| /* |
| * Copyright 2008 Advanced Micro Devices, Inc. |
| * Copyright 2008 Red Hat Inc. |
| * Copyright 2009 Jerome Glisse. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Dave Airlie |
| * Alex Deucher |
| * Jerome Glisse |
| * Christian König |
| */ |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <drm/drmP.h> |
| #include <drm/radeon_drm.h> |
| #include "radeon_reg.h" |
| #include "radeon.h" |
| #include "atom.h" |
| |
| /* |
| * IB |
| * IBs (Indirect Buffers) and areas of GPU accessible memory where |
| * commands are stored. You can put a pointer to the IB in the |
| * command ring and the hw will fetch the commands from the IB |
| * and execute them. Generally userspace acceleration drivers |
| * produce command buffers which are send to the kernel and |
| * put in IBs for execution by the requested ring. |
| */ |
| static int radeon_debugfs_sa_init(struct radeon_device *rdev); |
| |
| /** |
| * radeon_ib_get - request an IB (Indirect Buffer) |
| * |
| * @rdev: radeon_device pointer |
| * @ring: ring index the IB is associated with |
| * @ib: IB object returned |
| * @size: requested IB size |
| * |
| * Request an IB (all asics). IBs are allocated using the |
| * suballocator. |
| * Returns 0 on success, error on failure. |
| */ |
| int radeon_ib_get(struct radeon_device *rdev, int ring, |
| struct radeon_ib *ib, struct radeon_vm *vm, |
| unsigned size) |
| { |
| int r; |
| |
| r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true); |
| if (r) { |
| dev_err(rdev->dev, "failed to get a new IB (%d)\n", r); |
| return r; |
| } |
| |
| r = radeon_semaphore_create(rdev, &ib->semaphore); |
| if (r) { |
| return r; |
| } |
| |
| ib->ring = ring; |
| ib->fence = NULL; |
| ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo); |
| ib->vm = vm; |
| if (vm) { |
| /* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address |
| * space and soffset is the offset inside the pool bo |
| */ |
| ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET; |
| } else { |
| ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo); |
| } |
| ib->is_const_ib = false; |
| |
| return 0; |
| } |
| |
| /** |
| * radeon_ib_free - free an IB (Indirect Buffer) |
| * |
| * @rdev: radeon_device pointer |
| * @ib: IB object to free |
| * |
| * Free an IB (all asics). |
| */ |
| void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib) |
| { |
| radeon_semaphore_free(rdev, &ib->semaphore, ib->fence); |
| radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence); |
| radeon_fence_unref(&ib->fence); |
| } |
| |
| /** |
| * radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring |
| * |
| * @rdev: radeon_device pointer |
| * @ib: IB object to schedule |
| * @const_ib: Const IB to schedule (SI only) |
| * |
| * Schedule an IB on the associated ring (all asics). |
| * Returns 0 on success, error on failure. |
| * |
| * On SI, there are two parallel engines fed from the primary ring, |
| * the CE (Constant Engine) and the DE (Drawing Engine). Since |
| * resource descriptors have moved to memory, the CE allows you to |
| * prime the caches while the DE is updating register state so that |
| * the resource descriptors will be already in cache when the draw is |
| * processed. To accomplish this, the userspace driver submits two |
| * IBs, one for the CE and one for the DE. If there is a CE IB (called |
| * a CONST_IB), it will be put on the ring prior to the DE IB. Prior |
| * to SI there was just a DE IB. |
| */ |
| int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib, |
| struct radeon_ib *const_ib) |
| { |
| struct radeon_ring *ring = &rdev->ring[ib->ring]; |
| int r = 0; |
| |
| if (!ib->length_dw || !ring->ready) { |
| /* TODO: Nothings in the ib we should report. */ |
| dev_err(rdev->dev, "couldn't schedule ib\n"); |
| return -EINVAL; |
| } |
| |
| /* 64 dwords should be enough for fence too */ |
| r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8); |
| if (r) { |
| dev_err(rdev->dev, "scheduling IB failed (%d).\n", r); |
| return r; |
| } |
| |
| /* sync with other rings */ |
| r = radeon_semaphore_sync_rings(rdev, ib->semaphore, ib->ring); |
| if (r) { |
| dev_err(rdev->dev, "failed to sync rings (%d)\n", r); |
| radeon_ring_unlock_undo(rdev, ring); |
| return r; |
| } |
| |
| /* if we can't remember our last VM flush then flush now! */ |
| /* XXX figure out why we have to flush for every IB */ |
| if (ib->vm /*&& !ib->vm->last_flush*/) { |
| radeon_ring_vm_flush(rdev, ib->ring, ib->vm); |
| } |
| if (const_ib) { |
| radeon_ring_ib_execute(rdev, const_ib->ring, const_ib); |
| radeon_semaphore_free(rdev, &const_ib->semaphore, NULL); |
| } |
| radeon_ring_ib_execute(rdev, ib->ring, ib); |
| r = radeon_fence_emit(rdev, &ib->fence, ib->ring); |
| if (r) { |
| dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r); |
| radeon_ring_unlock_undo(rdev, ring); |
| return r; |
| } |
| if (const_ib) { |
| const_ib->fence = radeon_fence_ref(ib->fence); |
| } |
| /* we just flushed the VM, remember that */ |
| if (ib->vm && !ib->vm->last_flush) { |
| ib->vm->last_flush = radeon_fence_ref(ib->fence); |
| } |
| radeon_ring_unlock_commit(rdev, ring); |
| return 0; |
| } |
| |
| /** |
| * radeon_ib_pool_init - Init the IB (Indirect Buffer) pool |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Initialize the suballocator to manage a pool of memory |
| * for use as IBs (all asics). |
| * Returns 0 on success, error on failure. |
| */ |
| int radeon_ib_pool_init(struct radeon_device *rdev) |
| { |
| int r; |
| |
| if (rdev->ib_pool_ready) { |
| return 0; |
| } |
| r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo, |
| RADEON_IB_POOL_SIZE*64*1024, |
| RADEON_GPU_PAGE_SIZE, |
| RADEON_GEM_DOMAIN_GTT); |
| if (r) { |
| return r; |
| } |
| |
| r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo); |
| if (r) { |
| return r; |
| } |
| |
| rdev->ib_pool_ready = true; |
| if (radeon_debugfs_sa_init(rdev)) { |
| dev_err(rdev->dev, "failed to register debugfs file for SA\n"); |
| } |
| return 0; |
| } |
| |
| /** |
| * radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Tear down the suballocator managing the pool of memory |
| * for use as IBs (all asics). |
| */ |
| void radeon_ib_pool_fini(struct radeon_device *rdev) |
| { |
| if (rdev->ib_pool_ready) { |
| radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo); |
| radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo); |
| rdev->ib_pool_ready = false; |
| } |
| } |
| |
| /** |
| * radeon_ib_ring_tests - test IBs on the rings |
| * |
| * @rdev: radeon_device pointer |
| * |
| * Test an IB (Indirect Buffer) on each ring. |
| * If the test fails, disable the ring. |
| * Returns 0 on success, error if the primary GFX ring |
| * IB test fails. |
| */ |
| int radeon_ib_ring_tests(struct radeon_device *rdev) |
| { |
| unsigned i; |
| int r; |
| |
| for (i = 0; i < RADEON_NUM_RINGS; ++i) { |
| struct radeon_ring *ring = &rdev->ring[i]; |
| |
| if (!ring->ready) |
| continue; |
| |
| r = radeon_ib_test(rdev, i, ring); |
| if (r) { |
| ring->ready = false; |
| |
| if (i == RADEON_RING_TYPE_GFX_INDEX) { |
| /* oh, oh, that's really bad */ |
| DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r); |
| rdev->accel_working = false; |
| return r; |
| |
| } else { |
| /* still not good, but we can live with it */ |
| DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Rings |
| * Most engines on the GPU are fed via ring buffers. Ring |
| * buffers are areas of GPU accessible memory that the host |
| * writes commands into and the GPU reads commands out of. |
| * There is a rptr (read pointer) that determines where the |
| * GPU is currently reading, and a wptr (write pointer) |
| * which determines where the host has written. When the |
| * pointers are equal, the ring is idle. When the host |
| * writes commands to the ring buffer, it increments the |
| * wptr. The GPU then starts fetching commands and executes |
| * them until the pointers are equal again. |
| */ |
| static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring); |
| |
| /** |
| * radeon_ring_write - write a value to the ring |
| * |
| * @ring: radeon_ring structure holding ring information |
| * @v: dword (dw) value to write |
| * |
| * Write a value to the requested ring buffer (all asics). |
| */ |
| void radeon_ring_write(struct radeon_ring *ring, uint32_t v) |
| { |
| #if DRM_DEBUG_CODE |
| if (ring->count_dw <= 0) { |
| DRM_ERROR("radeon: writing more dwords to the ring than expected!\n"); |
| } |
| #endif |
| ring->ring[ring->wptr++] = v; |
| ring->wptr &= ring->ptr_mask; |
| ring->count_dw--; |
| ring->ring_free_dw--; |
| } |
| |
| /** |
| * radeon_ring_supports_scratch_reg - check if the ring supports |
| * writing to scratch registers |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Check if a specific ring supports writing to scratch registers (all asics). |
| * Returns true if the ring supports writing to scratch regs, false if not. |
| */ |
| bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| switch (ring->idx) { |
| case RADEON_RING_TYPE_GFX_INDEX: |
| case CAYMAN_RING_TYPE_CP1_INDEX: |
| case CAYMAN_RING_TYPE_CP2_INDEX: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| u32 radeon_ring_generic_get_rptr(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| u32 rptr; |
| |
| if (rdev->wb.enabled) |
| rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]); |
| else |
| rptr = RREG32(ring->rptr_reg); |
| |
| return rptr; |
| } |
| |
| u32 radeon_ring_generic_get_wptr(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| u32 wptr; |
| |
| wptr = RREG32(ring->wptr_reg); |
| |
| return wptr; |
| } |
| |
| void radeon_ring_generic_set_wptr(struct radeon_device *rdev, |
| struct radeon_ring *ring) |
| { |
| WREG32(ring->wptr_reg, ring->wptr); |
| (void)RREG32(ring->wptr_reg); |
| } |
| |
| /** |
| * radeon_ring_free_size - update the free size |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Update the free dw slots in the ring buffer (all asics). |
| */ |
| void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| ring->rptr = radeon_ring_get_rptr(rdev, ring); |
| /* This works because ring_size is a power of 2 */ |
| ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4)); |
| ring->ring_free_dw -= ring->wptr; |
| ring->ring_free_dw &= ring->ptr_mask; |
| if (!ring->ring_free_dw) { |
| ring->ring_free_dw = ring->ring_size / 4; |
| } |
| } |
| |
| /** |
| * radeon_ring_alloc - allocate space on the ring buffer |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * @ndw: number of dwords to allocate in the ring buffer |
| * |
| * Allocate @ndw dwords in the ring buffer (all asics). |
| * Returns 0 on success, error on failure. |
| */ |
| int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) |
| { |
| int r; |
| |
| /* make sure we aren't trying to allocate more space than there is on the ring */ |
| if (ndw > (ring->ring_size / 4)) |
| return -ENOMEM; |
| /* Align requested size with padding so unlock_commit can |
| * pad safely */ |
| radeon_ring_free_size(rdev, ring); |
| if (ring->ring_free_dw == (ring->ring_size / 4)) { |
| /* This is an empty ring update lockup info to avoid |
| * false positive. |
| */ |
| radeon_ring_lockup_update(ring); |
| } |
| ndw = (ndw + ring->align_mask) & ~ring->align_mask; |
| while (ndw > (ring->ring_free_dw - 1)) { |
| radeon_ring_free_size(rdev, ring); |
| if (ndw < ring->ring_free_dw) { |
| break; |
| } |
| r = radeon_fence_wait_next_locked(rdev, ring->idx); |
| if (r) |
| return r; |
| } |
| ring->count_dw = ndw; |
| ring->wptr_old = ring->wptr; |
| return 0; |
| } |
| |
| /** |
| * radeon_ring_lock - lock the ring and allocate space on it |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * @ndw: number of dwords to allocate in the ring buffer |
| * |
| * Lock the ring and allocate @ndw dwords in the ring buffer |
| * (all asics). |
| * Returns 0 on success, error on failure. |
| */ |
| int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) |
| { |
| int r; |
| |
| mutex_lock(&rdev->ring_lock); |
| r = radeon_ring_alloc(rdev, ring, ndw); |
| if (r) { |
| mutex_unlock(&rdev->ring_lock); |
| return r; |
| } |
| return 0; |
| } |
| |
| /** |
| * radeon_ring_commit - tell the GPU to execute the new |
| * commands on the ring buffer |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Update the wptr (write pointer) to tell the GPU to |
| * execute new commands on the ring buffer (all asics). |
| */ |
| void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| /* We pad to match fetch size */ |
| while (ring->wptr & ring->align_mask) { |
| radeon_ring_write(ring, ring->nop); |
| } |
| mb(); |
| radeon_ring_set_wptr(rdev, ring); |
| } |
| |
| /** |
| * radeon_ring_unlock_commit - tell the GPU to execute the new |
| * commands on the ring buffer and unlock it |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Call radeon_ring_commit() then unlock the ring (all asics). |
| */ |
| void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| radeon_ring_commit(rdev, ring); |
| mutex_unlock(&rdev->ring_lock); |
| } |
| |
| /** |
| * radeon_ring_undo - reset the wptr |
| * |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Reset the driver's copy of the wptr (all asics). |
| */ |
| void radeon_ring_undo(struct radeon_ring *ring) |
| { |
| ring->wptr = ring->wptr_old; |
| } |
| |
| /** |
| * radeon_ring_unlock_undo - reset the wptr and unlock the ring |
| * |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Call radeon_ring_undo() then unlock the ring (all asics). |
| */ |
| void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| radeon_ring_undo(ring); |
| mutex_unlock(&rdev->ring_lock); |
| } |
| |
| /** |
| * radeon_ring_force_activity - add some nop packets to the ring |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Add some nop packets to the ring to force activity (all asics). |
| * Used for lockup detection to see if the rptr is advancing. |
| */ |
| void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| int r; |
| |
| radeon_ring_free_size(rdev, ring); |
| if (ring->rptr == ring->wptr) { |
| r = radeon_ring_alloc(rdev, ring, 1); |
| if (!r) { |
| radeon_ring_write(ring, ring->nop); |
| radeon_ring_commit(rdev, ring); |
| } |
| } |
| } |
| |
| /** |
| * radeon_ring_lockup_update - update lockup variables |
| * |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Update the last rptr value and timestamp (all asics). |
| */ |
| void radeon_ring_lockup_update(struct radeon_ring *ring) |
| { |
| ring->last_rptr = ring->rptr; |
| ring->last_activity = jiffies; |
| } |
| |
| /** |
| * radeon_ring_test_lockup() - check if ring is lockedup by recording information |
| * @rdev: radeon device structure |
| * @ring: radeon_ring structure holding ring information |
| * |
| * We don't need to initialize the lockup tracking information as we will either |
| * have CP rptr to a different value of jiffies wrap around which will force |
| * initialization of the lockup tracking informations. |
| * |
| * A possible false positivie is if we get call after while and last_cp_rptr == |
| * the current CP rptr, even if it's unlikely it might happen. To avoid this |
| * if the elapsed time since last call is bigger than 2 second than we return |
| * false and update the tracking information. Due to this the caller must call |
| * radeon_ring_test_lockup several time in less than 2sec for lockup to be reported |
| * the fencing code should be cautious about that. |
| * |
| * Caller should write to the ring to force CP to do something so we don't get |
| * false positive when CP is just gived nothing to do. |
| * |
| **/ |
| bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| unsigned long cjiffies, elapsed; |
| |
| cjiffies = jiffies; |
| if (!time_after(cjiffies, ring->last_activity)) { |
| /* likely a wrap around */ |
| radeon_ring_lockup_update(ring); |
| return false; |
| } |
| ring->rptr = radeon_ring_get_rptr(rdev, ring); |
| if (ring->rptr != ring->last_rptr) { |
| /* CP is still working no lockup */ |
| radeon_ring_lockup_update(ring); |
| return false; |
| } |
| elapsed = jiffies_to_msecs(cjiffies - ring->last_activity); |
| if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) { |
| dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed); |
| return true; |
| } |
| /* give a chance to the GPU ... */ |
| return false; |
| } |
| |
| /** |
| * radeon_ring_backup - Back up the content of a ring |
| * |
| * @rdev: radeon_device pointer |
| * @ring: the ring we want to back up |
| * |
| * Saves all unprocessed commits from a ring, returns the number of dwords saved. |
| */ |
| unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring, |
| uint32_t **data) |
| { |
| unsigned size, ptr, i; |
| |
| /* just in case lock the ring */ |
| mutex_lock(&rdev->ring_lock); |
| *data = NULL; |
| |
| if (ring->ring_obj == NULL) { |
| mutex_unlock(&rdev->ring_lock); |
| return 0; |
| } |
| |
| /* it doesn't make sense to save anything if all fences are signaled */ |
| if (!radeon_fence_count_emitted(rdev, ring->idx)) { |
| mutex_unlock(&rdev->ring_lock); |
| return 0; |
| } |
| |
| /* calculate the number of dw on the ring */ |
| if (ring->rptr_save_reg) |
| ptr = RREG32(ring->rptr_save_reg); |
| else if (rdev->wb.enabled) |
| ptr = le32_to_cpu(*ring->next_rptr_cpu_addr); |
| else { |
| /* no way to read back the next rptr */ |
| mutex_unlock(&rdev->ring_lock); |
| return 0; |
| } |
| |
| size = ring->wptr + (ring->ring_size / 4); |
| size -= ptr; |
| size &= ring->ptr_mask; |
| if (size == 0) { |
| mutex_unlock(&rdev->ring_lock); |
| return 0; |
| } |
| |
| /* and then save the content of the ring */ |
| *data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL); |
| if (!*data) { |
| mutex_unlock(&rdev->ring_lock); |
| return 0; |
| } |
| for (i = 0; i < size; ++i) { |
| (*data)[i] = ring->ring[ptr++]; |
| ptr &= ring->ptr_mask; |
| } |
| |
| mutex_unlock(&rdev->ring_lock); |
| return size; |
| } |
| |
| /** |
| * radeon_ring_restore - append saved commands to the ring again |
| * |
| * @rdev: radeon_device pointer |
| * @ring: ring to append commands to |
| * @size: number of dwords we want to write |
| * @data: saved commands |
| * |
| * Allocates space on the ring and restore the previously saved commands. |
| */ |
| int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring, |
| unsigned size, uint32_t *data) |
| { |
| int i, r; |
| |
| if (!size || !data) |
| return 0; |
| |
| /* restore the saved ring content */ |
| r = radeon_ring_lock(rdev, ring, size); |
| if (r) |
| return r; |
| |
| for (i = 0; i < size; ++i) { |
| radeon_ring_write(ring, data[i]); |
| } |
| |
| radeon_ring_unlock_commit(rdev, ring); |
| kfree(data); |
| return 0; |
| } |
| |
| /** |
| * radeon_ring_init - init driver ring struct. |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * @ring_size: size of the ring |
| * @rptr_offs: offset of the rptr writeback location in the WB buffer |
| * @rptr_reg: MMIO offset of the rptr register |
| * @wptr_reg: MMIO offset of the wptr register |
| * @nop: nop packet for this ring |
| * |
| * Initialize the driver information for the selected ring (all asics). |
| * Returns 0 on success, error on failure. |
| */ |
| int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size, |
| unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg, u32 nop) |
| { |
| int r; |
| |
| ring->ring_size = ring_size; |
| ring->rptr_offs = rptr_offs; |
| ring->rptr_reg = rptr_reg; |
| ring->wptr_reg = wptr_reg; |
| ring->nop = nop; |
| /* Allocate ring buffer */ |
| if (ring->ring_obj == NULL) { |
| r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true, |
| RADEON_GEM_DOMAIN_GTT, |
| NULL, &ring->ring_obj); |
| if (r) { |
| dev_err(rdev->dev, "(%d) ring create failed\n", r); |
| return r; |
| } |
| r = radeon_bo_reserve(ring->ring_obj, false); |
| if (unlikely(r != 0)) |
| return r; |
| r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT, |
| &ring->gpu_addr); |
| if (r) { |
| radeon_bo_unreserve(ring->ring_obj); |
| dev_err(rdev->dev, "(%d) ring pin failed\n", r); |
| return r; |
| } |
| r = radeon_bo_kmap(ring->ring_obj, |
| (void **)&ring->ring); |
| radeon_bo_unreserve(ring->ring_obj); |
| if (r) { |
| dev_err(rdev->dev, "(%d) ring map failed\n", r); |
| return r; |
| } |
| } |
| ring->ptr_mask = (ring->ring_size / 4) - 1; |
| ring->ring_free_dw = ring->ring_size / 4; |
| if (rdev->wb.enabled) { |
| u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4); |
| ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index; |
| ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4]; |
| } |
| if (radeon_debugfs_ring_init(rdev, ring)) { |
| DRM_ERROR("Failed to register debugfs file for rings !\n"); |
| } |
| radeon_ring_lockup_update(ring); |
| return 0; |
| } |
| |
| /** |
| * radeon_ring_fini - tear down the driver ring struct. |
| * |
| * @rdev: radeon_device pointer |
| * @ring: radeon_ring structure holding ring information |
| * |
| * Tear down the driver information for the selected ring (all asics). |
| */ |
| void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| int r; |
| struct radeon_bo *ring_obj; |
| |
| mutex_lock(&rdev->ring_lock); |
| ring_obj = ring->ring_obj; |
| ring->ready = false; |
| ring->ring = NULL; |
| ring->ring_obj = NULL; |
| mutex_unlock(&rdev->ring_lock); |
| |
| if (ring_obj) { |
| r = radeon_bo_reserve(ring_obj, false); |
| if (likely(r == 0)) { |
| radeon_bo_kunmap(ring_obj); |
| radeon_bo_unpin(ring_obj); |
| radeon_bo_unreserve(ring_obj); |
| } |
| radeon_bo_unref(&ring_obj); |
| } |
| } |
| |
| /* |
| * Debugfs info |
| */ |
| #if defined(CONFIG_DEBUG_FS) |
| |
| static int radeon_debugfs_ring_info(struct seq_file *m, void *data) |
| { |
| struct drm_info_node *node = (struct drm_info_node *) m->private; |
| struct drm_device *dev = node->minor->dev; |
| struct radeon_device *rdev = dev->dev_private; |
| int ridx = *(int*)node->info_ent->data; |
| struct radeon_ring *ring = &rdev->ring[ridx]; |
| unsigned count, i, j; |
| u32 tmp; |
| |
| radeon_ring_free_size(rdev, ring); |
| count = (ring->ring_size / 4) - ring->ring_free_dw; |
| tmp = radeon_ring_get_wptr(rdev, ring); |
| seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp); |
| tmp = radeon_ring_get_rptr(rdev, ring); |
| seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp); |
| if (ring->rptr_save_reg) { |
| seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg, |
| RREG32(ring->rptr_save_reg)); |
| } |
| seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr); |
| seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr); |
| seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr); |
| seq_printf(m, "last semaphore wait addr : 0x%016llx\n", ring->last_semaphore_wait_addr); |
| seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw); |
| seq_printf(m, "%u dwords in ring\n", count); |
| /* print 8 dw before current rptr as often it's the last executed |
| * packet that is the root issue |
| */ |
| i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask; |
| if (ring->ready) { |
| for (j = 0; j <= (count + 32); j++) { |
| seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]); |
| i = (i + 1) & ring->ptr_mask; |
| } |
| } |
| return 0; |
| } |
| |
| static int radeon_gfx_index = RADEON_RING_TYPE_GFX_INDEX; |
| static int cayman_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX; |
| static int cayman_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX; |
| static int radeon_dma1_index = R600_RING_TYPE_DMA_INDEX; |
| static int radeon_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX; |
| static int r600_uvd_index = R600_RING_TYPE_UVD_INDEX; |
| |
| static struct drm_info_list radeon_debugfs_ring_info_list[] = { |
| {"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_gfx_index}, |
| {"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_cp1_index}, |
| {"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_cp2_index}, |
| {"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_dma1_index}, |
| {"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_dma2_index}, |
| {"radeon_ring_uvd", radeon_debugfs_ring_info, 0, &r600_uvd_index}, |
| }; |
| |
| static int radeon_debugfs_sa_info(struct seq_file *m, void *data) |
| { |
| struct drm_info_node *node = (struct drm_info_node *) m->private; |
| struct drm_device *dev = node->minor->dev; |
| struct radeon_device *rdev = dev->dev_private; |
| |
| radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m); |
| |
| return 0; |
| |
| } |
| |
| static struct drm_info_list radeon_debugfs_sa_list[] = { |
| {"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL}, |
| }; |
| |
| #endif |
| |
| static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring) |
| { |
| #if defined(CONFIG_DEBUG_FS) |
| unsigned i; |
| for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) { |
| struct drm_info_list *info = &radeon_debugfs_ring_info_list[i]; |
| int ridx = *(int*)radeon_debugfs_ring_info_list[i].data; |
| unsigned r; |
| |
| if (&rdev->ring[ridx] != ring) |
| continue; |
| |
| r = radeon_debugfs_add_files(rdev, info, 1); |
| if (r) |
| return r; |
| } |
| #endif |
| return 0; |
| } |
| |
| static int radeon_debugfs_sa_init(struct radeon_device *rdev) |
| { |
| #if defined(CONFIG_DEBUG_FS) |
| return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1); |
| #else |
| return 0; |
| #endif |
| } |