl(MSR_AMD64_LS_CFG, msr); |
| st->shared_state->disable_state++; |
| raw_spin_unlock(&st->shared_state->lock); |
| } else { |
| if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) |
| return; |
| |
| raw_spin_lock(&st->shared_state->lock); |
| st->shared_state->disable_state--; |
| if (!st->shared_state->disable_state) |
| wrmsrl(MSR_AMD64_LS_CFG, msr); |
| raw_spin_unlock(&st->shared_state->lock); |
| } |
| } |
| #else |
| static __always_inline void amd_set_core_ssb_state(unsigned long tifn) |
| { |
| u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); |
| |
| wrmsrl(MSR_AMD64_LS_CFG, msr); |
| } |
| #endif |
| |
| static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) |
| { |
| /* |
| * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, |
| * so ssbd_tif_to_spec_ctrl() just works. |
| */ |
| wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); |
| } |
| |
| /* |
| * Update the MSRs managing speculation control, during context switch. |
| * |
| * tifp: Previous task's thread flags |
| * tifn: Next task's thread flags |
| */ |
| static __always_inline void __speculation_ctrl_update(unsigned long tifp, |
| unsigned long tifn) |
| { |
| unsigned long tif_diff = tifp ^ tifn; |
| u64 msr = x86_spec_ctrl_base; |
| bool updmsr = false; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| /* Handle change of TIF_SSBD depending on the mitigation method. */ |
| if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { |
| if (tif_diff & _TIF_SSBD) |
| amd_set_ssb_virt_state(tifn); |
| } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { |
| if (tif_diff & _TIF_SSBD) |
| amd_set_core_ssb_state(tifn); |
| } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || |
| static_cpu_has(X86_FEATURE_AMD_SSBD)) { |
| updmsr |= !!(tif_diff & _TIF_SSBD); |
| msr |= ssbd_tif_to_spec_ctrl(tifn); |
| } |
| |
| /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */ |
| if (IS_ENABLED(CONFIG_SMP) && |
| static_branch_unlikely(&switch_to_cond_stibp)) { |
| updmsr |= !!(tif_diff & _TIF_SPEC_IB); |
| msr |= stibp_tif_to_spec_ctrl(tifn); |
| } |
| |
| if (updmsr) |
| wrmsrl(MSR_IA32_SPEC_CTRL, msr); |
| } |
| |
| static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) |
| { |
| if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { |
| if (task_spec_ssb_disable(tsk)) |
| set_tsk_thread_flag(tsk, TIF_SSBD); |
| else |
| clear_tsk_thread_flag(tsk, TIF_SSBD); |
| |
| if (task_spec_ib_disable(tsk)) |
| set_tsk_thread_flag(tsk, TIF_SPEC_IB); |
| else |
| clear_tsk_thread_flag(tsk, TIF_SPEC_IB); |
| } |
| /* Return the updated threadinfo flags*/ |
| return task_thread_info(tsk)->flags; |
| } |
| |
| void speculation_ctrl_update(unsigned long tif) |
| { |
| unsigned long flags; |
| |
| /* Forced update. Make sure all relevant TIF flags are different */ |
| local_irq_save(flags); |
| __speculation_ctrl_update(~tif, tif); |
| local_irq_restore(flags); |
| } |
| |
| /* Called from seccomp/prctl update */ |
| void speculation_ctrl_update_current(void) |
| { |
| preempt_disable(); |
| speculation_ctrl_update(speculation_ctrl_update_tif(current)); |
| preempt_enable(); |
| } |
| |
| static inline void cr4_toggle_bits_irqsoff(unsigned long mask) |
| { |
| unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); |
| |
| newval = cr4 ^ mask; |
| if (newval != cr4) { |
| this_cpu_write(cpu_tlbstate.cr4, newval); |
| __write_cr4(newval); |
| } |
| } |
| |
| void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| unsigned long tifp, tifn; |
| |
| tifn = READ_ONCE(task_thread_info(next_p)->flags); |
| tifp = READ_ONCE(task_thread_info(prev_p)->flags); |
| |
| switch_to_bitmap(tifp); |
| |
| propagate_user_return_notify(prev_p, next_p); |
| |
| if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && |
| arch_has_block_step()) { |
| unsigned long debugctl, msk; |
| |
| rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| debugctl &= ~DEBUGCTLMSR_BTF; |
| msk = tifn & _TIF_BLOCKSTEP; |
| debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; |
| wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| } |
| |
| if ((tifp ^ tifn) & _TIF_NOTSC) |
| cr4_toggle_bits_irqsoff(X86_CR4_TSD); |
| |
| if ((tifp ^ tifn) & _TIF_NOCPUID) |
| set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); |
| |
| if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { |
| __speculation_ctrl_update(tifp, tifn); |
| } else { |
| speculation_ctrl_update_tif(prev_p); |
| tifn = speculation_ctrl_update_tif(next_p); |
| |
| /* Enforce MSR update to ensure consistent state */ |
| __speculation_ctrl_update(~tifn, tifn); |
| } |
| |
| if ((tifp ^ tifn) & _TIF_SLD) |
| switch_to_sld(tifn); |
| } |
| |
| /* |
| * Idle related variables and functions |
| */ |
| unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; |
| EXPORT_SYMBOL(boot_option_idle_override); |
| |
| static void (*x86_idle)(void); |
| |
| #ifndef CONFIG_SMP |
| static inline void play_dead(void) |
| { |
| BUG(); |
| } |
| #endif |
| |
| void arch_cpu_idle_enter(void) |
| { |
| tsc_verify_tsc_adjust(false); |
| local_touch_nmi(); |
| } |
| |
| void arch_cpu_idle_dead(void) |
| { |
| play_dead(); |
| } |
| |
| /* |
| * Called from the generic idle code. |
| */ |
| void arch_cpu_idle(void) |
| { |
| x86_idle(); |
| } |
| |
| /* |
| * We use this if we don't have any better idle routine.. |
| */ |
| void __cpuidle default_idle(void) |
| { |
| raw_safe_halt(); |
| } |
| #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE) |
| EXPORT_SYMBOL(default_idle); |
| #endif |
| |
| #ifdef CONFIG_XEN |
| bool xen_set_default_idle(void) |
| { |
| bool ret = !!x86_idle; |
| |
| x86_idle = default_idle; |
| |
| return ret; |
| } |
| #endif |
| |
| void stop_this_cpu(void *dummy) |
| { |
| local_irq_disable(); |
| /* |
| * Remove this CPU: |
| */ |
| set_cpu_online(smp_processor_id(), false); |
| disable_local_APIC(); |
| mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); |
| |
| /* |
| * Use wbinvd on processors that support SME. This provides support |
| * for performing a successful kexec when going from SME inactive |
| * to SME active (or vice-versa). The cache must be cleared so that |
| * if there are entries with the same physical address, both with and |
| * without the encryption bit, they don't race each other when flushed |
| * and potentially end up with the wrong entry being committed to |
| * memory. |
| */ |
| if (boot_cpu_has(X86_FEATURE_SME)) |
| native_wbinvd(); |
| for (;;) { |
| /* |
| * Use native_halt() so that memory contents don't change |
| * (stack usage and variables) after possibly issuing the |
| * native_wbinvd() above. |
| */ |
| native_halt(); |
| } |
| } |
| |
| /* |
| * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power |
| * states (local apic timer and TSC stop). |
| * |
| * XXX this function is completely buggered vs RCU and tracing. |
| */ |
| static void amd_e400_idle(void) |
| { |
| /* |
| * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E |
| * gets set after static_cpu_has() places have been converted via |
| * alternatives. |
| */ |
| if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { |
| default_idle(); |
| return; |
| } |
| |
| tick_broadcast_enter(); |
| |
| default_idle(); |
| |
| /* |
| * The switch back from broadcast mode needs to be called with |
| * interrupts disabled. |
| */ |
| raw_local_irq_disable(); |
| tick_broadcast_exit(); |
| raw_local_irq_enable(); |
| } |
| |
| /* |
| * Intel Core2 and older machines prefer MWAIT over HALT for C1. |
| * We can't rely on cpuidle installing MWAIT, because it will not load |
| * on systems that support only C1 -- so the boot default must be MWAIT. |
| * |
| * Some AMD machines are the opposite, they depend on using HALT. |
| * |
| * So for default C1, which is used during boot until cpuidle loads, |
| * use MWAIT-C1 on Intel HW that has it, else use HALT. |
| */ |
| static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) |
| { |
| if (c->x86_vendor != X86_VENDOR_INTEL) |
| return 0; |
| |
| if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT |
| * with interrupts enabled and no flags, which is backwards compatible with the |
| * original MWAIT implementation. |
| */ |
| static __cpuidle void mwait_idle(void) |
| { |
| if (!current_set_polling_and_test()) { |
| if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { |
| mb(); /* quirk */ |
| clflush((void *)¤t_thread_info()->flags); |
| mb(); /* quirk */ |
| } |
| |
| __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| if (!need_resched()) |
| __sti_mwait(0, 0); |
| else |
| raw_local_irq_enable(); |
| } else { |
| raw_local_irq_enable(); |
| } |
| __current_clr_polling(); |
| } |
| |
| void select_idle_routine(const struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_SMP |
| if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) |
| pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); |
| #endif |
| if (x86_idle || boot_option_idle_override == IDLE_POLL) |
| return; |
| |
| if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { |
| pr_info("using AMD E400 aware idle routine\n"); |
| x86_idle = amd_e400_idle; |
| } else if (prefer_mwait_c1_over_halt(c)) { |
| pr_info("using mwait in idle threads\n"); |
| x86_idle = mwait_idle; |
| } else |
| x86_idle = default_idle; |
| } |
| |
| void amd_e400_c1e_apic_setup(void) |
| { |
| if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { |
| pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); |
| local_irq_disable(); |
| tick_broadcast_force(); |
| local_irq_enable(); |
| } |
| } |
| |
| void __init arch_post_acpi_subsys_init(void) |
| { |
| u32 lo, hi; |
| |
| if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) |
| return; |
| |
| /* |
| * AMD E400 detection needs to happen after ACPI has been enabled. If |
| * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in |
| * MSR_K8_INT_PENDING_MSG. |
| */ |
| rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); |
| if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) |
| return; |
| |
| boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); |
| |
| if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| mark_tsc_unstable("TSC halt in AMD C1E"); |
| pr_info("System has AMD C1E enabled\n"); |
| } |
| |
| static int __init idle_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "poll")) { |
| pr_info("using polling idle threads\n"); |
| boot_option_idle_override = IDLE_POLL; |
| cpu_idle_poll_ctrl(true); |
| } else if (!strcmp(str, "halt")) { |
| /* |
| * When the boot option of idle=halt is added, halt is |
| * forced to be used for CPU idle. In such case CPU C2/C3 |
| * won't be used again. |
| * To continue to load the CPU idle driver, don't touch |
| * the boot_option_idle_override. |
| */ |
| x86_idle = default_idle; |
| boot_option_idle_override = IDLE_HALT; |
| } else if (!strcmp(str, "nomwait")) { |
| /* |
| * If the boot option of "idle=nomwait" is added, |
| * it means that mwait will be disabled for CPU C2/C3 |
| * states. In such case it won't touch the variable |
| * of boot_option_idle_override. |
| */ |
| boot_option_idle_override = IDLE_NOMWAIT; |
| } else |
| return -1; |
| |
| return 0; |
| } |
| early_param("idle", idle_setup); |
| |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| sp -= get_random_int() % 8192; |
| return sp & ~0xf; |
| } |
| |
| unsigned long arch_randomize_brk(struct mm_struct *mm) |
| { |
| return randomize_page(mm->brk, 0x02000000); |
| } |
| |
| /* |
| * Called from fs/proc with a reference on @p to find the function |
| * which called into schedule(). This needs to be done carefully |
| * because the task might wake up and we might look at a stack |
| * changing under us. |
| */ |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long start, bottom, top, sp, fp, ip, ret = 0; |
| int count = 0; |
| |
| if (p == current || p->state == TASK_RUNNING) |
| return 0; |
| |
| if (!try_get_task_stack(p)) |
| return 0; |
| |
| start = (unsigned long)task_stack_page(p); |
| if (!start) |
| goto out; |
| |
| /* |
| * Layout of the stack page: |
| * |
| * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) |
| * PADDING |
| * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING |
| * stack |
| * ----------- bottom = start |
| * |
| * The tasks stack pointer points at the location where the |
| * framepointer is stored. The data on the stack is: |
| * ... IP FP ... IP FP |
| * |
| * We need to read FP and IP, so we need to adjust the upper |
| * bound by another unsigned long. |
| */ |
| top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; |
| top -= 2 * sizeof(unsigned long); |
| bottom = start; |
| |
| sp = READ_ONCE(p->thread.sp); |
| if (sp < bottom || sp > top) |
| goto out; |
| |
| fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); |
| do { |
| if (fp < bottom || fp > top) |
| goto out; |
| ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); |
| if (!in_sched_functions(ip)) { |
| ret = ip; |
| goto out; |
| } |
| fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); |
| } while (count++ < 16 && p->state != TASK_RUNNING); |
| |
| out: |
| put_task_stack(p); |
| return ret; |
| } |
| |
| long do_arch_prctl_common(struct task_struct *task, int option, |
| unsigned long cpuid_enabled) |
| { |
| switch (option) { |
| case ARCH_GET_CPUID: |
| return get_cpuid_mode(); |
| case ARCH_SET_CPUID: |
| return set_cpuid_mode(task, cpuid_enabled); |
| } |
| |
| return -EINVAL; |
| } |