| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * K3 SA2UL crypto accelerator driver |
| * |
| * Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com |
| * |
| * Authors: Keerthy |
| * Vitaly Andrianov |
| * Tero Kristo |
| */ |
| #include <linux/clk.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dmapool.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| |
| #include <crypto/aes.h> |
| #include <crypto/authenc.h> |
| #include <crypto/des.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/sha1.h> |
| #include <crypto/sha2.h> |
| |
| #include "sa2ul.h" |
| |
| /* Byte offset for key in encryption security context */ |
| #define SC_ENC_KEY_OFFSET (1 + 27 + 4) |
| /* Byte offset for Aux-1 in encryption security context */ |
| #define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32) |
| |
| #define SA_CMDL_UPD_ENC 0x0001 |
| #define SA_CMDL_UPD_AUTH 0x0002 |
| #define SA_CMDL_UPD_ENC_IV 0x0004 |
| #define SA_CMDL_UPD_AUTH_IV 0x0008 |
| #define SA_CMDL_UPD_AUX_KEY 0x0010 |
| |
| #define SA_AUTH_SUBKEY_LEN 16 |
| #define SA_CMDL_PAYLOAD_LENGTH_MASK 0xFFFF |
| #define SA_CMDL_SOP_BYPASS_LEN_MASK 0xFF000000 |
| |
| #define MODE_CONTROL_BYTES 27 |
| #define SA_HASH_PROCESSING 0 |
| #define SA_CRYPTO_PROCESSING 0 |
| #define SA_UPLOAD_HASH_TO_TLR BIT(6) |
| |
| #define SA_SW0_FLAGS_MASK 0xF0000 |
| #define SA_SW0_CMDL_INFO_MASK 0x1F00000 |
| #define SA_SW0_CMDL_PRESENT BIT(4) |
| #define SA_SW0_ENG_ID_MASK 0x3E000000 |
| #define SA_SW0_DEST_INFO_PRESENT BIT(30) |
| #define SA_SW2_EGRESS_LENGTH 0xFF000000 |
| #define SA_BASIC_HASH 0x10 |
| |
| #define SHA256_DIGEST_WORDS 8 |
| /* Make 32-bit word from 4 bytes */ |
| #define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \ |
| ((b2) << 8) | (b3)) |
| |
| /* size of SCCTL structure in bytes */ |
| #define SA_SCCTL_SZ 16 |
| |
| /* Max Authentication tag size */ |
| #define SA_MAX_AUTH_TAG_SZ 64 |
| |
| #define PRIV_ID 0x1 |
| #define PRIV 0x1 |
| |
| static struct device *sa_k3_dev; |
| |
| /** |
| * struct sa_cmdl_cfg - Command label configuration descriptor |
| * @aalg: authentication algorithm ID |
| * @enc_eng_id: Encryption Engine ID supported by the SA hardware |
| * @auth_eng_id: Authentication Engine ID |
| * @iv_size: Initialization Vector size |
| * @akey: Authentication key |
| * @akey_len: Authentication key length |
| * @enc: True, if this is an encode request |
| */ |
| struct sa_cmdl_cfg { |
| int aalg; |
| u8 enc_eng_id; |
| u8 auth_eng_id; |
| u8 iv_size; |
| const u8 *akey; |
| u16 akey_len; |
| bool enc; |
| }; |
| |
| /** |
| * struct algo_data - Crypto algorithm specific data |
| * @enc_eng: Encryption engine info structure |
| * @auth_eng: Authentication engine info structure |
| * @auth_ctrl: Authentication control word |
| * @hash_size: Size of digest |
| * @iv_idx: iv index in psdata |
| * @iv_out_size: iv out size |
| * @ealg_id: Encryption Algorithm ID |
| * @aalg_id: Authentication algorithm ID |
| * @mci_enc: Mode Control Instruction for Encryption algorithm |
| * @mci_dec: Mode Control Instruction for Decryption |
| * @inv_key: Whether the encryption algorithm demands key inversion |
| * @ctx: Pointer to the algorithm context |
| * @keyed_mac: Whether the authentication algorithm has key |
| * @prep_iopad: Function pointer to generate intermediate ipad/opad |
| */ |
| struct algo_data { |
| struct sa_eng_info enc_eng; |
| struct sa_eng_info auth_eng; |
| u8 auth_ctrl; |
| u8 hash_size; |
| u8 iv_idx; |
| u8 iv_out_size; |
| u8 ealg_id; |
| u8 aalg_id; |
| u8 *mci_enc; |
| u8 *mci_dec; |
| bool inv_key; |
| struct sa_tfm_ctx *ctx; |
| bool keyed_mac; |
| void (*prep_iopad)(struct algo_data *algo, const u8 *key, |
| u16 key_sz, __be32 *ipad, __be32 *opad); |
| }; |
| |
| /** |
| * struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms |
| * @type: Type of the crypto algorithm. |
| * @alg: Union of crypto algorithm definitions. |
| * @registered: Flag indicating if the crypto algorithm is already registered |
| */ |
| struct sa_alg_tmpl { |
| u32 type; /* CRYPTO_ALG_TYPE from <linux/crypto.h> */ |
| union { |
| struct skcipher_alg skcipher; |
| struct ahash_alg ahash; |
| struct aead_alg aead; |
| } alg; |
| bool registered; |
| }; |
| |
| /** |
| * struct sa_mapped_sg: scatterlist information for tx and rx |
| * @mapped: Set to true if the @sgt is mapped |
| * @dir: mapping direction used for @sgt |
| * @split_sg: Set if the sg is split and needs to be freed up |
| * @static_sg: Static scatterlist entry for overriding data |
| * @sgt: scatterlist table for DMA API use |
| */ |
| struct sa_mapped_sg { |
| bool mapped; |
| enum dma_data_direction dir; |
| struct scatterlist static_sg; |
| struct scatterlist *split_sg; |
| struct sg_table sgt; |
| }; |
| /** |
| * struct sa_rx_data: RX Packet miscellaneous data place holder |
| * @req: crypto request data pointer |
| * @ddev: pointer to the DMA device |
| * @tx_in: dma_async_tx_descriptor pointer for rx channel |
| * @mapped_sg: Information on tx (0) and rx (1) scatterlist DMA mapping |
| * @enc: Flag indicating either encryption or decryption |
| * @enc_iv_size: Initialisation vector size |
| * @iv_idx: Initialisation vector index |
| */ |
| struct sa_rx_data { |
| void *req; |
| struct device *ddev; |
| struct dma_async_tx_descriptor *tx_in; |
| struct sa_mapped_sg mapped_sg[2]; |
| u8 enc; |
| u8 enc_iv_size; |
| u8 iv_idx; |
| }; |
| |
| /** |
| * struct sa_req: SA request definition |
| * @dev: device for the request |
| * @size: total data to the xmitted via DMA |
| * @enc_offset: offset of cipher data |
| * @enc_size: data to be passed to cipher engine |
| * @enc_iv: cipher IV |
| * @auth_offset: offset of the authentication data |
| * @auth_size: size of the authentication data |
| * @auth_iv: authentication IV |
| * @type: algorithm type for the request |
| * @cmdl: command label pointer |
| * @base: pointer to the base request |
| * @ctx: pointer to the algorithm context data |
| * @enc: true if this is an encode request |
| * @src: source data |
| * @dst: destination data |
| * @callback: DMA callback for the request |
| * @mdata_size: metadata size passed to DMA |
| */ |
| struct sa_req { |
| struct device *dev; |
| u16 size; |
| u8 enc_offset; |
| u16 enc_size; |
| u8 *enc_iv; |
| u8 auth_offset; |
| u16 auth_size; |
| u8 *auth_iv; |
| u32 type; |
| u32 *cmdl; |
| struct crypto_async_request *base; |
| struct sa_tfm_ctx *ctx; |
| bool enc; |
| struct scatterlist *src; |
| struct scatterlist *dst; |
| dma_async_tx_callback callback; |
| u16 mdata_size; |
| }; |
| |
| /* |
| * Mode Control Instructions for various Key lengths 128, 192, 256 |
| * For CBC (Cipher Block Chaining) mode for encryption |
| */ |
| static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = { |
| { 0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| }; |
| |
| /* |
| * Mode Control Instructions for various Key lengths 128, 192, 256 |
| * For CBC (Cipher Block Chaining) mode for decryption |
| */ |
| static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = { |
| { 0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| }; |
| |
| /* |
| * Mode Control Instructions for various Key lengths 128, 192, 256 |
| * For CBC (Cipher Block Chaining) mode for encryption |
| */ |
| static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = { |
| { 0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| }; |
| |
| /* |
| * Mode Control Instructions for various Key lengths 128, 192, 256 |
| * For CBC (Cipher Block Chaining) mode for decryption |
| */ |
| static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = { |
| { 0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| }; |
| |
| /* |
| * Mode Control Instructions for various Key lengths 128, 192, 256 |
| * For ECB (Electronic Code Book) mode for encryption |
| */ |
| static u8 mci_ecb_enc_array[3][27] = { |
| { 0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| }; |
| |
| /* |
| * Mode Control Instructions for various Key lengths 128, 192, 256 |
| * For ECB (Electronic Code Book) mode for decryption |
| */ |
| static u8 mci_ecb_dec_array[3][27] = { |
| { 0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| { 0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| }; |
| |
| /* |
| * Mode Control Instructions for DES algorithm |
| * For CBC (Cipher Block Chaining) mode and ECB mode |
| * encryption and for decryption respectively |
| */ |
| static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = { |
| 0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, |
| }; |
| |
| static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = { |
| 0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, |
| }; |
| |
| static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = { |
| 0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, |
| }; |
| |
| static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = { |
| 0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, |
| }; |
| |
| /* |
| * Perform 16 byte or 128 bit swizzling |
| * The SA2UL Expects the security context to |
| * be in little Endian and the bus width is 128 bits or 16 bytes |
| * Hence swap 16 bytes at a time from higher to lower address |
| */ |
| static void sa_swiz_128(u8 *in, u16 len) |
| { |
| u8 data[16]; |
| int i, j; |
| |
| for (i = 0; i < len; i += 16) { |
| memcpy(data, &in[i], 16); |
| for (j = 0; j < 16; j++) |
| in[i + j] = data[15 - j]; |
| } |
| } |
| |
| /* Prepare the ipad and opad from key as per SHA algorithm step 1*/ |
| static void prepare_kipad(u8 *k_ipad, const u8 *key, u16 key_sz) |
| { |
| int i; |
| |
| for (i = 0; i < key_sz; i++) |
| k_ipad[i] = key[i] ^ 0x36; |
| |
| /* Instead of XOR with 0 */ |
| for (; i < SHA1_BLOCK_SIZE; i++) |
| k_ipad[i] = 0x36; |
| } |
| |
| static void prepare_kopad(u8 *k_opad, const u8 *key, u16 key_sz) |
| { |
| int i; |
| |
| for (i = 0; i < key_sz; i++) |
| k_opad[i] = key[i] ^ 0x5c; |
| |
| /* Instead of XOR with 0 */ |
| for (; i < SHA1_BLOCK_SIZE; i++) |
| k_opad[i] = 0x5c; |
| } |
| |
| static void sa_export_shash(void *state, struct shash_desc *hash, |
| int digest_size, __be32 *out) |
| { |
| struct sha1_state *sha1; |
| struct sha256_state *sha256; |
| u32 *result; |
| |
| switch (digest_size) { |
| case SHA1_DIGEST_SIZE: |
| sha1 = state; |
| result = sha1->state; |
| break; |
| case SHA256_DIGEST_SIZE: |
| sha256 = state; |
| result = sha256->state; |
| break; |
| default: |
| dev_err(sa_k3_dev, "%s: bad digest_size=%d\n", __func__, |
| digest_size); |
| return; |
| } |
| |
| crypto_shash_export(hash, state); |
| |
| cpu_to_be32_array(out, result, digest_size / 4); |
| } |
| |
| static void sa_prepare_iopads(struct algo_data *data, const u8 *key, |
| u16 key_sz, __be32 *ipad, __be32 *opad) |
| { |
| SHASH_DESC_ON_STACK(shash, data->ctx->shash); |
| int block_size = crypto_shash_blocksize(data->ctx->shash); |
| int digest_size = crypto_shash_digestsize(data->ctx->shash); |
| union { |
| struct sha1_state sha1; |
| struct sha256_state sha256; |
| u8 k_pad[SHA1_BLOCK_SIZE]; |
| } sha; |
| |
| shash->tfm = data->ctx->shash; |
| |
| prepare_kipad(sha.k_pad, key, key_sz); |
| |
| crypto_shash_init(shash); |
| crypto_shash_update(shash, sha.k_pad, block_size); |
| sa_export_shash(&sha, shash, digest_size, ipad); |
| |
| prepare_kopad(sha.k_pad, key, key_sz); |
| |
| crypto_shash_init(shash); |
| crypto_shash_update(shash, sha.k_pad, block_size); |
| |
| sa_export_shash(&sha, shash, digest_size, opad); |
| |
| memzero_explicit(&sha, sizeof(sha)); |
| } |
| |
| /* Derive the inverse key used in AES-CBC decryption operation */ |
| static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz) |
| { |
| struct crypto_aes_ctx ctx; |
| int key_pos; |
| |
| if (aes_expandkey(&ctx, key, key_sz)) { |
| dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz); |
| return -EINVAL; |
| } |
| |
| /* work around to get the right inverse for AES_KEYSIZE_192 size keys */ |
| if (key_sz == AES_KEYSIZE_192) { |
| ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46]; |
| ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47]; |
| } |
| |
| /* Based crypto_aes_expand_key logic */ |
| switch (key_sz) { |
| case AES_KEYSIZE_128: |
| case AES_KEYSIZE_192: |
| key_pos = key_sz + 24; |
| break; |
| |
| case AES_KEYSIZE_256: |
| key_pos = key_sz + 24 - 4; |
| break; |
| |
| default: |
| dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz); |
| return -EINVAL; |
| } |
| |
| memcpy(inv_key, &ctx.key_enc[key_pos], key_sz); |
| return 0; |
| } |
| |
| /* Set Security context for the encryption engine */ |
| static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz, |
| u8 enc, u8 *sc_buf) |
| { |
| const u8 *mci = NULL; |
| |
| /* Set Encryption mode selector to crypto processing */ |
| sc_buf[0] = SA_CRYPTO_PROCESSING; |
| |
| if (enc) |
| mci = ad->mci_enc; |
| else |
| mci = ad->mci_dec; |
| /* Set the mode control instructions in security context */ |
| if (mci) |
| memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES); |
| |
| /* For AES-CBC decryption get the inverse key */ |
| if (ad->inv_key && !enc) { |
| if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz)) |
| return -EINVAL; |
| /* For all other cases: key is used */ |
| } else { |
| memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz); |
| } |
| |
| return 0; |
| } |
| |
| /* Set Security context for the authentication engine */ |
| static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz, |
| u8 *sc_buf) |
| { |
| __be32 *ipad = (void *)(sc_buf + 32); |
| __be32 *opad = (void *)(sc_buf + 64); |
| |
| /* Set Authentication mode selector to hash processing */ |
| sc_buf[0] = SA_HASH_PROCESSING; |
| /* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */ |
| sc_buf[1] = SA_UPLOAD_HASH_TO_TLR; |
| sc_buf[1] |= ad->auth_ctrl; |
| |
| /* Copy the keys or ipad/opad */ |
| if (ad->keyed_mac) |
| ad->prep_iopad(ad, key, key_sz, ipad, opad); |
| else { |
| /* basic hash */ |
| sc_buf[1] |= SA_BASIC_HASH; |
| } |
| } |
| |
| static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16) |
| { |
| int j; |
| |
| for (j = 0; j < ((size16) ? 4 : 2); j++) { |
| *out = cpu_to_be32(*((u32 *)iv)); |
| iv += 4; |
| out++; |
| } |
| } |
| |
| /* Format general command label */ |
| static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl, |
| struct sa_cmdl_upd_info *upd_info) |
| { |
| u8 enc_offset = 0, auth_offset = 0, total = 0; |
| u8 enc_next_eng = SA_ENG_ID_OUTPORT2; |
| u8 auth_next_eng = SA_ENG_ID_OUTPORT2; |
| u32 *word_ptr = (u32 *)cmdl; |
| int i; |
| |
| /* Clear the command label */ |
| memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32))); |
| |
| /* Iniialize the command update structure */ |
| memzero_explicit(upd_info, sizeof(*upd_info)); |
| |
| if (cfg->enc_eng_id && cfg->auth_eng_id) { |
| if (cfg->enc) { |
| auth_offset = SA_CMDL_HEADER_SIZE_BYTES; |
| enc_next_eng = cfg->auth_eng_id; |
| |
| if (cfg->iv_size) |
| auth_offset += cfg->iv_size; |
| } else { |
| enc_offset = SA_CMDL_HEADER_SIZE_BYTES; |
| auth_next_eng = cfg->enc_eng_id; |
| } |
| } |
| |
| if (cfg->enc_eng_id) { |
| upd_info->flags |= SA_CMDL_UPD_ENC; |
| upd_info->enc_size.index = enc_offset >> 2; |
| upd_info->enc_offset.index = upd_info->enc_size.index + 1; |
| /* Encryption command label */ |
| cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng; |
| |
| /* Encryption modes requiring IV */ |
| if (cfg->iv_size) { |
| upd_info->flags |= SA_CMDL_UPD_ENC_IV; |
| upd_info->enc_iv.index = |
| (enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2; |
| upd_info->enc_iv.size = cfg->iv_size; |
| |
| cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] = |
| SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size; |
| |
| cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] = |
| (SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3)); |
| total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size; |
| } else { |
| cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] = |
| SA_CMDL_HEADER_SIZE_BYTES; |
| total += SA_CMDL_HEADER_SIZE_BYTES; |
| } |
| } |
| |
| if (cfg->auth_eng_id) { |
| upd_info->flags |= SA_CMDL_UPD_AUTH; |
| upd_info->auth_size.index = auth_offset >> 2; |
| upd_info->auth_offset.index = upd_info->auth_size.index + 1; |
| cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng; |
| cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] = |
| SA_CMDL_HEADER_SIZE_BYTES; |
| total += SA_CMDL_HEADER_SIZE_BYTES; |
| } |
| |
| total = roundup(total, 8); |
| |
| for (i = 0; i < total / 4; i++) |
| word_ptr[i] = swab32(word_ptr[i]); |
| |
| return total; |
| } |
| |
| /* Update Command label */ |
| static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl, |
| struct sa_cmdl_upd_info *upd_info) |
| { |
| int i = 0, j; |
| |
| if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) { |
| cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK; |
| cmdl[upd_info->enc_size.index] |= req->enc_size; |
| cmdl[upd_info->enc_offset.index] &= |
| ~SA_CMDL_SOP_BYPASS_LEN_MASK; |
| cmdl[upd_info->enc_offset.index] |= |
| ((u32)req->enc_offset << |
| __ffs(SA_CMDL_SOP_BYPASS_LEN_MASK)); |
| |
| if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) { |
| __be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index]; |
| u32 *enc_iv = (u32 *)req->enc_iv; |
| |
| for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) { |
| data[j] = cpu_to_be32(*enc_iv); |
| enc_iv++; |
| } |
| } |
| } |
| |
| if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) { |
| cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK; |
| cmdl[upd_info->auth_size.index] |= req->auth_size; |
| cmdl[upd_info->auth_offset.index] &= |
| ~SA_CMDL_SOP_BYPASS_LEN_MASK; |
| cmdl[upd_info->auth_offset.index] |= |
| ((u32)req->auth_offset << |
| __ffs(SA_CMDL_SOP_BYPASS_LEN_MASK)); |
| if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) { |
| sa_copy_iv((void *)&cmdl[upd_info->auth_iv.index], |
| req->auth_iv, |
| (upd_info->auth_iv.size > 8)); |
| } |
| if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) { |
| int offset = (req->auth_size & 0xF) ? 4 : 0; |
| |
| memcpy(&cmdl[upd_info->aux_key_info.index], |
| &upd_info->aux_key[offset], 16); |
| } |
| } |
| } |
| |
| /* Format SWINFO words to be sent to SA */ |
| static |
| void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys, |
| u8 cmdl_present, u8 cmdl_offset, u8 flags, |
| u8 hash_size, u32 *swinfo) |
| { |
| swinfo[0] = sc_id; |
| swinfo[0] |= (flags << __ffs(SA_SW0_FLAGS_MASK)); |
| if (likely(cmdl_present)) |
| swinfo[0] |= ((cmdl_offset | SA_SW0_CMDL_PRESENT) << |
| __ffs(SA_SW0_CMDL_INFO_MASK)); |
| swinfo[0] |= (eng_id << __ffs(SA_SW0_ENG_ID_MASK)); |
| |
| swinfo[0] |= SA_SW0_DEST_INFO_PRESENT; |
| swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL); |
| swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32); |
| swinfo[2] |= (hash_size << __ffs(SA_SW2_EGRESS_LENGTH)); |
| } |
| |
| /* Dump the security context */ |
| static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr) |
| { |
| #ifdef DEBUG |
| dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr); |
| print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, |
| 16, 1, buf, SA_CTX_MAX_SZ, false); |
| #endif |
| } |
| |
| static |
| int sa_init_sc(struct sa_ctx_info *ctx, const u8 *enc_key, |
| u16 enc_key_sz, const u8 *auth_key, u16 auth_key_sz, |
| struct algo_data *ad, u8 enc, u32 *swinfo) |
| { |
| int enc_sc_offset = 0; |
| int auth_sc_offset = 0; |
| u8 *sc_buf = ctx->sc; |
| u16 sc_id = ctx->sc_id; |
| u8 first_engine = 0; |
| |
| memzero_explicit(sc_buf, SA_CTX_MAX_SZ); |
| |
| if (ad->auth_eng.eng_id) { |
| if (enc) |
| first_engine = ad->enc_eng.eng_id; |
| else |
| first_engine = ad->auth_eng.eng_id; |
| |
| enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ; |
| auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size; |
| sc_buf[1] = SA_SCCTL_FE_AUTH_ENC; |
| if (!ad->hash_size) |
| return -EINVAL; |
| ad->hash_size = roundup(ad->hash_size, 8); |
| |
| } else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) { |
| enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ; |
| first_engine = ad->enc_eng.eng_id; |
| sc_buf[1] = SA_SCCTL_FE_ENC; |
| ad->hash_size = ad->iv_out_size; |
| } |
| |
| /* SCCTL Owner info: 0=host, 1=CP_ACE */ |
| sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0; |
| memcpy(&sc_buf[2], &sc_id, 2); |
| sc_buf[4] = 0x0; |
| sc_buf[5] = PRIV_ID; |
| sc_buf[6] = PRIV; |
| sc_buf[7] = 0x0; |
| |
| /* Prepare context for encryption engine */ |
| if (ad->enc_eng.sc_size) { |
| if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc, |
| &sc_buf[enc_sc_offset])) |
| return -EINVAL; |
| } |
| |
| /* Prepare context for authentication engine */ |
| if (ad->auth_eng.sc_size) |
| sa_set_sc_auth(ad, auth_key, auth_key_sz, |
| &sc_buf[auth_sc_offset]); |
| |
| /* Set the ownership of context to CP_ACE */ |
| sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80; |
| |
| /* swizzle the security context */ |
| sa_swiz_128(sc_buf, SA_CTX_MAX_SZ); |
| |
| sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0, |
| SA_SW_INFO_FLAG_EVICT, ad->hash_size, swinfo); |
| |
| sa_dump_sc(sc_buf, ctx->sc_phys); |
| |
| return 0; |
| } |
| |
| /* Free the per direction context memory */ |
| static void sa_free_ctx_info(struct sa_ctx_info *ctx, |
| struct sa_crypto_data *data) |
| { |
| unsigned long bn; |
| |
| bn = ctx->sc_id - data->sc_id_start; |
| spin_lock(&data->scid_lock); |
| __clear_bit(bn, data->ctx_bm); |
| data->sc_id--; |
| spin_unlock(&data->scid_lock); |
| |
| if (ctx->sc) { |
| dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys); |
| ctx->sc = NULL; |
| } |
| } |
| |
| static int sa_init_ctx_info(struct sa_ctx_info *ctx, |
| struct sa_crypto_data *data) |
| { |
| unsigned long bn; |
| int err; |
| |
| spin_lock(&data->scid_lock); |
| bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX); |
| __set_bit(bn, data->ctx_bm); |
| data->sc_id++; |
| spin_unlock(&data->scid_lock); |
| |
| ctx->sc_id = (u16)(data->sc_id_start + bn); |
| |
| ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys); |
| if (!ctx->sc) { |
| dev_err(&data->pdev->dev, "Failed to allocate SC memory\n"); |
| err = -ENOMEM; |
| goto scid_rollback; |
| } |
| |
| return 0; |
| |
| scid_rollback: |
| spin_lock(&data->scid_lock); |
| __clear_bit(bn, data->ctx_bm); |
| data->sc_id--; |
| spin_unlock(&data->scid_lock); |
| |
| return err; |
| } |
| |
| static void sa_cipher_cra_exit(struct crypto_skcipher *tfm) |
| { |
| struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); |
| |
| dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", |
| __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
| ctx->dec.sc_id, &ctx->dec.sc_phys); |
| |
| sa_free_ctx_info(&ctx->enc, data); |
| sa_free_ctx_info(&ctx->dec, data); |
| |
| crypto_free_skcipher(ctx->fallback.skcipher); |
| } |
| |
| static int sa_cipher_cra_init(struct crypto_skcipher *tfm) |
| { |
| struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); |
| const char *name = crypto_tfm_alg_name(&tfm->base); |
| struct crypto_skcipher *child; |
| int ret; |
| |
| memzero_explicit(ctx, sizeof(*ctx)); |
| ctx->dev_data = data; |
| |
| ret = sa_init_ctx_info(&ctx->enc, data); |
| if (ret) |
| return ret; |
| ret = sa_init_ctx_info(&ctx->dec, data); |
| if (ret) { |
| sa_free_ctx_info(&ctx->enc, data); |
| return ret; |
| } |
| |
| child = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); |
| |
| if (IS_ERR(child)) { |
| dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name); |
| return PTR_ERR(child); |
| } |
| |
| ctx->fallback.skcipher = child; |
| crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + |
| sizeof(struct skcipher_request)); |
| |
| dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", |
| __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
| ctx->dec.sc_id, &ctx->dec.sc_phys); |
| return 0; |
| } |
| |
| static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen, struct algo_data *ad) |
| { |
| struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| struct crypto_skcipher *child = ctx->fallback.skcipher; |
| int cmdl_len; |
| struct sa_cmdl_cfg cfg; |
| int ret; |
| |
| if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 && |
| keylen != AES_KEYSIZE_256) |
| return -EINVAL; |
| |
| ad->enc_eng.eng_id = SA_ENG_ID_EM1; |
| ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; |
| |
| memzero_explicit(&cfg, sizeof(cfg)); |
| cfg.enc_eng_id = ad->enc_eng.eng_id; |
| cfg.iv_size = crypto_skcipher_ivsize(tfm); |
| |
| crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(child, tfm->base.crt_flags & |
| CRYPTO_TFM_REQ_MASK); |
| ret = crypto_skcipher_setkey(child, key, keylen); |
| if (ret) |
| return ret; |
| |
| /* Setup Encryption Security Context & Command label template */ |
| if (sa_init_sc(&ctx->enc, key, keylen, NULL, 0, ad, 1, |
| &ctx->enc.epib[1])) |
| goto badkey; |
| |
| cmdl_len = sa_format_cmdl_gen(&cfg, |
| (u8 *)ctx->enc.cmdl, |
| &ctx->enc.cmdl_upd_info); |
| if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
| goto badkey; |
| |
| ctx->enc.cmdl_size = cmdl_len; |
| |
| /* Setup Decryption Security Context & Command label template */ |
| if (sa_init_sc(&ctx->dec, key, keylen, NULL, 0, ad, 0, |
| &ctx->dec.epib[1])) |
| goto badkey; |
| |
| cfg.enc_eng_id = ad->enc_eng.eng_id; |
| cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl, |
| &ctx->dec.cmdl_upd_info); |
| |
| if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
| goto badkey; |
| |
| ctx->dec.cmdl_size = cmdl_len; |
| ctx->iv_idx = ad->iv_idx; |
| |
| return 0; |
| |
| badkey: |
| dev_err(sa_k3_dev, "%s: badkey\n", __func__); |
| return -EINVAL; |
| } |
| |
| static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct algo_data ad = { 0 }; |
| /* Convert the key size (16/24/32) to the key size index (0/1/2) */ |
| int key_idx = (keylen >> 3) - 2; |
| |
| if (key_idx >= 3) |
| return -EINVAL; |
| |
| ad.mci_enc = mci_cbc_enc_array[key_idx]; |
| ad.mci_dec = mci_cbc_dec_array[key_idx]; |
| ad.inv_key = true; |
| ad.ealg_id = SA_EALG_ID_AES_CBC; |
| ad.iv_idx = 4; |
| ad.iv_out_size = 16; |
| |
| return sa_cipher_setkey(tfm, key, keylen, &ad); |
| } |
| |
| static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct algo_data ad = { 0 }; |
| /* Convert the key size (16/24/32) to the key size index (0/1/2) */ |
| int key_idx = (keylen >> 3) - 2; |
| |
| if (key_idx >= 3) |
| return -EINVAL; |
| |
| ad.mci_enc = mci_ecb_enc_array[key_idx]; |
| ad.mci_dec = mci_ecb_dec_array[key_idx]; |
| ad.inv_key = true; |
| ad.ealg_id = SA_EALG_ID_AES_ECB; |
| |
| return sa_cipher_setkey(tfm, key, keylen, &ad); |
| } |
| |
| static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct algo_data ad = { 0 }; |
| |
| ad.mci_enc = mci_cbc_3des_enc_array; |
| ad.mci_dec = mci_cbc_3des_dec_array; |
| ad.ealg_id = SA_EALG_ID_3DES_CBC; |
| ad.iv_idx = 6; |
| ad.iv_out_size = 8; |
| |
| return sa_cipher_setkey(tfm, key, keylen, &ad); |
| } |
| |
| static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct algo_data ad = { 0 }; |
| |
| ad.mci_enc = mci_ecb_3des_enc_array; |
| ad.mci_dec = mci_ecb_3des_dec_array; |
| |
| return sa_cipher_setkey(tfm, key, keylen, &ad); |
| } |
| |
| static void sa_sync_from_device(struct sa_rx_data *rxd) |
| { |
| struct sg_table *sgt; |
| |
| if (rxd->mapped_sg[0].dir == DMA_BIDIRECTIONAL) |
| sgt = &rxd->mapped_sg[0].sgt; |
| else |
| sgt = &rxd->mapped_sg[1].sgt; |
| |
| dma_sync_sgtable_for_cpu(rxd->ddev, sgt, DMA_FROM_DEVICE); |
| } |
| |
| static void sa_free_sa_rx_data(struct sa_rx_data *rxd) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(rxd->mapped_sg); i++) { |
| struct sa_mapped_sg *mapped_sg = &rxd->mapped_sg[i]; |
| |
| if (mapped_sg->mapped) { |
| dma_unmap_sgtable(rxd->ddev, &mapped_sg->sgt, |
| mapped_sg->dir, 0); |
| kfree(mapped_sg->split_sg); |
| } |
| } |
| |
| kfree(rxd); |
| } |
| |
| static void sa_aes_dma_in_callback(void *data) |
| { |
| struct sa_rx_data *rxd = (struct sa_rx_data *)data; |
| struct skcipher_request *req; |
| u32 *result; |
| __be32 *mdptr; |
| size_t ml, pl; |
| int i; |
| |
| sa_sync_from_device(rxd); |
| req = container_of(rxd->req, struct skcipher_request, base); |
| |
| if (req->iv) { |
| mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, |
| &ml); |
| result = (u32 *)req->iv; |
| |
| for (i = 0; i < (rxd->enc_iv_size / 4); i++) |
| result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]); |
| } |
| |
| sa_free_sa_rx_data(rxd); |
| |
| skcipher_request_complete(req, 0); |
| } |
| |
| static void |
| sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib) |
| { |
| u32 *out, *in; |
| int i; |
| |
| for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++) |
| *out++ = *in++; |
| |
| mdptr[4] = (0xFFFF << 16); |
| for (out = &mdptr[5], in = psdata, i = 0; |
| i < pslen / sizeof(u32); i++) |
| *out++ = *in++; |
| } |
| |
| static int sa_run(struct sa_req *req) |
| { |
| struct sa_rx_data *rxd; |
| gfp_t gfp_flags; |
| u32 cmdl[SA_MAX_CMDL_WORDS]; |
| struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev); |
| struct device *ddev; |
| struct dma_chan *dma_rx; |
| int sg_nents, src_nents, dst_nents; |
| struct scatterlist *src, *dst; |
| size_t pl, ml, split_size; |
| struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec; |
| int ret; |
| struct dma_async_tx_descriptor *tx_out; |
| u32 *mdptr; |
| bool diff_dst; |
| enum dma_data_direction dir_src; |
| struct sa_mapped_sg *mapped_sg; |
| |
| gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? |
| GFP_KERNEL : GFP_ATOMIC; |
| |
| rxd = kzalloc(sizeof(*rxd), gfp_flags); |
| if (!rxd) |
| return -ENOMEM; |
| |
| if (req->src != req->dst) { |
| diff_dst = true; |
| dir_src = DMA_TO_DEVICE; |
| } else { |
| diff_dst = false; |
| dir_src = DMA_BIDIRECTIONAL; |
| } |
| |
| /* |
| * SA2UL has an interesting feature where the receive DMA channel |
| * is selected based on the data passed to the engine. Within the |
| * transition range, there is also a space where it is impossible |
| * to determine where the data will end up, and this should be |
| * avoided. This will be handled by the SW fallback mechanism by |
| * the individual algorithm implementations. |
| */ |
| if (req->size >= 256) |
| dma_rx = pdata->dma_rx2; |
| else |
| dma_rx = pdata->dma_rx1; |
| |
| ddev = dma_rx->device->dev; |
| rxd->ddev = ddev; |
| |
| memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size); |
| |
| sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info); |
| |
| if (req->type != CRYPTO_ALG_TYPE_AHASH) { |
| if (req->enc) |
| req->type |= |
| (SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT); |
| else |
| req->type |= |
| (SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT); |
| } |
| |
| cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type; |
| |
| /* |
| * Map the packets, first we check if the data fits into a single |
| * sg entry and use that if possible. If it does not fit, we check |
| * if we need to do sg_split to align the scatterlist data on the |
| * actual data size being processed by the crypto engine. |
| */ |
| src = req->src; |
| sg_nents = sg_nents_for_len(src, req->size); |
| |
| split_size = req->size; |
| |
| mapped_sg = &rxd->mapped_sg[0]; |
| if (sg_nents == 1 && split_size <= req->src->length) { |
| src = &mapped_sg->static_sg; |
| src_nents = 1; |
| sg_init_table(src, 1); |
| sg_set_page(src, sg_page(req->src), split_size, |
| req->src->offset); |
| |
| mapped_sg->sgt.sgl = src; |
| mapped_sg->sgt.orig_nents = src_nents; |
| ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0); |
| if (ret) { |
| kfree(rxd); |
| return ret; |
| } |
| |
| mapped_sg->dir = dir_src; |
| mapped_sg->mapped = true; |
| } else { |
| mapped_sg->sgt.sgl = req->src; |
| mapped_sg->sgt.orig_nents = sg_nents; |
| ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0); |
| if (ret) { |
| kfree(rxd); |
| return ret; |
| } |
| |
| mapped_sg->dir = dir_src; |
| mapped_sg->mapped = true; |
| |
| ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, 0, 1, |
| &split_size, &src, &src_nents, gfp_flags); |
| if (ret) { |
| src_nents = mapped_sg->sgt.nents; |
| src = mapped_sg->sgt.sgl; |
| } else { |
| mapped_sg->split_sg = src; |
| } |
| } |
| |
| dma_sync_sgtable_for_device(ddev, &mapped_sg->sgt, DMA_TO_DEVICE); |
| |
| if (!diff_dst) { |
| dst_nents = src_nents; |
| dst = src; |
| } else { |
| dst_nents = sg_nents_for_len(req->dst, req->size); |
| mapped_sg = &rxd->mapped_sg[1]; |
| |
| if (dst_nents == 1 && split_size <= req->dst->length) { |
| dst = &mapped_sg->static_sg; |
| dst_nents = 1; |
| sg_init_table(dst, 1); |
| sg_set_page(dst, sg_page(req->dst), split_size, |
| req->dst->offset); |
| |
| mapped_sg->sgt.sgl = dst; |
| mapped_sg->sgt.orig_nents = dst_nents; |
| ret = dma_map_sgtable(ddev, &mapped_sg->sgt, |
| DMA_FROM_DEVICE, 0); |
| if (ret) |
| goto err_cleanup; |
| |
| mapped_sg->dir = DMA_FROM_DEVICE; |
| mapped_sg->mapped = true; |
| } else { |
| mapped_sg->sgt.sgl = req->dst; |
| mapped_sg->sgt.orig_nents = dst_nents; |
| ret = dma_map_sgtable(ddev, &mapped_sg->sgt, |
| DMA_FROM_DEVICE, 0); |
| if (ret) |
| goto err_cleanup; |
| |
| mapped_sg->dir = DMA_FROM_DEVICE; |
| mapped_sg->mapped = true; |
| |
| ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, |
| 0, 1, &split_size, &dst, &dst_nents, |
| gfp_flags); |
| if (ret) { |
| dst_nents = mapped_sg->sgt.nents; |
| dst = mapped_sg->sgt.sgl; |
| } else { |
| mapped_sg->split_sg = dst; |
| } |
| } |
| } |
| |
| rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents, |
| DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!rxd->tx_in) { |
| dev_err(pdata->dev, "IN prep_slave_sg() failed\n"); |
| ret = -EINVAL; |
| goto err_cleanup; |
| } |
| |
| rxd->req = (void *)req->base; |
| rxd->enc = req->enc; |
| rxd->iv_idx = req->ctx->iv_idx; |
| rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size; |
| rxd->tx_in->callback = req->callback; |
| rxd->tx_in->callback_param = rxd; |
| |
| tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src, |
| src_nents, DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| |
| if (!tx_out) { |
| dev_err(pdata->dev, "OUT prep_slave_sg() failed\n"); |
| ret = -EINVAL; |
| goto err_cleanup; |
| } |
| |
| /* |
| * Prepare metadata for DMA engine. This essentially describes the |
| * crypto algorithm to be used, data sizes, different keys etc. |
| */ |
| mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml); |
| |
| sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * |
| sizeof(u32))), cmdl, sizeof(sa_ctx->epib), |
| sa_ctx->epib); |
| |
| ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32)); |
| dmaengine_desc_set_metadata_len(tx_out, req->mdata_size); |
| |
| dmaengine_submit(tx_out); |
| dmaengine_submit(rxd->tx_in); |
| |
| dma_async_issue_pending(dma_rx); |
| dma_async_issue_pending(pdata->dma_tx); |
| |
| return -EINPROGRESS; |
| |
| err_cleanup: |
| sa_free_sa_rx_data(rxd); |
| |
| return ret; |
| } |
| |
| static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc) |
| { |
| struct sa_tfm_ctx *ctx = |
| crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); |
| struct crypto_alg *alg = req->base.tfm->__crt_alg; |
| struct sa_req sa_req = { 0 }; |
| |
| if (!req->cryptlen) |
| return 0; |
| |
| if (req->cryptlen % alg->cra_blocksize) |
| return -EINVAL; |
| |
| /* Use SW fallback if the data size is not supported */ |
| if (req->cryptlen > SA_MAX_DATA_SZ || |
| (req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN && |
| req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) { |
| struct skcipher_request *subreq = skcipher_request_ctx(req); |
| |
| skcipher_request_set_tfm(subreq, ctx->fallback.skcipher); |
| skcipher_request_set_callback(subreq, req->base.flags, |
| req->base.complete, |
| req->base.data); |
| skcipher_request_set_crypt(subreq, req->src, req->dst, |
| req->cryptlen, req->iv); |
| if (enc) |
| return crypto_skcipher_encrypt(subreq); |
| else |
| return crypto_skcipher_decrypt(subreq); |
| } |
| |
| sa_req.size = req->cryptlen; |
| sa_req.enc_size = req->cryptlen; |
| sa_req.src = req->src; |
| sa_req.dst = req->dst; |
| sa_req.enc_iv = iv; |
| sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER; |
| sa_req.enc = enc; |
| sa_req.callback = sa_aes_dma_in_callback; |
| sa_req.mdata_size = 44; |
| sa_req.base = &req->base; |
| sa_req.ctx = ctx; |
| |
| return sa_run(&sa_req); |
| } |
| |
| static int sa_encrypt(struct skcipher_request *req) |
| { |
| return sa_cipher_run(req, req->iv, 1); |
| } |
| |
| static int sa_decrypt(struct skcipher_request *req) |
| { |
| return sa_cipher_run(req, req->iv, 0); |
| } |
| |
| static void sa_sha_dma_in_callback(void *data) |
| { |
| struct sa_rx_data *rxd = (struct sa_rx_data *)data; |
| struct ahash_request *req; |
| struct crypto_ahash *tfm; |
| unsigned int authsize; |
| int i; |
| size_t ml, pl; |
| u32 *result; |
| __be32 *mdptr; |
| |
| sa_sync_from_device(rxd); |
| req = container_of(rxd->req, struct ahash_request, base); |
| tfm = crypto_ahash_reqtfm(req); |
| authsize = crypto_ahash_digestsize(tfm); |
| |
| mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml); |
| result = (u32 *)req->result; |
| |
| for (i = 0; i < (authsize / 4); i++) |
| result[i] = be32_to_cpu(mdptr[i + 4]); |
| |
| sa_free_sa_rx_data(rxd); |
| |
| ahash_request_complete(req, 0); |
| } |
| |
| static int zero_message_process(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| int sa_digest_size = crypto_ahash_digestsize(tfm); |
| |
| switch (sa_digest_size) { |
| case SHA1_DIGEST_SIZE: |
| memcpy(req->result, sha1_zero_message_hash, sa_digest_size); |
| break; |
| case SHA256_DIGEST_SIZE: |
| memcpy(req->result, sha256_zero_message_hash, sa_digest_size); |
| break; |
| case SHA512_DIGEST_SIZE: |
| memcpy(req->result, sha512_zero_message_hash, sa_digest_size); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int sa_sha_run(struct ahash_request *req) |
| { |
| struct sa_tfm_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); |
| struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct sa_req sa_req = { 0 }; |
| size_t auth_len; |
| |
| auth_len = req->nbytes; |
| |
| if (!auth_len) |
| return zero_message_process(req); |
| |
| if (auth_len > SA_MAX_DATA_SZ || |
| (auth_len >= SA_UNSAFE_DATA_SZ_MIN && |
| auth_len <= SA_UNSAFE_DATA_SZ_MAX)) { |
| struct ahash_request *subreq = &rctx->fallback_req; |
| int ret = 0; |
| |
| ahash_request_set_tfm(subreq, ctx->fallback.ahash); |
| subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| crypto_ahash_init(subreq); |
| |
| subreq->nbytes = auth_len; |
| subreq->src = req->src; |
| subreq->result = req->result; |
| |
| ret |= crypto_ahash_update(subreq); |
| |
| subreq->nbytes = 0; |
| |
| ret |= crypto_ahash_final(subreq); |
| |
| return ret; |
| } |
| |
| sa_req.size = auth_len; |
| sa_req.auth_size = auth_len; |
| sa_req.src = req->src; |
| sa_req.dst = req->src; |
| sa_req.enc = true; |
| sa_req.type = CRYPTO_ALG_TYPE_AHASH; |
| sa_req.callback = sa_sha_dma_in_callback; |
| sa_req.mdata_size = 28; |
| sa_req.ctx = ctx; |
| sa_req.base = &req->base; |
| |
| return sa_run(&sa_req); |
| } |
| |
| static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct algo_data *ad) |
| { |
| int bs = crypto_shash_blocksize(ctx->shash); |
| int cmdl_len; |
| struct sa_cmdl_cfg cfg; |
| |
| ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; |
| ad->auth_eng.eng_id = SA_ENG_ID_AM1; |
| ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ; |
| |
| memset(ctx->authkey, 0, bs); |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.aalg = ad->aalg_id; |
| cfg.enc_eng_id = ad->enc_eng.eng_id; |
| cfg.auth_eng_id = ad->auth_eng.eng_id; |
| cfg.iv_size = 0; |
| cfg.akey = NULL; |
| cfg.akey_len = 0; |
| |
| /* Setup Encryption Security Context & Command label template */ |
| if (sa_init_sc(&ctx->enc, NULL, 0, NULL, 0, ad, 0, |
| &ctx->enc.epib[1])) |
| goto badkey; |
| |
| cmdl_len = sa_format_cmdl_gen(&cfg, |
| (u8 *)ctx->enc.cmdl, |
| &ctx->enc.cmdl_upd_info); |
| if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
| goto badkey; |
| |
| ctx->enc.cmdl_size = cmdl_len; |
| |
| return 0; |
| |
| badkey: |
| dev_err(sa_k3_dev, "%s: badkey\n", __func__); |
| return -EINVAL; |
| } |
| |
| static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) |
| { |
| struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); |
| int ret; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| ctx->dev_data = data; |
| ret = sa_init_ctx_info(&ctx->enc, data); |
| if (ret) |
| return ret; |
| |
| if (alg_base) { |
| ctx->shash = crypto_alloc_shash(alg_base, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->shash)) { |
| dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", |
| alg_base); |
| return PTR_ERR(ctx->shash); |
| } |
| /* for fallback */ |
| ctx->fallback.ahash = |
| crypto_alloc_ahash(alg_base, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->fallback.ahash)) { |
| dev_err(ctx->dev_data->dev, |
| "Could not load fallback driver\n"); |
| return PTR_ERR(ctx->fallback.ahash); |
| } |
| } |
| |
| dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", |
| __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
| ctx->dec.sc_id, &ctx->dec.sc_phys); |
| |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct sa_sha_req_ctx) + |
| crypto_ahash_reqsize(ctx->fallback.ahash)); |
| |
| return 0; |
| } |
| |
| static int sa_sha_digest(struct ahash_request *req) |
| { |
| return sa_sha_run(req); |
| } |
| |
| static int sa_sha_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| dev_dbg(sa_k3_dev, "init: digest size: %u, rctx=%p\n", |
| crypto_ahash_digestsize(tfm), rctx); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); |
| rctx->fallback_req.base.flags = |
| req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| return crypto_ahash_init(&rctx->fallback_req); |
| } |
| |
| static int sa_sha_update(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); |
| rctx->fallback_req.base.flags = |
| req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| rctx->fallback_req.nbytes = req->nbytes; |
| rctx->fallback_req.src = req->src; |
| |
| return crypto_ahash_update(&rctx->fallback_req); |
| } |
| |
| static int sa_sha_final(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); |
| rctx->fallback_req.base.flags = |
| req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| rctx->fallback_req.result = req->result; |
| |
| return crypto_ahash_final(&rctx->fallback_req); |
| } |
| |
| static int sa_sha_finup(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); |
| rctx->fallback_req.base.flags = |
| req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| rctx->fallback_req.nbytes = req->nbytes; |
| rctx->fallback_req.src = req->src; |
| rctx->fallback_req.result = req->result; |
| |
| return crypto_ahash_finup(&rctx->fallback_req); |
| } |
| |
| static int sa_sha_import(struct ahash_request *req, const void *in) |
| { |
| struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
| |
| ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash); |
| rctx->fallback_req.base.flags = req->base.flags & |
| CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| return crypto_ahash_import(&rctx->fallback_req, in); |
| } |
| |
| static int sa_sha_export(struct ahash_request *req, void *out) |
| { |
| struct sa_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm); |
| struct ahash_request *subreq = &rctx->fallback_req; |
| |
| ahash_request_set_tfm(subreq, ctx->fallback.ahash); |
| subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| |
| return crypto_ahash_export(subreq, out); |
| } |
| |
| static int sa_sha1_cra_init(struct crypto_tfm *tfm) |
| { |
| struct algo_data ad = { 0 }; |
| struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| sa_sha_cra_init_alg(tfm, "sha1"); |
| |
| ad.aalg_id = SA_AALG_ID_SHA1; |
| ad.hash_size = SHA1_DIGEST_SIZE; |
| ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1; |
| |
| sa_sha_setup(ctx, &ad); |
| |
| return 0; |
| } |
| |
| static int sa_sha256_cra_init(struct crypto_tfm *tfm) |
| { |
| struct algo_data ad = { 0 }; |
| struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| sa_sha_cra_init_alg(tfm, "sha256"); |
| |
| ad.aalg_id = SA_AALG_ID_SHA2_256; |
| ad.hash_size = SHA256_DIGEST_SIZE; |
| ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256; |
| |
| sa_sha_setup(ctx, &ad); |
| |
| return 0; |
| } |
| |
| static int sa_sha512_cra_init(struct crypto_tfm *tfm) |
| { |
| struct algo_data ad = { 0 }; |
| struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| sa_sha_cra_init_alg(tfm, "sha512"); |
| |
| ad.aalg_id = SA_AALG_ID_SHA2_512; |
| ad.hash_size = SHA512_DIGEST_SIZE; |
| ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512; |
| |
| sa_sha_setup(ctx, &ad); |
| |
| return 0; |
| } |
| |
| static void sa_sha_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); |
| |
| dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", |
| __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
| ctx->dec.sc_id, &ctx->dec.sc_phys); |
| |
| if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH) |
| sa_free_ctx_info(&ctx->enc, data); |
| |
| crypto_free_shash(ctx->shash); |
| crypto_free_ahash(ctx->fallback.ahash); |
| } |
| |
| static void sa_aead_dma_in_callback(void *data) |
| { |
| struct sa_rx_data *rxd = (struct sa_rx_data *)data; |
| struct aead_request *req; |
| struct crypto_aead *tfm; |
| unsigned int start; |
| unsigned int authsize; |
| u8 auth_tag[SA_MAX_AUTH_TAG_SZ]; |
| size_t pl, ml; |
| int i; |
| int err = 0; |
| u16 auth_len; |
| u32 *mdptr; |
| |
| sa_sync_from_device(rxd); |
| req = container_of(rxd->req, struct aead_request, base); |
| tfm = crypto_aead_reqtfm(req); |
| start = req->assoclen + req->cryptlen; |
| authsize = crypto_aead_authsize(tfm); |
| |
| mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml); |
| for (i = 0; i < (authsize / 4); i++) |
| mdptr[i + 4] = swab32(mdptr[i + 4]); |
| |
| auth_len = req->assoclen + req->cryptlen; |
| |
| if (rxd->enc) { |
| scatterwalk_map_and_copy(&mdptr[4], req->dst, start, authsize, |
| 1); |
| } else { |
| auth_len -= authsize; |
| start -= authsize; |
| scatterwalk_map_and_copy(auth_tag, req->src, start, authsize, |
| 0); |
| |
| err = memcmp(&mdptr[4], auth_tag, authsize) ? -EBADMSG : 0; |
| } |
| |
| sa_free_sa_rx_data(rxd); |
| |
| aead_request_complete(req, err); |
| } |
| |
| static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash, |
| const char *fallback) |
| { |
| struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); |
| struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); |
| int ret; |
| |
| memzero_explicit(ctx, sizeof(*ctx)); |
| |
| ctx->shash = crypto_alloc_shash(hash, 0, CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->shash)) { |
| dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", hash); |
| return PTR_ERR(ctx->shash); |
| } |
| |
| ctx->fallback.aead = crypto_alloc_aead(fallback, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| |
| if (IS_ERR(ctx->fallback.aead)) { |
| dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n", |
| fallback); |
| return PTR_ERR(ctx->fallback.aead); |
| } |
| |
| crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) + |
| crypto_aead_reqsize(ctx->fallback.aead)); |
| |
| ret = sa_init_ctx_info(&ctx->enc, data); |
| if (ret) |
| return ret; |
| |
| ret = sa_init_ctx_info(&ctx->dec, data); |
| if (ret) { |
| sa_free_ctx_info(&ctx->enc, data); |
| return ret; |
| } |
| |
| dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n", |
| __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys, |
| ctx->dec.sc_id, &ctx->dec.sc_phys); |
| |
| return ret; |
| } |
| |
| static int sa_cra_init_aead_sha1(struct crypto_aead *tfm) |
| { |
| return sa_cra_init_aead(tfm, "sha1", |
| "authenc(hmac(sha1-ce),cbc(aes-ce))"); |
| } |
| |
| static int sa_cra_init_aead_sha256(struct crypto_aead *tfm) |
| { |
| return sa_cra_init_aead(tfm, "sha256", |
| "authenc(hmac(sha256-ce),cbc(aes-ce))"); |
| } |
| |
| static void sa_exit_tfm_aead(struct crypto_aead *tfm) |
| { |
| struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); |
| struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev); |
| |
| crypto_free_shash(ctx->shash); |
| crypto_free_aead(ctx->fallback.aead); |
| |
| sa_free_ctx_info(&ctx->enc, data); |
| sa_free_ctx_info(&ctx->dec, data); |
| } |
| |
| /* AEAD algorithm configuration interface function */ |
| static int sa_aead_setkey(struct crypto_aead *authenc, |
| const u8 *key, unsigned int keylen, |
| struct algo_data *ad) |
| { |
| struct sa_tfm_ctx *ctx = crypto_aead_ctx(authenc); |
| struct crypto_authenc_keys keys; |
| int cmdl_len; |
| struct sa_cmdl_cfg cfg; |
| int key_idx; |
| |
| if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) |
| return -EINVAL; |
| |
| /* Convert the key size (16/24/32) to the key size index (0/1/2) */ |
| key_idx = (keys.enckeylen >> 3) - 2; |
| if (key_idx >= 3) |
| return -EINVAL; |
| |
| ad->ctx = ctx; |
| ad->enc_eng.eng_id = SA_ENG_ID_EM1; |
| ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ; |
| ad->auth_eng.eng_id = SA_ENG_ID_AM1; |
| ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ; |
| ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx]; |
| ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx]; |
| ad->inv_key = true; |
| ad->keyed_mac = true; |
| ad->ealg_id = SA_EALG_ID_AES_CBC; |
| ad->prep_iopad = sa_prepare_iopads; |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.enc = true; |
| cfg.aalg = ad->aalg_id; |
| cfg.enc_eng_id = ad->enc_eng.eng_id; |
| cfg.auth_eng_id = ad->auth_eng.eng_id; |
| cfg.iv_size = crypto_aead_ivsize(authenc); |
| cfg.akey = keys.authkey; |
| cfg.akey_len = keys.authkeylen; |
| |
| /* Setup Encryption Security Context & Command label template */ |
| if (sa_init_sc(&ctx->enc, keys.enckey, keys.enckeylen, |
| keys.authkey, keys.authkeylen, |
| ad, 1, &ctx->enc.epib[1])) |
| return -EINVAL; |
| |
| cmdl_len = sa_format_cmdl_gen(&cfg, |
| (u8 *)ctx->enc.cmdl, |
| &ctx->enc.cmdl_upd_info); |
| if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
| return -EINVAL; |
| |
| ctx->enc.cmdl_size = cmdl_len; |
| |
| /* Setup Decryption Security Context & Command label template */ |
| if (sa_init_sc(&ctx->dec, keys.enckey, keys.enckeylen, |
| keys.authkey, keys.authkeylen, |
| ad, 0, &ctx->dec.epib[1])) |
| return -EINVAL; |
| |
| cfg.enc = false; |
| cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl, |
| &ctx->dec.cmdl_upd_info); |
| |
| if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32))) |
| return -EINVAL; |
| |
| ctx->dec.cmdl_size = cmdl_len; |
| |
| crypto_aead_clear_flags(ctx->fallback.aead, CRYPTO_TFM_REQ_MASK); |
| crypto_aead_set_flags(ctx->fallback.aead, |
| crypto_aead_get_flags(authenc) & |
| CRYPTO_TFM_REQ_MASK); |
| crypto_aead_setkey(ctx->fallback.aead, key, keylen); |
| |
| return 0; |
| } |
| |
| static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
| { |
| struct sa_tfm_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm)); |
| |
| return crypto_aead_setauthsize(ctx->fallback.aead, authsize); |
| } |
| |
| static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc, |
| const u8 *key, unsigned int keylen) |
| { |
| struct algo_data ad = { 0 }; |
| |
| ad.ealg_id = SA_EALG_ID_AES_CBC; |
| ad.aalg_id = SA_AALG_ID_HMAC_SHA1; |
| ad.hash_size = SHA1_DIGEST_SIZE; |
| ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1; |
| |
| return sa_aead_setkey(authenc, key, keylen, &ad); |
| } |
| |
| static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc, |
| const u8 *key, unsigned int keylen) |
| { |
| struct algo_data ad = { 0 }; |
| |
| ad.ealg_id = SA_EALG_ID_AES_CBC; |
| ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256; |
| ad.hash_size = SHA256_DIGEST_SIZE; |
| ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256; |
| |
| return sa_aead_setkey(authenc, key, keylen, &ad); |
| } |
| |
| static int sa_aead_run(struct aead_request *req, u8 *iv, int enc) |
| { |
| struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm); |
| struct sa_req sa_req = { 0 }; |
| size_t auth_size, enc_size; |
| |
| enc_size = req->cryptlen; |
| auth_size = req->assoclen + req->cryptlen; |
| |
| if (!enc) { |
| enc_size -= crypto_aead_authsize(tfm); |
| auth_size -= crypto_aead_authsize(tfm); |
| } |
| |
| if (auth_size > SA_MAX_DATA_SZ || |
| (auth_size >= SA_UNSAFE_DATA_SZ_MIN && |
| auth_size <= SA_UNSAFE_DATA_SZ_MAX)) { |
| struct aead_request *subreq = aead_request_ctx(req); |
| int ret; |
| |
| aead_request_set_tfm(subreq, ctx->fallback.aead); |
| aead_request_set_callback(subreq, req->base.flags, |
| req->base.complete, req->base.data); |
| aead_request_set_crypt(subreq, req->src, req->dst, |
| req->cryptlen, req->iv); |
| aead_request_set_ad(subreq, req->assoclen); |
| |
| ret = enc ? crypto_aead_encrypt(subreq) : |
| crypto_aead_decrypt(subreq); |
| return ret; |
| } |
| |
| sa_req.enc_offset = req->assoclen; |
| sa_req.enc_size = enc_size; |
| sa_req.auth_size = auth_size; |
| sa_req.size = auth_size; |
| sa_req.enc_iv = iv; |
| sa_req.type = CRYPTO_ALG_TYPE_AEAD; |
| sa_req.enc = enc; |
| sa_req.callback = sa_aead_dma_in_callback; |
| sa_req.mdata_size = 52; |
| sa_req.base = &req->base; |
| sa_req.ctx = ctx; |
| sa_req.src = req->src; |
| sa_req.dst = req->dst; |
| |
| return sa_run(&sa_req); |
| } |
| |
| /* AEAD algorithm encrypt interface function */ |
| static int sa_aead_encrypt(struct aead_request *req) |
| { |
| return sa_aead_run(req, req->iv, 1); |
| } |
| |
| /* AEAD algorithm decrypt interface function */ |
| static int sa_aead_decrypt(struct aead_request *req) |
| { |
| return sa_aead_run(req, req->iv, 0); |
| } |
| |
| static struct sa_alg_tmpl sa_algs[] = { |
| { |
| .type = CRYPTO_ALG_TYPE_SKCIPHER, |
| .alg.skcipher = { |
| .base.cra_name = "cbc(aes)", |
| .base.cra_driver_name = "cbc-aes-sa2ul", |
| .base.cra_priority = 30000, |
| .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .base.cra_module = THIS_MODULE, |
| .init = sa_cipher_cra_init, |
| .exit = sa_cipher_cra_exit, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = sa_aes_cbc_setkey, |
| .encrypt = sa_encrypt, |
| .decrypt = sa_decrypt, |
| } |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_SKCIPHER, |
| .alg.skcipher = { |
| .base.cra_name = "ecb(aes)", |
| .base.cra_driver_name = "ecb-aes-sa2ul", |
| .base.cra_priority = 30000, |
| .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .base.cra_module = THIS_MODULE, |
| .init = sa_cipher_cra_init, |
| .exit = sa_cipher_cra_exit, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = sa_aes_ecb_setkey, |
| .encrypt = sa_encrypt, |
| .decrypt = sa_decrypt, |
| } |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_SKCIPHER, |
| .alg.skcipher = { |
| .base.cra_name = "cbc(des3_ede)", |
| .base.cra_driver_name = "cbc-des3-sa2ul", |
| .base.cra_priority = 30000, |
| .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = DES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .base.cra_module = THIS_MODULE, |
| .init = sa_cipher_cra_init, |
| .exit = sa_cipher_cra_exit, |
| .min_keysize = 3 * DES_KEY_SIZE, |
| .max_keysize = 3 * DES_KEY_SIZE, |
| .ivsize = DES_BLOCK_SIZE, |
| .setkey = sa_3des_cbc_setkey, |
| .encrypt = sa_encrypt, |
| .decrypt = sa_decrypt, |
| } |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_SKCIPHER, |
| .alg.skcipher = { |
| .base.cra_name = "ecb(des3_ede)", |
| .base.cra_driver_name = "ecb-des3-sa2ul", |
| .base.cra_priority = 30000, |
| .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .base.cra_blocksize = DES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .base.cra_module = THIS_MODULE, |
| .init = sa_cipher_cra_init, |
| .exit = sa_cipher_cra_exit, |
| .min_keysize = 3 * DES_KEY_SIZE, |
| .max_keysize = 3 * DES_KEY_SIZE, |
| .setkey = sa_3des_ecb_setkey, |
| .encrypt = sa_encrypt, |
| .decrypt = sa_decrypt, |
| } |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.ahash = { |
| .halg.base = { |
| .cra_name = "sha1", |
| .cra_driver_name = "sha1-sa2ul", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_init = sa_sha1_cra_init, |
| .cra_exit = sa_sha_cra_exit, |
| }, |
| .halg.digestsize = SHA1_DIGEST_SIZE, |
| .halg.statesize = sizeof(struct sa_sha_req_ctx) + |
| sizeof(struct sha1_state), |
| .init = sa_sha_init, |
| .update = sa_sha_update, |
| .final = sa_sha_final, |
| .finup = sa_sha_finup, |
| .digest = sa_sha_digest, |
| .export = sa_sha_export, |
| .import = sa_sha_import, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.ahash = { |
| .halg.base = { |
| .cra_name = "sha256", |
| .cra_driver_name = "sha256-sa2ul", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_init = sa_sha256_cra_init, |
| .cra_exit = sa_sha_cra_exit, |
| }, |
| .halg.digestsize = SHA256_DIGEST_SIZE, |
| .halg.statesize = sizeof(struct sa_sha_req_ctx) + |
| sizeof(struct sha256_state), |
| .init = sa_sha_init, |
| .update = sa_sha_update, |
| .final = sa_sha_final, |
| .finup = sa_sha_finup, |
| .digest = sa_sha_digest, |
| .export = sa_sha_export, |
| .import = sa_sha_import, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.ahash = { |
| .halg.base = { |
| .cra_name = "sha512", |
| .cra_driver_name = "sha512-sa2ul", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_TYPE_AHASH | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_blocksize = SHA512_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_init = sa_sha512_cra_init, |
| .cra_exit = sa_sha_cra_exit, |
| }, |
| .halg.digestsize = SHA512_DIGEST_SIZE, |
| .halg.statesize = sizeof(struct sa_sha_req_ctx) + |
| sizeof(struct sha512_state), |
| .init = sa_sha_init, |
| .update = sa_sha_update, |
| .final = sa_sha_final, |
| .finup = sa_sha_finup, |
| .digest = sa_sha_digest, |
| .export = sa_sha_export, |
| .import = sa_sha_import, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),cbc(aes))", |
| .cra_driver_name = |
| "authenc(hmac(sha1),cbc(aes))-sa2ul", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_priority = 3000, |
| }, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| |
| .init = sa_cra_init_aead_sha1, |
| .exit = sa_exit_tfm_aead, |
| .setkey = sa_aead_cbc_sha1_setkey, |
| .setauthsize = sa_aead_setauthsize, |
| .encrypt = sa_aead_encrypt, |
| .decrypt = sa_aead_decrypt, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha256),cbc(aes))", |
| .cra_driver_name = |
| "authenc(hmac(sha256),cbc(aes))-sa2ul", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_TYPE_AEAD | |
| CRYPTO_ALG_KERN_DRIVER_ONLY | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_ctxsize = sizeof(struct sa_tfm_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_alignmask = 0, |
| .cra_priority = 3000, |
| }, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA256_DIGEST_SIZE, |
| |
| .init = sa_cra_init_aead_sha256, |
| .exit = sa_exit_tfm_aead, |
| .setkey = sa_aead_cbc_sha256_setkey, |
| .setauthsize = sa_aead_setauthsize, |
| .encrypt = sa_aead_encrypt, |
| .decrypt = sa_aead_decrypt, |
| }, |
| }, |
| }; |
| |
| /* Register the algorithms in crypto framework */ |
| static void sa_register_algos(const struct device *dev) |
| { |
| char *alg_name; |
| u32 type; |
| int i, err; |
| |
| for (i = 0; i < ARRAY_SIZE(sa_algs); i++) { |
| type = sa_algs[i].type; |
| if (type == CRYPTO_ALG_TYPE_SKCIPHER) { |
| alg_name = sa_algs[i].alg.skcipher.base.cra_name; |
| err = crypto_register_skcipher(&sa_algs[i].alg.skcipher); |
| } else if (type == CRYPTO_ALG_TYPE_AHASH) { |
| alg_name = sa_algs[i].alg.ahash.halg.base.cra_name; |
| err = crypto_register_ahash(&sa_algs[i].alg.ahash); |
| } else if (type == CRYPTO_ALG_TYPE_AEAD) { |
| alg_name = sa_algs[i].alg.aead.base.cra_name; |
| err = crypto_register_aead(&sa_algs[i].alg.aead); |
| } else { |
| dev_err(dev, |
| "un-supported crypto algorithm (%d)", |
| sa_algs[i].type); |
| continue; |
| } |
| |
| if (err) |
| dev_err(dev, "Failed to register '%s'\n", alg_name); |
| else |
| sa_algs[i].registered = true; |
| } |
| } |
| |
| /* Unregister the algorithms in crypto framework */ |
| static void sa_unregister_algos(const struct device *dev) |
| { |
| u32 type; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(sa_algs); i++) { |
| type = sa_algs[i].type; |
| if (!sa_algs[i].registered) |
| continue; |
| if (type == CRYPTO_ALG_TYPE_SKCIPHER) |
| crypto_unregister_skcipher(&sa_algs[i].alg.skcipher); |
| else if (type == CRYPTO_ALG_TYPE_AHASH) |
| crypto_unregister_ahash(&sa_algs[i].alg.ahash); |
| else if (type == CRYPTO_ALG_TYPE_AEAD) |
| crypto_unregister_aead(&sa_algs[i].alg.aead); |
| |
| sa_algs[i].registered = false; |
| } |
| } |
| |
| static int sa_init_mem(struct sa_crypto_data *dev_data) |
| { |
| struct device *dev = &dev_data->pdev->dev; |
| /* Setup dma pool for security context buffers */ |
| dev_data->sc_pool = dma_pool_create("keystone-sc", dev, |
| SA_CTX_MAX_SZ, 64, 0); |
| if (!dev_data->sc_pool) { |
| dev_err(dev, "Failed to create dma pool"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int sa_dma_init(struct sa_crypto_data *dd) |
| { |
| int ret; |
| struct dma_slave_config cfg; |
| |
| dd->dma_rx1 = NULL; |
| dd->dma_tx = NULL; |
| dd->dma_rx2 = NULL; |
| |
| ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48)); |
| if (ret) |
| return ret; |
| |
| dd->dma_rx1 = dma_request_chan(dd->dev, "rx1"); |
| if (IS_ERR(dd->dma_rx1)) |
| return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx1), |
| "Unable to request rx1 DMA channel\n"); |
| |
| dd->dma_rx2 = dma_request_chan(dd->dev, "rx2"); |
| if (IS_ERR(dd->dma_rx2)) { |
| dma_release_channel(dd->dma_rx1); |
| return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx2), |
| "Unable to request rx2 DMA channel\n"); |
| } |
| |
| dd->dma_tx = dma_request_chan(dd->dev, "tx"); |
| if (IS_ERR(dd->dma_tx)) { |
| ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_tx), |
| "Unable to request tx DMA channel\n"); |
| goto err_dma_tx; |
| } |
| |
| memzero_explicit(&cfg, sizeof(cfg)); |
| |
| cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| cfg.src_maxburst = 4; |
| cfg.dst_maxburst = 4; |
| |
| ret = dmaengine_slave_config(dd->dma_rx1, &cfg); |
| if (ret) { |
| dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = dmaengine_slave_config(dd->dma_rx2, &cfg); |
| if (ret) { |
| dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = dmaengine_slave_config(dd->dma_tx, &cfg); |
| if (ret) { |
| dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n", |
| ret); |
| return ret; |
| } |
| |
| return 0; |
| |
| err_dma_tx: |
| dma_release_channel(dd->dma_rx1); |
| dma_release_channel(dd->dma_rx2); |
| |
| return ret; |
| } |
| |
| static int sa_link_child(struct device *dev, void *data) |
| { |
| struct device *parent = data; |
| |
| device_link_add(dev, parent, DL_FLAG_AUTOPROBE_CONSUMER); |
| |
| return 0; |
| } |
| |
| static int sa_ul_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *node = dev->of_node; |
| struct resource *res; |
| static void __iomem *saul_base; |
| struct sa_crypto_data *dev_data; |
| u32 val; |
| int ret; |
| |
| dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL); |
| if (!dev_data) |
| return -ENOMEM; |
| |
| sa_k3_dev = dev; |
| dev_data->dev = dev; |
| dev_data->pdev = pdev; |
| platform_set_drvdata(pdev, dev_data); |
| dev_set_drvdata(sa_k3_dev, dev_data); |
| |
| pm_runtime_enable(dev); |
| ret = pm_runtime_get_sync(dev); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "%s: failed to get sync: %d\n", __func__, |
| ret); |
| return ret; |
| } |
| |
| sa_init_mem(dev_data); |
| ret = sa_dma_init(dev_data); |
| if (ret) |
| goto disable_pm_runtime; |
| |
| spin_lock_init(&dev_data->scid_lock); |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| saul_base = devm_ioremap_resource(dev, res); |
| |
| dev_data->base = saul_base; |
| val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN | |
| SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN | |
| SA_EEC_TRNG_EN; |
| |
| writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL); |
| |
| sa_register_algos(dev); |
| |
| ret = of_platform_populate(node, NULL, NULL, &pdev->dev); |
| if (ret) |
| goto release_dma; |
| |
| device_for_each_child(&pdev->dev, &pdev->dev, sa_link_child); |
| |
| return 0; |
| |
| release_dma: |
| sa_unregister_algos(&pdev->dev); |
| |
| dma_release_channel(dev_data->dma_rx2); |
| dma_release_channel(dev_data->dma_rx1); |
| dma_release_channel(dev_data->dma_tx); |
| |
| dma_pool_destroy(dev_data->sc_pool); |
| |
| disable_pm_runtime: |
| pm_runtime_put_sync(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| |
| return ret; |
| } |
| |
| static int sa_ul_remove(struct platform_device *pdev) |
| { |
| struct sa_crypto_data *dev_data = platform_get_drvdata(pdev); |
| |
| sa_unregister_algos(&pdev->dev); |
| |
| dma_release_channel(dev_data->dma_rx2); |
| dma_release_channel(dev_data->dma_rx1); |
| dma_release_channel(dev_data->dma_tx); |
| |
| dma_pool_destroy(dev_data->sc_pool); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| pm_runtime_put_sync(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id of_match[] = { |
| {.compatible = "ti,j721e-sa2ul",}, |
| {.compatible = "ti,am654-sa2ul",}, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, of_match); |
| |
| static struct platform_driver sa_ul_driver = { |
| .probe = sa_ul_probe, |
| .remove = sa_ul_remove, |
| .driver = { |
| .name = "saul-crypto", |
| .of_match_table = of_match, |
| }, |
| }; |
| module_platform_driver(sa_ul_driver); |
| MODULE_LICENSE("GPL v2"); |