| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * Authors: Artem Bityutskiy (Битюцкий Артём) |
| * Adrian Hunter |
| */ |
| |
| /* |
| * This file contains functions for finding LEBs for various purposes e.g. |
| * garbage collection. In general, lprops category heaps and lists are used |
| * for fast access, falling back on scanning the LPT as a last resort. |
| */ |
| |
| #include <linux/sort.h> |
| #include "ubifs.h" |
| |
| /** |
| * struct scan_data - data provided to scan callback functions |
| * @min_space: minimum number of bytes for which to scan |
| * @pick_free: whether it is OK to scan for empty LEBs |
| * @lnum: LEB number found is returned here |
| * @exclude_index: whether to exclude index LEBs |
| */ |
| struct scan_data { |
| int min_space; |
| int pick_free; |
| int lnum; |
| int exclude_index; |
| }; |
| |
| /** |
| * valuable - determine whether LEB properties are valuable. |
| * @c: the UBIFS file-system description object |
| * @lprops: LEB properties |
| * |
| * This function return %1 if the LEB properties should be added to the LEB |
| * properties tree in memory. Otherwise %0 is returned. |
| */ |
| static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops) |
| { |
| int n, cat = lprops->flags & LPROPS_CAT_MASK; |
| struct ubifs_lpt_heap *heap; |
| |
| switch (cat) { |
| case LPROPS_DIRTY: |
| case LPROPS_DIRTY_IDX: |
| case LPROPS_FREE: |
| heap = &c->lpt_heap[cat - 1]; |
| if (heap->cnt < heap->max_cnt) |
| return 1; |
| if (lprops->free + lprops->dirty >= c->dark_wm) |
| return 1; |
| return 0; |
| case LPROPS_EMPTY: |
| n = c->lst.empty_lebs + c->freeable_cnt - |
| c->lst.taken_empty_lebs; |
| if (n < c->lsave_cnt) |
| return 1; |
| return 0; |
| case LPROPS_FREEABLE: |
| return 1; |
| case LPROPS_FRDI_IDX: |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * scan_for_dirty_cb - dirty space scan callback. |
| * @c: the UBIFS file-system description object |
| * @lprops: LEB properties to scan |
| * @in_tree: whether the LEB properties are in main memory |
| * @data: information passed to and from the caller of the scan |
| * |
| * This function returns a code that indicates whether the scan should continue |
| * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree |
| * in main memory (%LPT_SCAN_ADD), or whether the scan should stop |
| * (%LPT_SCAN_STOP). |
| */ |
| static int scan_for_dirty_cb(struct ubifs_info *c, |
| const struct ubifs_lprops *lprops, int in_tree, |
| void *arg) |
| { |
| struct scan_data *data = arg; |
| int ret = LPT_SCAN_CONTINUE; |
| |
| /* Exclude LEBs that are currently in use */ |
| if (lprops->flags & LPROPS_TAKEN) |
| return LPT_SCAN_CONTINUE; |
| /* Determine whether to add these LEB properties to the tree */ |
| if (!in_tree && valuable(c, lprops)) |
| ret |= LPT_SCAN_ADD; |
| /* Exclude LEBs with too little space */ |
| if (lprops->free + lprops->dirty < data->min_space) |
| return ret; |
| /* If specified, exclude index LEBs */ |
| if (data->exclude_index && lprops->flags & LPROPS_INDEX) |
| return ret; |
| /* If specified, exclude empty or freeable LEBs */ |
| if (lprops->free + lprops->dirty == c->leb_size) { |
| if (!data->pick_free) |
| return ret; |
| /* Exclude LEBs with too little dirty space (unless it is empty) */ |
| } else if (lprops->dirty < c->dead_wm) |
| return ret; |
| /* Finally we found space */ |
| data->lnum = lprops->lnum; |
| return LPT_SCAN_ADD | LPT_SCAN_STOP; |
| } |
| |
| /** |
| * scan_for_dirty - find a data LEB with free space. |
| * @c: the UBIFS file-system description object |
| * @min_space: minimum amount free plus dirty space the returned LEB has to |
| * have |
| * @pick_free: if it is OK to return a free or freeable LEB |
| * @exclude_index: whether to exclude index LEBs |
| * |
| * This function returns a pointer to the LEB properties found or a negative |
| * error code. |
| */ |
| static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c, |
| int min_space, int pick_free, |
| int exclude_index) |
| { |
| const struct ubifs_lprops *lprops; |
| struct ubifs_lpt_heap *heap; |
| struct scan_data data; |
| int err, i; |
| |
| /* There may be an LEB with enough dirty space on the free heap */ |
| heap = &c->lpt_heap[LPROPS_FREE - 1]; |
| for (i = 0; i < heap->cnt; i++) { |
| lprops = heap->arr[i]; |
| if (lprops->free + lprops->dirty < min_space) |
| continue; |
| if (lprops->dirty < c->dead_wm) |
| continue; |
| return lprops; |
| } |
| /* |
| * A LEB may have fallen off of the bottom of the dirty heap, and ended |
| * up as uncategorized even though it has enough dirty space for us now, |
| * so check the uncategorized list. N.B. neither empty nor freeable LEBs |
| * can end up as uncategorized because they are kept on lists not |
| * finite-sized heaps. |
| */ |
| list_for_each_entry(lprops, &c->uncat_list, list) { |
| if (lprops->flags & LPROPS_TAKEN) |
| continue; |
| if (lprops->free + lprops->dirty < min_space) |
| continue; |
| if (exclude_index && (lprops->flags & LPROPS_INDEX)) |
| continue; |
| if (lprops->dirty < c->dead_wm) |
| continue; |
| return lprops; |
| } |
| /* We have looked everywhere in main memory, now scan the flash */ |
| if (c->pnodes_have >= c->pnode_cnt) |
| /* All pnodes are in memory, so skip scan */ |
| return ERR_PTR(-ENOSPC); |
| data.min_space = min_space; |
| data.pick_free = pick_free; |
| data.lnum = -1; |
| data.exclude_index = exclude_index; |
| err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, scan_for_dirty_cb, |
| &data); |
| if (err) |
| return ERR_PTR(err); |
| ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); |
| c->lscan_lnum = data.lnum; |
| lprops = ubifs_lpt_lookup_dirty(c, data.lnum); |
| if (IS_ERR(lprops)) |
| return lprops; |
| ubifs_assert(c, lprops->lnum == data.lnum); |
| ubifs_assert(c, lprops->free + lprops->dirty >= min_space); |
| ubifs_assert(c, lprops->dirty >= c->dead_wm || |
| (pick_free && |
| lprops->free + lprops->dirty == c->leb_size)); |
| ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); |
| ubifs_assert(c, !exclude_index || !(lprops->flags & LPROPS_INDEX)); |
| return lprops; |
| } |
| |
| /** |
| * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector. |
| * @c: the UBIFS file-system description object |
| * @ret_lp: LEB properties are returned here on exit |
| * @min_space: minimum amount free plus dirty space the returned LEB has to |
| * have |
| * @pick_free: controls whether it is OK to pick empty or index LEBs |
| * |
| * This function tries to find a dirty logical eraseblock which has at least |
| * @min_space free and dirty space. It prefers to take an LEB from the dirty or |
| * dirty index heap, and it falls-back to LPT scanning if the heaps are empty |
| * or do not have an LEB which satisfies the @min_space criteria. |
| * |
| * Note, LEBs which have less than dead watermark of free + dirty space are |
| * never picked by this function. |
| * |
| * The additional @pick_free argument controls if this function has to return a |
| * free or freeable LEB if one is present. For example, GC must to set it to %1, |
| * when called from the journal space reservation function, because the |
| * appearance of free space may coincide with the loss of enough dirty space |
| * for GC to succeed anyway. |
| * |
| * In contrast, if the Garbage Collector is called from budgeting, it should |
| * just make free space, not return LEBs which are already free or freeable. |
| * |
| * In addition @pick_free is set to %2 by the recovery process in order to |
| * recover gc_lnum in which case an index LEB must not be returned. |
| * |
| * This function returns zero and the LEB properties of found dirty LEB in case |
| * of success, %-ENOSPC if no dirty LEB was found and a negative error code in |
| * case of other failures. The returned LEB is marked as "taken". |
| */ |
| int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp, |
| int min_space, int pick_free) |
| { |
| int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0; |
| const struct ubifs_lprops *lp = NULL, *idx_lp = NULL; |
| struct ubifs_lpt_heap *heap, *idx_heap; |
| |
| ubifs_get_lprops(c); |
| |
| if (pick_free) { |
| int lebs, rsvd_idx_lebs = 0; |
| |
| spin_lock(&c->space_lock); |
| lebs = c->lst.empty_lebs + c->idx_gc_cnt; |
| lebs += c->freeable_cnt - c->lst.taken_empty_lebs; |
| |
| /* |
| * Note, the index may consume more LEBs than have been reserved |
| * for it. It is OK because it might be consolidated by GC. |
| * But if the index takes fewer LEBs than it is reserved for it, |
| * this function must avoid picking those reserved LEBs. |
| */ |
| if (c->bi.min_idx_lebs >= c->lst.idx_lebs) { |
| rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; |
| exclude_index = 1; |
| } |
| spin_unlock(&c->space_lock); |
| |
| /* Check if there are enough free LEBs for the index */ |
| if (rsvd_idx_lebs < lebs) { |
| /* OK, try to find an empty LEB */ |
| lp = ubifs_fast_find_empty(c); |
| if (lp) |
| goto found; |
| |
| /* Or a freeable LEB */ |
| lp = ubifs_fast_find_freeable(c); |
| if (lp) |
| goto found; |
| } else |
| /* |
| * We cannot pick free/freeable LEBs in the below code. |
| */ |
| pick_free = 0; |
| } else { |
| spin_lock(&c->space_lock); |
| exclude_index = (c->bi.min_idx_lebs >= c->lst.idx_lebs); |
| spin_unlock(&c->space_lock); |
| } |
| |
| /* Look on the dirty and dirty index heaps */ |
| heap = &c->lpt_heap[LPROPS_DIRTY - 1]; |
| idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; |
| |
| if (idx_heap->cnt && !exclude_index) { |
| idx_lp = idx_heap->arr[0]; |
| sum = idx_lp->free + idx_lp->dirty; |
| /* |
| * Since we reserve thrice as much space for the index than it |
| * actually takes, it does not make sense to pick indexing LEBs |
| * with less than, say, half LEB of dirty space. May be half is |
| * not the optimal boundary - this should be tested and |
| * checked. This boundary should determine how much we use |
| * in-the-gaps to consolidate the index comparing to how much |
| * we use garbage collector to consolidate it. The "half" |
| * criteria just feels to be fine. |
| */ |
| if (sum < min_space || sum < c->half_leb_size) |
| idx_lp = NULL; |
| } |
| |
| if (heap->cnt) { |
| lp = heap->arr[0]; |
| if (lp->dirty + lp->free < min_space) |
| lp = NULL; |
| } |
| |
| /* Pick the LEB with most space */ |
| if (idx_lp && lp) { |
| if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty) |
| lp = idx_lp; |
| } else if (idx_lp && !lp) |
| lp = idx_lp; |
| |
| if (lp) { |
| ubifs_assert(c, lp->free + lp->dirty >= c->dead_wm); |
| goto found; |
| } |
| |
| /* Did not find a dirty LEB on the dirty heaps, have to scan */ |
| dbg_find("scanning LPT for a dirty LEB"); |
| lp = scan_for_dirty(c, min_space, pick_free, exclude_index); |
| if (IS_ERR(lp)) { |
| err = PTR_ERR(lp); |
| goto out; |
| } |
| ubifs_assert(c, lp->dirty >= c->dead_wm || |
| (pick_free && lp->free + lp->dirty == c->leb_size)); |
| |
| found: |
| dbg_find("found LEB %d, free %d, dirty %d, flags %#x", |
| lp->lnum, lp->free, lp->dirty, lp->flags); |
| |
| lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, |
| lp->flags | LPROPS_TAKEN, 0); |
| if (IS_ERR(lp)) { |
| err = PTR_ERR(lp); |
| goto out; |
| } |
| |
| memcpy(ret_lp, lp, sizeof(struct ubifs_lprops)); |
| |
| out: |
| ubifs_release_lprops(c); |
| return err; |
| } |
| |
| /** |
| * scan_for_free_cb - free space scan callback. |
| * @c: the UBIFS file-system description object |
| * @lprops: LEB properties to scan |
| * @in_tree: whether the LEB properties are in main memory |
| * @data: information passed to and from the caller of the scan |
| * |
| * This function returns a code that indicates whether the scan should continue |
| * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree |
| * in main memory (%LPT_SCAN_ADD), or whether the scan should stop |
| * (%LPT_SCAN_STOP). |
| */ |
| static int scan_for_free_cb(struct ubifs_info *c, |
| const struct ubifs_lprops *lprops, int in_tree, |
| void *arg) |
| { |
| struct scan_data *data = arg; |
| int ret = LPT_SCAN_CONTINUE; |
| |
| /* Exclude LEBs that are currently in use */ |
| if (lprops->flags & LPROPS_TAKEN) |
| return LPT_SCAN_CONTINUE; |
| /* Determine whether to add these LEB properties to the tree */ |
| if (!in_tree && valuable(c, lprops)) |
| ret |= LPT_SCAN_ADD; |
| /* Exclude index LEBs */ |
| if (lprops->flags & LPROPS_INDEX) |
| return ret; |
| /* Exclude LEBs with too little space */ |
| if (lprops->free < data->min_space) |
| return ret; |
| /* If specified, exclude empty LEBs */ |
| if (!data->pick_free && lprops->free == c->leb_size) |
| return ret; |
| /* |
| * LEBs that have only free and dirty space must not be allocated |
| * because they may have been unmapped already or they may have data |
| * that is obsolete only because of nodes that are still sitting in a |
| * wbuf. |
| */ |
| if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0) |
| return ret; |
| /* Finally we found space */ |
| data->lnum = lprops->lnum; |
| return LPT_SCAN_ADD | LPT_SCAN_STOP; |
| } |
| |
| /** |
| * do_find_free_space - find a data LEB with free space. |
| * @c: the UBIFS file-system description object |
| * @min_space: minimum amount of free space required |
| * @pick_free: whether it is OK to scan for empty LEBs |
| * @squeeze: whether to try to find space in a non-empty LEB first |
| * |
| * This function returns a pointer to the LEB properties found or a negative |
| * error code. |
| */ |
| static |
| const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c, |
| int min_space, int pick_free, |
| int squeeze) |
| { |
| const struct ubifs_lprops *lprops; |
| struct ubifs_lpt_heap *heap; |
| struct scan_data data; |
| int err, i; |
| |
| if (squeeze) { |
| lprops = ubifs_fast_find_free(c); |
| if (lprops && lprops->free >= min_space) |
| return lprops; |
| } |
| if (pick_free) { |
| lprops = ubifs_fast_find_empty(c); |
| if (lprops) |
| return lprops; |
| } |
| if (!squeeze) { |
| lprops = ubifs_fast_find_free(c); |
| if (lprops && lprops->free >= min_space) |
| return lprops; |
| } |
| /* There may be an LEB with enough free space on the dirty heap */ |
| heap = &c->lpt_heap[LPROPS_DIRTY - 1]; |
| for (i = 0; i < heap->cnt; i++) { |
| lprops = heap->arr[i]; |
| if (lprops->free >= min_space) |
| return lprops; |
| } |
| /* |
| * A LEB may have fallen off of the bottom of the free heap, and ended |
| * up as uncategorized even though it has enough free space for us now, |
| * so check the uncategorized list. N.B. neither empty nor freeable LEBs |
| * can end up as uncategorized because they are kept on lists not |
| * finite-sized heaps. |
| */ |
| list_for_each_entry(lprops, &c->uncat_list, list) { |
| if (lprops->flags & LPROPS_TAKEN) |
| continue; |
| if (lprops->flags & LPROPS_INDEX) |
| continue; |
| if (lprops->free >= min_space) |
| return lprops; |
| } |
| /* We have looked everywhere in main memory, now scan the flash */ |
| if (c->pnodes_have >= c->pnode_cnt) |
| /* All pnodes are in memory, so skip scan */ |
| return ERR_PTR(-ENOSPC); |
| data.min_space = min_space; |
| data.pick_free = pick_free; |
| data.lnum = -1; |
| err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, |
| scan_for_free_cb, |
| &data); |
| if (err) |
| return ERR_PTR(err); |
| ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); |
| c->lscan_lnum = data.lnum; |
| lprops = ubifs_lpt_lookup_dirty(c, data.lnum); |
| if (IS_ERR(lprops)) |
| return lprops; |
| ubifs_assert(c, lprops->lnum == data.lnum); |
| ubifs_assert(c, lprops->free >= min_space); |
| ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); |
| ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); |
| return lprops; |
| } |
| |
| /** |
| * ubifs_find_free_space - find a data LEB with free space. |
| * @c: the UBIFS file-system description object |
| * @min_space: minimum amount of required free space |
| * @offs: contains offset of where free space starts on exit |
| * @squeeze: whether to try to find space in a non-empty LEB first |
| * |
| * This function looks for an LEB with at least @min_space bytes of free space. |
| * It tries to find an empty LEB if possible. If no empty LEBs are available, |
| * this function searches for a non-empty data LEB. The returned LEB is marked |
| * as "taken". |
| * |
| * This function returns found LEB number in case of success, %-ENOSPC if it |
| * failed to find a LEB with @min_space bytes of free space and other a negative |
| * error codes in case of failure. |
| */ |
| int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs, |
| int squeeze) |
| { |
| const struct ubifs_lprops *lprops; |
| int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags; |
| |
| dbg_find("min_space %d", min_space); |
| ubifs_get_lprops(c); |
| |
| /* Check if there are enough empty LEBs for commit */ |
| spin_lock(&c->space_lock); |
| if (c->bi.min_idx_lebs > c->lst.idx_lebs) |
| rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; |
| else |
| rsvd_idx_lebs = 0; |
| lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - |
| c->lst.taken_empty_lebs; |
| if (rsvd_idx_lebs < lebs) |
| /* |
| * OK to allocate an empty LEB, but we still don't want to go |
| * looking for one if there aren't any. |
| */ |
| if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { |
| pick_free = 1; |
| /* |
| * Because we release the space lock, we must account |
| * for this allocation here. After the LEB properties |
| * flags have been updated, we subtract one. Note, the |
| * result of this is that lprops also decreases |
| * @taken_empty_lebs in 'ubifs_change_lp()', so it is |
| * off by one for a short period of time which may |
| * introduce a small disturbance to budgeting |
| * calculations, but this is harmless because at the |
| * worst case this would make the budgeting subsystem |
| * be more pessimistic than needed. |
| * |
| * Fundamentally, this is about serialization of the |
| * budgeting and lprops subsystems. We could make the |
| * @space_lock a mutex and avoid dropping it before |
| * calling 'ubifs_change_lp()', but mutex is more |
| * heavy-weight, and we want budgeting to be as fast as |
| * possible. |
| */ |
| c->lst.taken_empty_lebs += 1; |
| } |
| spin_unlock(&c->space_lock); |
| |
| lprops = do_find_free_space(c, min_space, pick_free, squeeze); |
| if (IS_ERR(lprops)) { |
| err = PTR_ERR(lprops); |
| goto out; |
| } |
| |
| lnum = lprops->lnum; |
| flags = lprops->flags | LPROPS_TAKEN; |
| |
| lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0); |
| if (IS_ERR(lprops)) { |
| err = PTR_ERR(lprops); |
| goto out; |
| } |
| |
| if (pick_free) { |
| spin_lock(&c->space_lock); |
| c->lst.taken_empty_lebs -= 1; |
| spin_unlock(&c->space_lock); |
| } |
| |
| *offs = c->leb_size - lprops->free; |
| ubifs_release_lprops(c); |
| |
| if (*offs == 0) { |
| /* |
| * Ensure that empty LEBs have been unmapped. They may not have |
| * been, for example, because of an unclean unmount. Also |
| * LEBs that were freeable LEBs (free + dirty == leb_size) will |
| * not have been unmapped. |
| */ |
| err = ubifs_leb_unmap(c, lnum); |
| if (err) |
| return err; |
| } |
| |
| dbg_find("found LEB %d, free %d", lnum, c->leb_size - *offs); |
| ubifs_assert(c, *offs <= c->leb_size - min_space); |
| return lnum; |
| |
| out: |
| if (pick_free) { |
| spin_lock(&c->space_lock); |
| c->lst.taken_empty_lebs -= 1; |
| spin_unlock(&c->space_lock); |
| } |
| ubifs_release_lprops(c); |
| return err; |
| } |
| |
| /** |
| * scan_for_idx_cb - callback used by the scan for a free LEB for the index. |
| * @c: the UBIFS file-system description object |
| * @lprops: LEB properties to scan |
| * @in_tree: whether the LEB properties are in main memory |
| * @data: information passed to and from the caller of the scan |
| * |
| * This function returns a code that indicates whether the scan should continue |
| * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree |
| * in main memory (%LPT_SCAN_ADD), or whether the scan should stop |
| * (%LPT_SCAN_STOP). |
| */ |
| static int scan_for_idx_cb(struct ubifs_info *c, |
| const struct ubifs_lprops *lprops, int in_tree, |
| void *arg) |
| { |
| struct scan_data *data = arg; |
| int ret = LPT_SCAN_CONTINUE; |
| |
| /* Exclude LEBs that are currently in use */ |
| if (lprops->flags & LPROPS_TAKEN) |
| return LPT_SCAN_CONTINUE; |
| /* Determine whether to add these LEB properties to the tree */ |
| if (!in_tree && valuable(c, lprops)) |
| ret |= LPT_SCAN_ADD; |
| /* Exclude index LEBS */ |
| if (lprops->flags & LPROPS_INDEX) |
| return ret; |
| /* Exclude LEBs that cannot be made empty */ |
| if (lprops->free + lprops->dirty != c->leb_size) |
| return ret; |
| /* |
| * We are allocating for the index so it is safe to allocate LEBs with |
| * only free and dirty space, because write buffers are sync'd at commit |
| * start. |
| */ |
| data->lnum = lprops->lnum; |
| return LPT_SCAN_ADD | LPT_SCAN_STOP; |
| } |
| |
| /** |
| * scan_for_leb_for_idx - scan for a free LEB for the index. |
| * @c: the UBIFS file-system description object |
| */ |
| static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c) |
| { |
| const struct ubifs_lprops *lprops; |
| struct scan_data data; |
| int err; |
| |
| data.lnum = -1; |
| err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, scan_for_idx_cb, |
| &data); |
| if (err) |
| return ERR_PTR(err); |
| ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); |
| c->lscan_lnum = data.lnum; |
| lprops = ubifs_lpt_lookup_dirty(c, data.lnum); |
| if (IS_ERR(lprops)) |
| return lprops; |
| ubifs_assert(c, lprops->lnum == data.lnum); |
| ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size); |
| ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); |
| ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); |
| return lprops; |
| } |
| |
| /** |
| * ubifs_find_free_leb_for_idx - find a free LEB for the index. |
| * @c: the UBIFS file-system description object |
| * |
| * This function looks for a free LEB and returns that LEB number. The returned |
| * LEB is marked as "taken", "index". |
| * |
| * Only empty LEBs are allocated. This is for two reasons. First, the commit |
| * calculates the number of LEBs to allocate based on the assumption that they |
| * will be empty. Secondly, free space at the end of an index LEB is not |
| * guaranteed to be empty because it may have been used by the in-the-gaps |
| * method prior to an unclean unmount. |
| * |
| * If no LEB is found %-ENOSPC is returned. For other failures another negative |
| * error code is returned. |
| */ |
| int ubifs_find_free_leb_for_idx(struct ubifs_info *c) |
| { |
| const struct ubifs_lprops *lprops; |
| int lnum = -1, err, flags; |
| |
| ubifs_get_lprops(c); |
| |
| lprops = ubifs_fast_find_empty(c); |
| if (!lprops) { |
| lprops = ubifs_fast_find_freeable(c); |
| if (!lprops) { |
| /* |
| * The first condition means the following: go scan the |
| * LPT if there are uncategorized lprops, which means |
| * there may be freeable LEBs there (UBIFS does not |
| * store the information about freeable LEBs in the |
| * master node). |
| */ |
| if (c->in_a_category_cnt != c->main_lebs || |
| c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { |
| ubifs_assert(c, c->freeable_cnt == 0); |
| lprops = scan_for_leb_for_idx(c); |
| if (IS_ERR(lprops)) { |
| err = PTR_ERR(lprops); |
| goto out; |
| } |
| } |
| } |
| } |
| |
| if (!lprops) { |
| err = -ENOSPC; |
| goto out; |
| } |
| |
| lnum = lprops->lnum; |
| |
| dbg_find("found LEB %d, free %d, dirty %d, flags %#x", |
| lnum, lprops->free, lprops->dirty, lprops->flags); |
| |
| flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX; |
| lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0); |
| if (IS_ERR(lprops)) { |
| err = PTR_ERR(lprops); |
| goto out; |
| } |
| |
| ubifs_release_lprops(c); |
| |
| /* |
| * Ensure that empty LEBs have been unmapped. They may not have been, |
| * for example, because of an unclean unmount. Also LEBs that were |
| * freeable LEBs (free + dirty == leb_size) will not have been unmapped. |
| */ |
| err = ubifs_leb_unmap(c, lnum); |
| if (err) { |
| ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, |
| LPROPS_TAKEN | LPROPS_INDEX, 0); |
| return err; |
| } |
| |
| return lnum; |
| |
| out: |
| ubifs_release_lprops(c); |
| return err; |
| } |
| |
| static int cmp_dirty_idx(const void *a, const void *b) |
| { |
| const struct ubifs_lprops *lpa = *(const struct ubifs_lprops **)a; |
| const struct ubifs_lprops *lpb = *(const struct ubifs_lprops **)b; |
| |
| return lpa->dirty + lpa->free - lpb->dirty - lpb->free; |
| } |
| |
| /** |
| * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos. |
| * @c: the UBIFS file-system description object |
| * |
| * This function is called each commit to create an array of LEB numbers of |
| * dirty index LEBs sorted in order of dirty and free space. This is used by |
| * the in-the-gaps method of TNC commit. |
| */ |
| int ubifs_save_dirty_idx_lnums(struct ubifs_info *c) |
| { |
| int i; |
| |
| ubifs_get_lprops(c); |
| /* Copy the LPROPS_DIRTY_IDX heap */ |
| c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt; |
| memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr, |
| sizeof(void *) * c->dirty_idx.cnt); |
| /* Sort it so that the dirtiest is now at the end */ |
| sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *), |
| cmp_dirty_idx, NULL); |
| dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt); |
| if (c->dirty_idx.cnt) |
| dbg_find("dirtiest index LEB is %d with dirty %d and free %d", |
| c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum, |
| c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty, |
| c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free); |
| /* Replace the lprops pointers with LEB numbers */ |
| for (i = 0; i < c->dirty_idx.cnt; i++) |
| c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum; |
| ubifs_release_lprops(c); |
| return 0; |
| } |
| |
| /** |
| * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB. |
| * @c: the UBIFS file-system description object |
| * @lprops: LEB properties to scan |
| * @in_tree: whether the LEB properties are in main memory |
| * @data: information passed to and from the caller of the scan |
| * |
| * This function returns a code that indicates whether the scan should continue |
| * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree |
| * in main memory (%LPT_SCAN_ADD), or whether the scan should stop |
| * (%LPT_SCAN_STOP). |
| */ |
| static int scan_dirty_idx_cb(struct ubifs_info *c, |
| const struct ubifs_lprops *lprops, int in_tree, |
| void *arg) |
| { |
| struct scan_data *data = arg; |
| int ret = LPT_SCAN_CONTINUE; |
| |
| /* Exclude LEBs that are currently in use */ |
| if (lprops->flags & LPROPS_TAKEN) |
| return LPT_SCAN_CONTINUE; |
| /* Determine whether to add these LEB properties to the tree */ |
| if (!in_tree && valuable(c, lprops)) |
| ret |= LPT_SCAN_ADD; |
| /* Exclude non-index LEBs */ |
| if (!(lprops->flags & LPROPS_INDEX)) |
| return ret; |
| /* Exclude LEBs with too little space */ |
| if (lprops->free + lprops->dirty < c->min_idx_node_sz) |
| return ret; |
| /* Finally we found space */ |
| data->lnum = lprops->lnum; |
| return LPT_SCAN_ADD | LPT_SCAN_STOP; |
| } |
| |
| /** |
| * find_dirty_idx_leb - find a dirty index LEB. |
| * @c: the UBIFS file-system description object |
| * |
| * This function returns LEB number upon success and a negative error code upon |
| * failure. In particular, -ENOSPC is returned if a dirty index LEB is not |
| * found. |
| * |
| * Note that this function scans the entire LPT but it is called very rarely. |
| */ |
| static int find_dirty_idx_leb(struct ubifs_info *c) |
| { |
| const struct ubifs_lprops *lprops; |
| struct ubifs_lpt_heap *heap; |
| struct scan_data data; |
| int err, i, ret; |
| |
| /* Check all structures in memory first */ |
| data.lnum = -1; |
| heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; |
| for (i = 0; i < heap->cnt; i++) { |
| lprops = heap->arr[i]; |
| ret = scan_dirty_idx_cb(c, lprops, 1, &data); |
| if (ret & LPT_SCAN_STOP) |
| goto found; |
| } |
| list_for_each_entry(lprops, &c->frdi_idx_list, list) { |
| ret = scan_dirty_idx_cb(c, lprops, 1, &data); |
| if (ret & LPT_SCAN_STOP) |
| goto found; |
| } |
| list_for_each_entry(lprops, &c->uncat_list, list) { |
| ret = scan_dirty_idx_cb(c, lprops, 1, &data); |
| if (ret & LPT_SCAN_STOP) |
| goto found; |
| } |
| if (c->pnodes_have >= c->pnode_cnt) |
| /* All pnodes are in memory, so skip scan */ |
| return -ENOSPC; |
| err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, scan_dirty_idx_cb, |
| &data); |
| if (err) |
| return err; |
| found: |
| ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); |
| c->lscan_lnum = data.lnum; |
| lprops = ubifs_lpt_lookup_dirty(c, data.lnum); |
| if (IS_ERR(lprops)) |
| return PTR_ERR(lprops); |
| ubifs_assert(c, lprops->lnum == data.lnum); |
| ubifs_assert(c, lprops->free + lprops->dirty >= c->min_idx_node_sz); |
| ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); |
| ubifs_assert(c, (lprops->flags & LPROPS_INDEX)); |
| |
| dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x", |
| lprops->lnum, lprops->free, lprops->dirty, lprops->flags); |
| |
| lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, |
| lprops->flags | LPROPS_TAKEN, 0); |
| if (IS_ERR(lprops)) |
| return PTR_ERR(lprops); |
| |
| return lprops->lnum; |
| } |
| |
| /** |
| * get_idx_gc_leb - try to get a LEB number from trivial GC. |
| * @c: the UBIFS file-system description object |
| */ |
| static int get_idx_gc_leb(struct ubifs_info *c) |
| { |
| const struct ubifs_lprops *lp; |
| int err, lnum; |
| |
| err = ubifs_get_idx_gc_leb(c); |
| if (err < 0) |
| return err; |
| lnum = err; |
| /* |
| * The LEB was due to be unmapped after the commit but |
| * it is needed now for this commit. |
| */ |
| lp = ubifs_lpt_lookup_dirty(c, lnum); |
| if (IS_ERR(lp)) |
| return PTR_ERR(lp); |
| lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, |
| lp->flags | LPROPS_INDEX, -1); |
| if (IS_ERR(lp)) |
| return PTR_ERR(lp); |
| dbg_find("LEB %d, dirty %d and free %d flags %#x", |
| lp->lnum, lp->dirty, lp->free, lp->flags); |
| return lnum; |
| } |
| |
| /** |
| * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array. |
| * @c: the UBIFS file-system description object |
| */ |
| static int find_dirtiest_idx_leb(struct ubifs_info *c) |
| { |
| const struct ubifs_lprops *lp; |
| int lnum; |
| |
| while (1) { |
| if (!c->dirty_idx.cnt) |
| return -ENOSPC; |
| /* The lprops pointers were replaced by LEB numbers */ |
| lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt]; |
| lp = ubifs_lpt_lookup(c, lnum); |
| if (IS_ERR(lp)) |
| return PTR_ERR(lp); |
| if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX)) |
| continue; |
| lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, |
| lp->flags | LPROPS_TAKEN, 0); |
| if (IS_ERR(lp)) |
| return PTR_ERR(lp); |
| break; |
| } |
| dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty, |
| lp->free, lp->flags); |
| ubifs_assert(c, lp->flags & LPROPS_TAKEN); |
| ubifs_assert(c, lp->flags & LPROPS_INDEX); |
| return lnum; |
| } |
| |
| /** |
| * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit. |
| * @c: the UBIFS file-system description object |
| * |
| * This function attempts to find an untaken index LEB with the most free and |
| * dirty space that can be used without overwriting index nodes that were in the |
| * last index committed. |
| */ |
| int ubifs_find_dirty_idx_leb(struct ubifs_info *c) |
| { |
| int err; |
| |
| ubifs_get_lprops(c); |
| |
| /* |
| * We made an array of the dirtiest index LEB numbers as at the start of |
| * last commit. Try that array first. |
| */ |
| err = find_dirtiest_idx_leb(c); |
| |
| /* Next try scanning the entire LPT */ |
| if (err == -ENOSPC) |
| err = find_dirty_idx_leb(c); |
| |
| /* Finally take any index LEBs awaiting trivial GC */ |
| if (err == -ENOSPC) |
| err = get_idx_gc_leb(c); |
| |
| ubifs_release_lprops(c); |
| return err; |
| } |