blob: f9bddaa876d9b8eac738cb4d3c9e5782f4663c47 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014-2019 Intel Corporation
*/
#include "gem/i915_gem_lmem.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm_irq.h"
#include "gt/intel_gt_regs.h"
#include "intel_guc.h"
#include "intel_guc_ads.h"
#include "intel_guc_capture.h"
#include "intel_guc_print.h"
#include "intel_guc_slpc.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
#include "i915_irq.h"
/**
* DOC: GuC
*
* The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
* designed to offload some of the functionality usually performed by the host
* driver; currently the main operations it can take care of are:
*
* - Authentication of the HuC, which is required to fully enable HuC usage.
* - Low latency graphics context scheduling (a.k.a. GuC submission).
* - GT Power management.
*
* The enable_guc module parameter can be used to select which of those
* operations to enable within GuC. Note that not all the operations are
* supported on all gen9+ platforms.
*
* Enabling the GuC is not mandatory and therefore the firmware is only loaded
* if at least one of the operations is selected. However, not loading the GuC
* might result in the loss of some features that do require the GuC (currently
* just the HuC, but more are expected to land in the future).
*/
void intel_guc_notify(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
/*
* On Gen11+, the value written to the register is passes as a payload
* to the FW. However, the FW currently treats all values the same way
* (H2G interrupt), so we can just write the value that the HW expects
* on older gens.
*/
intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
}
static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
GEM_BUG_ON(!guc->send_regs.base);
GEM_BUG_ON(!guc->send_regs.count);
GEM_BUG_ON(i >= guc->send_regs.count);
return _MMIO(guc->send_regs.base + 4 * i);
}
void intel_guc_init_send_regs(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
enum forcewake_domains fw_domains = 0;
unsigned int i;
GEM_BUG_ON(!guc->send_regs.base);
GEM_BUG_ON(!guc->send_regs.count);
for (i = 0; i < guc->send_regs.count; i++) {
fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
guc_send_reg(guc, i),
FW_REG_READ | FW_REG_WRITE);
}
guc->send_regs.fw_domains = fw_domains;
}
static void gen9_reset_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(&gt->i915->runtime_pm);
spin_lock_irq(gt->irq_lock);
gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
spin_unlock_irq(gt->irq_lock);
}
static void gen9_enable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(&gt->i915->runtime_pm);
spin_lock_irq(gt->irq_lock);
guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
gt->pm_guc_events);
gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
spin_unlock_irq(gt->irq_lock);
guc->interrupts.enabled = true;
}
static void gen9_disable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
assert_rpm_wakelock_held(&gt->i915->runtime_pm);
guc->interrupts.enabled = false;
spin_lock_irq(gt->irq_lock);
gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
spin_unlock_irq(gt->irq_lock);
intel_synchronize_irq(gt->i915);
gen9_reset_guc_interrupts(guc);
}
static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
{
u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
lockdep_assert_held(gt->irq_lock);
return gen11_gt_reset_one_iir(gt, 0, irq);
}
static void gen11_reset_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
spin_lock_irq(gt->irq_lock);
__gen11_reset_guc_interrupts(gt);
spin_unlock_irq(gt->irq_lock);
}
static void gen11_enable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
spin_lock_irq(gt->irq_lock);
__gen11_reset_guc_interrupts(gt);
spin_unlock_irq(gt->irq_lock);
guc->interrupts.enabled = true;
}
static void gen11_disable_guc_interrupts(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
guc->interrupts.enabled = false;
intel_synchronize_irq(gt->i915);
gen11_reset_guc_interrupts(guc);
}
void intel_guc_init_early(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
struct drm_i915_private *i915 = gt->i915;
intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
intel_guc_ct_init_early(&guc->ct);
intel_guc_log_init_early(&guc->log);
intel_guc_submission_init_early(guc);
intel_guc_slpc_init_early(&guc->slpc);
intel_guc_rc_init_early(guc);
mutex_init(&guc->send_mutex);
spin_lock_init(&guc->irq_lock);
if (GRAPHICS_VER(i915) >= 11) {
guc->interrupts.reset = gen11_reset_guc_interrupts;
guc->interrupts.enable = gen11_enable_guc_interrupts;
guc->interrupts.disable = gen11_disable_guc_interrupts;
if (gt->type == GT_MEDIA) {
guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
} else {
guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
}
guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
} else {
guc->notify_reg = GUC_SEND_INTERRUPT;
guc->interrupts.reset = gen9_reset_guc_interrupts;
guc->interrupts.enable = gen9_enable_guc_interrupts;
guc->interrupts.disable = gen9_disable_guc_interrupts;
guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
}
intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
}
void intel_guc_init_late(struct intel_guc *guc)
{
intel_guc_ads_init_late(guc);
}
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
{
u32 level = intel_guc_log_get_level(&guc->log);
u32 flags = 0;
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
flags |= GUC_LOG_DISABLED;
else
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
GUC_LOG_VERBOSITY_SHIFT;
return flags;
}
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
{
u32 flags = 0;
if (!intel_guc_submission_is_used(guc))
flags |= GUC_CTL_DISABLE_SCHEDULER;
if (intel_guc_slpc_is_used(guc))
flags |= GUC_CTL_ENABLE_SLPC;
return flags;
}
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
{
struct intel_guc_log *log = &guc->log;
u32 offset, flags;
GEM_BUG_ON(!log->sizes_initialised);
offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
flags = GUC_LOG_VALID |
GUC_LOG_NOTIFY_ON_HALF_FULL |
log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
(offset << GUC_LOG_BUF_ADDR_SHIFT);
return flags;
}
static u32 guc_ctl_ads_flags(struct intel_guc *guc)
{
u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
return flags;
}
static u32 guc_ctl_wa_flags(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
u32 flags = 0;
/* Wa_22012773006:gen11,gen12 < XeHP */
if (GRAPHICS_VER(gt->i915) >= 11 &&
GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
flags |= GUC_WA_POLLCS;
/* Wa_16011759253:dg2_g10:a0 */
if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
flags |= GUC_WA_GAM_CREDITS;
/* Wa_14014475959 */
if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
IS_DG2(gt->i915))
flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
/*
* Wa_14012197797:dg2_g10:a0,dg2_g11:a0
* Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
*
* The same WA bit is used for both and 22011391025 is applicable to
* all DG2.
*/
if (IS_DG2(gt->i915))
flags |= GUC_WA_DUAL_QUEUE;
/* Wa_22011802037: graphics version 11/12 */
if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
(GRAPHICS_VER(gt->i915) >= 11 &&
GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)))
flags |= GUC_WA_PRE_PARSER;
/* Wa_16011777198:dg2 */
if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
/*
* Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
* Wa_22012727685:dg2_g11[a0..)
*/
if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
flags |= GUC_WA_CONTEXT_ISOLATION;
/* Wa_16015675438 */
if (!RCS_MASK(gt))
flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
return flags;
}
static u32 guc_ctl_devid(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
}
/*
* Initialise the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
static void guc_init_params(struct intel_guc *guc)
{
u32 *params = guc->params;
int i;
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
}
/*
* Initialise the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
void intel_guc_write_params(struct intel_guc *guc)
{
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
int i;
/*
* All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
* they are power context saved so it's ok to release forcewake
* when we are done here and take it again at xfer time.
*/
intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
}
void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
{
struct intel_gt *gt = guc_to_gt(guc);
intel_wakeref_t wakeref;
u32 stamp = 0;
u64 ktime;
with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
ktime = ktime_get_boottime_ns();
drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
gt->clock_frequency, gt->clock_period_ns);
}
int intel_guc_init(struct intel_guc *guc)
{
int ret;
ret = intel_uc_fw_init(&guc->fw);
if (ret)
goto out;
ret = intel_guc_log_create(&guc->log);
if (ret)
goto err_fw;
ret = intel_guc_capture_init(guc);
if (ret)
goto err_log;
ret = intel_guc_ads_create(guc);
if (ret)
goto err_capture;
GEM_BUG_ON(!guc->ads_vma);
ret = intel_guc_ct_init(&guc->ct);
if (ret)
goto err_ads;
if (intel_guc_submission_is_used(guc)) {
/*
* This is stuff we need to have available at fw load time
* if we are planning to enable submission later
*/
ret = intel_guc_submission_init(guc);
if (ret)
goto err_ct;
}
if (intel_guc_slpc_is_used(guc)) {
ret = intel_guc_slpc_init(&guc->slpc);
if (ret)
goto err_submission;
}
/* now that everything is perma-pinned, initialize the parameters */
guc_init_params(guc);
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
return 0;
err_submission:
intel_guc_submission_fini(guc);
err_ct:
intel_guc_ct_fini(&guc->ct);
err_ads:
intel_guc_ads_destroy(guc);
err_capture:
intel_guc_capture_destroy(guc);
err_log:
intel_guc_log_destroy(&guc->log);
err_fw:
intel_uc_fw_fini(&guc->fw);
out:
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
return ret;
}
void intel_guc_fini(struct intel_guc *guc)
{
if (!intel_uc_fw_is_loadable(&guc->fw))
return;
if (intel_guc_slpc_is_used(guc))
intel_guc_slpc_fini(&guc->slpc);
if (intel_guc_submission_is_used(guc))
intel_guc_submission_fini(guc);
intel_guc_ct_fini(&guc->ct);
intel_guc_ads_destroy(guc);
intel_guc_capture_destroy(guc);
intel_guc_log_destroy(&guc->log);
intel_uc_fw_fini(&guc->fw);
}
/*
* This function implements the MMIO based host to GuC interface.
*/
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
u32 *response_buf, u32 response_buf_size)
{
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
u32 header;
int i;
int ret;
GEM_BUG_ON(!len);
GEM_BUG_ON(len > guc->send_regs.count);
GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
mutex_lock(&guc->send_mutex);
intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
retry:
for (i = 0; i < len; i++)
intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
intel_guc_notify(guc);
/*
* No GuC command should ever take longer than 10ms.
* Fast commands should still complete in 10us.
*/
ret = __intel_wait_for_register_fw(uncore,
guc_send_reg(guc, 0),
GUC_HXG_MSG_0_ORIGIN,
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
GUC_HXG_ORIGIN_GUC),
10, 10, &header);
if (unlikely(ret)) {
timeout:
guc_err(guc, "mmio request %#x: no reply %x\n",
request[0], header);
goto out;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
#define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
ret = wait_for(done, 1000);
if (unlikely(ret))
goto timeout;
if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
GUC_HXG_ORIGIN_GUC))
goto proto;
#undef done
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
request[0], reason);
goto retry;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
guc_err(guc, "mmio request %#x: failure %x/%u\n",
request[0], error, hint);
ret = -ENXIO;
goto out;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
proto:
guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
request[0], header);
ret = -EPROTO;
goto out;
}
if (response_buf) {
int count = min(response_buf_size, guc->send_regs.count);
GEM_BUG_ON(!count);
response_buf[0] = header;
for (i = 1; i < count; i++)
response_buf[i] = intel_uncore_read(uncore,
guc_send_reg(guc, i));
/* Use number of copied dwords as our return value */
ret = count;
} else {
/* Use data from the GuC response as our return value */
ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
}
out:
intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
mutex_unlock(&guc->send_mutex);
return ret;
}
int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
const u32 *payload, u32 len)
{
u32 msg;
if (unlikely(!len))
return -EPROTO;
/* Make sure to handle only enabled messages */
msg = payload[0] & guc->msg_enabled_mask;
if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
guc_err(guc, "Received early crash dump notification!\n");
if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
guc_err(guc, "Received early exception notification!\n");
return 0;
}
/**
* intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
* @guc: intel_guc structure
* @rsa_offset: rsa offset w.r.t ggtt base of huc vma
*
* Triggers a HuC firmware authentication request to the GuC via intel_guc_send
* INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
* intel_huc_auth().
*
* Return: non-zero code on error
*/
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
u32 action[] = {
INTEL_GUC_ACTION_AUTHENTICATE_HUC,
rsa_offset
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* intel_guc_suspend() - notify GuC entering suspend state
* @guc: the guc
*/
int intel_guc_suspend(struct intel_guc *guc)
{
int ret;
u32 action[] = {
INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
};
if (!intel_guc_is_ready(guc))
return 0;
if (intel_guc_submission_is_used(guc)) {
/*
* This H2G MMIO command tears down the GuC in two steps. First it will
* generate a G2H CTB for every active context indicating a reset. In
* practice the i915 shouldn't ever get a G2H as suspend should only be
* called when the GPU is idle. Next, it tears down the CTBs and this
* H2G MMIO command completes.
*
* Don't abort on a failure code from the GuC. Keep going and do the
* clean up in santize() and re-initialisation on resume and hopefully
* the error here won't be problematic.
*/
ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
if (ret)
guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
ERR_PTR(ret));
}
/* Signal that the GuC isn't running. */
intel_guc_sanitize(guc);
return 0;
}
/**
* intel_guc_resume() - notify GuC resuming from suspend state
* @guc: the guc
*/
int intel_guc_resume(struct intel_guc *guc)
{
/*
* NB: This function can still be called even if GuC submission is
* disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
* if any code is later added here, it must be support doing nothing
* if submission is disabled (as per intel_guc_suspend).
*/
return 0;
}
/**
* DOC: GuC Memory Management
*
* GuC can't allocate any memory for its own usage, so all the allocations must
* be handled by the host driver. GuC accesses the memory via the GGTT, with the
* exception of the top and bottom parts of the 4GB address space, which are
* instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
* or other parts of the HW. The driver must take care not to place objects that
* the GuC is going to access in these reserved ranges. The layout of the GuC
* address space is shown below:
*
* ::
*
* +===========> +====================+ <== FFFF_FFFF
* ^ | Reserved |
* | +====================+ <== GUC_GGTT_TOP
* | | |
* | | DRAM |
* GuC | |
* Address +===> +====================+ <== GuC ggtt_pin_bias
* Space ^ | |
* | | | |
* | GuC | GuC |
* | WOPCM | WOPCM |
* | Size | |
* | | | |
* v v | |
* +=======+===> +====================+ <== 0000_0000
*
* The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
* while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
* to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
*/
/**
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
* @guc: the guc
* @size: size of area to allocate (both virtual space and memory)
*
* This is a wrapper to create an object for use with the GuC. In order to
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
* both some backing storage and a range inside the Global GTT. We must pin
* it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
* range is reserved inside GuC.
*
* Return: A i915_vma if successful, otherwise an ERR_PTR.
*/
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
struct intel_gt *gt = guc_to_gt(guc);
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
u64 flags;
int ret;
if (HAS_LMEM(gt->i915))
obj = i915_gem_object_create_lmem(gt->i915, size,
I915_BO_ALLOC_CPU_CLEAR |
I915_BO_ALLOC_CONTIGUOUS |
I915_BO_ALLOC_PM_EARLY);
else
obj = i915_gem_object_create_shmem(gt->i915, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
/*
* Wa_22016122933: For MTL the shared memory needs to be mapped
* as WC on CPU side and UC (PAT index 2) on GPU side
*/
if (IS_METEORLAKE(gt->i915))
i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma))
goto err;
flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
ret = i915_ggtt_pin(vma, NULL, 0, flags);
if (ret) {
vma = ERR_PTR(ret);
goto err;
}
return i915_vma_make_unshrinkable(vma);
err:
i915_gem_object_put(obj);
return vma;
}
/**
* intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
* @guc: the guc
* @size: size of area to allocate (both virtual space and memory)
* @out_vma: return variable for the allocated vma pointer
* @out_vaddr: return variable for the obj mapping
*
* This wrapper calls intel_guc_allocate_vma() and then maps the allocated
* object with I915_MAP_WB.
*
* Return: 0 if successful, a negative errno code otherwise.
*/
int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
struct i915_vma **out_vma, void **out_vaddr)
{
struct i915_vma *vma;
void *vaddr;
vma = intel_guc_allocate_vma(guc, size);
if (IS_ERR(vma))
return PTR_ERR(vma);
vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
i915_coherent_map_type(guc_to_gt(guc)->i915,
vma->obj, true));
if (IS_ERR(vaddr)) {
i915_vma_unpin_and_release(&vma, 0);
return PTR_ERR(vaddr);
}
*out_vma = vma;
*out_vaddr = vaddr;
return 0;
}
static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
{
u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
};
int ret;
GEM_BUG_ON(len > 2);
GEM_BUG_ON(len == 1 && upper_32_bits(value));
/* Self config must go over MMIO */
ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
if (unlikely(ret < 0))
return ret;
if (unlikely(ret > 1))
return -EPROTO;
if (unlikely(!ret))
return -ENOKEY;
return 0;
}
static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
{
int err = __guc_action_self_cfg(guc, key, len, value);
if (unlikely(err))
guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
ERR_PTR(err), key, value);
return err;
}
int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
{
return __guc_self_cfg(guc, key, 1, value);
}
int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
{
return __guc_self_cfg(guc, key, 2, value);
}
/**
* intel_guc_load_status - dump information about GuC load status
* @guc: the GuC
* @p: the &drm_printer
*
* Pretty printer for GuC load status.
*/
void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
{
struct intel_gt *gt = guc_to_gt(guc);
struct intel_uncore *uncore = gt->uncore;
intel_wakeref_t wakeref;
if (!intel_guc_is_supported(guc)) {
drm_printf(p, "GuC not supported\n");
return;
}
if (!intel_guc_is_wanted(guc)) {
drm_printf(p, "GuC disabled\n");
return;
}
intel_uc_fw_dump(&guc->fw, p);
with_intel_runtime_pm(uncore->rpm, wakeref) {
u32 status = intel_uncore_read(uncore, GUC_STATUS);
u32 i;
drm_printf(p, "GuC status 0x%08x:\n", status);
drm_printf(p, "\tBootrom status = 0x%x\n",
(status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
drm_printf(p, "\tuKernel status = 0x%x\n",
(status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
drm_printf(p, "\tMIA Core status = 0x%x\n",
(status & GS_MIA_MASK) >> GS_MIA_SHIFT);
drm_puts(p, "Scratch registers:\n");
for (i = 0; i < 16; i++) {
drm_printf(p, "\t%2d: \t0x%x\n",
i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
}
}
}
void intel_guc_write_barrier(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
/*
* Ensure intel_uncore_write_fw can be used rather than
* intel_uncore_write.
*/
GEM_BUG_ON(guc->send_regs.fw_domains);
/*
* This register is used by the i915 and GuC for MMIO based
* communication. Once we are in this code CTBs are the only
* method the i915 uses to communicate with the GuC so it is
* safe to write to this register (a value of 0 is NOP for MMIO
* communication). If we ever start mixing CTBs and MMIOs a new
* register will have to be chosen. This function is also used
* to enforce ordering of a work queue item write and an update
* to the process descriptor. When a work queue is being used,
* CTBs are also the only mechanism of communication.
*/
intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
} else {
/* wmb() sufficient for a barrier if in smem */
wmb();
}
}