| /* |
| * Copyright 2017 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/fb.h> |
| |
| #include "vega12/smu9_driver_if.h" |
| #include "vega12_processpptables.h" |
| #include "ppatomfwctrl.h" |
| #include "atomfirmware.h" |
| #include "pp_debug.h" |
| #include "cgs_common.h" |
| #include "vega12_pptable.h" |
| |
| static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable, |
| enum phm_platform_caps cap) |
| { |
| if (enable) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); |
| else |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); |
| } |
| |
| static const void *get_powerplay_table(struct pp_hwmgr *hwmgr) |
| { |
| int index = GetIndexIntoMasterDataTable(powerplayinfo); |
| |
| u16 size; |
| u8 frev, crev; |
| const void *table_address = hwmgr->soft_pp_table; |
| |
| if (!table_address) { |
| table_address = (ATOM_Vega12_POWERPLAYTABLE *) |
| smu_atom_get_data_table(hwmgr->adev, index, |
| &size, &frev, &crev); |
| |
| hwmgr->soft_pp_table = table_address; /*Cache the result in RAM.*/ |
| hwmgr->soft_pp_table_size = size; |
| } |
| |
| return table_address; |
| } |
| |
| static int check_powerplay_tables( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_Vega12_POWERPLAYTABLE *powerplay_table) |
| { |
| PP_ASSERT_WITH_CODE((powerplay_table->sHeader.format_revision >= |
| ATOM_VEGA12_TABLE_REVISION_VEGA12), |
| "Unsupported PPTable format!", return -1); |
| PP_ASSERT_WITH_CODE(powerplay_table->sHeader.structuresize > 0, |
| "Invalid PowerPlay Table!", return -1); |
| |
| return 0; |
| } |
| |
| static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps) |
| { |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_VEGA12_PP_PLATFORM_CAP_POWERPLAY), |
| PHM_PlatformCaps_PowerPlaySupport); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_VEGA12_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), |
| PHM_PlatformCaps_BiosPowerSourceControl); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_VEGA12_PP_PLATFORM_CAP_BACO), |
| PHM_PlatformCaps_BACO); |
| |
| set_hw_cap( |
| hwmgr, |
| 0 != (powerplay_caps & ATOM_VEGA12_PP_PLATFORM_CAP_BAMACO), |
| PHM_PlatformCaps_BAMACO); |
| |
| return 0; |
| } |
| |
| static int copy_clock_limits_array( |
| struct pp_hwmgr *hwmgr, |
| uint32_t **pptable_info_array, |
| const uint32_t *pptable_array) |
| { |
| uint32_t array_size, i; |
| uint32_t *table; |
| |
| array_size = sizeof(uint32_t) * ATOM_VEGA12_PPCLOCK_COUNT; |
| |
| table = kzalloc(array_size, GFP_KERNEL); |
| if (NULL == table) |
| return -ENOMEM; |
| |
| for (i = 0; i < ATOM_VEGA12_PPCLOCK_COUNT; i++) |
| table[i] = pptable_array[i]; |
| |
| *pptable_info_array = table; |
| |
| return 0; |
| } |
| |
| static int copy_overdrive_settings_limits_array( |
| struct pp_hwmgr *hwmgr, |
| uint32_t **pptable_info_array, |
| const uint32_t *pptable_array) |
| { |
| uint32_t array_size, i; |
| uint32_t *table; |
| |
| array_size = sizeof(uint32_t) * ATOM_VEGA12_ODSETTING_COUNT; |
| |
| table = kzalloc(array_size, GFP_KERNEL); |
| if (NULL == table) |
| return -ENOMEM; |
| |
| for (i = 0; i < ATOM_VEGA12_ODSETTING_COUNT; i++) |
| table[i] = pptable_array[i]; |
| |
| *pptable_info_array = table; |
| |
| return 0; |
| } |
| |
| static int append_vbios_pptable(struct pp_hwmgr *hwmgr, PPTable_t *ppsmc_pptable) |
| { |
| struct pp_atomfwctrl_smc_dpm_parameters smc_dpm_table; |
| |
| PP_ASSERT_WITH_CODE( |
| pp_atomfwctrl_get_smc_dpm_information(hwmgr, &smc_dpm_table) == 0, |
| "[appendVbiosPPTable] Failed to retrieve Smc Dpm Table from VBIOS!", |
| return -1); |
| |
| ppsmc_pptable->Liquid1_I2C_address = smc_dpm_table.liquid1_i2c_address; |
| ppsmc_pptable->Liquid2_I2C_address = smc_dpm_table.liquid2_i2c_address; |
| ppsmc_pptable->Vr_I2C_address = smc_dpm_table.vr_i2c_address; |
| ppsmc_pptable->Plx_I2C_address = smc_dpm_table.plx_i2c_address; |
| |
| ppsmc_pptable->Liquid_I2C_LineSCL = smc_dpm_table.liquid_i2c_linescl; |
| ppsmc_pptable->Liquid_I2C_LineSDA = smc_dpm_table.liquid_i2c_linesda; |
| ppsmc_pptable->Vr_I2C_LineSCL = smc_dpm_table.vr_i2c_linescl; |
| ppsmc_pptable->Vr_I2C_LineSDA = smc_dpm_table.vr_i2c_linesda; |
| |
| ppsmc_pptable->Plx_I2C_LineSCL = smc_dpm_table.plx_i2c_linescl; |
| ppsmc_pptable->Plx_I2C_LineSDA = smc_dpm_table.plx_i2c_linesda; |
| ppsmc_pptable->VrSensorPresent = smc_dpm_table.vrsensorpresent; |
| ppsmc_pptable->LiquidSensorPresent = smc_dpm_table.liquidsensorpresent; |
| |
| ppsmc_pptable->MaxVoltageStepGfx = smc_dpm_table.maxvoltagestepgfx; |
| ppsmc_pptable->MaxVoltageStepSoc = smc_dpm_table.maxvoltagestepsoc; |
| |
| ppsmc_pptable->VddGfxVrMapping = smc_dpm_table.vddgfxvrmapping; |
| ppsmc_pptable->VddSocVrMapping = smc_dpm_table.vddsocvrmapping; |
| ppsmc_pptable->VddMem0VrMapping = smc_dpm_table.vddmem0vrmapping; |
| ppsmc_pptable->VddMem1VrMapping = smc_dpm_table.vddmem1vrmapping; |
| |
| ppsmc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table.gfxulvphasesheddingmask; |
| ppsmc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table.soculvphasesheddingmask; |
| |
| ppsmc_pptable->GfxMaxCurrent = smc_dpm_table.gfxmaxcurrent; |
| ppsmc_pptable->GfxOffset = smc_dpm_table.gfxoffset; |
| ppsmc_pptable->Padding_TelemetryGfx = smc_dpm_table.padding_telemetrygfx; |
| |
| ppsmc_pptable->SocMaxCurrent = smc_dpm_table.socmaxcurrent; |
| ppsmc_pptable->SocOffset = smc_dpm_table.socoffset; |
| ppsmc_pptable->Padding_TelemetrySoc = smc_dpm_table.padding_telemetrysoc; |
| |
| ppsmc_pptable->Mem0MaxCurrent = smc_dpm_table.mem0maxcurrent; |
| ppsmc_pptable->Mem0Offset = smc_dpm_table.mem0offset; |
| ppsmc_pptable->Padding_TelemetryMem0 = smc_dpm_table.padding_telemetrymem0; |
| |
| ppsmc_pptable->Mem1MaxCurrent = smc_dpm_table.mem1maxcurrent; |
| ppsmc_pptable->Mem1Offset = smc_dpm_table.mem1offset; |
| ppsmc_pptable->Padding_TelemetryMem1 = smc_dpm_table.padding_telemetrymem1; |
| |
| ppsmc_pptable->AcDcGpio = smc_dpm_table.acdcgpio; |
| ppsmc_pptable->AcDcPolarity = smc_dpm_table.acdcpolarity; |
| ppsmc_pptable->VR0HotGpio = smc_dpm_table.vr0hotgpio; |
| ppsmc_pptable->VR0HotPolarity = smc_dpm_table.vr0hotpolarity; |
| |
| ppsmc_pptable->VR1HotGpio = smc_dpm_table.vr1hotgpio; |
| ppsmc_pptable->VR1HotPolarity = smc_dpm_table.vr1hotpolarity; |
| ppsmc_pptable->Padding1 = smc_dpm_table.padding1; |
| ppsmc_pptable->Padding2 = smc_dpm_table.padding2; |
| |
| ppsmc_pptable->LedPin0 = smc_dpm_table.ledpin0; |
| ppsmc_pptable->LedPin1 = smc_dpm_table.ledpin1; |
| ppsmc_pptable->LedPin2 = smc_dpm_table.ledpin2; |
| |
| ppsmc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table.pllgfxclkspreadenabled; |
| ppsmc_pptable->PllGfxclkSpreadPercent = smc_dpm_table.pllgfxclkspreadpercent; |
| ppsmc_pptable->PllGfxclkSpreadFreq = smc_dpm_table.pllgfxclkspreadfreq; |
| |
| ppsmc_pptable->UclkSpreadEnabled = 0; |
| ppsmc_pptable->UclkSpreadPercent = smc_dpm_table.uclkspreadpercent; |
| ppsmc_pptable->UclkSpreadFreq = smc_dpm_table.uclkspreadfreq; |
| |
| ppsmc_pptable->SocclkSpreadEnabled = 0; |
| ppsmc_pptable->SocclkSpreadPercent = smc_dpm_table.socclkspreadpercent; |
| ppsmc_pptable->SocclkSpreadFreq = smc_dpm_table.socclkspreadfreq; |
| |
| ppsmc_pptable->AcgGfxclkSpreadEnabled = smc_dpm_table.acggfxclkspreadenabled; |
| ppsmc_pptable->AcgGfxclkSpreadPercent = smc_dpm_table.acggfxclkspreadpercent; |
| ppsmc_pptable->AcgGfxclkSpreadFreq = smc_dpm_table.acggfxclkspreadfreq; |
| |
| /* 0xFFFF will disable the ACG feature */ |
| if (!(hwmgr->feature_mask & PP_ACG_MASK)) { |
| ppsmc_pptable->AcgThresholdFreqHigh = 0xFFFF; |
| ppsmc_pptable->AcgThresholdFreqLow = 0xFFFF; |
| } |
| |
| ppsmc_pptable->Vr2_I2C_address = smc_dpm_table.Vr2_I2C_address; |
| |
| return 0; |
| } |
| |
| #define VEGA12_ENGINECLOCK_HARDMAX 198000 |
| static int init_powerplay_table_information( |
| struct pp_hwmgr *hwmgr, |
| const ATOM_Vega12_POWERPLAYTABLE *powerplay_table) |
| { |
| struct phm_ppt_v3_information *pptable_information = |
| (struct phm_ppt_v3_information *)hwmgr->pptable; |
| uint32_t disable_power_control = 0; |
| int result; |
| |
| hwmgr->thermal_controller.ucType = powerplay_table->ucThermalControllerType; |
| pptable_information->uc_thermal_controller_type = powerplay_table->ucThermalControllerType; |
| |
| set_hw_cap(hwmgr, |
| ATOM_VEGA12_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, |
| PHM_PlatformCaps_ThermalController); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| |
| if (powerplay_table->ODSettingsMax[ATOM_VEGA12_ODSETTING_GFXCLKFMAX] > VEGA12_ENGINECLOCK_HARDMAX) |
| hwmgr->platform_descriptor.overdriveLimit.engineClock = VEGA12_ENGINECLOCK_HARDMAX; |
| else |
| hwmgr->platform_descriptor.overdriveLimit.engineClock = powerplay_table->ODSettingsMax[ATOM_VEGA12_ODSETTING_GFXCLKFMAX]; |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock = powerplay_table->ODSettingsMax[ATOM_VEGA12_ODSETTING_UCLKFMAX]; |
| |
| copy_overdrive_settings_limits_array(hwmgr, &pptable_information->od_settings_max, powerplay_table->ODSettingsMax); |
| copy_overdrive_settings_limits_array(hwmgr, &pptable_information->od_settings_min, powerplay_table->ODSettingsMin); |
| |
| /* hwmgr->platformDescriptor.minOverdriveVDDC = 0; |
| hwmgr->platformDescriptor.maxOverdriveVDDC = 0; |
| hwmgr->platformDescriptor.overdriveVDDCStep = 0; */ |
| |
| if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 |
| && hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ACOverdriveSupport); |
| |
| pptable_information->us_small_power_limit1 = powerplay_table->usSmallPowerLimit1; |
| pptable_information->us_small_power_limit2 = powerplay_table->usSmallPowerLimit2; |
| pptable_information->us_boost_power_limit = powerplay_table->usBoostPowerLimit; |
| pptable_information->us_od_turbo_power_limit = powerplay_table->usODTurboPowerLimit; |
| pptable_information->us_od_powersave_power_limit = powerplay_table->usODPowerSavePowerLimit; |
| |
| pptable_information->us_software_shutdown_temp = powerplay_table->usSoftwareShutdownTemp; |
| |
| hwmgr->platform_descriptor.TDPODLimit = (uint16_t)powerplay_table->ODSettingsMax[ATOM_VEGA12_ODSETTING_POWERPERCENTAGE]; |
| |
| disable_power_control = 0; |
| if (!disable_power_control) { |
| /* enable TDP overdrive (PowerControl) feature as well if supported */ |
| if (hwmgr->platform_descriptor.TDPODLimit) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerControl); |
| } |
| |
| copy_clock_limits_array(hwmgr, &pptable_information->power_saving_clock_max, powerplay_table->PowerSavingClockMax); |
| copy_clock_limits_array(hwmgr, &pptable_information->power_saving_clock_min, powerplay_table->PowerSavingClockMin); |
| |
| pptable_information->smc_pptable = (PPTable_t *)kmalloc(sizeof(PPTable_t), GFP_KERNEL); |
| if (pptable_information->smc_pptable == NULL) |
| return -ENOMEM; |
| |
| memcpy(pptable_information->smc_pptable, &(powerplay_table->smcPPTable), sizeof(PPTable_t)); |
| |
| result = append_vbios_pptable(hwmgr, (pptable_information->smc_pptable)); |
| |
| return result; |
| } |
| |
| int vega12_pp_tables_initialize(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| const ATOM_Vega12_POWERPLAYTABLE *powerplay_table; |
| |
| hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v3_information), GFP_KERNEL); |
| PP_ASSERT_WITH_CODE((hwmgr->pptable != NULL), |
| "Failed to allocate hwmgr->pptable!", return -ENOMEM); |
| |
| powerplay_table = get_powerplay_table(hwmgr); |
| PP_ASSERT_WITH_CODE((powerplay_table != NULL), |
| "Missing PowerPlay Table!", return -1); |
| |
| result = check_powerplay_tables(hwmgr, powerplay_table); |
| PP_ASSERT_WITH_CODE((result == 0), |
| "check_powerplay_tables failed", return result); |
| |
| result = set_platform_caps(hwmgr, |
| le32_to_cpu(powerplay_table->ulPlatformCaps)); |
| PP_ASSERT_WITH_CODE((result == 0), |
| "set_platform_caps failed", return result); |
| |
| result = init_powerplay_table_information(hwmgr, powerplay_table); |
| PP_ASSERT_WITH_CODE((result == 0), |
| "init_powerplay_table_information failed", return result); |
| |
| return result; |
| } |
| |
| static int vega12_pp_tables_uninitialize(struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v3_information *pp_table_info = |
| (struct phm_ppt_v3_information *)(hwmgr->pptable); |
| |
| kfree(pp_table_info->power_saving_clock_max); |
| pp_table_info->power_saving_clock_max = NULL; |
| |
| kfree(pp_table_info->power_saving_clock_min); |
| pp_table_info->power_saving_clock_min = NULL; |
| |
| kfree(pp_table_info->od_settings_max); |
| pp_table_info->od_settings_max = NULL; |
| |
| kfree(pp_table_info->od_settings_min); |
| pp_table_info->od_settings_min = NULL; |
| |
| kfree(pp_table_info->smc_pptable); |
| pp_table_info->smc_pptable = NULL; |
| |
| kfree(hwmgr->pptable); |
| hwmgr->pptable = NULL; |
| |
| return 0; |
| } |
| |
| const struct pp_table_func vega12_pptable_funcs = { |
| .pptable_init = vega12_pp_tables_initialize, |
| .pptable_fini = vega12_pp_tables_uninitialize, |
| }; |
| |
| #if 0 |
| static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr, |
| uint16_t classification, uint16_t classification2) |
| { |
| uint32_t result = 0; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) |
| result |= PP_StateClassificationFlag_Boot; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) |
| result |= PP_StateClassificationFlag_Thermal; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) |
| result |= PP_StateClassificationFlag_LimitedPowerSource; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_REST) |
| result |= PP_StateClassificationFlag_Rest; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) |
| result |= PP_StateClassificationFlag_Forced; |
| |
| if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) |
| result |= PP_StateClassificationFlag_ACPI; |
| |
| if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) |
| result |= PP_StateClassificationFlag_LimitedPowerSource_2; |
| |
| return result; |
| } |
| |
| int vega12_get_powerplay_table_entry(struct pp_hwmgr *hwmgr, |
| uint32_t entry_index, struct pp_power_state *power_state, |
| int (*call_back_func)(struct pp_hwmgr *, void *, |
| struct pp_power_state *, void *, uint32_t)) |
| { |
| int result = 0; |
| const ATOM_Vega12_State_Array *state_arrays; |
| const ATOM_Vega12_State *state_entry; |
| const ATOM_Vega12_POWERPLAYTABLE *pp_table = |
| get_powerplay_table(hwmgr); |
| |
| PP_ASSERT_WITH_CODE(pp_table, "Missing PowerPlay Table!", |
| return -1;); |
| power_state->classification.bios_index = entry_index; |
| |
| if (pp_table->sHeader.format_revision >= |
| ATOM_Vega12_TABLE_REVISION_VEGA12) { |
| state_arrays = (ATOM_Vega12_State_Array *) |
| (((unsigned long)pp_table) + |
| le16_to_cpu(pp_table->usStateArrayOffset)); |
| |
| PP_ASSERT_WITH_CODE(pp_table->usStateArrayOffset > 0, |
| "Invalid PowerPlay Table State Array Offset.", |
| return -1); |
| PP_ASSERT_WITH_CODE(state_arrays->ucNumEntries > 0, |
| "Invalid PowerPlay Table State Array.", |
| return -1); |
| PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries), |
| "Invalid PowerPlay Table State Array Entry.", |
| return -1); |
| |
| state_entry = &(state_arrays->states[entry_index]); |
| |
| result = call_back_func(hwmgr, (void *)state_entry, power_state, |
| (void *)pp_table, |
| make_classification_flags(hwmgr, |
| le16_to_cpu(state_entry->usClassification), |
| le16_to_cpu(state_entry->usClassification2))); |
| } |
| |
| if (!result && (power_state->classification.flags & |
| PP_StateClassificationFlag_Boot)) |
| result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware)); |
| |
| return result; |
| } |
| #endif |