| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2014-2019 Intel Corporation |
| */ |
| |
| #include "gem/i915_gem_lmem.h" |
| #include "gt/intel_gt.h" |
| #include "gt/intel_gt_irq.h" |
| #include "gt/intel_gt_pm_irq.h" |
| #include "gt/intel_gt_regs.h" |
| #include "intel_guc.h" |
| #include "intel_guc_ads.h" |
| #include "intel_guc_capture.h" |
| #include "intel_guc_print.h" |
| #include "intel_guc_slpc.h" |
| #include "intel_guc_submission.h" |
| #include "i915_drv.h" |
| #include "i915_irq.h" |
| |
| /** |
| * DOC: GuC |
| * |
| * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is |
| * designed to offload some of the functionality usually performed by the host |
| * driver; currently the main operations it can take care of are: |
| * |
| * - Authentication of the HuC, which is required to fully enable HuC usage. |
| * - Low latency graphics context scheduling (a.k.a. GuC submission). |
| * - GT Power management. |
| * |
| * The enable_guc module parameter can be used to select which of those |
| * operations to enable within GuC. Note that not all the operations are |
| * supported on all gen9+ platforms. |
| * |
| * Enabling the GuC is not mandatory and therefore the firmware is only loaded |
| * if at least one of the operations is selected. However, not loading the GuC |
| * might result in the loss of some features that do require the GuC (currently |
| * just the HuC, but more are expected to land in the future). |
| */ |
| |
| void intel_guc_notify(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| /* |
| * On Gen11+, the value written to the register is passes as a payload |
| * to the FW. However, the FW currently treats all values the same way |
| * (H2G interrupt), so we can just write the value that the HW expects |
| * on older gens. |
| */ |
| intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); |
| } |
| |
| static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) |
| { |
| GEM_BUG_ON(!guc->send_regs.base); |
| GEM_BUG_ON(!guc->send_regs.count); |
| GEM_BUG_ON(i >= guc->send_regs.count); |
| |
| return _MMIO(guc->send_regs.base + 4 * i); |
| } |
| |
| void intel_guc_init_send_regs(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| enum forcewake_domains fw_domains = 0; |
| unsigned int i; |
| |
| GEM_BUG_ON(!guc->send_regs.base); |
| GEM_BUG_ON(!guc->send_regs.count); |
| |
| for (i = 0; i < guc->send_regs.count; i++) { |
| fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, |
| guc_send_reg(guc, i), |
| FW_REG_READ | FW_REG_WRITE); |
| } |
| guc->send_regs.fw_domains = fw_domains; |
| } |
| |
| static void gen9_reset_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| assert_rpm_wakelock_held(>->i915->runtime_pm); |
| |
| spin_lock_irq(gt->irq_lock); |
| gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); |
| spin_unlock_irq(gt->irq_lock); |
| } |
| |
| static void gen9_enable_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| assert_rpm_wakelock_held(>->i915->runtime_pm); |
| |
| spin_lock_irq(gt->irq_lock); |
| guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & |
| gt->pm_guc_events); |
| gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); |
| spin_unlock_irq(gt->irq_lock); |
| |
| guc->interrupts.enabled = true; |
| } |
| |
| static void gen9_disable_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| assert_rpm_wakelock_held(>->i915->runtime_pm); |
| guc->interrupts.enabled = false; |
| |
| spin_lock_irq(gt->irq_lock); |
| |
| gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); |
| |
| spin_unlock_irq(gt->irq_lock); |
| intel_synchronize_irq(gt->i915); |
| |
| gen9_reset_guc_interrupts(guc); |
| } |
| |
| static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) |
| { |
| u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; |
| |
| lockdep_assert_held(gt->irq_lock); |
| return gen11_gt_reset_one_iir(gt, 0, irq); |
| } |
| |
| static void gen11_reset_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| spin_lock_irq(gt->irq_lock); |
| __gen11_reset_guc_interrupts(gt); |
| spin_unlock_irq(gt->irq_lock); |
| } |
| |
| static void gen11_enable_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| spin_lock_irq(gt->irq_lock); |
| __gen11_reset_guc_interrupts(gt); |
| spin_unlock_irq(gt->irq_lock); |
| |
| guc->interrupts.enabled = true; |
| } |
| |
| static void gen11_disable_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| guc->interrupts.enabled = false; |
| intel_synchronize_irq(gt->i915); |
| |
| gen11_reset_guc_interrupts(guc); |
| } |
| |
| void intel_guc_init_early(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct drm_i915_private *i915 = gt->i915; |
| |
| intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); |
| intel_guc_ct_init_early(&guc->ct); |
| intel_guc_log_init_early(&guc->log); |
| intel_guc_submission_init_early(guc); |
| intel_guc_slpc_init_early(&guc->slpc); |
| intel_guc_rc_init_early(guc); |
| |
| mutex_init(&guc->send_mutex); |
| spin_lock_init(&guc->irq_lock); |
| if (GRAPHICS_VER(i915) >= 11) { |
| guc->interrupts.reset = gen11_reset_guc_interrupts; |
| guc->interrupts.enable = gen11_enable_guc_interrupts; |
| guc->interrupts.disable = gen11_disable_guc_interrupts; |
| if (gt->type == GT_MEDIA) { |
| guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; |
| guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); |
| } else { |
| guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; |
| guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); |
| } |
| |
| guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; |
| |
| } else { |
| guc->notify_reg = GUC_SEND_INTERRUPT; |
| guc->interrupts.reset = gen9_reset_guc_interrupts; |
| guc->interrupts.enable = gen9_enable_guc_interrupts; |
| guc->interrupts.disable = gen9_disable_guc_interrupts; |
| guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); |
| guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; |
| BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); |
| } |
| |
| intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | |
| INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); |
| } |
| |
| void intel_guc_init_late(struct intel_guc *guc) |
| { |
| intel_guc_ads_init_late(guc); |
| } |
| |
| static u32 guc_ctl_debug_flags(struct intel_guc *guc) |
| { |
| u32 level = intel_guc_log_get_level(&guc->log); |
| u32 flags = 0; |
| |
| if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) |
| flags |= GUC_LOG_DISABLED; |
| else |
| flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << |
| GUC_LOG_VERBOSITY_SHIFT; |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_feature_flags(struct intel_guc *guc) |
| { |
| u32 flags = 0; |
| |
| if (!intel_guc_submission_is_used(guc)) |
| flags |= GUC_CTL_DISABLE_SCHEDULER; |
| |
| if (intel_guc_slpc_is_used(guc)) |
| flags |= GUC_CTL_ENABLE_SLPC; |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_log_params_flags(struct intel_guc *guc) |
| { |
| struct intel_guc_log *log = &guc->log; |
| u32 offset, flags; |
| |
| GEM_BUG_ON(!log->sizes_initialised); |
| |
| offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; |
| |
| flags = GUC_LOG_VALID | |
| GUC_LOG_NOTIFY_ON_HALF_FULL | |
| log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | |
| log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | |
| (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | |
| (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | |
| (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | |
| (offset << GUC_LOG_BUF_ADDR_SHIFT); |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_ads_flags(struct intel_guc *guc) |
| { |
| u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; |
| u32 flags = ads << GUC_ADS_ADDR_SHIFT; |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_wa_flags(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| u32 flags = 0; |
| |
| /* Wa_22012773006:gen11,gen12 < XeHP */ |
| if (GRAPHICS_VER(gt->i915) >= 11 && |
| GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) |
| flags |= GUC_WA_POLLCS; |
| |
| /* Wa_16011759253:dg2_g10:a0 */ |
| if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) |
| flags |= GUC_WA_GAM_CREDITS; |
| |
| /* Wa_14014475959 */ |
| if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || |
| IS_DG2(gt->i915)) |
| flags |= GUC_WA_HOLD_CCS_SWITCHOUT; |
| |
| /* |
| * Wa_14012197797:dg2_g10:a0,dg2_g11:a0 |
| * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12 |
| * |
| * The same WA bit is used for both and 22011391025 is applicable to |
| * all DG2. |
| */ |
| if (IS_DG2(gt->i915)) |
| flags |= GUC_WA_DUAL_QUEUE; |
| |
| /* Wa_22011802037: graphics version 11/12 */ |
| if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || |
| (GRAPHICS_VER(gt->i915) >= 11 && |
| GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))) |
| flags |= GUC_WA_PRE_PARSER; |
| |
| /* Wa_16011777198:dg2 */ |
| if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || |
| IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) |
| flags |= GUC_WA_RCS_RESET_BEFORE_RC6; |
| |
| /* |
| * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..) |
| * Wa_22012727685:dg2_g11[a0..) |
| */ |
| if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || |
| IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER)) |
| flags |= GUC_WA_CONTEXT_ISOLATION; |
| |
| /* Wa_16015675438 */ |
| if (!RCS_MASK(gt)) |
| flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_devid(struct intel_guc *guc) |
| { |
| struct drm_i915_private *i915 = guc_to_gt(guc)->i915; |
| |
| return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); |
| } |
| |
| /* |
| * Initialise the GuC parameter block before starting the firmware |
| * transfer. These parameters are read by the firmware on startup |
| * and cannot be changed thereafter. |
| */ |
| static void guc_init_params(struct intel_guc *guc) |
| { |
| u32 *params = guc->params; |
| int i; |
| |
| BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); |
| |
| params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); |
| params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); |
| params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); |
| params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); |
| params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); |
| params[GUC_CTL_DEVID] = guc_ctl_devid(guc); |
| |
| for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) |
| guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); |
| } |
| |
| /* |
| * Initialise the GuC parameter block before starting the firmware |
| * transfer. These parameters are read by the firmware on startup |
| * and cannot be changed thereafter. |
| */ |
| void intel_guc_write_params(struct intel_guc *guc) |
| { |
| struct intel_uncore *uncore = guc_to_gt(guc)->uncore; |
| int i; |
| |
| /* |
| * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and |
| * they are power context saved so it's ok to release forcewake |
| * when we are done here and take it again at xfer time. |
| */ |
| intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); |
| |
| intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); |
| |
| for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) |
| intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); |
| |
| intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); |
| } |
| |
| void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| intel_wakeref_t wakeref; |
| u32 stamp = 0; |
| u64 ktime; |
| |
| with_intel_runtime_pm(>->i915->runtime_pm, wakeref) |
| stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); |
| ktime = ktime_get_boottime_ns(); |
| |
| drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); |
| drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); |
| drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", |
| gt->clock_frequency, gt->clock_period_ns); |
| } |
| |
| int intel_guc_init(struct intel_guc *guc) |
| { |
| int ret; |
| |
| ret = intel_uc_fw_init(&guc->fw); |
| if (ret) |
| goto out; |
| |
| ret = intel_guc_log_create(&guc->log); |
| if (ret) |
| goto err_fw; |
| |
| ret = intel_guc_capture_init(guc); |
| if (ret) |
| goto err_log; |
| |
| ret = intel_guc_ads_create(guc); |
| if (ret) |
| goto err_capture; |
| |
| GEM_BUG_ON(!guc->ads_vma); |
| |
| ret = intel_guc_ct_init(&guc->ct); |
| if (ret) |
| goto err_ads; |
| |
| if (intel_guc_submission_is_used(guc)) { |
| /* |
| * This is stuff we need to have available at fw load time |
| * if we are planning to enable submission later |
| */ |
| ret = intel_guc_submission_init(guc); |
| if (ret) |
| goto err_ct; |
| } |
| |
| if (intel_guc_slpc_is_used(guc)) { |
| ret = intel_guc_slpc_init(&guc->slpc); |
| if (ret) |
| goto err_submission; |
| } |
| |
| /* now that everything is perma-pinned, initialize the parameters */ |
| guc_init_params(guc); |
| |
| intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); |
| |
| return 0; |
| |
| err_submission: |
| intel_guc_submission_fini(guc); |
| err_ct: |
| intel_guc_ct_fini(&guc->ct); |
| err_ads: |
| intel_guc_ads_destroy(guc); |
| err_capture: |
| intel_guc_capture_destroy(guc); |
| err_log: |
| intel_guc_log_destroy(&guc->log); |
| err_fw: |
| intel_uc_fw_fini(&guc->fw); |
| out: |
| intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); |
| guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| |
| void intel_guc_fini(struct intel_guc *guc) |
| { |
| if (!intel_uc_fw_is_loadable(&guc->fw)) |
| return; |
| |
| if (intel_guc_slpc_is_used(guc)) |
| intel_guc_slpc_fini(&guc->slpc); |
| |
| if (intel_guc_submission_is_used(guc)) |
| intel_guc_submission_fini(guc); |
| |
| intel_guc_ct_fini(&guc->ct); |
| |
| intel_guc_ads_destroy(guc); |
| intel_guc_capture_destroy(guc); |
| intel_guc_log_destroy(&guc->log); |
| intel_uc_fw_fini(&guc->fw); |
| } |
| |
| /* |
| * This function implements the MMIO based host to GuC interface. |
| */ |
| int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, |
| u32 *response_buf, u32 response_buf_size) |
| { |
| struct intel_uncore *uncore = guc_to_gt(guc)->uncore; |
| u32 header; |
| int i; |
| int ret; |
| |
| GEM_BUG_ON(!len); |
| GEM_BUG_ON(len > guc->send_regs.count); |
| |
| GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); |
| GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); |
| |
| mutex_lock(&guc->send_mutex); |
| intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); |
| |
| retry: |
| for (i = 0; i < len; i++) |
| intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); |
| |
| intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); |
| |
| intel_guc_notify(guc); |
| |
| /* |
| * No GuC command should ever take longer than 10ms. |
| * Fast commands should still complete in 10us. |
| */ |
| ret = __intel_wait_for_register_fw(uncore, |
| guc_send_reg(guc, 0), |
| GUC_HXG_MSG_0_ORIGIN, |
| FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, |
| GUC_HXG_ORIGIN_GUC), |
| 10, 10, &header); |
| if (unlikely(ret)) { |
| timeout: |
| guc_err(guc, "mmio request %#x: no reply %x\n", |
| request[0], header); |
| goto out; |
| } |
| |
| if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { |
| #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ |
| FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ |
| FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) |
| |
| ret = wait_for(done, 1000); |
| if (unlikely(ret)) |
| goto timeout; |
| if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != |
| GUC_HXG_ORIGIN_GUC)) |
| goto proto; |
| #undef done |
| } |
| |
| if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { |
| u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); |
| |
| guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", |
| request[0], reason); |
| goto retry; |
| } |
| |
| if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { |
| u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); |
| u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); |
| |
| guc_err(guc, "mmio request %#x: failure %x/%u\n", |
| request[0], error, hint); |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { |
| proto: |
| guc_err(guc, "mmio request %#x: unexpected reply %#x\n", |
| request[0], header); |
| ret = -EPROTO; |
| goto out; |
| } |
| |
| if (response_buf) { |
| int count = min(response_buf_size, guc->send_regs.count); |
| |
| GEM_BUG_ON(!count); |
| |
| response_buf[0] = header; |
| |
| for (i = 1; i < count; i++) |
| response_buf[i] = intel_uncore_read(uncore, |
| guc_send_reg(guc, i)); |
| |
| /* Use number of copied dwords as our return value */ |
| ret = count; |
| } else { |
| /* Use data from the GuC response as our return value */ |
| ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); |
| } |
| |
| out: |
| intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); |
| mutex_unlock(&guc->send_mutex); |
| |
| return ret; |
| } |
| |
| int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, |
| const u32 *payload, u32 len) |
| { |
| u32 msg; |
| |
| if (unlikely(!len)) |
| return -EPROTO; |
| |
| /* Make sure to handle only enabled messages */ |
| msg = payload[0] & guc->msg_enabled_mask; |
| |
| if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) |
| guc_err(guc, "Received early crash dump notification!\n"); |
| if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) |
| guc_err(guc, "Received early exception notification!\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode |
| * @guc: intel_guc structure |
| * @rsa_offset: rsa offset w.r.t ggtt base of huc vma |
| * |
| * Triggers a HuC firmware authentication request to the GuC via intel_guc_send |
| * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by |
| * intel_huc_auth(). |
| * |
| * Return: non-zero code on error |
| */ |
| int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_AUTHENTICATE_HUC, |
| rsa_offset |
| }; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| /** |
| * intel_guc_suspend() - notify GuC entering suspend state |
| * @guc: the guc |
| */ |
| int intel_guc_suspend(struct intel_guc *guc) |
| { |
| int ret; |
| u32 action[] = { |
| INTEL_GUC_ACTION_CLIENT_SOFT_RESET, |
| }; |
| |
| if (!intel_guc_is_ready(guc)) |
| return 0; |
| |
| if (intel_guc_submission_is_used(guc)) { |
| /* |
| * This H2G MMIO command tears down the GuC in two steps. First it will |
| * generate a G2H CTB for every active context indicating a reset. In |
| * practice the i915 shouldn't ever get a G2H as suspend should only be |
| * called when the GPU is idle. Next, it tears down the CTBs and this |
| * H2G MMIO command completes. |
| * |
| * Don't abort on a failure code from the GuC. Keep going and do the |
| * clean up in santize() and re-initialisation on resume and hopefully |
| * the error here won't be problematic. |
| */ |
| ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); |
| if (ret) |
| guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", |
| ERR_PTR(ret)); |
| } |
| |
| /* Signal that the GuC isn't running. */ |
| intel_guc_sanitize(guc); |
| |
| return 0; |
| } |
| |
| /** |
| * intel_guc_resume() - notify GuC resuming from suspend state |
| * @guc: the guc |
| */ |
| int intel_guc_resume(struct intel_guc *guc) |
| { |
| /* |
| * NB: This function can still be called even if GuC submission is |
| * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, |
| * if any code is later added here, it must be support doing nothing |
| * if submission is disabled (as per intel_guc_suspend). |
| */ |
| return 0; |
| } |
| |
| /** |
| * DOC: GuC Memory Management |
| * |
| * GuC can't allocate any memory for its own usage, so all the allocations must |
| * be handled by the host driver. GuC accesses the memory via the GGTT, with the |
| * exception of the top and bottom parts of the 4GB address space, which are |
| * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) |
| * or other parts of the HW. The driver must take care not to place objects that |
| * the GuC is going to access in these reserved ranges. The layout of the GuC |
| * address space is shown below: |
| * |
| * :: |
| * |
| * +===========> +====================+ <== FFFF_FFFF |
| * ^ | Reserved | |
| * | +====================+ <== GUC_GGTT_TOP |
| * | | | |
| * | | DRAM | |
| * GuC | | |
| * Address +===> +====================+ <== GuC ggtt_pin_bias |
| * Space ^ | | |
| * | | | | |
| * | GuC | GuC | |
| * | WOPCM | WOPCM | |
| * | Size | | |
| * | | | | |
| * v v | | |
| * +=======+===> +====================+ <== 0000_0000 |
| * |
| * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM |
| * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped |
| * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. |
| */ |
| |
| /** |
| * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage |
| * @guc: the guc |
| * @size: size of area to allocate (both virtual space and memory) |
| * |
| * This is a wrapper to create an object for use with the GuC. In order to |
| * use it inside the GuC, an object needs to be pinned lifetime, so we allocate |
| * both some backing storage and a range inside the Global GTT. We must pin |
| * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that |
| * range is reserved inside GuC. |
| * |
| * Return: A i915_vma if successful, otherwise an ERR_PTR. |
| */ |
| struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| u64 flags; |
| int ret; |
| |
| if (HAS_LMEM(gt->i915)) |
| obj = i915_gem_object_create_lmem(gt->i915, size, |
| I915_BO_ALLOC_CPU_CLEAR | |
| I915_BO_ALLOC_CONTIGUOUS | |
| I915_BO_ALLOC_PM_EARLY); |
| else |
| obj = i915_gem_object_create_shmem(gt->i915, size); |
| |
| if (IS_ERR(obj)) |
| return ERR_CAST(obj); |
| |
| /* |
| * Wa_22016122933: For MTL the shared memory needs to be mapped |
| * as WC on CPU side and UC (PAT index 2) on GPU side |
| */ |
| if (IS_METEORLAKE(gt->i915)) |
| i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); |
| |
| vma = i915_vma_instance(obj, >->ggtt->vm, NULL); |
| if (IS_ERR(vma)) |
| goto err; |
| |
| flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); |
| ret = i915_ggtt_pin(vma, NULL, 0, flags); |
| if (ret) { |
| vma = ERR_PTR(ret); |
| goto err; |
| } |
| |
| return i915_vma_make_unshrinkable(vma); |
| |
| err: |
| i915_gem_object_put(obj); |
| return vma; |
| } |
| |
| /** |
| * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage |
| * @guc: the guc |
| * @size: size of area to allocate (both virtual space and memory) |
| * @out_vma: return variable for the allocated vma pointer |
| * @out_vaddr: return variable for the obj mapping |
| * |
| * This wrapper calls intel_guc_allocate_vma() and then maps the allocated |
| * object with I915_MAP_WB. |
| * |
| * Return: 0 if successful, a negative errno code otherwise. |
| */ |
| int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, |
| struct i915_vma **out_vma, void **out_vaddr) |
| { |
| struct i915_vma *vma; |
| void *vaddr; |
| |
| vma = intel_guc_allocate_vma(guc, size); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| vaddr = i915_gem_object_pin_map_unlocked(vma->obj, |
| i915_coherent_map_type(guc_to_gt(guc)->i915, |
| vma->obj, true)); |
| if (IS_ERR(vaddr)) { |
| i915_vma_unpin_and_release(&vma, 0); |
| return PTR_ERR(vaddr); |
| } |
| |
| *out_vma = vma; |
| *out_vaddr = vaddr; |
| |
| return 0; |
| } |
| |
| static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) |
| { |
| u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { |
| FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | |
| FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | |
| FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), |
| FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | |
| FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), |
| FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), |
| FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), |
| }; |
| int ret; |
| |
| GEM_BUG_ON(len > 2); |
| GEM_BUG_ON(len == 1 && upper_32_bits(value)); |
| |
| /* Self config must go over MMIO */ |
| ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); |
| |
| if (unlikely(ret < 0)) |
| return ret; |
| if (unlikely(ret > 1)) |
| return -EPROTO; |
| if (unlikely(!ret)) |
| return -ENOKEY; |
| |
| return 0; |
| } |
| |
| static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) |
| { |
| int err = __guc_action_self_cfg(guc, key, len, value); |
| |
| if (unlikely(err)) |
| guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", |
| ERR_PTR(err), key, value); |
| return err; |
| } |
| |
| int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) |
| { |
| return __guc_self_cfg(guc, key, 1, value); |
| } |
| |
| int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) |
| { |
| return __guc_self_cfg(guc, key, 2, value); |
| } |
| |
| /** |
| * intel_guc_load_status - dump information about GuC load status |
| * @guc: the GuC |
| * @p: the &drm_printer |
| * |
| * Pretty printer for GuC load status. |
| */ |
| void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct intel_uncore *uncore = gt->uncore; |
| intel_wakeref_t wakeref; |
| |
| if (!intel_guc_is_supported(guc)) { |
| drm_printf(p, "GuC not supported\n"); |
| return; |
| } |
| |
| if (!intel_guc_is_wanted(guc)) { |
| drm_printf(p, "GuC disabled\n"); |
| return; |
| } |
| |
| intel_uc_fw_dump(&guc->fw, p); |
| |
| with_intel_runtime_pm(uncore->rpm, wakeref) { |
| u32 status = intel_uncore_read(uncore, GUC_STATUS); |
| u32 i; |
| |
| drm_printf(p, "GuC status 0x%08x:\n", status); |
| drm_printf(p, "\tBootrom status = 0x%x\n", |
| (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); |
| drm_printf(p, "\tuKernel status = 0x%x\n", |
| (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); |
| drm_printf(p, "\tMIA Core status = 0x%x\n", |
| (status & GS_MIA_MASK) >> GS_MIA_SHIFT); |
| drm_puts(p, "Scratch registers:\n"); |
| for (i = 0; i < 16; i++) { |
| drm_printf(p, "\t%2d: \t0x%x\n", |
| i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); |
| } |
| } |
| } |
| |
| void intel_guc_write_barrier(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { |
| /* |
| * Ensure intel_uncore_write_fw can be used rather than |
| * intel_uncore_write. |
| */ |
| GEM_BUG_ON(guc->send_regs.fw_domains); |
| |
| /* |
| * This register is used by the i915 and GuC for MMIO based |
| * communication. Once we are in this code CTBs are the only |
| * method the i915 uses to communicate with the GuC so it is |
| * safe to write to this register (a value of 0 is NOP for MMIO |
| * communication). If we ever start mixing CTBs and MMIOs a new |
| * register will have to be chosen. This function is also used |
| * to enforce ordering of a work queue item write and an update |
| * to the process descriptor. When a work queue is being used, |
| * CTBs are also the only mechanism of communication. |
| */ |
| intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); |
| } else { |
| /* wmb() sufficient for a barrier if in smem */ |
| wmb(); |
| } |
| } |