| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/types.h> |
| |
| #include "i915_drv.h" |
| #include "i915_hwmon.h" |
| #include "i915_reg.h" |
| #include "intel_mchbar_regs.h" |
| #include "intel_pcode.h" |
| #include "gt/intel_gt.h" |
| #include "gt/intel_gt_regs.h" |
| |
| /* |
| * SF_* - scale factors for particular quantities according to hwmon spec. |
| * - voltage - millivolts |
| * - power - microwatts |
| * - curr - milliamperes |
| * - energy - microjoules |
| * - time - milliseconds |
| */ |
| #define SF_VOLTAGE 1000 |
| #define SF_POWER 1000000 |
| #define SF_CURR 1000 |
| #define SF_ENERGY 1000000 |
| #define SF_TIME 1000 |
| |
| struct hwm_reg { |
| i915_reg_t gt_perf_status; |
| i915_reg_t pkg_power_sku_unit; |
| i915_reg_t pkg_power_sku; |
| i915_reg_t pkg_rapl_limit; |
| i915_reg_t energy_status_all; |
| i915_reg_t energy_status_tile; |
| }; |
| |
| struct hwm_energy_info { |
| u32 reg_val_prev; |
| long accum_energy; /* Accumulated energy for energy1_input */ |
| }; |
| |
| struct hwm_drvdata { |
| struct i915_hwmon *hwmon; |
| struct intel_uncore *uncore; |
| struct device *hwmon_dev; |
| struct hwm_energy_info ei; /* Energy info for energy1_input */ |
| char name[12]; |
| int gt_n; |
| bool reset_in_progress; |
| wait_queue_head_t waitq; |
| }; |
| |
| struct i915_hwmon { |
| struct hwm_drvdata ddat; |
| struct hwm_drvdata ddat_gt[I915_MAX_GT]; |
| struct mutex hwmon_lock; /* counter overflow logic and rmw */ |
| struct hwm_reg rg; |
| int scl_shift_power; |
| int scl_shift_energy; |
| int scl_shift_time; |
| }; |
| |
| static void |
| hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat, |
| i915_reg_t reg, u32 clear, u32 set) |
| { |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| struct intel_uncore *uncore = ddat->uncore; |
| intel_wakeref_t wakeref; |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| with_intel_runtime_pm(uncore->rpm, wakeref) |
| intel_uncore_rmw(uncore, reg, clear, set); |
| |
| mutex_unlock(&hwmon->hwmon_lock); |
| } |
| |
| /* |
| * This function's return type of u64 allows for the case where the scaling |
| * of the field taken from the 32-bit register value might cause a result to |
| * exceed 32 bits. |
| */ |
| static u64 |
| hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr, |
| u32 field_msk, int nshift, u32 scale_factor) |
| { |
| struct intel_uncore *uncore = ddat->uncore; |
| intel_wakeref_t wakeref; |
| u32 reg_value; |
| |
| with_intel_runtime_pm(uncore->rpm, wakeref) |
| reg_value = intel_uncore_read(uncore, rgadr); |
| |
| reg_value = REG_FIELD_GET(field_msk, reg_value); |
| |
| return mul_u64_u32_shr(reg_value, scale_factor, nshift); |
| } |
| |
| /* |
| * hwm_energy - Obtain energy value |
| * |
| * The underlying energy hardware register is 32-bits and is subject to |
| * overflow. How long before overflow? For example, with an example |
| * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and |
| * a power draw of 1000 watts, the 32-bit counter will overflow in |
| * approximately 4.36 minutes. |
| * |
| * Examples: |
| * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days |
| * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes |
| * |
| * The function significantly increases overflow duration (from 4.36 |
| * minutes) by accumulating the energy register into a 'long' as allowed by |
| * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()), |
| * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and |
| * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before |
| * energy1_input overflows. This at 1000 W is an overflow duration of 278 years. |
| */ |
| static void |
| hwm_energy(struct hwm_drvdata *ddat, long *energy) |
| { |
| struct intel_uncore *uncore = ddat->uncore; |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| struct hwm_energy_info *ei = &ddat->ei; |
| intel_wakeref_t wakeref; |
| i915_reg_t rgaddr; |
| u32 reg_val; |
| |
| if (ddat->gt_n >= 0) |
| rgaddr = hwmon->rg.energy_status_tile; |
| else |
| rgaddr = hwmon->rg.energy_status_all; |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| with_intel_runtime_pm(uncore->rpm, wakeref) |
| reg_val = intel_uncore_read(uncore, rgaddr); |
| |
| if (reg_val >= ei->reg_val_prev) |
| ei->accum_energy += reg_val - ei->reg_val_prev; |
| else |
| ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val; |
| ei->reg_val_prev = reg_val; |
| |
| *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY, |
| hwmon->scl_shift_energy); |
| mutex_unlock(&hwmon->hwmon_lock); |
| } |
| |
| static ssize_t |
| hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct hwm_drvdata *ddat = dev_get_drvdata(dev); |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| intel_wakeref_t wakeref; |
| u32 r, x, y, x_w = 2; /* 2 bits */ |
| u64 tau4, out; |
| |
| with_intel_runtime_pm(ddat->uncore->rpm, wakeref) |
| r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit); |
| |
| x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r); |
| y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r); |
| /* |
| * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17) |
| * = (4 | x) << (y - 2) |
| * where (y - 2) ensures a 1.x fixed point representation of 1.x |
| * However because y can be < 2, we compute |
| * tau4 = (4 | x) << y |
| * but add 2 when doing the final right shift to account for units |
| */ |
| tau4 = ((1 << x_w) | x) << y; |
| /* val in hwmon interface units (millisec) */ |
| out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); |
| |
| return sysfs_emit(buf, "%llu\n", out); |
| } |
| |
| static ssize_t |
| hwm_power1_max_interval_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct hwm_drvdata *ddat = dev_get_drvdata(dev); |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| u32 x, y, rxy, x_w = 2; /* 2 bits */ |
| u64 tau4, r, max_win; |
| unsigned long val; |
| int ret; |
| |
| ret = kstrtoul(buf, 0, &val); |
| if (ret) |
| return ret; |
| |
| /* |
| * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12 |
| * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds |
| */ |
| #define PKG_MAX_WIN_DEFAULT 0x12ull |
| |
| /* |
| * val must be < max in hwmon interface units. The steps below are |
| * explained in i915_power1_max_interval_show() |
| */ |
| r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT); |
| x = REG_FIELD_GET(PKG_MAX_WIN_X, r); |
| y = REG_FIELD_GET(PKG_MAX_WIN_Y, r); |
| tau4 = ((1 << x_w) | x) << y; |
| max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w); |
| |
| if (val > max_win) |
| return -EINVAL; |
| |
| /* val in hw units */ |
| val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME); |
| /* Convert to 1.x * power(2,y) */ |
| if (!val) { |
| /* Avoid ilog2(0) */ |
| y = 0; |
| x = 0; |
| } else { |
| y = ilog2(val); |
| /* x = (val - (1 << y)) >> (y - 2); */ |
| x = (val - (1ul << y)) << x_w >> y; |
| } |
| |
| rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y); |
| |
| hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit, |
| PKG_PWR_LIM_1_TIME, rxy); |
| return count; |
| } |
| |
| static SENSOR_DEVICE_ATTR(power1_max_interval, 0664, |
| hwm_power1_max_interval_show, |
| hwm_power1_max_interval_store, 0); |
| |
| static struct attribute *hwm_attributes[] = { |
| &sensor_dev_attr_power1_max_interval.dev_attr.attr, |
| NULL |
| }; |
| |
| static umode_t hwm_attributes_visible(struct kobject *kobj, |
| struct attribute *attr, int index) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct hwm_drvdata *ddat = dev_get_drvdata(dev); |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| |
| if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr) |
| return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0; |
| |
| return 0; |
| } |
| |
| static const struct attribute_group hwm_attrgroup = { |
| .attrs = hwm_attributes, |
| .is_visible = hwm_attributes_visible, |
| }; |
| |
| static const struct attribute_group *hwm_groups[] = { |
| &hwm_attrgroup, |
| NULL |
| }; |
| |
| static const struct hwmon_channel_info *hwm_info[] = { |
| HWMON_CHANNEL_INFO(in, HWMON_I_INPUT), |
| HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT), |
| HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT), |
| HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT), |
| NULL |
| }; |
| |
| static const struct hwmon_channel_info *hwm_gt_info[] = { |
| HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT), |
| NULL |
| }; |
| |
| /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */ |
| static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval) |
| { |
| /* Avoid ILLEGAL_SUBCOMMAND "mailbox access failed" warning in snb_pcode_read */ |
| if (IS_DG1(i915) || IS_DG2(i915)) |
| return -ENXIO; |
| |
| return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP, |
| POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval); |
| } |
| |
| static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval) |
| { |
| return snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP, |
| POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval); |
| } |
| |
| static umode_t |
| hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr) |
| { |
| struct drm_i915_private *i915 = ddat->uncore->i915; |
| |
| switch (attr) { |
| case hwmon_in_input: |
| return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val) |
| { |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| intel_wakeref_t wakeref; |
| u32 reg_value; |
| |
| switch (attr) { |
| case hwmon_in_input: |
| with_intel_runtime_pm(ddat->uncore->rpm, wakeref) |
| reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status); |
| /* HW register value in units of 2.5 millivolt */ |
| *val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static umode_t |
| hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan) |
| { |
| struct drm_i915_private *i915 = ddat->uncore->i915; |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| u32 uval; |
| |
| switch (attr) { |
| case hwmon_power_max: |
| return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0; |
| case hwmon_power_rated_max: |
| return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0; |
| case hwmon_power_crit: |
| return (hwm_pcode_read_i1(i915, &uval) || |
| !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; |
| default: |
| return 0; |
| } |
| } |
| |
| #define PL1_DISABLE 0 |
| |
| /* |
| * HW allows arbitrary PL1 limits to be set but silently clamps these values to |
| * "typical but not guaranteed" min/max values in rg.pkg_power_sku. Follow the |
| * same pattern for sysfs, allow arbitrary PL1 limits to be set but display |
| * clamped values when read. Write/read I1 also follows the same pattern. |
| */ |
| static int |
| hwm_power_max_read(struct hwm_drvdata *ddat, long *val) |
| { |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| intel_wakeref_t wakeref; |
| u64 r, min, max; |
| |
| /* Check if PL1 limit is disabled */ |
| with_intel_runtime_pm(ddat->uncore->rpm, wakeref) |
| r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit); |
| if (!(r & PKG_PWR_LIM_1_EN)) { |
| *val = PL1_DISABLE; |
| return 0; |
| } |
| |
| *val = hwm_field_read_and_scale(ddat, |
| hwmon->rg.pkg_rapl_limit, |
| PKG_PWR_LIM_1, |
| hwmon->scl_shift_power, |
| SF_POWER); |
| |
| with_intel_runtime_pm(ddat->uncore->rpm, wakeref) |
| r = intel_uncore_read64(ddat->uncore, hwmon->rg.pkg_power_sku); |
| min = REG_FIELD_GET(PKG_MIN_PWR, r); |
| min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power); |
| max = REG_FIELD_GET(PKG_MAX_PWR, r); |
| max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power); |
| |
| if (min && max) |
| *val = clamp_t(u64, *val, min, max); |
| |
| return 0; |
| } |
| |
| static int |
| hwm_power_max_write(struct hwm_drvdata *ddat, long val) |
| { |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| intel_wakeref_t wakeref; |
| DEFINE_WAIT(wait); |
| int ret = 0; |
| u32 nval; |
| |
| /* Block waiting for GuC reset to complete when needed */ |
| for (;;) { |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| prepare_to_wait(&ddat->waitq, &wait, TASK_INTERRUPTIBLE); |
| |
| if (!hwmon->ddat.reset_in_progress) |
| break; |
| |
| if (signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| |
| mutex_unlock(&hwmon->hwmon_lock); |
| |
| schedule(); |
| } |
| finish_wait(&ddat->waitq, &wait); |
| if (ret) |
| goto unlock; |
| |
| wakeref = intel_runtime_pm_get(ddat->uncore->rpm); |
| |
| /* Disable PL1 limit and verify, because the limit cannot be disabled on all platforms */ |
| if (val == PL1_DISABLE) { |
| intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit, |
| PKG_PWR_LIM_1_EN, 0); |
| nval = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit); |
| |
| if (nval & PKG_PWR_LIM_1_EN) |
| ret = -ENODEV; |
| goto exit; |
| } |
| |
| /* Computation in 64-bits to avoid overflow. Round to nearest. */ |
| nval = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_power, SF_POWER); |
| nval = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, nval); |
| |
| intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit, |
| PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, nval); |
| exit: |
| intel_runtime_pm_put(ddat->uncore->rpm, wakeref); |
| unlock: |
| mutex_unlock(&hwmon->hwmon_lock); |
| return ret; |
| } |
| |
| static int |
| hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val) |
| { |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| int ret; |
| u32 uval; |
| |
| switch (attr) { |
| case hwmon_power_max: |
| return hwm_power_max_read(ddat, val); |
| case hwmon_power_rated_max: |
| *val = hwm_field_read_and_scale(ddat, |
| hwmon->rg.pkg_power_sku, |
| PKG_PKG_TDP, |
| hwmon->scl_shift_power, |
| SF_POWER); |
| return 0; |
| case hwmon_power_crit: |
| ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval); |
| if (ret) |
| return ret; |
| if (!(uval & POWER_SETUP_I1_WATTS)) |
| return -ENODEV; |
| *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval), |
| SF_POWER, POWER_SETUP_I1_SHIFT); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int |
| hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val) |
| { |
| u32 uval; |
| |
| switch (attr) { |
| case hwmon_power_max: |
| return hwm_power_max_write(ddat, val); |
| case hwmon_power_crit: |
| uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER); |
| return hwm_pcode_write_i1(ddat->uncore->i915, uval); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| void i915_hwmon_power_max_disable(struct drm_i915_private *i915, bool *old) |
| { |
| struct i915_hwmon *hwmon = i915->hwmon; |
| u32 r; |
| |
| if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit)) |
| return; |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| hwmon->ddat.reset_in_progress = true; |
| r = intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit, |
| PKG_PWR_LIM_1_EN, 0); |
| *old = !!(r & PKG_PWR_LIM_1_EN); |
| |
| mutex_unlock(&hwmon->hwmon_lock); |
| } |
| |
| void i915_hwmon_power_max_restore(struct drm_i915_private *i915, bool old) |
| { |
| struct i915_hwmon *hwmon = i915->hwmon; |
| |
| if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit)) |
| return; |
| |
| mutex_lock(&hwmon->hwmon_lock); |
| |
| intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit, |
| PKG_PWR_LIM_1_EN, old ? PKG_PWR_LIM_1_EN : 0); |
| hwmon->ddat.reset_in_progress = false; |
| wake_up_all(&hwmon->ddat.waitq); |
| |
| mutex_unlock(&hwmon->hwmon_lock); |
| } |
| |
| static umode_t |
| hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr) |
| { |
| struct i915_hwmon *hwmon = ddat->hwmon; |
| i915_reg_t rgaddr; |
| |
| switch (attr) { |
| case hwmon_energy_input: |
| if (ddat->gt_n >= 0) |
| rgaddr = hwmon->rg.energy_status_tile; |
| else |
| rgaddr = hwmon->rg.energy_status_all; |
| return i915_mmio_reg_valid(rgaddr) ? 0444 : 0; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val) |
| { |
| switch (attr) { |
| case hwmon_energy_input: |
| hwm_energy(ddat, val); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static umode_t |
| hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr) |
| { |
| struct drm_i915_private *i915 = ddat->uncore->i915; |
| u32 uval; |
| |
| switch (attr) { |
| case hwmon_curr_crit: |
| return (hwm_pcode_read_i1(i915, &uval) || |
| (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val) |
| { |
| int ret; |
| u32 uval; |
| |
| switch (attr) { |
| case hwmon_curr_crit: |
| ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval); |
| if (ret) |
| return ret; |
| if (uval & POWER_SETUP_I1_WATTS) |
| return -ENODEV; |
| *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval), |
| SF_CURR, POWER_SETUP_I1_SHIFT); |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int |
| hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val) |
| { |
| u32 uval; |
| |
| switch (attr) { |
| case hwmon_curr_crit: |
| uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR); |
| return hwm_pcode_write_i1(ddat->uncore->i915, uval); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static umode_t |
| hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type, |
| u32 attr, int channel) |
| { |
| struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata; |
| |
| switch (type) { |
| case hwmon_in: |
| return hwm_in_is_visible(ddat, attr); |
| case hwmon_power: |
| return hwm_power_is_visible(ddat, attr, channel); |
| case hwmon_energy: |
| return hwm_energy_is_visible(ddat, attr); |
| case hwmon_curr: |
| return hwm_curr_is_visible(ddat, attr); |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, |
| int channel, long *val) |
| { |
| struct hwm_drvdata *ddat = dev_get_drvdata(dev); |
| |
| switch (type) { |
| case hwmon_in: |
| return hwm_in_read(ddat, attr, val); |
| case hwmon_power: |
| return hwm_power_read(ddat, attr, channel, val); |
| case hwmon_energy: |
| return hwm_energy_read(ddat, attr, val); |
| case hwmon_curr: |
| return hwm_curr_read(ddat, attr, val); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int |
| hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, |
| int channel, long val) |
| { |
| struct hwm_drvdata *ddat = dev_get_drvdata(dev); |
| |
| switch (type) { |
| case hwmon_power: |
| return hwm_power_write(ddat, attr, channel, val); |
| case hwmon_curr: |
| return hwm_curr_write(ddat, attr, val); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static const struct hwmon_ops hwm_ops = { |
| .is_visible = hwm_is_visible, |
| .read = hwm_read, |
| .write = hwm_write, |
| }; |
| |
| static const struct hwmon_chip_info hwm_chip_info = { |
| .ops = &hwm_ops, |
| .info = hwm_info, |
| }; |
| |
| static umode_t |
| hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type, |
| u32 attr, int channel) |
| { |
| struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata; |
| |
| switch (type) { |
| case hwmon_energy: |
| return hwm_energy_is_visible(ddat, attr); |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, |
| int channel, long *val) |
| { |
| struct hwm_drvdata *ddat = dev_get_drvdata(dev); |
| |
| switch (type) { |
| case hwmon_energy: |
| return hwm_energy_read(ddat, attr, val); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static const struct hwmon_ops hwm_gt_ops = { |
| .is_visible = hwm_gt_is_visible, |
| .read = hwm_gt_read, |
| }; |
| |
| static const struct hwmon_chip_info hwm_gt_chip_info = { |
| .ops = &hwm_gt_ops, |
| .info = hwm_gt_info, |
| }; |
| |
| static void |
| hwm_get_preregistration_info(struct drm_i915_private *i915) |
| { |
| struct i915_hwmon *hwmon = i915->hwmon; |
| struct intel_uncore *uncore = &i915->uncore; |
| struct hwm_drvdata *ddat = &hwmon->ddat; |
| intel_wakeref_t wakeref; |
| u32 val_sku_unit = 0; |
| struct intel_gt *gt; |
| long energy; |
| int i; |
| |
| /* Available for all Gen12+/dGfx */ |
| hwmon->rg.gt_perf_status = GEN12_RPSTAT1; |
| |
| if (IS_DG1(i915) || IS_DG2(i915)) { |
| hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT; |
| hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU; |
| hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT; |
| hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS; |
| hwmon->rg.energy_status_tile = INVALID_MMIO_REG; |
| } else if (IS_XEHPSDV(i915)) { |
| hwmon->rg.pkg_power_sku_unit = GT0_PACKAGE_POWER_SKU_UNIT; |
| hwmon->rg.pkg_power_sku = INVALID_MMIO_REG; |
| hwmon->rg.pkg_rapl_limit = GT0_PACKAGE_RAPL_LIMIT; |
| hwmon->rg.energy_status_all = GT0_PLATFORM_ENERGY_STATUS; |
| hwmon->rg.energy_status_tile = GT0_PACKAGE_ENERGY_STATUS; |
| } else { |
| hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG; |
| hwmon->rg.pkg_power_sku = INVALID_MMIO_REG; |
| hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG; |
| hwmon->rg.energy_status_all = INVALID_MMIO_REG; |
| hwmon->rg.energy_status_tile = INVALID_MMIO_REG; |
| } |
| |
| with_intel_runtime_pm(uncore->rpm, wakeref) { |
| /* |
| * The contents of register hwmon->rg.pkg_power_sku_unit do not change, |
| * so read it once and store the shift values. |
| */ |
| if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit)) |
| val_sku_unit = intel_uncore_read(uncore, |
| hwmon->rg.pkg_power_sku_unit); |
| } |
| |
| hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit); |
| hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit); |
| hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit); |
| |
| /* |
| * Initialize 'struct hwm_energy_info', i.e. set fields to the |
| * first value of the energy register read |
| */ |
| if (i915_mmio_reg_valid(hwmon->rg.energy_status_all)) |
| hwm_energy(ddat, &energy); |
| if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) { |
| for_each_gt(gt, i915, i) |
| hwm_energy(&hwmon->ddat_gt[i], &energy); |
| } |
| } |
| |
| void i915_hwmon_register(struct drm_i915_private *i915) |
| { |
| struct device *dev = i915->drm.dev; |
| struct i915_hwmon *hwmon; |
| struct device *hwmon_dev; |
| struct hwm_drvdata *ddat; |
| struct hwm_drvdata *ddat_gt; |
| struct intel_gt *gt; |
| int i; |
| |
| /* hwmon is available only for dGfx */ |
| if (!IS_DGFX(i915)) |
| return; |
| |
| hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL); |
| if (!hwmon) |
| return; |
| |
| i915->hwmon = hwmon; |
| mutex_init(&hwmon->hwmon_lock); |
| ddat = &hwmon->ddat; |
| |
| ddat->hwmon = hwmon; |
| ddat->uncore = &i915->uncore; |
| snprintf(ddat->name, sizeof(ddat->name), "i915"); |
| ddat->gt_n = -1; |
| init_waitqueue_head(&ddat->waitq); |
| |
| for_each_gt(gt, i915, i) { |
| ddat_gt = hwmon->ddat_gt + i; |
| |
| ddat_gt->hwmon = hwmon; |
| ddat_gt->uncore = gt->uncore; |
| snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i); |
| ddat_gt->gt_n = i; |
| } |
| |
| hwm_get_preregistration_info(i915); |
| |
| /* hwmon_dev points to device hwmon<i> */ |
| hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat->name, |
| ddat, |
| &hwm_chip_info, |
| hwm_groups); |
| if (IS_ERR(hwmon_dev)) { |
| i915->hwmon = NULL; |
| return; |
| } |
| |
| ddat->hwmon_dev = hwmon_dev; |
| |
| for_each_gt(gt, i915, i) { |
| ddat_gt = hwmon->ddat_gt + i; |
| /* |
| * Create per-gt directories only if a per-gt attribute is |
| * visible. Currently this is only energy |
| */ |
| if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0)) |
| continue; |
| |
| hwmon_dev = devm_hwmon_device_register_with_info(dev, ddat_gt->name, |
| ddat_gt, |
| &hwm_gt_chip_info, |
| NULL); |
| if (!IS_ERR(hwmon_dev)) |
| ddat_gt->hwmon_dev = hwmon_dev; |
| } |
| } |
| |
| void i915_hwmon_unregister(struct drm_i915_private *i915) |
| { |
| fetch_and_zero(&i915->hwmon); |
| } |