| /* |
| * Intel 7300 class Memory Controllers kernel module (Clarksboro) |
| * |
| * This file may be distributed under the terms of the |
| * GNU General Public License version 2 only. |
| * |
| * Copyright (c) 2010 by: |
| * Mauro Carvalho Chehab <mchehab@redhat.com> |
| * |
| * Red Hat Inc. http://www.redhat.com |
| * |
| * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet |
| * http://www.intel.com/Assets/PDF/datasheet/318082.pdf |
| * |
| * TODO: The chipset allow checking for PCI Express errors also. Currently, |
| * the driver covers only memory error errors |
| * |
| * This driver uses "csrows" EDAC attribute to represent DIMM slot# |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/slab.h> |
| #include <linux/edac.h> |
| #include <linux/mmzone.h> |
| |
| #include "edac_core.h" |
| |
| /* |
| * Alter this version for the I7300 module when modifications are made |
| */ |
| #define I7300_REVISION " Ver: 1.0.0 " __DATE__ |
| |
| #define EDAC_MOD_STR "i7300_edac" |
| |
| #define i7300_printk(level, fmt, arg...) \ |
| edac_printk(level, "i7300", fmt, ##arg) |
| |
| #define i7300_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg) |
| |
| /* |
| * Memory topology is organized as: |
| * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0) |
| * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0) |
| * Each channel can have to 8 DIMM sets (called as SLOTS) |
| * Slots should generally be filled in pairs |
| * Except on Single Channel mode of operation |
| * just slot 0/channel0 filled on this mode |
| * On normal operation mode, the two channels on a branch should be |
| * filled together for the same SLOT# |
| * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four |
| * channels on both branches should be filled |
| */ |
| |
| /* Limits for i7300 */ |
| #define MAX_SLOTS 8 |
| #define MAX_BRANCHES 2 |
| #define MAX_CH_PER_BRANCH 2 |
| #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES) |
| #define MAX_MIR 3 |
| |
| #define to_channel(ch, branch) ((((branch)) << 1) | (ch)) |
| |
| #define to_csrow(slot, ch, branch) \ |
| (to_channel(ch, branch) | ((slot) << 2)) |
| |
| /* |
| * I7300 devices |
| * All 3 functions of Device 16 (0,1,2) share the SAME DID and |
| * uses PCI_DEVICE_ID_INTEL_I7300_MCH_ERR for device 16 (0,1,2), |
| * PCI_DEVICE_ID_INTEL_I7300_MCH_FB0 and PCI_DEVICE_ID_INTEL_I7300_MCH_FB1 |
| * for device 21 (0,1). |
| */ |
| |
| /**************************************************** |
| * i7300 Register definitions for memory enumberation |
| ****************************************************/ |
| |
| /* |
| * Device 16, |
| * Function 0: System Address (not documented) |
| * Function 1: Memory Branch Map, Control, Errors Register |
| */ |
| |
| /* OFFSETS for Function 0 */ |
| #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */ |
| #define MAXCH 0x56 /* Max Channel Number */ |
| #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */ |
| |
| /* OFFSETS for Function 1 */ |
| #define MC_SETTINGS 0x40 |
| #define IS_MIRRORED(mc) ((mc) & (1 << 16)) |
| #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5)) |
| #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31)) |
| #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8)) |
| |
| #define MC_SETTINGS_A 0x58 |
| #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14)) |
| |
| #define TOLM 0x6C |
| #define REDMEMB 0x7C |
| |
| #define MIR0 0x80 |
| #define MIR1 0x84 |
| #define MIR2 0x88 |
| |
| /* |
| * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available |
| * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it |
| * seems that we cannot use this information directly for the same usage. |
| * Each memory slot may have up to 2 AMB interfaces, one for income and another |
| * for outcome interface to the next slot. |
| * For now, the driver just stores the AMB present registers, but rely only at |
| * the MTR info to detect memory. |
| * Datasheet is also not clear about how to map each AMBPRESENT registers to |
| * one of the 4 available channels. |
| */ |
| #define AMBPRESENT_0 0x64 |
| #define AMBPRESENT_1 0x66 |
| |
| const static u16 mtr_regs [MAX_SLOTS] = { |
| 0x80, 0x84, 0x88, 0x8c, |
| 0x82, 0x86, 0x8a, 0x8e |
| }; |
| |
| /* Defines to extract the vaious fields from the |
| * MTRx - Memory Technology Registers |
| */ |
| #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8)) |
| #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7)) |
| #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4) |
| #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4) |
| #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0) |
| #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) |
| #define MTR_DRAM_BANKS_ADDR_BITS 2 |
| #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) |
| #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) |
| #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| /* MTR NUMROW */ |
| static const char *numrow_toString[] = { |
| "8,192 - 13 rows", |
| "16,384 - 14 rows", |
| "32,768 - 15 rows", |
| "65,536 - 16 rows" |
| }; |
| |
| /* MTR NUMCOL */ |
| static const char *numcol_toString[] = { |
| "1,024 - 10 columns", |
| "2,048 - 11 columns", |
| "4,096 - 12 columns", |
| "reserved" |
| }; |
| #endif |
| |
| /************************************************ |
| * i7300 Register definitions for error detection |
| ************************************************/ |
| |
| /* |
| * Device 16.1: FBD Error Registers |
| */ |
| #define FERR_FAT_FBD 0x98 |
| static const char *ferr_fat_fbd_name[] = { |
| [22] = "Non-Redundant Fast Reset Timeout", |
| [2] = ">Tmid Thermal event with intelligent throttling disabled", |
| [1] = "Memory or FBD configuration CRC read error", |
| [0] = "Memory Write error on non-redundant retry or " |
| "FBD configuration Write error on retry", |
| }; |
| #define GET_FBD_FAT_IDX(fbderr) (fbderr & (3 << 28)) |
| #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3)) |
| |
| #define FERR_NF_FBD 0xa0 |
| static const char *ferr_nf_fbd_name[] = { |
| [24] = "DIMM-Spare Copy Completed", |
| [23] = "DIMM-Spare Copy Initiated", |
| [22] = "Redundant Fast Reset Timeout", |
| [21] = "Memory Write error on redundant retry", |
| [18] = "SPD protocol Error", |
| [17] = "FBD Northbound parity error on FBD Sync Status", |
| [16] = "Correctable Patrol Data ECC", |
| [15] = "Correctable Resilver- or Spare-Copy Data ECC", |
| [14] = "Correctable Mirrored Demand Data ECC", |
| [13] = "Correctable Non-Mirrored Demand Data ECC", |
| [11] = "Memory or FBD configuration CRC read error", |
| [10] = "FBD Configuration Write error on first attempt", |
| [9] = "Memory Write error on first attempt", |
| [8] = "Non-Aliased Uncorrectable Patrol Data ECC", |
| [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", |
| [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC", |
| [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC", |
| [4] = "Aliased Uncorrectable Patrol Data ECC", |
| [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", |
| [2] = "Aliased Uncorrectable Mirrored Demand Data ECC", |
| [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC", |
| [0] = "Uncorrectable Data ECC on Replay", |
| }; |
| #define GET_FBD_NF_IDX(fbderr) (fbderr & (3 << 28)) |
| #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\ |
| (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\ |
| (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\ |
| (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\ |
| (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\ |
| (1 << 1) | (1 << 0)) |
| |
| #define EMASK_FBD 0xa8 |
| #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\ |
| (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\ |
| (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\ |
| (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\ |
| (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\ |
| (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\ |
| (1 << 1) | (1 << 0)) |
| |
| /* |
| * Device 16.2: Global Error Registers |
| */ |
| |
| #define FERR_GLOBAL_HI 0x48 |
| static const char *ferr_global_hi_name[] = { |
| [3] = "FSB 3 Fatal Error", |
| [2] = "FSB 2 Fatal Error", |
| [1] = "FSB 1 Fatal Error", |
| [0] = "FSB 0 Fatal Error", |
| }; |
| #define ferr_global_hi_is_fatal(errno) 1 |
| |
| #define FERR_GLOBAL_LO 0x40 |
| static const char *ferr_global_lo_name[] = { |
| [31] = "Internal MCH Fatal Error", |
| [30] = "Intel QuickData Technology Device Fatal Error", |
| [29] = "FSB1 Fatal Error", |
| [28] = "FSB0 Fatal Error", |
| [27] = "FBD Channel 3 Fatal Error", |
| [26] = "FBD Channel 2 Fatal Error", |
| [25] = "FBD Channel 1 Fatal Error", |
| [24] = "FBD Channel 0 Fatal Error", |
| [23] = "PCI Express Device 7Fatal Error", |
| [22] = "PCI Express Device 6 Fatal Error", |
| [21] = "PCI Express Device 5 Fatal Error", |
| [20] = "PCI Express Device 4 Fatal Error", |
| [19] = "PCI Express Device 3 Fatal Error", |
| [18] = "PCI Express Device 2 Fatal Error", |
| [17] = "PCI Express Device 1 Fatal Error", |
| [16] = "ESI Fatal Error", |
| [15] = "Internal MCH Non-Fatal Error", |
| [14] = "Intel QuickData Technology Device Non Fatal Error", |
| [13] = "FSB1 Non-Fatal Error", |
| [12] = "FSB 0 Non-Fatal Error", |
| [11] = "FBD Channel 3 Non-Fatal Error", |
| [10] = "FBD Channel 2 Non-Fatal Error", |
| [9] = "FBD Channel 1 Non-Fatal Error", |
| [8] = "FBD Channel 0 Non-Fatal Error", |
| [7] = "PCI Express Device 7 Non-Fatal Error", |
| [6] = "PCI Express Device 6 Non-Fatal Error", |
| [5] = "PCI Express Device 5 Non-Fatal Error", |
| [4] = "PCI Express Device 4 Non-Fatal Error", |
| [3] = "PCI Express Device 3 Non-Fatal Error", |
| [2] = "PCI Express Device 2 Non-Fatal Error", |
| [1] = "PCI Express Device 1 Non-Fatal Error", |
| [0] = "ESI Non-Fatal Error", |
| }; |
| #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1) |
| |
| /* Device name and register DID (Device ID) */ |
| struct i7300_dev_info { |
| const char *ctl_name; /* name for this device */ |
| u16 fsb_mapping_errors; /* DID for the branchmap,control */ |
| }; |
| |
| /* Table of devices attributes supported by this driver */ |
| static const struct i7300_dev_info i7300_devs[] = { |
| { |
| .ctl_name = "I7300", |
| .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, |
| }, |
| }; |
| |
| struct i7300_dimm_info { |
| int megabytes; /* size, 0 means not present */ |
| }; |
| |
| /* driver private data structure */ |
| struct i7300_pvt { |
| struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */ |
| struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */ |
| struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */ |
| struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */ |
| |
| u16 tolm; /* top of low memory */ |
| u64 ambase; /* AMB BAR */ |
| |
| u32 mc_settings; /* Report several settings */ |
| u32 mc_settings_a; |
| |
| u16 mir[MAX_MIR]; /* Memory Interleave Reg*/ |
| |
| u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */ |
| u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */ |
| |
| /* DIMM information matrix, allocating architecture maximums */ |
| struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS]; |
| |
| /* Temporary buffer for use when preparing error messages */ |
| char *tmp_prt_buffer; |
| }; |
| |
| /* FIXME: Why do we need to have this static? */ |
| static struct edac_pci_ctl_info *i7300_pci; |
| |
| /******************************************** |
| * i7300 Functions related to error detection |
| ********************************************/ |
| |
| const char *get_err_from_table(const char *table[], int size, int pos) |
| { |
| if (pos >= size) |
| return "Reserved"; |
| |
| return table[pos]; |
| } |
| |
| #define GET_ERR_FROM_TABLE(table, pos) \ |
| get_err_from_table(table, ARRAY_SIZE(table), pos) |
| |
| /* |
| * i7300_process_error_global Retrieve the hardware error information from |
| * the hardware and cache it in the 'info' |
| * structure |
| */ |
| static void i7300_process_error_global(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| u32 errnum, value; |
| unsigned long errors; |
| const char *specific; |
| bool is_fatal; |
| |
| pvt = mci->pvt_info; |
| |
| /* read in the 1st FATAL error register */ |
| pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_HI, &value); |
| if (unlikely(value)) { |
| errors = value; |
| errnum = find_first_bit(&errors, |
| ARRAY_SIZE(ferr_global_hi_name)); |
| specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum); |
| is_fatal = ferr_global_hi_is_fatal(errnum); |
| |
| /* Clear the error bit */ |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_HI, value); |
| |
| goto error_global; |
| } |
| |
| pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, &value); |
| if (unlikely(value)) { |
| errors = value; |
| errnum = find_first_bit(&errors, |
| ARRAY_SIZE(ferr_global_lo_name)); |
| specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum); |
| is_fatal = ferr_global_lo_is_fatal(errnum); |
| |
| /* Clear the error bit */ |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, value); |
| |
| goto error_global; |
| } |
| return; |
| |
| error_global: |
| i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n", |
| is_fatal ? "Fatal" : "NOT fatal", specific); |
| } |
| |
| /* |
| * i7300_process_fbd_error Retrieve the hardware error information from |
| * the hardware and cache it in the 'info' |
| * structure |
| */ |
| static void i7300_process_fbd_error(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| u32 errnum, value; |
| int branch; |
| unsigned long errors; |
| const char *specific; |
| bool is_fatal; |
| |
| pvt = mci->pvt_info; |
| |
| /* read in the 1st FATAL error register */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_FAT_FBD, &value); |
| if (unlikely(value & FERR_FAT_FBD_ERR_MASK)) { |
| errors = value & FERR_FAT_FBD_ERR_MASK ; |
| errnum = find_first_bit(&errors, |
| ARRAY_SIZE(ferr_fat_fbd_name)); |
| specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum); |
| is_fatal = 1; |
| |
| branch = (GET_FBD_FAT_IDX(value) == 2) ? 1 : 0; |
| |
| goto error_fbd; |
| } |
| |
| /* read in the 1st NON-FATAL error register */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_NF_FBD, &value); |
| if (unlikely(value & FERR_NF_FBD_ERR_MASK)) { |
| errors = value & FERR_NF_FBD_ERR_MASK; |
| errnum = find_first_bit(&errors, |
| ARRAY_SIZE(ferr_nf_fbd_name)); |
| specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum); |
| is_fatal = 0; |
| |
| /* Clear the error bit */ |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, value); |
| |
| goto error_fbd; |
| } |
| return; |
| |
| error_fbd: |
| i7300_mc_printk(mci, KERN_EMERG, "%s FBD error on branch %d: %s\n", |
| is_fatal ? "Fatal" : "NOT fatal", branch, specific); |
| } |
| |
| /* |
| * i7300_check_error Retrieve the hardware error information from |
| * the hardware and cache it in the 'info' |
| * structure |
| */ |
| static void i7300_check_error(struct mem_ctl_info *mci) |
| { |
| i7300_process_error_global(mci); |
| i7300_process_fbd_error(mci); |
| }; |
| |
| /* |
| * i7300_clear_error Retrieve any error from the hardware |
| * but do NOT process that error. |
| * Used for 'clearing' out of previous errors |
| * Called by the Core module. |
| */ |
| static void i7300_clear_error(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt = mci->pvt_info; |
| u32 value; |
| /* |
| * All error values are RWC - we need to read and write 1 to the |
| * bit that we want to cleanup |
| */ |
| |
| /* Clear global error registers */ |
| pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_HI, &value); |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_HI, value); |
| |
| pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, &value); |
| pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, |
| FERR_GLOBAL_LO, value); |
| |
| /* Clear FBD error registers */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_FAT_FBD, &value); |
| pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_FAT_FBD, value); |
| |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_NF_FBD, &value); |
| pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| FERR_NF_FBD, value); |
| } |
| |
| /* |
| * i7300_enable_error_reporting |
| * Turn on the memory reporting features of the hardware |
| */ |
| static void i7300_enable_error_reporting(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt = mci->pvt_info; |
| u32 fbd_error_mask; |
| |
| /* Read the FBD Error Mask Register */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| EMASK_FBD, &fbd_error_mask); |
| |
| /* Enable with a '0' */ |
| fbd_error_mask &= ~(EMASK_FBD_ERR_MASK); |
| |
| pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, |
| EMASK_FBD, fbd_error_mask); |
| } |
| |
| /************************************************ |
| * i7300 Functions related to memory enumberation |
| ************************************************/ |
| |
| /* |
| * determine_mtr(pvt, csrow, channel) |
| * |
| * return the proper MTR register as determine by the csrow and desired channel |
| */ |
| static int decode_mtr(struct i7300_pvt *pvt, |
| int slot, int ch, int branch, |
| struct i7300_dimm_info *dinfo, |
| struct csrow_info *p_csrow) |
| { |
| int mtr, ans, addrBits, channel; |
| |
| channel = to_channel(ch, branch); |
| |
| mtr = pvt->mtr[slot][branch]; |
| ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0; |
| |
| debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n", |
| slot, channel, |
| ans ? "Present" : "NOT Present"); |
| |
| /* Determine if there is a DIMM present in this DIMM slot */ |
| |
| #if 0 |
| if (!amb_present || !ans) |
| return 0; |
| #else |
| if (!ans) |
| return 0; |
| #endif |
| |
| /* Start with the number of bits for a Bank |
| * on the DRAM */ |
| addrBits = MTR_DRAM_BANKS_ADDR_BITS; |
| /* Add thenumber of ROW bits */ |
| addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); |
| /* add the number of COLUMN bits */ |
| addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); |
| /* add the number of RANK bits */ |
| addrBits += MTR_DIMM_RANKS(mtr); |
| |
| addrBits += 6; /* add 64 bits per DIMM */ |
| addrBits -= 20; /* divide by 2^^20 */ |
| addrBits -= 3; /* 8 bits per bytes */ |
| |
| dinfo->megabytes = 1 << addrBits; |
| |
| debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); |
| |
| debugf2("\t\tELECTRICAL THROTTLING is %s\n", |
| MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); |
| |
| debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); |
| debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single"); |
| debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]); |
| debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]); |
| debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes); |
| |
| p_csrow->grain = 8; |
| p_csrow->nr_pages = dinfo->megabytes << 8; |
| p_csrow->mtype = MEM_FB_DDR2; |
| |
| /* |
| * The type of error detection actually depends of the |
| * mode of operation. When it is just one single memory chip, at |
| * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code. |
| * In normal or mirrored mode, it uses Lockstep mode, |
| * with the possibility of using an extended algorithm for x8 memories |
| * See datasheet Sections 7.3.6 to 7.3.8 |
| */ |
| |
| if (IS_SINGLE_MODE(pvt->mc_settings_a)) { |
| p_csrow->edac_mode = EDAC_SECDED; |
| debugf2("\t\tECC code is 8-byte-over-32-byte SECDED+ code\n"); |
| } else { |
| debugf2("\t\tECC code is on Lockstep mode\n"); |
| if (MTR_DRAM_WIDTH(mtr) == 8) |
| p_csrow->edac_mode = EDAC_S8ECD8ED; |
| else |
| p_csrow->edac_mode = EDAC_S4ECD4ED; |
| } |
| |
| /* ask what device type on this row */ |
| if (MTR_DRAM_WIDTH(mtr) == 8) { |
| debugf2("\t\tScrub algorithm for x8 is on %s mode\n", |
| IS_SCRBALGO_ENHANCED(pvt->mc_settings) ? |
| "enhanced" : "normal"); |
| |
| p_csrow->dtype = DEV_X8; |
| } else |
| p_csrow->dtype = DEV_X4; |
| |
| return mtr; |
| } |
| |
| /* |
| * print_dimm_size |
| * |
| * also will output a DIMM matrix map, if debug is enabled, for viewing |
| * how the DIMMs are populated |
| */ |
| static void print_dimm_size(struct i7300_pvt *pvt) |
| { |
| struct i7300_dimm_info *dinfo; |
| char *p; |
| int space, n; |
| int channel, slot; |
| |
| space = PAGE_SIZE; |
| p = pvt->tmp_prt_buffer; |
| |
| n = snprintf(p, space, " "); |
| p += n; |
| space -= n; |
| for (channel = 0; channel < MAX_CHANNELS; channel++) { |
| n = snprintf(p, space, "channel %d | ", channel); |
| p += n; |
| space -= n; |
| } |
| debugf2("%s\n", pvt->tmp_prt_buffer); |
| p = pvt->tmp_prt_buffer; |
| space = PAGE_SIZE; |
| n = snprintf(p, space, "-------------------------------" |
| "------------------------------"); |
| p += n; |
| space -= n; |
| debugf2("%s\n", pvt->tmp_prt_buffer); |
| p = pvt->tmp_prt_buffer; |
| space = PAGE_SIZE; |
| |
| for (slot = 0; slot < MAX_SLOTS; slot++) { |
| n = snprintf(p, space, "csrow/SLOT %d ", slot); |
| p += n; |
| space -= n; |
| |
| for (channel = 0; channel < MAX_CHANNELS; channel++) { |
| dinfo = &pvt->dimm_info[slot][channel]; |
| n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); |
| p += n; |
| space -= n; |
| } |
| |
| debugf2("%s\n", pvt->tmp_prt_buffer); |
| p = pvt->tmp_prt_buffer; |
| space = PAGE_SIZE; |
| } |
| |
| n = snprintf(p, space, "-------------------------------" |
| "------------------------------"); |
| p += n; |
| space -= n; |
| debugf2("%s\n", pvt->tmp_prt_buffer); |
| p = pvt->tmp_prt_buffer; |
| space = PAGE_SIZE; |
| } |
| |
| /* |
| * i7300_init_csrows Initialize the 'csrows' table within |
| * the mci control structure with the |
| * addressing of memory. |
| * |
| * return: |
| * 0 success |
| * 1 no actual memory found on this MC |
| */ |
| static int i7300_init_csrows(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| struct i7300_dimm_info *dinfo; |
| struct csrow_info *p_csrow; |
| int empty; |
| int mtr; |
| int ch, branch, slot, channel; |
| |
| pvt = mci->pvt_info; |
| |
| empty = 1; /* Assume NO memory */ |
| |
| debugf2("Memory Technology Registers:\n"); |
| |
| /* Get the AMB present registers for the four channels */ |
| for (branch = 0; branch < MAX_BRANCHES; branch++) { |
| /* Read and dump branch 0's MTRs */ |
| channel = to_channel(0, branch); |
| pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_0, |
| &pvt->ambpresent[channel]); |
| debugf2("\t\tAMB-present CH%d = 0x%x:\n", |
| channel, pvt->ambpresent[channel]); |
| |
| channel = to_channel(1, branch); |
| pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_1, |
| &pvt->ambpresent[channel]); |
| debugf2("\t\tAMB-present CH%d = 0x%x:\n", |
| channel, pvt->ambpresent[channel]); |
| } |
| |
| /* Get the set of MTR[0-7] regs by each branch */ |
| for (slot = 0; slot < MAX_SLOTS; slot++) { |
| int where = mtr_regs[slot]; |
| for (branch = 0; branch < MAX_BRANCHES; branch++) { |
| pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], |
| where, |
| &pvt->mtr[slot][branch]); |
| for (ch = 0; ch < MAX_BRANCHES; ch++) { |
| int channel = to_channel(ch, branch); |
| |
| dinfo = &pvt->dimm_info[slot][channel]; |
| p_csrow = &mci->csrows[slot]; |
| |
| mtr = decode_mtr(pvt, slot, ch, branch, |
| dinfo, p_csrow); |
| /* if no DIMMS on this row, continue */ |
| if (!MTR_DIMMS_PRESENT(mtr)) |
| continue; |
| |
| p_csrow->csrow_idx = slot; |
| |
| /* FAKE OUT VALUES, FIXME */ |
| p_csrow->first_page = 0 + slot * 20; |
| p_csrow->last_page = 9 + slot * 20; |
| p_csrow->page_mask = 0xfff; |
| |
| empty = 0; |
| } |
| } |
| } |
| |
| return empty; |
| } |
| |
| static void decode_mir(int mir_no, u16 mir[MAX_MIR]) |
| { |
| if (mir[mir_no] & 3) |
| debugf2("MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n", |
| mir_no, |
| (mir[mir_no] >> 4) & 0xfff, |
| (mir[mir_no] & 1) ? "B0" : "", |
| (mir[mir_no] & 2) ? "B1": ""); |
| } |
| |
| /* |
| * i7300_get_mc_regs read in the necessary registers and |
| * cache locally |
| * |
| * Fills in the private data members |
| */ |
| static int i7300_get_mc_regs(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| u32 actual_tolm; |
| int i, rc; |
| |
| pvt = mci->pvt_info; |
| |
| pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE, |
| (u32 *) &pvt->ambase); |
| |
| debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase); |
| |
| /* Get the Branch Map regs */ |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm); |
| pvt->tolm >>= 12; |
| debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm, |
| pvt->tolm); |
| |
| actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28)); |
| debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n", |
| actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28); |
| |
| /* Get memory controller settings */ |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS, |
| &pvt->mc_settings); |
| pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A, |
| &pvt->mc_settings_a); |
| |
| if (IS_SINGLE_MODE(pvt->mc_settings_a)) |
| debugf0("Memory controller operating on single mode\n"); |
| else |
| debugf0("Memory controller operating on %s mode\n", |
| IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored"); |
| |
| debugf0("Error detection is %s\n", |
| IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled"); |
| debugf0("Retry is %s\n", |
| IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled"); |
| |
| /* Get Memory Interleave Range registers */ |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0, &pvt->mir[0]); |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1, &pvt->mir[1]); |
| pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2, &pvt->mir[2]); |
| |
| /* Decode the MIR regs */ |
| for (i = 0; i < MAX_MIR; i++) |
| decode_mir(i, pvt->mir); |
| |
| rc = i7300_init_csrows(mci); |
| if (rc < 0) |
| return rc; |
| |
| /* Go and determine the size of each DIMM and place in an |
| * orderly matrix */ |
| print_dimm_size(pvt); |
| |
| return 0; |
| } |
| |
| /************************************************* |
| * i7300 Functions related to device probe/release |
| *************************************************/ |
| |
| /* |
| * i7300_put_devices 'put' all the devices that we have |
| * reserved via 'get' |
| */ |
| static void i7300_put_devices(struct mem_ctl_info *mci) |
| { |
| struct i7300_pvt *pvt; |
| int branch; |
| |
| pvt = mci->pvt_info; |
| |
| /* Decrement usage count for devices */ |
| for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++) |
| pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]); |
| pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs); |
| pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map); |
| } |
| |
| /* |
| * i7300_get_devices Find and perform 'get' operation on the MCH's |
| * device/functions we want to reference for this driver |
| * |
| * Need to 'get' device 16 func 1 and func 2 |
| */ |
| static int i7300_get_devices(struct mem_ctl_info *mci, int dev_idx) |
| { |
| struct i7300_pvt *pvt; |
| struct pci_dev *pdev; |
| |
| pvt = mci->pvt_info; |
| |
| /* Attempt to 'get' the MCH register we want */ |
| pdev = NULL; |
| while (!pvt->pci_dev_16_1_fsb_addr_map || !pvt->pci_dev_16_2_fsb_err_regs) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev); |
| if (!pdev) { |
| /* End of list, leave */ |
| i7300_printk(KERN_ERR, |
| "'system address,Process Bus' " |
| "device not found:" |
| "vendor 0x%x device 0x%x ERR funcs " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_ERR); |
| goto error; |
| } |
| |
| /* Store device 16 funcs 1 and 2 */ |
| switch (PCI_FUNC(pdev->devfn)) { |
| case 1: |
| pvt->pci_dev_16_1_fsb_addr_map = pdev; |
| break; |
| case 2: |
| pvt->pci_dev_16_2_fsb_err_regs = pdev; |
| break; |
| } |
| } |
| |
| debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->pci_dev_16_0_fsb_ctlr), |
| pvt->pci_dev_16_0_fsb_ctlr->vendor, pvt->pci_dev_16_0_fsb_ctlr->device); |
| debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->pci_dev_16_1_fsb_addr_map), |
| pvt->pci_dev_16_1_fsb_addr_map->vendor, pvt->pci_dev_16_1_fsb_addr_map->device); |
| debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->pci_dev_16_2_fsb_err_regs), |
| pvt->pci_dev_16_2_fsb_err_regs->vendor, pvt->pci_dev_16_2_fsb_err_regs->device); |
| |
| pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_FB0, |
| NULL); |
| if (!pvt->pci_dev_2x_0_fbd_branch[0]) { |
| i7300_printk(KERN_ERR, |
| "MC: 'BRANCH 0' device not found:" |
| "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0); |
| goto error; |
| } |
| |
| pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_FB1, |
| NULL); |
| if (!pvt->pci_dev_2x_0_fbd_branch[1]) { |
| i7300_printk(KERN_ERR, |
| "MC: 'BRANCH 1' device not found:" |
| "vendor 0x%x device 0x%x Func 0 " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7300_MCH_FB1); |
| goto error; |
| } |
| |
| return 0; |
| |
| error: |
| i7300_put_devices(mci); |
| return -ENODEV; |
| } |
| |
| /* |
| * i7300_probe1 Probe for ONE instance of device to see if it is |
| * present. |
| * return: |
| * 0 for FOUND a device |
| * < 0 for error code |
| */ |
| static int i7300_probe1(struct pci_dev *pdev, int dev_idx) |
| { |
| struct mem_ctl_info *mci; |
| struct i7300_pvt *pvt; |
| int num_channels; |
| int num_dimms_per_channel; |
| int num_csrows; |
| |
| if (dev_idx >= ARRAY_SIZE(i7300_devs)) |
| return -EINVAL; |
| |
| debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n", |
| __func__, |
| pdev->bus->number, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
| |
| /* We only are looking for func 0 of the set */ |
| if (PCI_FUNC(pdev->devfn) != 0) |
| return -ENODEV; |
| |
| /* As we don't have a motherboard identification routine to determine |
| * actual number of slots/dimms per channel, we thus utilize the |
| * resource as specified by the chipset. Thus, we might have |
| * have more DIMMs per channel than actually on the mobo, but this |
| * allows the driver to support upto the chipset max, without |
| * some fancy mobo determination. |
| */ |
| num_dimms_per_channel = MAX_SLOTS; |
| num_channels = MAX_CHANNELS; |
| num_csrows = MAX_SLOTS * MAX_CHANNELS; |
| |
| debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n", |
| __func__, num_channels, num_dimms_per_channel, num_csrows); |
| |
| /* allocate a new MC control structure */ |
| mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0); |
| |
| if (mci == NULL) |
| return -ENOMEM; |
| |
| debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci); |
| |
| mci->dev = &pdev->dev; /* record ptr to the generic device */ |
| |
| pvt = mci->pvt_info; |
| pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */ |
| |
| pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!pvt->tmp_prt_buffer) { |
| edac_mc_free(mci); |
| return -ENOMEM; |
| } |
| |
| /* 'get' the pci devices we want to reserve for our use */ |
| if (i7300_get_devices(mci, dev_idx)) |
| goto fail0; |
| |
| mci->mc_idx = 0; |
| mci->mtype_cap = MEM_FLAG_FB_DDR2; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = "i7300_edac.c"; |
| mci->mod_ver = I7300_REVISION; |
| mci->ctl_name = i7300_devs[dev_idx].ctl_name; |
| mci->dev_name = pci_name(pdev); |
| mci->ctl_page_to_phys = NULL; |
| |
| /* Set the function pointer to an actual operation function */ |
| mci->edac_check = i7300_check_error; |
| |
| /* initialize the MC control structure 'csrows' table |
| * with the mapping and control information */ |
| if (i7300_get_mc_regs(mci)) { |
| debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n" |
| " because i7300_init_csrows() returned nonzero " |
| "value\n"); |
| mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ |
| } else { |
| debugf1("MC: Enable error reporting now\n"); |
| i7300_enable_error_reporting(mci); |
| } |
| |
| /* add this new MC control structure to EDAC's list of MCs */ |
| if (edac_mc_add_mc(mci)) { |
| debugf0("MC: " __FILE__ |
| ": %s(): failed edac_mc_add_mc()\n", __func__); |
| /* FIXME: perhaps some code should go here that disables error |
| * reporting if we just enabled it |
| */ |
| goto fail1; |
| } |
| |
| i7300_clear_error(mci); |
| |
| /* allocating generic PCI control info */ |
| i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); |
| if (!i7300_pci) { |
| printk(KERN_WARNING |
| "%s(): Unable to create PCI control\n", |
| __func__); |
| printk(KERN_WARNING |
| "%s(): PCI error report via EDAC not setup\n", |
| __func__); |
| } |
| |
| return 0; |
| |
| /* Error exit unwinding stack */ |
| fail1: |
| |
| i7300_put_devices(mci); |
| |
| fail0: |
| kfree(pvt->tmp_prt_buffer); |
| edac_mc_free(mci); |
| return -ENODEV; |
| } |
| |
| /* |
| * i7300_init_one constructor for one instance of device |
| * |
| * returns: |
| * negative on error |
| * count (>= 0) |
| */ |
| static int __devinit i7300_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| int rc; |
| |
| debugf0("MC: " __FILE__ ": %s()\n", __func__); |
| |
| /* wake up device */ |
| rc = pci_enable_device(pdev); |
| if (rc == -EIO) |
| return rc; |
| |
| /* now probe and enable the device */ |
| return i7300_probe1(pdev, id->driver_data); |
| } |
| |
| /* |
| * i7300_remove_one destructor for one instance of device |
| * |
| */ |
| static void __devexit i7300_remove_one(struct pci_dev *pdev) |
| { |
| struct mem_ctl_info *mci; |
| char *tmp; |
| |
| debugf0(__FILE__ ": %s()\n", __func__); |
| |
| if (i7300_pci) |
| edac_pci_release_generic_ctl(i7300_pci); |
| |
| mci = edac_mc_del_mc(&pdev->dev); |
| if (!mci) |
| return; |
| |
| tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer; |
| |
| /* retrieve references to resources, and free those resources */ |
| i7300_put_devices(mci); |
| |
| kfree(tmp); |
| edac_mc_free(mci); |
| } |
| |
| /* |
| * pci_device_id table for which devices we are looking for |
| * |
| * The "E500P" device is the first device supported. |
| */ |
| static const struct pci_device_id i7300_pci_tbl[] __devinitdata = { |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)}, |
| {0,} /* 0 terminated list. */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, i7300_pci_tbl); |
| |
| /* |
| * i7300_driver pci_driver structure for this module |
| * |
| */ |
| static struct pci_driver i7300_driver = { |
| .name = "i7300_edac", |
| .probe = i7300_init_one, |
| .remove = __devexit_p(i7300_remove_one), |
| .id_table = i7300_pci_tbl, |
| }; |
| |
| /* |
| * i7300_init Module entry function |
| * Try to initialize this module for its devices |
| */ |
| static int __init i7300_init(void) |
| { |
| int pci_rc; |
| |
| debugf2("MC: " __FILE__ ": %s()\n", __func__); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| pci_rc = pci_register_driver(&i7300_driver); |
| |
| return (pci_rc < 0) ? pci_rc : 0; |
| } |
| |
| /* |
| * i7300_exit() Module exit function |
| * Unregister the driver |
| */ |
| static void __exit i7300_exit(void) |
| { |
| debugf2("MC: " __FILE__ ": %s()\n", __func__); |
| pci_unregister_driver(&i7300_driver); |
| } |
| |
| module_init(i7300_init); |
| module_exit(i7300_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); |
| MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); |
| MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - " |
| I7300_REVISION); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |