| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Extensible Firmware Interface |
| * |
| * Based on Extensible Firmware Interface Specification version 2.4 |
| * |
| * Copyright (C) 2013 - 2015 Linaro Ltd. |
| */ |
| |
| #define pr_fmt(fmt) "efi: " fmt |
| |
| #include <linux/efi.h> |
| #include <linux/fwnode.h> |
| #include <linux/init.h> |
| #include <linux/memblock.h> |
| #include <linux/mm_types.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_fdt.h> |
| #include <linux/platform_device.h> |
| #include <linux/screen_info.h> |
| |
| #include <asm/efi.h> |
| |
| static int __init is_memory(efi_memory_desc_t *md) |
| { |
| if (md->attribute & (EFI_MEMORY_WB|EFI_MEMORY_WT|EFI_MEMORY_WC)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Translate a EFI virtual address into a physical address: this is necessary, |
| * as some data members of the EFI system table are virtually remapped after |
| * SetVirtualAddressMap() has been called. |
| */ |
| static phys_addr_t __init efi_to_phys(unsigned long addr) |
| { |
| efi_memory_desc_t *md; |
| |
| for_each_efi_memory_desc(md) { |
| if (!(md->attribute & EFI_MEMORY_RUNTIME)) |
| continue; |
| if (md->virt_addr == 0) |
| /* no virtual mapping has been installed by the stub */ |
| break; |
| if (md->virt_addr <= addr && |
| (addr - md->virt_addr) < (md->num_pages << EFI_PAGE_SHIFT)) |
| return md->phys_addr + addr - md->virt_addr; |
| } |
| return addr; |
| } |
| |
| static __initdata unsigned long screen_info_table = EFI_INVALID_TABLE_ADDR; |
| static __initdata unsigned long cpu_state_table = EFI_INVALID_TABLE_ADDR; |
| |
| static const efi_config_table_type_t arch_tables[] __initconst = { |
| {LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID, &screen_info_table}, |
| {LINUX_EFI_ARM_CPU_STATE_TABLE_GUID, &cpu_state_table}, |
| {} |
| }; |
| |
| static void __init init_screen_info(void) |
| { |
| struct screen_info *si; |
| |
| if (IS_ENABLED(CONFIG_ARM) && |
| screen_info_table != EFI_INVALID_TABLE_ADDR) { |
| si = early_memremap_ro(screen_info_table, sizeof(*si)); |
| if (!si) { |
| pr_err("Could not map screen_info config table\n"); |
| return; |
| } |
| screen_info = *si; |
| early_memunmap(si, sizeof(*si)); |
| |
| /* dummycon on ARM needs non-zero values for columns/lines */ |
| screen_info.orig_video_cols = 80; |
| screen_info.orig_video_lines = 25; |
| } |
| |
| if (screen_info.orig_video_isVGA == VIDEO_TYPE_EFI && |
| memblock_is_map_memory(screen_info.lfb_base)) |
| memblock_mark_nomap(screen_info.lfb_base, screen_info.lfb_size); |
| } |
| |
| static int __init uefi_init(u64 efi_system_table) |
| { |
| efi_config_table_t *config_tables; |
| efi_system_table_t *systab; |
| size_t table_size; |
| int retval; |
| |
| systab = early_memremap_ro(efi_system_table, sizeof(efi_system_table_t)); |
| if (systab == NULL) { |
| pr_warn("Unable to map EFI system table.\n"); |
| return -ENOMEM; |
| } |
| |
| set_bit(EFI_BOOT, &efi.flags); |
| if (IS_ENABLED(CONFIG_64BIT)) |
| set_bit(EFI_64BIT, &efi.flags); |
| |
| retval = efi_systab_check_header(&systab->hdr, 2); |
| if (retval) |
| goto out; |
| |
| efi.runtime = systab->runtime; |
| efi.runtime_version = systab->hdr.revision; |
| |
| efi_systab_report_header(&systab->hdr, efi_to_phys(systab->fw_vendor)); |
| |
| table_size = sizeof(efi_config_table_t) * systab->nr_tables; |
| config_tables = early_memremap_ro(efi_to_phys(systab->tables), |
| table_size); |
| if (config_tables == NULL) { |
| pr_warn("Unable to map EFI config table array.\n"); |
| retval = -ENOMEM; |
| goto out; |
| } |
| retval = efi_config_parse_tables(config_tables, systab->nr_tables, |
| IS_ENABLED(CONFIG_ARM) ? arch_tables |
| : NULL); |
| |
| early_memunmap(config_tables, table_size); |
| out: |
| early_memunmap(systab, sizeof(efi_system_table_t)); |
| return retval; |
| } |
| |
| /* |
| * Return true for regions that can be used as System RAM. |
| */ |
| static __init int is_usable_memory(efi_memory_desc_t *md) |
| { |
| switch (md->type) { |
| case EFI_LOADER_CODE: |
| case EFI_LOADER_DATA: |
| case EFI_ACPI_RECLAIM_MEMORY: |
| case EFI_BOOT_SERVICES_CODE: |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_CONVENTIONAL_MEMORY: |
| case EFI_PERSISTENT_MEMORY: |
| /* |
| * Special purpose memory is 'soft reserved', which means it |
| * is set aside initially, but can be hotplugged back in or |
| * be assigned to the dax driver after boot. |
| */ |
| if (efi_soft_reserve_enabled() && |
| (md->attribute & EFI_MEMORY_SP)) |
| return false; |
| |
| /* |
| * According to the spec, these regions are no longer reserved |
| * after calling ExitBootServices(). However, we can only use |
| * them as System RAM if they can be mapped writeback cacheable. |
| */ |
| return (md->attribute & EFI_MEMORY_WB); |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| static __init void reserve_regions(void) |
| { |
| efi_memory_desc_t *md; |
| u64 paddr, npages, size; |
| |
| if (efi_enabled(EFI_DBG)) |
| pr_info("Processing EFI memory map:\n"); |
| |
| /* |
| * Discard memblocks discovered so far: if there are any at this |
| * point, they originate from memory nodes in the DT, and UEFI |
| * uses its own memory map instead. |
| */ |
| memblock_dump_all(); |
| memblock_remove(0, PHYS_ADDR_MAX); |
| |
| for_each_efi_memory_desc(md) { |
| paddr = md->phys_addr; |
| npages = md->num_pages; |
| |
| if (efi_enabled(EFI_DBG)) { |
| char buf[64]; |
| |
| pr_info(" 0x%012llx-0x%012llx %s\n", |
| paddr, paddr + (npages << EFI_PAGE_SHIFT) - 1, |
| efi_md_typeattr_format(buf, sizeof(buf), md)); |
| } |
| |
| memrange_efi_to_native(&paddr, &npages); |
| size = npages << PAGE_SHIFT; |
| |
| if (is_memory(md)) { |
| early_init_dt_add_memory_arch(paddr, size); |
| |
| if (!is_usable_memory(md)) |
| memblock_mark_nomap(paddr, size); |
| |
| /* keep ACPI reclaim memory intact for kexec etc. */ |
| if (md->type == EFI_ACPI_RECLAIM_MEMORY) |
| memblock_reserve(paddr, size); |
| } |
| } |
| } |
| |
| void __init efi_init(void) |
| { |
| struct efi_memory_map_data data; |
| u64 efi_system_table; |
| |
| /* Grab UEFI information placed in FDT by stub */ |
| efi_system_table = efi_get_fdt_params(&data); |
| if (!efi_system_table) |
| return; |
| |
| if (efi_memmap_init_early(&data) < 0) { |
| /* |
| * If we are booting via UEFI, the UEFI memory map is the only |
| * description of memory we have, so there is little point in |
| * proceeding if we cannot access it. |
| */ |
| panic("Unable to map EFI memory map.\n"); |
| } |
| |
| WARN(efi.memmap.desc_version != 1, |
| "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", |
| efi.memmap.desc_version); |
| |
| if (uefi_init(efi_system_table) < 0) { |
| efi_memmap_unmap(); |
| return; |
| } |
| |
| reserve_regions(); |
| efi_esrt_init(); |
| efi_mokvar_table_init(); |
| |
| memblock_reserve(data.phys_map & PAGE_MASK, |
| PAGE_ALIGN(data.size + (data.phys_map & ~PAGE_MASK))); |
| |
| init_screen_info(); |
| |
| #ifdef CONFIG_ARM |
| /* ARM does not permit early mappings to persist across paging_init() */ |
| efi_memmap_unmap(); |
| |
| if (cpu_state_table != EFI_INVALID_TABLE_ADDR) { |
| struct efi_arm_entry_state *state; |
| bool dump_state = true; |
| |
| state = early_memremap_ro(cpu_state_table, |
| sizeof(struct efi_arm_entry_state)); |
| if (state == NULL) { |
| pr_warn("Unable to map CPU entry state table.\n"); |
| return; |
| } |
| |
| if ((state->sctlr_before_ebs & 1) == 0) |
| pr_warn(FW_BUG "EFI stub was entered with MMU and Dcache disabled, please fix your firmware!\n"); |
| else if ((state->sctlr_after_ebs & 1) == 0) |
| pr_warn(FW_BUG "ExitBootServices() returned with MMU and Dcache disabled, please fix your firmware!\n"); |
| else |
| dump_state = false; |
| |
| if (dump_state || efi_enabled(EFI_DBG)) { |
| pr_info("CPSR at EFI stub entry : 0x%08x\n", state->cpsr_before_ebs); |
| pr_info("SCTLR at EFI stub entry : 0x%08x\n", state->sctlr_before_ebs); |
| pr_info("CPSR after ExitBootServices() : 0x%08x\n", state->cpsr_after_ebs); |
| pr_info("SCTLR after ExitBootServices(): 0x%08x\n", state->sctlr_after_ebs); |
| } |
| early_memunmap(state, sizeof(struct efi_arm_entry_state)); |
| } |
| #endif |
| } |
| |
| static bool efifb_overlaps_pci_range(const struct of_pci_range *range) |
| { |
| u64 fb_base = screen_info.lfb_base; |
| |
| if (screen_info.capabilities & VIDEO_CAPABILITY_64BIT_BASE) |
| fb_base |= (u64)(unsigned long)screen_info.ext_lfb_base << 32; |
| |
| return fb_base >= range->cpu_addr && |
| fb_base < (range->cpu_addr + range->size); |
| } |
| |
| static struct device_node *find_pci_overlap_node(void) |
| { |
| struct device_node *np; |
| |
| for_each_node_by_type(np, "pci") { |
| struct of_pci_range_parser parser; |
| struct of_pci_range range; |
| int err; |
| |
| err = of_pci_range_parser_init(&parser, np); |
| if (err) { |
| pr_warn("of_pci_range_parser_init() failed: %d\n", err); |
| continue; |
| } |
| |
| for_each_of_pci_range(&parser, &range) |
| if (efifb_overlaps_pci_range(&range)) |
| return np; |
| } |
| return NULL; |
| } |
| |
| /* |
| * If the efifb framebuffer is backed by a PCI graphics controller, we have |
| * to ensure that this relation is expressed using a device link when |
| * running in DT mode, or the probe order may be reversed, resulting in a |
| * resource reservation conflict on the memory window that the efifb |
| * framebuffer steals from the PCIe host bridge. |
| */ |
| static int efifb_add_links(const struct fwnode_handle *fwnode, |
| struct device *dev) |
| { |
| struct device_node *sup_np; |
| struct device *sup_dev; |
| |
| sup_np = find_pci_overlap_node(); |
| |
| /* |
| * If there's no PCI graphics controller backing the efifb, we are |
| * done here. |
| */ |
| if (!sup_np) |
| return 0; |
| |
| sup_dev = get_dev_from_fwnode(&sup_np->fwnode); |
| of_node_put(sup_np); |
| |
| /* |
| * Return -ENODEV if the PCI graphics controller device hasn't been |
| * registered yet. This ensures that efifb isn't allowed to probe |
| * and this function is retried again when new devices are |
| * registered. |
| */ |
| if (!sup_dev) |
| return -ENODEV; |
| |
| /* |
| * If this fails, retrying this function at a later point won't |
| * change anything. So, don't return an error after this. |
| */ |
| if (!device_link_add(dev, sup_dev, fw_devlink_get_flags())) |
| dev_warn(dev, "device_link_add() failed\n"); |
| |
| put_device(sup_dev); |
| |
| return 0; |
| } |
| |
| static const struct fwnode_operations efifb_fwnode_ops = { |
| .add_links = efifb_add_links, |
| }; |
| |
| static struct fwnode_handle efifb_fwnode = { |
| .ops = &efifb_fwnode_ops, |
| }; |
| |
| static int __init register_gop_device(void) |
| { |
| struct platform_device *pd; |
| int err; |
| |
| if (screen_info.orig_video_isVGA != VIDEO_TYPE_EFI) |
| return 0; |
| |
| pd = platform_device_alloc("efi-framebuffer", 0); |
| if (!pd) |
| return -ENOMEM; |
| |
| if (IS_ENABLED(CONFIG_PCI)) |
| pd->dev.fwnode = &efifb_fwnode; |
| |
| err = platform_device_add_data(pd, &screen_info, sizeof(screen_info)); |
| if (err) |
| return err; |
| |
| return platform_device_add(pd); |
| } |
| subsys_initcall(register_gop_device); |