blob: 4473ded313d6fc032117aa9db6d55fa87a362461 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "goyaP.h"
#include "include/hw_ip/mmu/mmu_general.h"
#include "include/hw_ip/mmu/mmu_v1_0.h"
#include "include/goya/asic_reg/goya_masks.h"
#include "include/goya/goya_reg_map.h"
#include <linux/pci.h>
#include <linux/genalloc.h>
#include <linux/hwmon.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/iommu.h>
#include <linux/seq_file.h>
/*
* GOYA security scheme:
*
* 1. Host is protected by:
* - Range registers (When MMU is enabled, DMA RR does NOT protect host)
* - MMU
*
* 2. DRAM is protected by:
* - Range registers (protect the first 512MB)
* - MMU (isolation between users)
*
* 3. Configuration is protected by:
* - Range registers
* - Protection bits
*
* When MMU is disabled:
*
* QMAN DMA: PQ, CQ, CP, DMA are secured.
* PQ, CB and the data are on the host.
*
* QMAN TPC/MME:
* PQ, CQ and CP are not secured.
* PQ, CB and the data are on the SRAM/DRAM.
*
* Since QMAN DMA is secured, the driver is parsing the DMA CB:
* - checks DMA pointer
* - WREG, MSG_PROT are not allowed.
* - MSG_LONG/SHORT are allowed.
*
* A read/write transaction by the QMAN to a protected area will succeed if
* and only if the QMAN's CP is secured and MSG_PROT is used
*
*
* When MMU is enabled:
*
* QMAN DMA: PQ, CQ and CP are secured.
* MMU is set to bypass on the Secure props register of the QMAN.
* The reasons we don't enable MMU for PQ, CQ and CP are:
* - PQ entry is in kernel address space and the driver doesn't map it.
* - CP writes to MSIX register and to kernel address space (completion
* queue).
*
* DMA is not secured but because CP is secured, the driver still needs to parse
* the CB, but doesn't need to check the DMA addresses.
*
* For QMAN DMA 0, DMA is also secured because only the driver uses this DMA and
* the driver doesn't map memory in MMU.
*
* QMAN TPC/MME: PQ, CQ and CP aren't secured (no change from MMU disabled mode)
*
* DMA RR does NOT protect host because DMA is not secured
*
*/
#define GOYA_BOOT_FIT_FILE "habanalabs/goya/goya-boot-fit.itb"
#define GOYA_LINUX_FW_FILE "habanalabs/goya/goya-fit.itb"
#define GOYA_MMU_REGS_NUM 63
#define GOYA_DMA_POOL_BLK_SIZE 0x100 /* 256 bytes */
#define GOYA_RESET_TIMEOUT_MSEC 500 /* 500ms */
#define GOYA_PLDM_RESET_TIMEOUT_MSEC 20000 /* 20s */
#define GOYA_RESET_WAIT_MSEC 1 /* 1ms */
#define GOYA_CPU_RESET_WAIT_MSEC 100 /* 100ms */
#define GOYA_PLDM_RESET_WAIT_MSEC 1000 /* 1s */
#define GOYA_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */
#define GOYA_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 100)
#define GOYA_PLDM_QMAN0_TIMEOUT_USEC (HL_DEVICE_TIMEOUT_USEC * 30)
#define GOYA_BOOT_FIT_REQ_TIMEOUT_USEC 1000000 /* 1s */
#define GOYA_QMAN0_FENCE_VAL 0xD169B243
#define GOYA_MAX_STRING_LEN 20
#define GOYA_CB_POOL_CB_CNT 512
#define GOYA_CB_POOL_CB_SIZE 0x20000 /* 128KB */
#define IS_QM_IDLE(engine, qm_glbl_sts0) \
(((qm_glbl_sts0) & engine##_QM_IDLE_MASK) == engine##_QM_IDLE_MASK)
#define IS_DMA_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(DMA, qm_glbl_sts0)
#define IS_TPC_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(TPC, qm_glbl_sts0)
#define IS_MME_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(MME, qm_glbl_sts0)
#define IS_CMDQ_IDLE(engine, cmdq_glbl_sts0) \
(((cmdq_glbl_sts0) & engine##_CMDQ_IDLE_MASK) == \
engine##_CMDQ_IDLE_MASK)
#define IS_TPC_CMDQ_IDLE(cmdq_glbl_sts0) \
IS_CMDQ_IDLE(TPC, cmdq_glbl_sts0)
#define IS_MME_CMDQ_IDLE(cmdq_glbl_sts0) \
IS_CMDQ_IDLE(MME, cmdq_glbl_sts0)
#define IS_DMA_IDLE(dma_core_sts0) \
!((dma_core_sts0) & DMA_CH_0_STS0_DMA_BUSY_MASK)
#define IS_TPC_IDLE(tpc_cfg_sts) \
(((tpc_cfg_sts) & TPC_CFG_IDLE_MASK) == TPC_CFG_IDLE_MASK)
#define IS_MME_IDLE(mme_arch_sts) \
(((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK)
static const char goya_irq_name[GOYA_MSIX_ENTRIES][GOYA_MAX_STRING_LEN] = {
"goya cq 0", "goya cq 1", "goya cq 2", "goya cq 3",
"goya cq 4", "goya cpu eq"
};
static u16 goya_packet_sizes[MAX_PACKET_ID] = {
[PACKET_WREG_32] = sizeof(struct packet_wreg32),
[PACKET_WREG_BULK] = sizeof(struct packet_wreg_bulk),
[PACKET_MSG_LONG] = sizeof(struct packet_msg_long),
[PACKET_MSG_SHORT] = sizeof(struct packet_msg_short),
[PACKET_CP_DMA] = sizeof(struct packet_cp_dma),
[PACKET_MSG_PROT] = sizeof(struct packet_msg_prot),
[PACKET_FENCE] = sizeof(struct packet_fence),
[PACKET_LIN_DMA] = sizeof(struct packet_lin_dma),
[PACKET_NOP] = sizeof(struct packet_nop),
[PACKET_STOP] = sizeof(struct packet_stop)
};
static u64 goya_mmu_regs[GOYA_MMU_REGS_NUM] = {
mmDMA_QM_0_GLBL_NON_SECURE_PROPS,
mmDMA_QM_1_GLBL_NON_SECURE_PROPS,
mmDMA_QM_2_GLBL_NON_SECURE_PROPS,
mmDMA_QM_3_GLBL_NON_SECURE_PROPS,
mmDMA_QM_4_GLBL_NON_SECURE_PROPS,
mmTPC0_QM_GLBL_SECURE_PROPS,
mmTPC0_QM_GLBL_NON_SECURE_PROPS,
mmTPC0_CMDQ_GLBL_SECURE_PROPS,
mmTPC0_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC0_CFG_ARUSER,
mmTPC0_CFG_AWUSER,
mmTPC1_QM_GLBL_SECURE_PROPS,
mmTPC1_QM_GLBL_NON_SECURE_PROPS,
mmTPC1_CMDQ_GLBL_SECURE_PROPS,
mmTPC1_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC1_CFG_ARUSER,
mmTPC1_CFG_AWUSER,
mmTPC2_QM_GLBL_SECURE_PROPS,
mmTPC2_QM_GLBL_NON_SECURE_PROPS,
mmTPC2_CMDQ_GLBL_SECURE_PROPS,
mmTPC2_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC2_CFG_ARUSER,
mmTPC2_CFG_AWUSER,
mmTPC3_QM_GLBL_SECURE_PROPS,
mmTPC3_QM_GLBL_NON_SECURE_PROPS,
mmTPC3_CMDQ_GLBL_SECURE_PROPS,
mmTPC3_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC3_CFG_ARUSER,
mmTPC3_CFG_AWUSER,
mmTPC4_QM_GLBL_SECURE_PROPS,
mmTPC4_QM_GLBL_NON_SECURE_PROPS,
mmTPC4_CMDQ_GLBL_SECURE_PROPS,
mmTPC4_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC4_CFG_ARUSER,
mmTPC4_CFG_AWUSER,
mmTPC5_QM_GLBL_SECURE_PROPS,
mmTPC5_QM_GLBL_NON_SECURE_PROPS,
mmTPC5_CMDQ_GLBL_SECURE_PROPS,
mmTPC5_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC5_CFG_ARUSER,
mmTPC5_CFG_AWUSER,
mmTPC6_QM_GLBL_SECURE_PROPS,
mmTPC6_QM_GLBL_NON_SECURE_PROPS,
mmTPC6_CMDQ_GLBL_SECURE_PROPS,
mmTPC6_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC6_CFG_ARUSER,
mmTPC6_CFG_AWUSER,
mmTPC7_QM_GLBL_SECURE_PROPS,
mmTPC7_QM_GLBL_NON_SECURE_PROPS,
mmTPC7_CMDQ_GLBL_SECURE_PROPS,
mmTPC7_CMDQ_GLBL_NON_SECURE_PROPS,
mmTPC7_CFG_ARUSER,
mmTPC7_CFG_AWUSER,
mmMME_QM_GLBL_SECURE_PROPS,
mmMME_QM_GLBL_NON_SECURE_PROPS,
mmMME_CMDQ_GLBL_SECURE_PROPS,
mmMME_CMDQ_GLBL_NON_SECURE_PROPS,
mmMME_SBA_CONTROL_DATA,
mmMME_SBB_CONTROL_DATA,
mmMME_SBC_CONTROL_DATA,
mmMME_WBC_CONTROL_DATA,
mmPCIE_WRAP_PSOC_ARUSER,
mmPCIE_WRAP_PSOC_AWUSER
};
static u32 goya_all_events[] = {
GOYA_ASYNC_EVENT_ID_PCIE_IF,
GOYA_ASYNC_EVENT_ID_TPC0_ECC,
GOYA_ASYNC_EVENT_ID_TPC1_ECC,
GOYA_ASYNC_EVENT_ID_TPC2_ECC,
GOYA_ASYNC_EVENT_ID_TPC3_ECC,
GOYA_ASYNC_EVENT_ID_TPC4_ECC,
GOYA_ASYNC_EVENT_ID_TPC5_ECC,
GOYA_ASYNC_EVENT_ID_TPC6_ECC,
GOYA_ASYNC_EVENT_ID_TPC7_ECC,
GOYA_ASYNC_EVENT_ID_MME_ECC,
GOYA_ASYNC_EVENT_ID_MME_ECC_EXT,
GOYA_ASYNC_EVENT_ID_MMU_ECC,
GOYA_ASYNC_EVENT_ID_DMA_MACRO,
GOYA_ASYNC_EVENT_ID_DMA_ECC,
GOYA_ASYNC_EVENT_ID_CPU_IF_ECC,
GOYA_ASYNC_EVENT_ID_PSOC_MEM,
GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT,
GOYA_ASYNC_EVENT_ID_SRAM0,
GOYA_ASYNC_EVENT_ID_SRAM1,
GOYA_ASYNC_EVENT_ID_SRAM2,
GOYA_ASYNC_EVENT_ID_SRAM3,
GOYA_ASYNC_EVENT_ID_SRAM4,
GOYA_ASYNC_EVENT_ID_SRAM5,
GOYA_ASYNC_EVENT_ID_SRAM6,
GOYA_ASYNC_EVENT_ID_SRAM7,
GOYA_ASYNC_EVENT_ID_SRAM8,
GOYA_ASYNC_EVENT_ID_SRAM9,
GOYA_ASYNC_EVENT_ID_SRAM10,
GOYA_ASYNC_EVENT_ID_SRAM11,
GOYA_ASYNC_EVENT_ID_SRAM12,
GOYA_ASYNC_EVENT_ID_SRAM13,
GOYA_ASYNC_EVENT_ID_SRAM14,
GOYA_ASYNC_EVENT_ID_SRAM15,
GOYA_ASYNC_EVENT_ID_SRAM16,
GOYA_ASYNC_EVENT_ID_SRAM17,
GOYA_ASYNC_EVENT_ID_SRAM18,
GOYA_ASYNC_EVENT_ID_SRAM19,
GOYA_ASYNC_EVENT_ID_SRAM20,
GOYA_ASYNC_EVENT_ID_SRAM21,
GOYA_ASYNC_EVENT_ID_SRAM22,
GOYA_ASYNC_EVENT_ID_SRAM23,
GOYA_ASYNC_EVENT_ID_SRAM24,
GOYA_ASYNC_EVENT_ID_SRAM25,
GOYA_ASYNC_EVENT_ID_SRAM26,
GOYA_ASYNC_EVENT_ID_SRAM27,
GOYA_ASYNC_EVENT_ID_SRAM28,
GOYA_ASYNC_EVENT_ID_SRAM29,
GOYA_ASYNC_EVENT_ID_GIC500,
GOYA_ASYNC_EVENT_ID_PLL0,
GOYA_ASYNC_EVENT_ID_PLL1,
GOYA_ASYNC_EVENT_ID_PLL3,
GOYA_ASYNC_EVENT_ID_PLL4,
GOYA_ASYNC_EVENT_ID_PLL5,
GOYA_ASYNC_EVENT_ID_PLL6,
GOYA_ASYNC_EVENT_ID_AXI_ECC,
GOYA_ASYNC_EVENT_ID_L2_RAM_ECC,
GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET,
GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT,
GOYA_ASYNC_EVENT_ID_PCIE_DEC,
GOYA_ASYNC_EVENT_ID_TPC0_DEC,
GOYA_ASYNC_EVENT_ID_TPC1_DEC,
GOYA_ASYNC_EVENT_ID_TPC2_DEC,
GOYA_ASYNC_EVENT_ID_TPC3_DEC,
GOYA_ASYNC_EVENT_ID_TPC4_DEC,
GOYA_ASYNC_EVENT_ID_TPC5_DEC,
GOYA_ASYNC_EVENT_ID_TPC6_DEC,
GOYA_ASYNC_EVENT_ID_TPC7_DEC,
GOYA_ASYNC_EVENT_ID_MME_WACS,
GOYA_ASYNC_EVENT_ID_MME_WACSD,
GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER,
GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC,
GOYA_ASYNC_EVENT_ID_PSOC,
GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR,
GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR,
GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR,
GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR,
GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR,
GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR,
GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR,
GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR,
GOYA_ASYNC_EVENT_ID_TPC0_CMDQ,
GOYA_ASYNC_EVENT_ID_TPC1_CMDQ,
GOYA_ASYNC_EVENT_ID_TPC2_CMDQ,
GOYA_ASYNC_EVENT_ID_TPC3_CMDQ,
GOYA_ASYNC_EVENT_ID_TPC4_CMDQ,
GOYA_ASYNC_EVENT_ID_TPC5_CMDQ,
GOYA_ASYNC_EVENT_ID_TPC6_CMDQ,
GOYA_ASYNC_EVENT_ID_TPC7_CMDQ,
GOYA_ASYNC_EVENT_ID_TPC0_QM,
GOYA_ASYNC_EVENT_ID_TPC1_QM,
GOYA_ASYNC_EVENT_ID_TPC2_QM,
GOYA_ASYNC_EVENT_ID_TPC3_QM,
GOYA_ASYNC_EVENT_ID_TPC4_QM,
GOYA_ASYNC_EVENT_ID_TPC5_QM,
GOYA_ASYNC_EVENT_ID_TPC6_QM,
GOYA_ASYNC_EVENT_ID_TPC7_QM,
GOYA_ASYNC_EVENT_ID_MME_QM,
GOYA_ASYNC_EVENT_ID_MME_CMDQ,
GOYA_ASYNC_EVENT_ID_DMA0_QM,
GOYA_ASYNC_EVENT_ID_DMA1_QM,
GOYA_ASYNC_EVENT_ID_DMA2_QM,
GOYA_ASYNC_EVENT_ID_DMA3_QM,
GOYA_ASYNC_EVENT_ID_DMA4_QM,
GOYA_ASYNC_EVENT_ID_DMA0_CH,
GOYA_ASYNC_EVENT_ID_DMA1_CH,
GOYA_ASYNC_EVENT_ID_DMA2_CH,
GOYA_ASYNC_EVENT_ID_DMA3_CH,
GOYA_ASYNC_EVENT_ID_DMA4_CH,
GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU,
GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU,
GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU,
GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU,
GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU,
GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU,
GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU,
GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH0,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH1,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH2,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH3,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH4,
GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S,
GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E,
GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S,
GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E
};
static int goya_mmu_clear_pgt_range(struct hl_device *hdev);
static int goya_mmu_set_dram_default_page(struct hl_device *hdev);
static int goya_mmu_add_mappings_for_device_cpu(struct hl_device *hdev);
static void goya_mmu_prepare(struct hl_device *hdev, u32 asid);
int goya_get_fixed_properties(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
int i;
prop->max_queues = GOYA_QUEUE_ID_SIZE;
prop->hw_queues_props = kcalloc(prop->max_queues,
sizeof(struct hw_queue_properties),
GFP_KERNEL);
if (!prop->hw_queues_props)
return -ENOMEM;
for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) {
prop->hw_queues_props[i].type = QUEUE_TYPE_EXT;
prop->hw_queues_props[i].driver_only = 0;
prop->hw_queues_props[i].requires_kernel_cb = 1;
}
for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES ; i++) {
prop->hw_queues_props[i].type = QUEUE_TYPE_CPU;
prop->hw_queues_props[i].driver_only = 1;
prop->hw_queues_props[i].requires_kernel_cb = 0;
}
for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES +
NUMBER_OF_INT_HW_QUEUES; i++) {
prop->hw_queues_props[i].type = QUEUE_TYPE_INT;
prop->hw_queues_props[i].driver_only = 0;
prop->hw_queues_props[i].requires_kernel_cb = 0;
}
prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES;
prop->dram_base_address = DRAM_PHYS_BASE;
prop->dram_size = DRAM_PHYS_DEFAULT_SIZE;
prop->dram_end_address = prop->dram_base_address + prop->dram_size;
prop->dram_user_base_address = DRAM_BASE_ADDR_USER;
prop->sram_base_address = SRAM_BASE_ADDR;
prop->sram_size = SRAM_SIZE;
prop->sram_end_address = prop->sram_base_address + prop->sram_size;
prop->sram_user_base_address = prop->sram_base_address +
SRAM_USER_BASE_OFFSET;
prop->mmu_pgt_addr = MMU_PAGE_TABLES_ADDR;
prop->mmu_dram_default_page_addr = MMU_DRAM_DEFAULT_PAGE_ADDR;
if (hdev->pldm)
prop->mmu_pgt_size = 0x800000; /* 8MB */
else
prop->mmu_pgt_size = MMU_PAGE_TABLES_SIZE;
prop->mmu_pte_size = HL_PTE_SIZE;
prop->mmu_hop_table_size = HOP_TABLE_SIZE;
prop->mmu_hop0_tables_total_size = HOP0_TABLES_TOTAL_SIZE;
prop->dram_page_size = PAGE_SIZE_2MB;
prop->dmmu.hop0_shift = HOP0_SHIFT;
prop->dmmu.hop1_shift = HOP1_SHIFT;
prop->dmmu.hop2_shift = HOP2_SHIFT;
prop->dmmu.hop3_shift = HOP3_SHIFT;
prop->dmmu.hop4_shift = HOP4_SHIFT;
prop->dmmu.hop0_mask = HOP0_MASK;
prop->dmmu.hop1_mask = HOP1_MASK;
prop->dmmu.hop2_mask = HOP2_MASK;
prop->dmmu.hop3_mask = HOP3_MASK;
prop->dmmu.hop4_mask = HOP4_MASK;
prop->dmmu.start_addr = VA_DDR_SPACE_START;
prop->dmmu.end_addr = VA_DDR_SPACE_END;
prop->dmmu.page_size = PAGE_SIZE_2MB;
/* shifts and masks are the same in PMMU and DMMU */
memcpy(&prop->pmmu, &prop->dmmu, sizeof(prop->dmmu));
prop->pmmu.start_addr = VA_HOST_SPACE_START;
prop->pmmu.end_addr = VA_HOST_SPACE_END;
prop->pmmu.page_size = PAGE_SIZE_4KB;
/* PMMU and HPMMU are the same except of page size */
memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
prop->pmmu_huge.page_size = PAGE_SIZE_2MB;
prop->dram_size_for_default_page_mapping = VA_DDR_SPACE_END;
prop->cfg_size = CFG_SIZE;
prop->max_asid = MAX_ASID;
prop->num_of_events = GOYA_ASYNC_EVENT_ID_SIZE;
prop->high_pll = PLL_HIGH_DEFAULT;
prop->cb_pool_cb_cnt = GOYA_CB_POOL_CB_CNT;
prop->cb_pool_cb_size = GOYA_CB_POOL_CB_SIZE;
prop->max_power_default = MAX_POWER_DEFAULT;
prop->tpc_enabled_mask = TPC_ENABLED_MASK;
prop->pcie_dbi_base_address = mmPCIE_DBI_BASE;
prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI;
strncpy(prop->armcp_info.card_name, GOYA_DEFAULT_CARD_NAME,
CARD_NAME_MAX_LEN);
prop->max_pending_cs = GOYA_MAX_PENDING_CS;
return 0;
}
/*
* goya_pci_bars_map - Map PCI BARS of Goya device
*
* @hdev: pointer to hl_device structure
*
* Request PCI regions and map them to kernel virtual addresses.
* Returns 0 on success
*
*/
static int goya_pci_bars_map(struct hl_device *hdev)
{
static const char * const name[] = {"SRAM_CFG", "MSIX", "DDR"};
bool is_wc[3] = {false, false, true};
int rc;
rc = hl_pci_bars_map(hdev, name, is_wc);
if (rc)
return rc;
hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] +
(CFG_BASE - SRAM_BASE_ADDR);
return 0;
}
static u64 goya_set_ddr_bar_base(struct hl_device *hdev, u64 addr)
{
struct goya_device *goya = hdev->asic_specific;
struct hl_inbound_pci_region pci_region;
u64 old_addr = addr;
int rc;
if ((goya) && (goya->ddr_bar_cur_addr == addr))
return old_addr;
/* Inbound Region 1 - Bar 4 - Point to DDR */
pci_region.mode = PCI_BAR_MATCH_MODE;
pci_region.bar = DDR_BAR_ID;
pci_region.addr = addr;
rc = hl_pci_set_inbound_region(hdev, 1, &pci_region);
if (rc)
return U64_MAX;
if (goya) {
old_addr = goya->ddr_bar_cur_addr;
goya->ddr_bar_cur_addr = addr;
}
return old_addr;
}
/*
* goya_init_iatu - Initialize the iATU unit inside the PCI controller
*
* @hdev: pointer to hl_device structure
*
* This is needed in case the firmware doesn't initialize the iATU
*
*/
static int goya_init_iatu(struct hl_device *hdev)
{
struct hl_inbound_pci_region inbound_region;
struct hl_outbound_pci_region outbound_region;
int rc;
/* Inbound Region 0 - Bar 0 - Point to SRAM and CFG */
inbound_region.mode = PCI_BAR_MATCH_MODE;
inbound_region.bar = SRAM_CFG_BAR_ID;
inbound_region.addr = SRAM_BASE_ADDR;
rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
if (rc)
goto done;
/* Inbound Region 1 - Bar 4 - Point to DDR */
inbound_region.mode = PCI_BAR_MATCH_MODE;
inbound_region.bar = DDR_BAR_ID;
inbound_region.addr = DRAM_PHYS_BASE;
rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region);
if (rc)
goto done;
hdev->asic_funcs->set_dma_mask_from_fw(hdev);
/* Outbound Region 0 - Point to Host */
outbound_region.addr = HOST_PHYS_BASE;
outbound_region.size = HOST_PHYS_SIZE;
rc = hl_pci_set_outbound_region(hdev, &outbound_region);
done:
return rc;
}
/*
* goya_early_init - GOYA early initialization code
*
* @hdev: pointer to hl_device structure
*
* Verify PCI bars
* Set DMA masks
* PCI controller initialization
* Map PCI bars
*
*/
static int goya_early_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct pci_dev *pdev = hdev->pdev;
u32 val;
int rc;
rc = goya_get_fixed_properties(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to get fixed properties\n");
return rc;
}
/* Check BAR sizes */
if (pci_resource_len(pdev, SRAM_CFG_BAR_ID) != CFG_BAR_SIZE) {
dev_err(hdev->dev,
"Not " HL_NAME "? BAR %d size %llu, expecting %llu\n",
SRAM_CFG_BAR_ID,
(unsigned long long) pci_resource_len(pdev,
SRAM_CFG_BAR_ID),
CFG_BAR_SIZE);
rc = -ENODEV;
goto free_queue_props;
}
if (pci_resource_len(pdev, MSIX_BAR_ID) != MSIX_BAR_SIZE) {
dev_err(hdev->dev,
"Not " HL_NAME "? BAR %d size %llu, expecting %llu\n",
MSIX_BAR_ID,
(unsigned long long) pci_resource_len(pdev,
MSIX_BAR_ID),
MSIX_BAR_SIZE);
rc = -ENODEV;
goto free_queue_props;
}
prop->dram_pci_bar_size = pci_resource_len(pdev, DDR_BAR_ID);
rc = hl_pci_init(hdev);
if (rc)
goto free_queue_props;
if (!hdev->pldm) {
val = RREG32(mmPSOC_GLOBAL_CONF_BOOT_STRAP_PINS);
if (val & PSOC_GLOBAL_CONF_BOOT_STRAP_PINS_SRIOV_EN_MASK)
dev_warn(hdev->dev,
"PCI strap is not configured correctly, PCI bus errors may occur\n");
}
return 0;
free_queue_props:
kfree(hdev->asic_prop.hw_queues_props);
return rc;
}
/*
* goya_early_fini - GOYA early finalization code
*
* @hdev: pointer to hl_device structure
*
* Unmap PCI bars
*
*/
static int goya_early_fini(struct hl_device *hdev)
{
kfree(hdev->asic_prop.hw_queues_props);
hl_pci_fini(hdev);
return 0;
}
static void goya_mmu_prepare_reg(struct hl_device *hdev, u64 reg, u32 asid)
{
/* mask to zero the MMBP and ASID bits */
WREG32_AND(reg, ~0x7FF);
WREG32_OR(reg, asid);
}
static void goya_qman0_set_security(struct hl_device *hdev, bool secure)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return;
if (secure)
WREG32(mmDMA_QM_0_GLBL_PROT, QMAN_DMA_FULLY_TRUSTED);
else
WREG32(mmDMA_QM_0_GLBL_PROT, QMAN_DMA_PARTLY_TRUSTED);
RREG32(mmDMA_QM_0_GLBL_PROT);
}
/*
* goya_fetch_psoc_frequency - Fetch PSOC frequency values
*
* @hdev: pointer to hl_device structure
*
*/
static void goya_fetch_psoc_frequency(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u32 trace_freq = 0;
u32 pll_clk = 0;
u32 div_fctr = RREG32(mmPSOC_PCI_PLL_DIV_FACTOR_1);
u32 div_sel = RREG32(mmPSOC_PCI_PLL_DIV_SEL_1);
u32 nr = RREG32(mmPSOC_PCI_PLL_NR);
u32 nf = RREG32(mmPSOC_PCI_PLL_NF);
u32 od = RREG32(mmPSOC_PCI_PLL_OD);
if (div_sel == DIV_SEL_REF_CLK || div_sel == DIV_SEL_DIVIDED_REF) {
if (div_sel == DIV_SEL_REF_CLK)
trace_freq = PLL_REF_CLK;
else
trace_freq = PLL_REF_CLK / (div_fctr + 1);
} else if (div_sel == DIV_SEL_PLL_CLK ||
div_sel == DIV_SEL_DIVIDED_PLL) {
pll_clk = PLL_REF_CLK * (nf + 1) / ((nr + 1) * (od + 1));
if (div_sel == DIV_SEL_PLL_CLK)
trace_freq = pll_clk;
else
trace_freq = pll_clk / (div_fctr + 1);
} else {
dev_warn(hdev->dev,
"Received invalid div select value: %d", div_sel);
}
prop->psoc_timestamp_frequency = trace_freq;
prop->psoc_pci_pll_nr = nr;
prop->psoc_pci_pll_nf = nf;
prop->psoc_pci_pll_od = od;
prop->psoc_pci_pll_div_factor = div_fctr;
}
int goya_late_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
goya_fetch_psoc_frequency(hdev);
rc = goya_mmu_clear_pgt_range(hdev);
if (rc) {
dev_err(hdev->dev,
"Failed to clear MMU page tables range %d\n", rc);
return rc;
}
rc = goya_mmu_set_dram_default_page(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to set DRAM default page %d\n", rc);
return rc;
}
rc = goya_mmu_add_mappings_for_device_cpu(hdev);
if (rc)
return rc;
rc = goya_init_cpu_queues(hdev);
if (rc)
return rc;
rc = goya_test_cpu_queue(hdev);
if (rc)
return rc;
rc = goya_armcp_info_get(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to get armcp info %d\n", rc);
return rc;
}
/* Now that we have the DRAM size in ASIC prop, we need to check
* its size and configure the DMA_IF DDR wrap protection (which is in
* the MMU block) accordingly. The value is the log2 of the DRAM size
*/
WREG32(mmMMU_LOG2_DDR_SIZE, ilog2(prop->dram_size));
rc = hl_fw_send_pci_access_msg(hdev, ARMCP_PACKET_ENABLE_PCI_ACCESS);
if (rc) {
dev_err(hdev->dev,
"Failed to enable PCI access from CPU %d\n", rc);
return rc;
}
WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
GOYA_ASYNC_EVENT_ID_INTS_REGISTER);
return 0;
}
/*
* goya_late_fini - GOYA late tear-down code
*
* @hdev: pointer to hl_device structure
*
* Free sensors allocated structures
*/
void goya_late_fini(struct hl_device *hdev)
{
const struct hwmon_channel_info **channel_info_arr;
int i = 0;
if (!hdev->hl_chip_info->info)
return;
channel_info_arr = hdev->hl_chip_info->info;
while (channel_info_arr[i]) {
kfree(channel_info_arr[i]->config);
kfree(channel_info_arr[i]);
i++;
}
kfree(channel_info_arr);
hdev->hl_chip_info->info = NULL;
}
/*
* goya_sw_init - Goya software initialization code
*
* @hdev: pointer to hl_device structure
*
*/
static int goya_sw_init(struct hl_device *hdev)
{
struct goya_device *goya;
int rc;
/* Allocate device structure */
goya = kzalloc(sizeof(*goya), GFP_KERNEL);
if (!goya)
return -ENOMEM;
/* according to goya_init_iatu */
goya->ddr_bar_cur_addr = DRAM_PHYS_BASE;
goya->mme_clk = GOYA_PLL_FREQ_LOW;
goya->tpc_clk = GOYA_PLL_FREQ_LOW;
goya->ic_clk = GOYA_PLL_FREQ_LOW;
hdev->asic_specific = goya;
/* Create DMA pool for small allocations */
hdev->dma_pool = dma_pool_create(dev_name(hdev->dev),
&hdev->pdev->dev, GOYA_DMA_POOL_BLK_SIZE, 8, 0);
if (!hdev->dma_pool) {
dev_err(hdev->dev, "failed to create DMA pool\n");
rc = -ENOMEM;
goto free_goya_device;
}
hdev->cpu_accessible_dma_mem =
hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
HL_CPU_ACCESSIBLE_MEM_SIZE,
&hdev->cpu_accessible_dma_address,
GFP_KERNEL | __GFP_ZERO);
if (!hdev->cpu_accessible_dma_mem) {
rc = -ENOMEM;
goto free_dma_pool;
}
dev_dbg(hdev->dev, "cpu accessible memory at bus address %pad\n",
&hdev->cpu_accessible_dma_address);
hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1);
if (!hdev->cpu_accessible_dma_pool) {
dev_err(hdev->dev,
"Failed to create CPU accessible DMA pool\n");
rc = -ENOMEM;
goto free_cpu_dma_mem;
}
rc = gen_pool_add(hdev->cpu_accessible_dma_pool,
(uintptr_t) hdev->cpu_accessible_dma_mem,
HL_CPU_ACCESSIBLE_MEM_SIZE, -1);
if (rc) {
dev_err(hdev->dev,
"Failed to add memory to CPU accessible DMA pool\n");
rc = -EFAULT;
goto free_cpu_accessible_dma_pool;
}
spin_lock_init(&goya->hw_queues_lock);
hdev->supports_coresight = true;
hdev->supports_soft_reset = true;
return 0;
free_cpu_accessible_dma_pool:
gen_pool_destroy(hdev->cpu_accessible_dma_pool);
free_cpu_dma_mem:
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HL_CPU_ACCESSIBLE_MEM_SIZE,
hdev->cpu_accessible_dma_mem,
hdev->cpu_accessible_dma_address);
free_dma_pool:
dma_pool_destroy(hdev->dma_pool);
free_goya_device:
kfree(goya);
return rc;
}
/*
* goya_sw_fini - Goya software tear-down code
*
* @hdev: pointer to hl_device structure
*
*/
static int goya_sw_fini(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
gen_pool_destroy(hdev->cpu_accessible_dma_pool);
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HL_CPU_ACCESSIBLE_MEM_SIZE,
hdev->cpu_accessible_dma_mem,
hdev->cpu_accessible_dma_address);
dma_pool_destroy(hdev->dma_pool);
kfree(goya);
return 0;
}
static void goya_init_dma_qman(struct hl_device *hdev, int dma_id,
dma_addr_t bus_address)
{
struct goya_device *goya = hdev->asic_specific;
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u32 reg_off = dma_id * (mmDMA_QM_1_PQ_PI - mmDMA_QM_0_PQ_PI);
u32 dma_err_cfg = QMAN_DMA_ERR_MSG_EN;
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
WREG32(mmDMA_QM_0_PQ_BASE_LO + reg_off, lower_32_bits(bus_address));
WREG32(mmDMA_QM_0_PQ_BASE_HI + reg_off, upper_32_bits(bus_address));
WREG32(mmDMA_QM_0_PQ_SIZE + reg_off, ilog2(HL_QUEUE_LENGTH));
WREG32(mmDMA_QM_0_PQ_PI + reg_off, 0);
WREG32(mmDMA_QM_0_PQ_CI + reg_off, 0);
WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
WREG32(mmDMA_QM_0_GLBL_ERR_WDATA + reg_off,
GOYA_ASYNC_EVENT_ID_DMA0_QM + dma_id);
/* PQ has buffer of 2 cache lines, while CQ has 8 lines */
WREG32(mmDMA_QM_0_PQ_CFG1 + reg_off, 0x00020002);
WREG32(mmDMA_QM_0_CQ_CFG1 + reg_off, 0x00080008);
if (goya->hw_cap_initialized & HW_CAP_MMU)
WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_PARTLY_TRUSTED);
else
WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_FULLY_TRUSTED);
if (hdev->stop_on_err)
dma_err_cfg |= 1 << DMA_QM_0_GLBL_ERR_CFG_DMA_STOP_ON_ERR_SHIFT;
WREG32(mmDMA_QM_0_GLBL_ERR_CFG + reg_off, dma_err_cfg);
WREG32(mmDMA_QM_0_GLBL_CFG0 + reg_off, QMAN_DMA_ENABLE);
}
static void goya_init_dma_ch(struct hl_device *hdev, int dma_id)
{
u32 gic_base_lo, gic_base_hi;
u64 sob_addr;
u32 reg_off = dma_id * (mmDMA_CH_1_CFG1 - mmDMA_CH_0_CFG1);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
WREG32(mmDMA_CH_0_ERRMSG_ADDR_LO + reg_off, gic_base_lo);
WREG32(mmDMA_CH_0_ERRMSG_ADDR_HI + reg_off, gic_base_hi);
WREG32(mmDMA_CH_0_ERRMSG_WDATA + reg_off,
GOYA_ASYNC_EVENT_ID_DMA0_CH + dma_id);
if (dma_id)
sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 +
(dma_id - 1) * 4;
else
sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1007;
WREG32(mmDMA_CH_0_WR_COMP_ADDR_HI + reg_off, upper_32_bits(sob_addr));
WREG32(mmDMA_CH_0_WR_COMP_WDATA + reg_off, 0x80000001);
}
/*
* goya_init_dma_qmans - Initialize QMAN DMA registers
*
* @hdev: pointer to hl_device structure
*
* Initialize the H/W registers of the QMAN DMA channels
*
*/
void goya_init_dma_qmans(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
struct hl_hw_queue *q;
int i;
if (goya->hw_cap_initialized & HW_CAP_DMA)
return;
q = &hdev->kernel_queues[0];
for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++, q++) {
q->cq_id = q->msi_vec = i;
goya_init_dma_qman(hdev, i, q->bus_address);
goya_init_dma_ch(hdev, i);
}
goya->hw_cap_initialized |= HW_CAP_DMA;
}
/*
* goya_disable_external_queues - Disable external queues
*
* @hdev: pointer to hl_device structure
*
*/
static void goya_disable_external_queues(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_DMA))
return;
WREG32(mmDMA_QM_0_GLBL_CFG0, 0);
WREG32(mmDMA_QM_1_GLBL_CFG0, 0);
WREG32(mmDMA_QM_2_GLBL_CFG0, 0);
WREG32(mmDMA_QM_3_GLBL_CFG0, 0);
WREG32(mmDMA_QM_4_GLBL_CFG0, 0);
}
static int goya_stop_queue(struct hl_device *hdev, u32 cfg_reg,
u32 cp_sts_reg, u32 glbl_sts0_reg)
{
int rc;
u32 status;
/* use the values of TPC0 as they are all the same*/
WREG32(cfg_reg, 1 << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
status = RREG32(cp_sts_reg);
if (status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK) {
rc = hl_poll_timeout(
hdev,
cp_sts_reg,
status,
!(status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK),
1000,
QMAN_FENCE_TIMEOUT_USEC);
/* if QMAN is stuck in fence no need to check for stop */
if (rc)
return 0;
}
rc = hl_poll_timeout(
hdev,
glbl_sts0_reg,
status,
(status & TPC0_QM_GLBL_STS0_CP_IS_STOP_MASK),
1000,
QMAN_STOP_TIMEOUT_USEC);
if (rc) {
dev_err(hdev->dev,
"Timeout while waiting for QMAN to stop\n");
return -EINVAL;
}
return 0;
}
/*
* goya_stop_external_queues - Stop external queues
*
* @hdev: pointer to hl_device structure
*
* Returns 0 on success
*
*/
static int goya_stop_external_queues(struct hl_device *hdev)
{
int rc, retval = 0;
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_DMA))
return retval;
rc = goya_stop_queue(hdev,
mmDMA_QM_0_GLBL_CFG1,
mmDMA_QM_0_CP_STS,
mmDMA_QM_0_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 0\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmDMA_QM_1_GLBL_CFG1,
mmDMA_QM_1_CP_STS,
mmDMA_QM_1_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 1\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmDMA_QM_2_GLBL_CFG1,
mmDMA_QM_2_CP_STS,
mmDMA_QM_2_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 2\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmDMA_QM_3_GLBL_CFG1,
mmDMA_QM_3_CP_STS,
mmDMA_QM_3_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 3\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmDMA_QM_4_GLBL_CFG1,
mmDMA_QM_4_CP_STS,
mmDMA_QM_4_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 4\n");
retval = -EIO;
}
return retval;
}
/*
* goya_init_cpu_queues - Initialize PQ/CQ/EQ of CPU
*
* @hdev: pointer to hl_device structure
*
* Returns 0 on success
*
*/
int goya_init_cpu_queues(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
struct hl_eq *eq;
u32 status;
struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GOYA_QUEUE_ID_CPU_PQ];
int err;
if (!hdev->cpu_queues_enable)
return 0;
if (goya->hw_cap_initialized & HW_CAP_CPU_Q)
return 0;
eq = &hdev->event_queue;
WREG32(mmCPU_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address));
WREG32(mmCPU_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address));
WREG32(mmCPU_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address));
WREG32(mmCPU_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address));
WREG32(mmCPU_CQ_BASE_ADDR_LOW,
lower_32_bits(VA_CPU_ACCESSIBLE_MEM_ADDR));
WREG32(mmCPU_CQ_BASE_ADDR_HIGH,
upper_32_bits(VA_CPU_ACCESSIBLE_MEM_ADDR));
WREG32(mmCPU_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES);
WREG32(mmCPU_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES);
WREG32(mmCPU_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE);
/* Used for EQ CI */
WREG32(mmCPU_EQ_CI, 0);
WREG32(mmCPU_IF_PF_PQ_PI, 0);
WREG32(mmCPU_PQ_INIT_STATUS, PQ_INIT_STATUS_READY_FOR_CP);
WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
GOYA_ASYNC_EVENT_ID_PI_UPDATE);
err = hl_poll_timeout(
hdev,
mmCPU_PQ_INIT_STATUS,
status,
(status == PQ_INIT_STATUS_READY_FOR_HOST),
1000,
GOYA_CPU_TIMEOUT_USEC);
if (err) {
dev_err(hdev->dev,
"Failed to setup communication with device CPU\n");
return -EIO;
}
goya->hw_cap_initialized |= HW_CAP_CPU_Q;
return 0;
}
static void goya_set_pll_refclk(struct hl_device *hdev)
{
WREG32(mmCPU_PLL_DIV_SEL_0, 0x0);
WREG32(mmCPU_PLL_DIV_SEL_1, 0x0);
WREG32(mmCPU_PLL_DIV_SEL_2, 0x0);
WREG32(mmCPU_PLL_DIV_SEL_3, 0x0);
WREG32(mmIC_PLL_DIV_SEL_0, 0x0);
WREG32(mmIC_PLL_DIV_SEL_1, 0x0);
WREG32(mmIC_PLL_DIV_SEL_2, 0x0);
WREG32(mmIC_PLL_DIV_SEL_3, 0x0);
WREG32(mmMC_PLL_DIV_SEL_0, 0x0);
WREG32(mmMC_PLL_DIV_SEL_1, 0x0);
WREG32(mmMC_PLL_DIV_SEL_2, 0x0);
WREG32(mmMC_PLL_DIV_SEL_3, 0x0);
WREG32(mmPSOC_MME_PLL_DIV_SEL_0, 0x0);
WREG32(mmPSOC_MME_PLL_DIV_SEL_1, 0x0);
WREG32(mmPSOC_MME_PLL_DIV_SEL_2, 0x0);
WREG32(mmPSOC_MME_PLL_DIV_SEL_3, 0x0);
WREG32(mmPSOC_PCI_PLL_DIV_SEL_0, 0x0);
WREG32(mmPSOC_PCI_PLL_DIV_SEL_1, 0x0);
WREG32(mmPSOC_PCI_PLL_DIV_SEL_2, 0x0);
WREG32(mmPSOC_PCI_PLL_DIV_SEL_3, 0x0);
WREG32(mmPSOC_EMMC_PLL_DIV_SEL_0, 0x0);
WREG32(mmPSOC_EMMC_PLL_DIV_SEL_1, 0x0);
WREG32(mmPSOC_EMMC_PLL_DIV_SEL_2, 0x0);
WREG32(mmPSOC_EMMC_PLL_DIV_SEL_3, 0x0);
WREG32(mmTPC_PLL_DIV_SEL_0, 0x0);
WREG32(mmTPC_PLL_DIV_SEL_1, 0x0);
WREG32(mmTPC_PLL_DIV_SEL_2, 0x0);
WREG32(mmTPC_PLL_DIV_SEL_3, 0x0);
}
static void goya_disable_clk_rlx(struct hl_device *hdev)
{
WREG32(mmPSOC_MME_PLL_CLK_RLX_0, 0x100010);
WREG32(mmIC_PLL_CLK_RLX_0, 0x100010);
}
static void _goya_tpc_mbist_workaround(struct hl_device *hdev, u8 tpc_id)
{
u64 tpc_eml_address;
u32 val, tpc_offset, tpc_eml_offset, tpc_slm_offset;
int err, slm_index;
tpc_offset = tpc_id * 0x40000;
tpc_eml_offset = tpc_id * 0x200000;
tpc_eml_address = (mmTPC0_EML_CFG_BASE + tpc_eml_offset - CFG_BASE);
tpc_slm_offset = tpc_eml_address + 0x100000;
/*
* Workaround for Bug H2 #2443 :
* "TPC SB is not initialized on chip reset"
*/
val = RREG32(mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset);
if (val & TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_ACTIVE_MASK)
dev_warn(hdev->dev, "TPC%d MBIST ACTIVE is not cleared\n",
tpc_id);
WREG32(mmTPC0_CFG_FUNC_MBIST_PAT + tpc_offset, val & 0xFFFFF000);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_0 + tpc_offset, 0x37FF);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_1 + tpc_offset, 0x303F);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_2 + tpc_offset, 0x71FF);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_3 + tpc_offset, 0x71FF);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_4 + tpc_offset, 0x70FF);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_5 + tpc_offset, 0x70FF);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_6 + tpc_offset, 0x70FF);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_7 + tpc_offset, 0x70FF);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_8 + tpc_offset, 0x70FF);
WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_9 + tpc_offset, 0x70FF);
WREG32_OR(mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset,
1 << TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_START_SHIFT);
err = hl_poll_timeout(
hdev,
mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset,
val,
(val & TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_DONE_MASK),
1000,
HL_DEVICE_TIMEOUT_USEC);
if (err)
dev_err(hdev->dev,
"Timeout while waiting for TPC%d MBIST DONE\n", tpc_id);
WREG32_OR(mmTPC0_EML_CFG_DBG_CNT + tpc_eml_offset,
1 << TPC0_EML_CFG_DBG_CNT_CORE_RST_SHIFT);
msleep(GOYA_RESET_WAIT_MSEC);
WREG32_AND(mmTPC0_EML_CFG_DBG_CNT + tpc_eml_offset,
~(1 << TPC0_EML_CFG_DBG_CNT_CORE_RST_SHIFT));
msleep(GOYA_RESET_WAIT_MSEC);
for (slm_index = 0 ; slm_index < 256 ; slm_index++)
WREG32(tpc_slm_offset + (slm_index << 2), 0);
val = RREG32(tpc_slm_offset);
}
static void goya_tpc_mbist_workaround(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
int i;
if (hdev->pldm)
return;
if (goya->hw_cap_initialized & HW_CAP_TPC_MBIST)
return;
/* Workaround for H2 #2443 */
for (i = 0 ; i < TPC_MAX_NUM ; i++)
_goya_tpc_mbist_workaround(hdev, i);
goya->hw_cap_initialized |= HW_CAP_TPC_MBIST;
}
/*
* goya_init_golden_registers - Initialize golden registers
*
* @hdev: pointer to hl_device structure
*
* Initialize the H/W registers of the device
*
*/
static void goya_init_golden_registers(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
u32 polynom[10], tpc_intr_mask, offset;
int i;
if (goya->hw_cap_initialized & HW_CAP_GOLDEN)
return;
polynom[0] = 0x00020080;
polynom[1] = 0x00401000;
polynom[2] = 0x00200800;
polynom[3] = 0x00002000;
polynom[4] = 0x00080200;
polynom[5] = 0x00040100;
polynom[6] = 0x00100400;
polynom[7] = 0x00004000;
polynom[8] = 0x00010000;
polynom[9] = 0x00008000;
/* Mask all arithmetic interrupts from TPC */
tpc_intr_mask = 0x7FFF;
for (i = 0, offset = 0 ; i < 6 ; i++, offset += 0x20000) {
WREG32(mmSRAM_Y0_X0_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
WREG32(mmSRAM_Y0_X1_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
WREG32(mmSRAM_Y0_X2_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
WREG32(mmSRAM_Y0_X3_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
WREG32(mmSRAM_Y0_X4_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_L_ARB + offset, 0x204);
WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_L_ARB + offset, 0x204);
WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_L_ARB + offset, 0x204);
WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_L_ARB + offset, 0x204);
WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_L_ARB + offset, 0x204);
WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_E_ARB + offset, 0x206);
WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_E_ARB + offset, 0x206);
WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_E_ARB + offset, 0x206);
WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_E_ARB + offset, 0x207);
WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_E_ARB + offset, 0x207);
WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_W_ARB + offset, 0x207);
WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_W_ARB + offset, 0x207);
WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_W_ARB + offset, 0x206);
WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_W_ARB + offset, 0x206);
WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_W_ARB + offset, 0x206);
WREG32(mmSRAM_Y0_X0_RTR_HBW_WR_RS_E_ARB + offset, 0x101);
WREG32(mmSRAM_Y0_X1_RTR_HBW_WR_RS_E_ARB + offset, 0x102);
WREG32(mmSRAM_Y0_X2_RTR_HBW_WR_RS_E_ARB + offset, 0x103);
WREG32(mmSRAM_Y0_X3_RTR_HBW_WR_RS_E_ARB + offset, 0x104);
WREG32(mmSRAM_Y0_X4_RTR_HBW_WR_RS_E_ARB + offset, 0x105);
WREG32(mmSRAM_Y0_X0_RTR_HBW_WR_RS_W_ARB + offset, 0x105);
WREG32(mmSRAM_Y0_X1_RTR_HBW_WR_RS_W_ARB + offset, 0x104);
WREG32(mmSRAM_Y0_X2_RTR_HBW_WR_RS_W_ARB + offset, 0x103);
WREG32(mmSRAM_Y0_X3_RTR_HBW_WR_RS_W_ARB + offset, 0x102);
WREG32(mmSRAM_Y0_X4_RTR_HBW_WR_RS_W_ARB + offset, 0x101);
}
WREG32(mmMME_STORE_MAX_CREDIT, 0x21);
WREG32(mmMME_AGU, 0x0f0f0f10);
WREG32(mmMME_SEI_MASK, ~0x0);
WREG32(mmMME6_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
WREG32(mmMME5_RTR_HBW_RD_RQ_N_ARB, 0x01040101);
WREG32(mmMME4_RTR_HBW_RD_RQ_N_ARB, 0x01030101);
WREG32(mmMME3_RTR_HBW_RD_RQ_N_ARB, 0x01020101);
WREG32(mmMME2_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
WREG32(mmMME1_RTR_HBW_RD_RQ_N_ARB, 0x07010701);
WREG32(mmMME6_RTR_HBW_RD_RQ_S_ARB, 0x04010401);
WREG32(mmMME5_RTR_HBW_RD_RQ_S_ARB, 0x04050401);
WREG32(mmMME4_RTR_HBW_RD_RQ_S_ARB, 0x03070301);
WREG32(mmMME3_RTR_HBW_RD_RQ_S_ARB, 0x01030101);
WREG32(mmMME2_RTR_HBW_RD_RQ_S_ARB, 0x01040101);
WREG32(mmMME1_RTR_HBW_RD_RQ_S_ARB, 0x01050105);
WREG32(mmMME6_RTR_HBW_RD_RQ_W_ARB, 0x01010501);
WREG32(mmMME5_RTR_HBW_RD_RQ_W_ARB, 0x01010501);
WREG32(mmMME4_RTR_HBW_RD_RQ_W_ARB, 0x01040301);
WREG32(mmMME3_RTR_HBW_RD_RQ_W_ARB, 0x01030401);
WREG32(mmMME2_RTR_HBW_RD_RQ_W_ARB, 0x01040101);
WREG32(mmMME1_RTR_HBW_RD_RQ_W_ARB, 0x01050101);
WREG32(mmMME6_RTR_HBW_WR_RQ_N_ARB, 0x02020202);
WREG32(mmMME5_RTR_HBW_WR_RQ_N_ARB, 0x01070101);
WREG32(mmMME4_RTR_HBW_WR_RQ_N_ARB, 0x02020201);
WREG32(mmMME3_RTR_HBW_WR_RQ_N_ARB, 0x07020701);
WREG32(mmMME2_RTR_HBW_WR_RQ_N_ARB, 0x01020101);
WREG32(mmMME1_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
WREG32(mmMME6_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
WREG32(mmMME5_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
WREG32(mmMME4_RTR_HBW_WR_RQ_S_ARB, 0x07020701);
WREG32(mmMME3_RTR_HBW_WR_RQ_S_ARB, 0x02020201);
WREG32(mmMME2_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
WREG32(mmMME1_RTR_HBW_WR_RQ_S_ARB, 0x01020102);
WREG32(mmMME6_RTR_HBW_WR_RQ_W_ARB, 0x01020701);
WREG32(mmMME5_RTR_HBW_WR_RQ_W_ARB, 0x01020701);
WREG32(mmMME4_RTR_HBW_WR_RQ_W_ARB, 0x07020707);
WREG32(mmMME3_RTR_HBW_WR_RQ_W_ARB, 0x01020201);
WREG32(mmMME2_RTR_HBW_WR_RQ_W_ARB, 0x01070201);
WREG32(mmMME1_RTR_HBW_WR_RQ_W_ARB, 0x01070201);
WREG32(mmMME6_RTR_HBW_RD_RS_N_ARB, 0x01070102);
WREG32(mmMME5_RTR_HBW_RD_RS_N_ARB, 0x01070102);
WREG32(mmMME4_RTR_HBW_RD_RS_N_ARB, 0x01060102);
WREG32(mmMME3_RTR_HBW_RD_RS_N_ARB, 0x01040102);
WREG32(mmMME2_RTR_HBW_RD_RS_N_ARB, 0x01020102);
WREG32(mmMME1_RTR_HBW_RD_RS_N_ARB, 0x01020107);
WREG32(mmMME6_RTR_HBW_RD_RS_S_ARB, 0x01020106);
WREG32(mmMME5_RTR_HBW_RD_RS_S_ARB, 0x01020102);
WREG32(mmMME4_RTR_HBW_RD_RS_S_ARB, 0x01040102);
WREG32(mmMME3_RTR_HBW_RD_RS_S_ARB, 0x01060102);
WREG32(mmMME2_RTR_HBW_RD_RS_S_ARB, 0x01070102);
WREG32(mmMME1_RTR_HBW_RD_RS_S_ARB, 0x01070102);
WREG32(mmMME6_RTR_HBW_RD_RS_E_ARB, 0x01020702);
WREG32(mmMME5_RTR_HBW_RD_RS_E_ARB, 0x01020702);
WREG32(mmMME4_RTR_HBW_RD_RS_E_ARB, 0x01040602);
WREG32(mmMME3_RTR_HBW_RD_RS_E_ARB, 0x01060402);
WREG32(mmMME2_RTR_HBW_RD_RS_E_ARB, 0x01070202);
WREG32(mmMME1_RTR_HBW_RD_RS_E_ARB, 0x01070102);
WREG32(mmMME6_RTR_HBW_RD_RS_W_ARB, 0x01060401);
WREG32(mmMME5_RTR_HBW_RD_RS_W_ARB, 0x01060401);
WREG32(mmMME4_RTR_HBW_RD_RS_W_ARB, 0x01060401);
WREG32(mmMME3_RTR_HBW_RD_RS_W_ARB, 0x01060401);
WREG32(mmMME2_RTR_HBW_RD_RS_W_ARB, 0x01060401);
WREG32(mmMME1_RTR_HBW_RD_RS_W_ARB, 0x01060401);
WREG32(mmMME6_RTR_HBW_WR_RS_N_ARB, 0x01050101);
WREG32(mmMME5_RTR_HBW_WR_RS_N_ARB, 0x01040101);
WREG32(mmMME4_RTR_HBW_WR_RS_N_ARB, 0x01030101);
WREG32(mmMME3_RTR_HBW_WR_RS_N_ARB, 0x01020101);
WREG32(mmMME2_RTR_HBW_WR_RS_N_ARB, 0x01010101);
WREG32(mmMME1_RTR_HBW_WR_RS_N_ARB, 0x01010107);
WREG32(mmMME6_RTR_HBW_WR_RS_S_ARB, 0x01010107);
WREG32(mmMME5_RTR_HBW_WR_RS_S_ARB, 0x01010101);
WREG32(mmMME4_RTR_HBW_WR_RS_S_ARB, 0x01020101);
WREG32(mmMME3_RTR_HBW_WR_RS_S_ARB, 0x01030101);
WREG32(mmMME2_RTR_HBW_WR_RS_S_ARB, 0x01040101);
WREG32(mmMME1_RTR_HBW_WR_RS_S_ARB, 0x01050101);
WREG32(mmMME6_RTR_HBW_WR_RS_E_ARB, 0x01010501);
WREG32(mmMME5_RTR_HBW_WR_RS_E_ARB, 0x01010501);
WREG32(mmMME4_RTR_HBW_WR_RS_E_ARB, 0x01040301);
WREG32(mmMME3_RTR_HBW_WR_RS_E_ARB, 0x01030401);
WREG32(mmMME2_RTR_HBW_WR_RS_E_ARB, 0x01040101);
WREG32(mmMME1_RTR_HBW_WR_RS_E_ARB, 0x01050101);
WREG32(mmMME6_RTR_HBW_WR_RS_W_ARB, 0x01010101);
WREG32(mmMME5_RTR_HBW_WR_RS_W_ARB, 0x01010101);
WREG32(mmMME4_RTR_HBW_WR_RS_W_ARB, 0x01010101);
WREG32(mmMME3_RTR_HBW_WR_RS_W_ARB, 0x01010101);
WREG32(mmMME2_RTR_HBW_WR_RS_W_ARB, 0x01010101);
WREG32(mmMME1_RTR_HBW_WR_RS_W_ARB, 0x01010101);
WREG32(mmTPC1_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
WREG32(mmTPC1_RTR_HBW_RD_RQ_S_ARB, 0x01010101);
WREG32(mmTPC1_RTR_HBW_RD_RQ_E_ARB, 0x01060101);
WREG32(mmTPC1_RTR_HBW_WR_RQ_N_ARB, 0x02020102);
WREG32(mmTPC1_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
WREG32(mmTPC1_RTR_HBW_WR_RQ_E_ARB, 0x02070202);
WREG32(mmTPC1_RTR_HBW_RD_RS_N_ARB, 0x01020201);
WREG32(mmTPC1_RTR_HBW_RD_RS_S_ARB, 0x01070201);
WREG32(mmTPC1_RTR_HBW_RD_RS_W_ARB, 0x01070202);
WREG32(mmTPC1_RTR_HBW_WR_RS_N_ARB, 0x01010101);
WREG32(mmTPC1_RTR_HBW_WR_RS_S_ARB, 0x01050101);
WREG32(mmTPC1_RTR_HBW_WR_RS_W_ARB, 0x01050101);
WREG32(mmTPC2_RTR_HBW_RD_RQ_N_ARB, 0x01020101);
WREG32(mmTPC2_RTR_HBW_RD_RQ_S_ARB, 0x01050101);
WREG32(mmTPC2_RTR_HBW_RD_RQ_E_ARB, 0x01010201);
WREG32(mmTPC2_RTR_HBW_WR_RQ_N_ARB, 0x02040102);
WREG32(mmTPC2_RTR_HBW_WR_RQ_S_ARB, 0x01050101);
WREG32(mmTPC2_RTR_HBW_WR_RQ_E_ARB, 0x02060202);
WREG32(mmTPC2_RTR_HBW_RD_RS_N_ARB, 0x01020201);
WREG32(mmTPC2_RTR_HBW_RD_RS_S_ARB, 0x01070201);
WREG32(mmTPC2_RTR_HBW_RD_RS_W_ARB, 0x01070202);
WREG32(mmTPC2_RTR_HBW_WR_RS_N_ARB, 0x01010101);
WREG32(mmTPC2_RTR_HBW_WR_RS_S_ARB, 0x01040101);
WREG32(mmTPC2_RTR_HBW_WR_RS_W_ARB, 0x01040101);
WREG32(mmTPC3_RTR_HBW_RD_RQ_N_ARB, 0x01030101);
WREG32(mmTPC3_RTR_HBW_RD_RQ_S_ARB, 0x01040101);
WREG32(mmTPC3_RTR_HBW_RD_RQ_E_ARB, 0x01040301);
WREG32(mmTPC3_RTR_HBW_WR_RQ_N_ARB, 0x02060102);
WREG32(mmTPC3_RTR_HBW_WR_RQ_S_ARB, 0x01040101);
WREG32(mmTPC3_RTR_HBW_WR_RQ_E_ARB, 0x01040301);
WREG32(mmTPC3_RTR_HBW_RD_RS_N_ARB, 0x01040201);
WREG32(mmTPC3_RTR_HBW_RD_RS_S_ARB, 0x01060201);
WREG32(mmTPC3_RTR_HBW_RD_RS_W_ARB, 0x01060402);
WREG32(mmTPC3_RTR_HBW_WR_RS_N_ARB, 0x01020101);
WREG32(mmTPC3_RTR_HBW_WR_RS_S_ARB, 0x01030101);
WREG32(mmTPC3_RTR_HBW_WR_RS_W_ARB, 0x01030401);
WREG32(mmTPC4_RTR_HBW_RD_RQ_N_ARB, 0x01040101);
WREG32(mmTPC4_RTR_HBW_RD_RQ_S_ARB, 0x01030101);
WREG32(mmTPC4_RTR_HBW_RD_RQ_E_ARB, 0x01030401);
WREG32(mmTPC4_RTR_HBW_WR_RQ_N_ARB, 0x02070102);
WREG32(mmTPC4_RTR_HBW_WR_RQ_S_ARB, 0x01030101);
WREG32(mmTPC4_RTR_HBW_WR_RQ_E_ARB, 0x02060702);
WREG32(mmTPC4_RTR_HBW_RD_RS_N_ARB, 0x01060201);
WREG32(mmTPC4_RTR_HBW_RD_RS_S_ARB, 0x01040201);
WREG32(mmTPC4_RTR_HBW_RD_RS_W_ARB, 0x01040602);
WREG32(mmTPC4_RTR_HBW_WR_RS_N_ARB, 0x01030101);
WREG32(mmTPC4_RTR_HBW_WR_RS_S_ARB, 0x01020101);
WREG32(mmTPC4_RTR_HBW_WR_RS_W_ARB, 0x01040301);
WREG32(mmTPC5_RTR_HBW_RD_RQ_N_ARB, 0x01050101);
WREG32(mmTPC5_RTR_HBW_RD_RQ_S_ARB, 0x01020101);
WREG32(mmTPC5_RTR_HBW_RD_RQ_E_ARB, 0x01200501);
WREG32(mmTPC5_RTR_HBW_WR_RQ_N_ARB, 0x02070102);
WREG32(mmTPC5_RTR_HBW_WR_RQ_S_ARB, 0x01020101);
WREG32(mmTPC5_RTR_HBW_WR_RQ_E_ARB, 0x02020602);
WREG32(mmTPC5_RTR_HBW_RD_RS_N_ARB, 0x01070201);
WREG32(mmTPC5_RTR_HBW_RD_RS_S_ARB, 0x01020201);
WREG32(mmTPC5_RTR_HBW_RD_RS_W_ARB, 0x01020702);
WREG32(mmTPC5_RTR_HBW_WR_RS_N_ARB, 0x01040101);
WREG32(mmTPC5_RTR_HBW_WR_RS_S_ARB, 0x01010101);
WREG32(mmTPC5_RTR_HBW_WR_RS_W_ARB, 0x01010501);
WREG32(mmTPC6_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
WREG32(mmTPC6_RTR_HBW_RD_RQ_S_ARB, 0x01010101);
WREG32(mmTPC6_RTR_HBW_RD_RQ_E_ARB, 0x01010601);
WREG32(mmTPC6_RTR_HBW_WR_RQ_N_ARB, 0x01010101);
WREG32(mmTPC6_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
WREG32(mmTPC6_RTR_HBW_WR_RQ_E_ARB, 0x02020702);
WREG32(mmTPC6_RTR_HBW_RD_RS_N_ARB, 0x01010101);
WREG32(mmTPC6_RTR_HBW_RD_RS_S_ARB, 0x01010101);
WREG32(mmTPC6_RTR_HBW_RD_RS_W_ARB, 0x01020702);
WREG32(mmTPC6_RTR_HBW_WR_RS_N_ARB, 0x01050101);
WREG32(mmTPC6_RTR_HBW_WR_RS_S_ARB, 0x01010101);
WREG32(mmTPC6_RTR_HBW_WR_RS_W_ARB, 0x01010501);
for (i = 0, offset = 0 ; i < 10 ; i++, offset += 4) {
WREG32(mmMME1_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmMME2_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmMME3_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmMME4_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmMME5_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmMME6_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmTPC0_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmTPC1_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmTPC2_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmTPC3_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmTPC4_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmTPC5_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmTPC6_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmTPC7_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmPCI_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
WREG32(mmDMA_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
}
for (i = 0, offset = 0 ; i < 6 ; i++, offset += 0x40000) {
WREG32(mmMME1_RTR_SCRAMB_EN + offset,
1 << MME1_RTR_SCRAMB_EN_VAL_SHIFT);
WREG32(mmMME1_RTR_NON_LIN_SCRAMB + offset,
1 << MME1_RTR_NON_LIN_SCRAMB_EN_SHIFT);
}
for (i = 0, offset = 0 ; i < 8 ; i++, offset += 0x40000) {
/*
* Workaround for Bug H2 #2441 :
* "ST.NOP set trace event illegal opcode"
*/
WREG32(mmTPC0_CFG_TPC_INTR_MASK + offset, tpc_intr_mask);
WREG32(mmTPC0_NRTR_SCRAMB_EN + offset,
1 << TPC0_NRTR_SCRAMB_EN_VAL_SHIFT);
WREG32(mmTPC0_NRTR_NON_LIN_SCRAMB + offset,
1 << TPC0_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
WREG32_FIELD(TPC0_CFG_MSS_CONFIG, offset,
ICACHE_FETCH_LINE_NUM, 2);
}
WREG32(mmDMA_NRTR_SCRAMB_EN, 1 << DMA_NRTR_SCRAMB_EN_VAL_SHIFT);
WREG32(mmDMA_NRTR_NON_LIN_SCRAMB,
1 << DMA_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
WREG32(mmPCI_NRTR_SCRAMB_EN, 1 << PCI_NRTR_SCRAMB_EN_VAL_SHIFT);
WREG32(mmPCI_NRTR_NON_LIN_SCRAMB,
1 << PCI_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
/*
* Workaround for H2 #HW-23 bug
* Set DMA max outstanding read requests to 240 on DMA CH 1.
* This limitation is still large enough to not affect Gen4 bandwidth.
* We need to only limit that DMA channel because the user can only read
* from Host using DMA CH 1
*/
WREG32(mmDMA_CH_1_CFG0, 0x0fff00F0);
WREG32(mmTPC_PLL_CLK_RLX_0, 0x200020);
goya->hw_cap_initialized |= HW_CAP_GOLDEN;
}
static void goya_init_mme_qman(struct hl_device *hdev)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u64 qman_base_addr;
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
qman_base_addr = hdev->asic_prop.sram_base_address +
MME_QMAN_BASE_OFFSET;
WREG32(mmMME_QM_PQ_BASE_LO, lower_32_bits(qman_base_addr));
WREG32(mmMME_QM_PQ_BASE_HI, upper_32_bits(qman_base_addr));
WREG32(mmMME_QM_PQ_SIZE, ilog2(MME_QMAN_LENGTH));
WREG32(mmMME_QM_PQ_PI, 0);
WREG32(mmMME_QM_PQ_CI, 0);
WREG32(mmMME_QM_CP_LDMA_SRC_BASE_LO_OFFSET, 0x10C0);
WREG32(mmMME_QM_CP_LDMA_SRC_BASE_HI_OFFSET, 0x10C4);
WREG32(mmMME_QM_CP_LDMA_TSIZE_OFFSET, 0x10C8);
WREG32(mmMME_QM_CP_LDMA_COMMIT_OFFSET, 0x10CC);
WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_LO, mtr_base_lo);
WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_HI, mtr_base_hi);
WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_LO, so_base_lo);
WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_HI, so_base_hi);
/* QMAN CQ has 8 cache lines */
WREG32(mmMME_QM_CQ_CFG1, 0x00080008);
WREG32(mmMME_QM_GLBL_ERR_ADDR_LO, gic_base_lo);
WREG32(mmMME_QM_GLBL_ERR_ADDR_HI, gic_base_hi);
WREG32(mmMME_QM_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_QM);
WREG32(mmMME_QM_GLBL_ERR_CFG, QMAN_MME_ERR_MSG_EN);
WREG32(mmMME_QM_GLBL_PROT, QMAN_MME_ERR_PROT);
WREG32(mmMME_QM_GLBL_CFG0, QMAN_MME_ENABLE);
}
static void goya_init_mme_cmdq(struct hl_device *hdev)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_LO, mtr_base_lo);
WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_HI, mtr_base_hi);
WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_LO, so_base_lo);
WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_HI, so_base_hi);
/* CMDQ CQ has 20 cache lines */
WREG32(mmMME_CMDQ_CQ_CFG1, 0x00140014);
WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_LO, gic_base_lo);
WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_HI, gic_base_hi);
WREG32(mmMME_CMDQ_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_CMDQ);
WREG32(mmMME_CMDQ_GLBL_ERR_CFG, CMDQ_MME_ERR_MSG_EN);
WREG32(mmMME_CMDQ_GLBL_PROT, CMDQ_MME_ERR_PROT);
WREG32(mmMME_CMDQ_GLBL_CFG0, CMDQ_MME_ENABLE);
}
void goya_init_mme_qmans(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
u32 so_base_lo, so_base_hi;
if (goya->hw_cap_initialized & HW_CAP_MME)
return;
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
WREG32(mmMME_SM_BASE_ADDRESS_LOW, so_base_lo);
WREG32(mmMME_SM_BASE_ADDRESS_HIGH, so_base_hi);
goya_init_mme_qman(hdev);
goya_init_mme_cmdq(hdev);
goya->hw_cap_initialized |= HW_CAP_MME;
}
static void goya_init_tpc_qman(struct hl_device *hdev, u32 base_off, int tpc_id)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u64 qman_base_addr;
u32 reg_off = tpc_id * (mmTPC1_QM_PQ_PI - mmTPC0_QM_PQ_PI);
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
qman_base_addr = hdev->asic_prop.sram_base_address + base_off;
WREG32(mmTPC0_QM_PQ_BASE_LO + reg_off, lower_32_bits(qman_base_addr));
WREG32(mmTPC0_QM_PQ_BASE_HI + reg_off, upper_32_bits(qman_base_addr));
WREG32(mmTPC0_QM_PQ_SIZE + reg_off, ilog2(TPC_QMAN_LENGTH));
WREG32(mmTPC0_QM_PQ_PI + reg_off, 0);
WREG32(mmTPC0_QM_PQ_CI + reg_off, 0);
WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET + reg_off, 0x10C0);
WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_HI_OFFSET + reg_off, 0x10C4);
WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET + reg_off, 0x10C8);
WREG32(mmTPC0_QM_CP_LDMA_COMMIT_OFFSET + reg_off, 0x10CC);
WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
WREG32(mmTPC0_QM_CQ_CFG1 + reg_off, 0x00080008);
WREG32(mmTPC0_QM_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
WREG32(mmTPC0_QM_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
WREG32(mmTPC0_QM_GLBL_ERR_WDATA + reg_off,
GOYA_ASYNC_EVENT_ID_TPC0_QM + tpc_id);
WREG32(mmTPC0_QM_GLBL_ERR_CFG + reg_off, QMAN_TPC_ERR_MSG_EN);
WREG32(mmTPC0_QM_GLBL_PROT + reg_off, QMAN_TPC_ERR_PROT);
WREG32(mmTPC0_QM_GLBL_CFG0 + reg_off, QMAN_TPC_ENABLE);
}
static void goya_init_tpc_cmdq(struct hl_device *hdev, int tpc_id)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u32 reg_off = tpc_id * (mmTPC1_CMDQ_CQ_CFG1 - mmTPC0_CMDQ_CQ_CFG1);
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
WREG32(mmTPC0_CMDQ_CQ_CFG1 + reg_off, 0x00140014);
WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
WREG32(mmTPC0_CMDQ_GLBL_ERR_WDATA + reg_off,
GOYA_ASYNC_EVENT_ID_TPC0_CMDQ + tpc_id);
WREG32(mmTPC0_CMDQ_GLBL_ERR_CFG + reg_off, CMDQ_TPC_ERR_MSG_EN);
WREG32(mmTPC0_CMDQ_GLBL_PROT + reg_off, CMDQ_TPC_ERR_PROT);
WREG32(mmTPC0_CMDQ_GLBL_CFG0 + reg_off, CMDQ_TPC_ENABLE);
}
void goya_init_tpc_qmans(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
u32 so_base_lo, so_base_hi;
u32 cfg_off = mmTPC1_CFG_SM_BASE_ADDRESS_LOW -
mmTPC0_CFG_SM_BASE_ADDRESS_LOW;
int i;
if (goya->hw_cap_initialized & HW_CAP_TPC)
return;
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
for (i = 0 ; i < TPC_MAX_NUM ; i++) {
WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_LOW + i * cfg_off,
so_base_lo);
WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_HIGH + i * cfg_off,
so_base_hi);
}
goya_init_tpc_qman(hdev, TPC0_QMAN_BASE_OFFSET, 0);
goya_init_tpc_qman(hdev, TPC1_QMAN_BASE_OFFSET, 1);
goya_init_tpc_qman(hdev, TPC2_QMAN_BASE_OFFSET, 2);
goya_init_tpc_qman(hdev, TPC3_QMAN_BASE_OFFSET, 3);
goya_init_tpc_qman(hdev, TPC4_QMAN_BASE_OFFSET, 4);
goya_init_tpc_qman(hdev, TPC5_QMAN_BASE_OFFSET, 5);
goya_init_tpc_qman(hdev, TPC6_QMAN_BASE_OFFSET, 6);
goya_init_tpc_qman(hdev, TPC7_QMAN_BASE_OFFSET, 7);
for (i = 0 ; i < TPC_MAX_NUM ; i++)
goya_init_tpc_cmdq(hdev, i);
goya->hw_cap_initialized |= HW_CAP_TPC;
}
/*
* goya_disable_internal_queues - Disable internal queues
*
* @hdev: pointer to hl_device structure
*
*/
static void goya_disable_internal_queues(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_MME))
goto disable_tpc;
WREG32(mmMME_QM_GLBL_CFG0, 0);
WREG32(mmMME_CMDQ_GLBL_CFG0, 0);
disable_tpc:
if (!(goya->hw_cap_initialized & HW_CAP_TPC))
return;
WREG32(mmTPC0_QM_GLBL_CFG0, 0);
WREG32(mmTPC0_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC1_QM_GLBL_CFG0, 0);
WREG32(mmTPC1_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC2_QM_GLBL_CFG0, 0);
WREG32(mmTPC2_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC3_QM_GLBL_CFG0, 0);
WREG32(mmTPC3_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC4_QM_GLBL_CFG0, 0);
WREG32(mmTPC4_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC5_QM_GLBL_CFG0, 0);
WREG32(mmTPC5_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC6_QM_GLBL_CFG0, 0);
WREG32(mmTPC6_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC7_QM_GLBL_CFG0, 0);
WREG32(mmTPC7_CMDQ_GLBL_CFG0, 0);
}
/*
* goya_stop_internal_queues - Stop internal queues
*
* @hdev: pointer to hl_device structure
*
* Returns 0 on success
*
*/
static int goya_stop_internal_queues(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
int rc, retval = 0;
if (!(goya->hw_cap_initialized & HW_CAP_MME))
goto stop_tpc;
/*
* Each queue (QMAN) is a separate H/W logic. That means that each
* QMAN can be stopped independently and failure to stop one does NOT
* mandate we should not try to stop other QMANs
*/
rc = goya_stop_queue(hdev,
mmMME_QM_GLBL_CFG1,
mmMME_QM_CP_STS,
mmMME_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop MME QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmMME_CMDQ_GLBL_CFG1,
mmMME_CMDQ_CP_STS,
mmMME_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop MME CMDQ\n");
retval = -EIO;
}
stop_tpc:
if (!(goya->hw_cap_initialized & HW_CAP_TPC))
return retval;
rc = goya_stop_queue(hdev,
mmTPC0_QM_GLBL_CFG1,
mmTPC0_QM_CP_STS,
mmTPC0_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 0 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC0_CMDQ_GLBL_CFG1,
mmTPC0_CMDQ_CP_STS,
mmTPC0_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 0 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC1_QM_GLBL_CFG1,
mmTPC1_QM_CP_STS,
mmTPC1_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 1 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC1_CMDQ_GLBL_CFG1,
mmTPC1_CMDQ_CP_STS,
mmTPC1_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 1 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC2_QM_GLBL_CFG1,
mmTPC2_QM_CP_STS,
mmTPC2_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 2 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC2_CMDQ_GLBL_CFG1,
mmTPC2_CMDQ_CP_STS,
mmTPC2_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 2 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC3_QM_GLBL_CFG1,
mmTPC3_QM_CP_STS,
mmTPC3_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 3 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC3_CMDQ_GLBL_CFG1,
mmTPC3_CMDQ_CP_STS,
mmTPC3_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 3 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC4_QM_GLBL_CFG1,
mmTPC4_QM_CP_STS,
mmTPC4_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 4 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC4_CMDQ_GLBL_CFG1,
mmTPC4_CMDQ_CP_STS,
mmTPC4_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 4 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC5_QM_GLBL_CFG1,
mmTPC5_QM_CP_STS,
mmTPC5_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 5 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC5_CMDQ_GLBL_CFG1,
mmTPC5_CMDQ_CP_STS,
mmTPC5_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 5 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC6_QM_GLBL_CFG1,
mmTPC6_QM_CP_STS,
mmTPC6_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 6 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC6_CMDQ_GLBL_CFG1,
mmTPC6_CMDQ_CP_STS,
mmTPC6_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 6 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC7_QM_GLBL_CFG1,
mmTPC7_QM_CP_STS,
mmTPC7_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 7 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC7_CMDQ_GLBL_CFG1,
mmTPC7_CMDQ_CP_STS,
mmTPC7_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 7 CMDQ\n");
retval = -EIO;
}
return retval;
}
static void goya_dma_stall(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_DMA))
return;
WREG32(mmDMA_QM_0_GLBL_CFG1, 1 << DMA_QM_0_GLBL_CFG1_DMA_STOP_SHIFT);
WREG32(mmDMA_QM_1_GLBL_CFG1, 1 << DMA_QM_1_GLBL_CFG1_DMA_STOP_SHIFT);
WREG32(mmDMA_QM_2_GLBL_CFG1, 1 << DMA_QM_2_GLBL_CFG1_DMA_STOP_SHIFT);
WREG32(mmDMA_QM_3_GLBL_CFG1, 1 << DMA_QM_3_GLBL_CFG1_DMA_STOP_SHIFT);
WREG32(mmDMA_QM_4_GLBL_CFG1, 1 << DMA_QM_4_GLBL_CFG1_DMA_STOP_SHIFT);
}
static void goya_tpc_stall(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_TPC))
return;
WREG32(mmTPC0_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
WREG32(mmTPC1_CFG_TPC_STALL, 1 << TPC1_CFG_TPC_STALL_V_SHIFT);
WREG32(mmTPC2_CFG_TPC_STALL, 1 << TPC2_CFG_TPC_STALL_V_SHIFT);
WREG32(mmTPC3_CFG_TPC_STALL, 1 << TPC3_CFG_TPC_STALL_V_SHIFT);
WREG32(mmTPC4_CFG_TPC_STALL, 1 << TPC4_CFG_TPC_STALL_V_SHIFT);
WREG32(mmTPC5_CFG_TPC_STALL, 1 << TPC5_CFG_TPC_STALL_V_SHIFT);
WREG32(mmTPC6_CFG_TPC_STALL, 1 << TPC6_CFG_TPC_STALL_V_SHIFT);
WREG32(mmTPC7_CFG_TPC_STALL, 1 << TPC7_CFG_TPC_STALL_V_SHIFT);
}
static void goya_mme_stall(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_MME))
return;
WREG32(mmMME_STALL, 0xFFFFFFFF);
}
static int goya_enable_msix(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
int cq_cnt = hdev->asic_prop.completion_queues_count;
int rc, i, irq_cnt_init, irq;
if (goya->hw_cap_initialized & HW_CAP_MSIX)
return 0;
rc = pci_alloc_irq_vectors(hdev->pdev, GOYA_MSIX_ENTRIES,
GOYA_MSIX_ENTRIES, PCI_IRQ_MSIX);
if (rc < 0) {
dev_err(hdev->dev,
"MSI-X: Failed to enable support -- %d/%d\n",
GOYA_MSIX_ENTRIES, rc);
return rc;
}
for (i = 0, irq_cnt_init = 0 ; i < cq_cnt ; i++, irq_cnt_init++) {
irq = pci_irq_vector(hdev->pdev, i);
rc = request_irq(irq, hl_irq_handler_cq, 0, goya_irq_name[i],
&hdev->completion_queue[i]);
if (rc) {
dev_err(hdev->dev, "Failed to request IRQ %d", irq);
goto free_irqs;
}
}
irq = pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX);
rc = request_irq(irq, hl_irq_handler_eq, 0,
goya_irq_name[GOYA_EVENT_QUEUE_MSIX_IDX],
&hdev->event_queue);
if (rc) {
dev_err(hdev->dev, "Failed to request IRQ %d", irq);
goto free_irqs;
}
goya->hw_cap_initialized |= HW_CAP_MSIX;
return 0;
free_irqs:
for (i = 0 ; i < irq_cnt_init ; i++)
free_irq(pci_irq_vector(hdev->pdev, i),
&hdev->completion_queue[i]);
pci_free_irq_vectors(hdev->pdev);
return rc;
}
static void goya_sync_irqs(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
int i;
if (!(goya->hw_cap_initialized & HW_CAP_MSIX))
return;
/* Wait for all pending IRQs to be finished */
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
synchronize_irq(pci_irq_vector(hdev->pdev, i));
synchronize_irq(pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX));
}
static void goya_disable_msix(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
int i, irq;
if (!(goya->hw_cap_initialized & HW_CAP_MSIX))
return;
goya_sync_irqs(hdev);
irq = pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX);
free_irq(irq, &hdev->event_queue);
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
irq = pci_irq_vector(hdev->pdev, i);
free_irq(irq, &hdev->completion_queue[i]);
}
pci_free_irq_vectors(hdev->pdev);
goya->hw_cap_initialized &= ~HW_CAP_MSIX;
}
static void goya_enable_timestamp(struct hl_device *hdev)
{
/* Disable the timestamp counter */
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);
/* Zero the lower/upper parts of the 64-bit counter */
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0xC, 0);
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE + 0x8, 0);
/* Enable the counter */
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 1);
}
static void goya_disable_timestamp(struct hl_device *hdev)
{
/* Disable the timestamp counter */
WREG32(mmPSOC_TIMESTAMP_BASE - CFG_BASE, 0);
}
static void goya_halt_engines(struct hl_device *hdev, bool hard_reset)
{
u32 wait_timeout_ms;
dev_info(hdev->dev,
"Halting compute engines and disabling interrupts\n");
if (hdev->pldm)
wait_timeout_ms = GOYA_PLDM_RESET_WAIT_MSEC;
else
wait_timeout_ms = GOYA_RESET_WAIT_MSEC;
goya_stop_external_queues(hdev);
goya_stop_internal_queues(hdev);
msleep(wait_timeout_ms);
goya_dma_stall(hdev);
goya_tpc_stall(hdev);
goya_mme_stall(hdev);
msleep(wait_timeout_ms);
goya_disable_external_queues(hdev);
goya_disable_internal_queues(hdev);
goya_disable_timestamp(hdev);
if (hard_reset) {
goya_disable_msix(hdev);
goya_mmu_remove_device_cpu_mappings(hdev);
} else {
goya_sync_irqs(hdev);
}
}
/*
* goya_load_firmware_to_device() - Load LINUX FW code to device.
* @hdev: Pointer to hl_device structure.
*
* Copy LINUX fw code from firmware file to HBM BAR.
*
* Return: 0 on success, non-zero for failure.
*/
static int goya_load_firmware_to_device(struct hl_device *hdev)
{
void __iomem *dst;
dst = hdev->pcie_bar[DDR_BAR_ID] + LINUX_FW_OFFSET;
return hl_fw_load_fw_to_device(hdev, GOYA_LINUX_FW_FILE, dst);
}
/*
* goya_load_boot_fit_to_device() - Load boot fit to device.
* @hdev: Pointer to hl_device structure.
*
* Copy boot fit file to SRAM BAR.
*
* Return: 0 on success, non-zero for failure.
*/
static int goya_load_boot_fit_to_device(struct hl_device *hdev)
{
void __iomem *dst;
dst = hdev->pcie_bar[SRAM_CFG_BAR_ID] + BOOT_FIT_SRAM_OFFSET;
return hl_fw_load_fw_to_device(hdev, GOYA_BOOT_FIT_FILE, dst);
}
/*
* FW component passes an offset from SRAM_BASE_ADDR in SCRATCHPAD_xx.
* The version string should be located by that offset.
*/
static void goya_read_device_fw_version(struct hl_device *hdev,
enum hl_fw_component fwc)
{
const char *name;
u32 ver_off;
char *dest;
switch (fwc) {
case FW_COMP_UBOOT:
ver_off = RREG32(mmUBOOT_VER_OFFSET);
dest = hdev->asic_prop.uboot_ver;
name = "U-Boot";
break;
case FW_COMP_PREBOOT:
ver_off = RREG32(mmPREBOOT_VER_OFFSET);
dest = hdev->asic_prop.preboot_ver;
name = "Preboot";
break;
default:
dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
return;
}
ver_off &= ~((u32)SRAM_BASE_ADDR);
if (ver_off < SRAM_SIZE - VERSION_MAX_LEN) {
memcpy_fromio(dest, hdev->pcie_bar[SRAM_CFG_BAR_ID] + ver_off,
VERSION_MAX_LEN);
} else {
dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
name, ver_off);
strcpy(dest, "unavailable");
}
}
static int goya_init_cpu(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
int rc;
if (!hdev->cpu_enable)
return 0;
if (goya->hw_cap_initialized & HW_CAP_CPU)
return 0;
/*
* Before pushing u-boot/linux to device, need to set the ddr bar to
* base address of dram
*/
if (goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) {
dev_err(hdev->dev,
"failed to map DDR bar to DRAM base address\n");
return -EIO;
}
rc = hl_fw_init_cpu(hdev, mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS,
mmPSOC_GLOBAL_CONF_UBOOT_MAGIC,
mmCPU_CMD_STATUS_TO_HOST, mmCPU_BOOT_ERR0,
false, GOYA_CPU_TIMEOUT_USEC,
GOYA_BOOT_FIT_REQ_TIMEOUT_USEC);
if (rc)
return rc;
goya->hw_cap_initialized |= HW_CAP_CPU;
return 0;
}
static int goya_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid,
u64 phys_addr)
{
u32 status, timeout_usec;
int rc;
if (hdev->pldm)
timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
else
timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
WREG32(MMU_HOP0_PA43_12, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
WREG32(MMU_HOP0_PA49_44, phys_addr >> MMU_HOP0_PA49_44_SHIFT);
WREG32(MMU_ASID_BUSY, 0x80000000 | asid);
rc = hl_poll_timeout(
hdev,
MMU_ASID_BUSY,
status,
!(status & 0x80000000),
1000,
timeout_usec);
if (rc) {
dev_err(hdev->dev,
"Timeout during MMU hop0 config of asid %d\n", asid);
return rc;
}
return 0;
}
int goya_mmu_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct goya_device *goya = hdev->asic_specific;
u64 hop0_addr;
int rc, i;
if (!hdev->mmu_enable)
return 0;
if (goya->hw_cap_initialized & HW_CAP_MMU)
return 0;
hdev->dram_supports_virtual_memory = true;
hdev->dram_default_page_mapping = true;
for (i = 0 ; i < prop->max_asid ; i++) {
hop0_addr = prop->mmu_pgt_addr +
(i * prop->mmu_hop_table_size);
rc = goya_mmu_update_asid_hop0_addr(hdev, i, hop0_addr);
if (rc) {
dev_err(hdev->dev,
"failed to set hop0 addr for asid %d\n", i);
goto err;
}
}
goya->hw_cap_initialized |= HW_CAP_MMU;
/* init MMU cache manage page */
WREG32(mmSTLB_CACHE_INV_BASE_39_8,
lower_32_bits(MMU_CACHE_MNG_ADDR >> 8));
WREG32(mmSTLB_CACHE_INV_BASE_49_40, MMU_CACHE_MNG_ADDR >> 40);
/* Remove follower feature due to performance bug */
WREG32_AND(mmSTLB_STLB_FEATURE_EN,
(~STLB_STLB_FEATURE_EN_FOLLOWER_EN_MASK));
hdev->asic_funcs->mmu_invalidate_cache(hdev, true,
VM_TYPE_USERPTR | VM_TYPE_PHYS_PACK);
WREG32(mmMMU_MMU_ENABLE, 1);
WREG32(mmMMU_SPI_MASK, 0xF);
return 0;
err:
return rc;
}
/*
* goya_hw_init - Goya hardware initialization code
*
* @hdev: pointer to hl_device structure
*
* Returns 0 on success
*
*/
static int goya_hw_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
dev_info(hdev->dev, "Starting initialization of H/W\n");
/* Perform read from the device to make sure device is up */
RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
/*
* Let's mark in the H/W that we have reached this point. We check
* this value in the reset_before_init function to understand whether
* we need to reset the chip before doing H/W init. This register is
* cleared by the H/W upon H/W reset
*/
WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY);
rc = goya_init_cpu(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize CPU\n");
return rc;
}
goya_tpc_mbist_workaround(hdev);
goya_init_golden_registers(hdev);
/*
* After CPU initialization is finished, change DDR bar mapping inside
* iATU to point to the start address of the MMU page tables
*/
if (goya_set_ddr_bar_base(hdev, (MMU_PAGE_TABLES_ADDR &
~(prop->dram_pci_bar_size - 0x1ull))) == U64_MAX) {
dev_err(hdev->dev,
"failed to map DDR bar to MMU page tables\n");
return -EIO;
}
rc = goya_mmu_init(hdev);
if (rc)
return rc;
goya_init_security(hdev);
goya_init_dma_qmans(hdev);
goya_init_mme_qmans(hdev);
goya_init_tpc_qmans(hdev);
goya_enable_timestamp(hdev);
/* MSI-X must be enabled before CPU queues are initialized */
rc = goya_enable_msix(hdev);
if (rc)
goto disable_queues;
/* Perform read from the device to flush all MSI-X configuration */
RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
return 0;
disable_queues:
goya_disable_internal_queues(hdev);
goya_disable_external_queues(hdev);
return rc;
}
/*
* goya_hw_fini - Goya hardware tear-down code
*
* @hdev: pointer to hl_device structure
* @hard_reset: should we do hard reset to all engines or just reset the
* compute/dma engines
*/
static void goya_hw_fini(struct hl_device *hdev, bool hard_reset)
{
struct goya_device *goya = hdev->asic_specific;
u32 reset_timeout_ms, cpu_timeout_ms, status;
if (hdev->pldm) {
reset_timeout_ms = GOYA_PLDM_RESET_TIMEOUT_MSEC;
cpu_timeout_ms = GOYA_PLDM_RESET_WAIT_MSEC;
} else {
reset_timeout_ms = GOYA_RESET_TIMEOUT_MSEC;
cpu_timeout_ms = GOYA_CPU_RESET_WAIT_MSEC;
}
if (hard_reset) {
/* I don't know what is the state of the CPU so make sure it is
* stopped in any means necessary
*/
WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_GOTO_WFE);
WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
GOYA_ASYNC_EVENT_ID_HALT_MACHINE);
msleep(cpu_timeout_ms);
goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE);
goya_disable_clk_rlx(hdev);
goya_set_pll_refclk(hdev);
WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG, RESET_ALL);
dev_info(hdev->dev,
"Issued HARD reset command, going to wait %dms\n",
reset_timeout_ms);
} else {
WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG, DMA_MME_TPC_RESET);
dev_info(hdev->dev,
"Issued SOFT reset command, going to wait %dms\n",
reset_timeout_ms);
}
/*
* After hard reset, we can't poll the BTM_FSM register because the PSOC
* itself is in reset. In either reset we need to wait until the reset
* is deasserted
*/
msleep(reset_timeout_ms);
status = RREG32(mmPSOC_GLOBAL_CONF_BTM_FSM);
if (status & PSOC_GLOBAL_CONF_BTM_FSM_STATE_MASK)
dev_err(hdev->dev,
"Timeout while waiting for device to reset 0x%x\n",
status);
if (!hard_reset) {
goya->hw_cap_initialized &= ~(HW_CAP_DMA | HW_CAP_MME |
HW_CAP_GOLDEN | HW_CAP_TPC);
WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
GOYA_ASYNC_EVENT_ID_SOFT_RESET);
return;
}
/* Chicken bit to re-initiate boot sequencer flow */
WREG32(mmPSOC_GLOBAL_CONF_BOOT_SEQ_RE_START,
1 << PSOC_GLOBAL_CONF_BOOT_SEQ_RE_START_IND_SHIFT);
/* Move boot manager FSM to pre boot sequencer init state */
WREG32(mmPSOC_GLOBAL_CONF_SW_BTM_FSM,
0xA << PSOC_GLOBAL_CONF_SW_BTM_FSM_CTRL_SHIFT);
goya->hw_cap_initialized &= ~(HW_CAP_CPU | HW_CAP_CPU_Q |
HW_CAP_DDR_0 | HW_CAP_DDR_1 |
HW_CAP_DMA | HW_CAP_MME |
HW_CAP_MMU | HW_CAP_TPC_MBIST |
HW_CAP_GOLDEN | HW_CAP_TPC);
memset(goya->events_stat, 0, sizeof(goya->events_stat));
}
int goya_suspend(struct hl_device *hdev)
{
int rc;
rc = hl_fw_send_pci_access_msg(hdev, ARMCP_PACKET_DISABLE_PCI_ACCESS);
if (rc)
dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");
return rc;
}
int goya_resume(struct hl_device *hdev)
{
return goya_init_iatu(hdev);
}
static int goya_cb_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
u64 kaddress, phys_addr_t paddress, u32 size)
{
int rc;
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
VM_DONTCOPY | VM_NORESERVE;
rc = remap_pfn_range(vma, vma->vm_start, paddress >> PAGE_SHIFT,
size, vma->vm_page_prot);
if (rc)
dev_err(hdev->dev, "remap_pfn_range error %d", rc);
return rc;
}
void goya_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
{
u32 db_reg_offset, db_value;
switch (hw_queue_id) {
case GOYA_QUEUE_ID_DMA_0:
db_reg_offset = mmDMA_QM_0_PQ_PI;
break;
case GOYA_QUEUE_ID_DMA_1:
db_reg_offset = mmDMA_QM_1_PQ_PI;
break;
case GOYA_QUEUE_ID_DMA_2:
db_reg_offset = mmDMA_QM_2_PQ_PI;
break;
case GOYA_QUEUE_ID_DMA_3:
db_reg_offset = mmDMA_QM_3_PQ_PI;
break;
case GOYA_QUEUE_ID_DMA_4:
db_reg_offset = mmDMA_QM_4_PQ_PI;
break;
case GOYA_QUEUE_ID_CPU_PQ:
db_reg_offset = mmCPU_IF_PF_PQ_PI;
break;
case GOYA_QUEUE_ID_MME:
db_reg_offset = mmMME_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC0:
db_reg_offset = mmTPC0_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC1:
db_reg_offset = mmTPC1_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC2:
db_reg_offset = mmTPC2_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC3:
db_reg_offset = mmTPC3_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC4:
db_reg_offset = mmTPC4_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC5:
db_reg_offset = mmTPC5_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC6:
db_reg_offset = mmTPC6_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC7:
db_reg_offset = mmTPC7_QM_PQ_PI;
break;
default:
/* Should never get here */
dev_err(hdev->dev, "H/W queue %d is invalid. Can't set pi\n",
hw_queue_id);
return;
}
db_value = pi;
/* ring the doorbell */
WREG32(db_reg_offset, db_value);
if (hw_queue_id == GOYA_QUEUE_ID_CPU_PQ)
WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
GOYA_ASYNC_EVENT_ID_PI_UPDATE);
}
void goya_pqe_write(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd)
{
/* The QMANs are on the SRAM so need to copy to IO space */
memcpy_toio((void __iomem *) pqe, bd, sizeof(struct hl_bd));
}
static void *goya_dma_alloc_coherent(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags)
{
void *kernel_addr = dma_alloc_coherent(&hdev->pdev->dev, size,
dma_handle, flags);
/* Shift to the device's base physical address of host memory */
if (kernel_addr)
*dma_handle += HOST_PHYS_BASE;
return kernel_addr;
}
static void goya_dma_free_coherent(struct hl_device *hdev, size_t size,
void *cpu_addr, dma_addr_t dma_handle)
{
/* Cancel the device's base physical address of host memory */
dma_addr_t fixed_dma_handle = dma_handle - HOST_PHYS_BASE;
dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, fixed_dma_handle);
}
void *goya_get_int_queue_base(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len)
{
void *base;
u32 offset;
*dma_handle = hdev->asic_prop.sram_base_address;
base = (void *) hdev->pcie_bar[SRAM_CFG_BAR_ID];
switch (queue_id) {
case GOYA_QUEUE_ID_MME:
offset = MME_QMAN_BASE_OFFSET;
*queue_len = MME_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC0:
offset = TPC0_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC1:
offset = TPC1_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC2:
offset = TPC2_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC3:
offset = TPC3_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC4:
offset = TPC4_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC5:
offset = TPC5_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC6:
offset = TPC6_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC7:
offset = TPC7_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
default:
dev_err(hdev->dev, "Got invalid queue id %d\n", queue_id);
return NULL;
}
base += offset;
*dma_handle += offset;
return base;
}
static int goya_send_job_on_qman0(struct hl_device *hdev, struct hl_cs_job *job)
{
struct packet_msg_prot *fence_pkt;
u32 *fence_ptr;
dma_addr_t fence_dma_addr;
struct hl_cb *cb;
u32 tmp, timeout;
int rc;
if (hdev->pldm)
timeout = GOYA_PLDM_QMAN0_TIMEOUT_USEC;
else
timeout = HL_DEVICE_TIMEOUT_USEC;
if (!hdev->asic_funcs->is_device_idle(hdev, NULL, NULL)) {
dev_err_ratelimited(hdev->dev,
"Can't send driver job on QMAN0 because the device is not idle\n");
return -EBUSY;
}
fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL,
&fence_dma_addr);
if (!fence_ptr) {
dev_err(hdev->dev,
"Failed to allocate fence memory for QMAN0\n");
return -ENOMEM;
}
goya_qman0_set_security(hdev, true);
cb = job->patched_cb;
fence_pkt = (struct packet_msg_prot *) (uintptr_t) (cb->kernel_address +
job->job_cb_size - sizeof(struct packet_msg_prot));
tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
(1 << GOYA_PKT_CTL_EB_SHIFT) |
(1 << GOYA_PKT_CTL_MB_SHIFT);
fence_pkt->ctl = cpu_to_le32(tmp);
fence_pkt->value = cpu_to_le32(GOYA_QMAN0_FENCE_VAL);
fence_pkt->addr = cpu_to_le64(fence_dma_addr);
rc = hl_hw_queue_send_cb_no_cmpl(hdev, GOYA_QUEUE_ID_DMA_0,
job->job_cb_size, cb->bus_address);
if (rc) {
dev_err(hdev->dev, "Failed to send CB on QMAN0, %d\n", rc);
goto free_fence_ptr;
}
rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp,
(tmp == GOYA_QMAN0_FENCE_VAL), 1000,
timeout, true);
hl_hw_queue_inc_ci_kernel(hdev, GOYA_QUEUE_ID_DMA_0);
if (rc == -ETIMEDOUT) {
dev_err(hdev->dev, "QMAN0 Job timeout (0x%x)\n", tmp);
goto free_fence_ptr;
}
free_fence_ptr:
hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr,
fence_dma_addr);
goya_qman0_set_security(hdev, false);
return rc;
}
int goya_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
u32 timeout, long *result)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) {
if (result)
*result = 0;
return 0;
}
return hl_fw_send_cpu_message(hdev, GOYA_QUEUE_ID_CPU_PQ, msg, len,
timeout, result);
}
int goya_test_queue(struct hl_device *hdev, u32 hw_queue_id)
{
struct packet_msg_prot *fence_pkt;
dma_addr_t pkt_dma_addr;
u32 fence_val, tmp;
dma_addr_t fence_dma_addr;
u32 *fence_ptr;
int rc;
fence_val = GOYA_QMAN0_FENCE_VAL;
fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL,
&fence_dma_addr);
if (!fence_ptr) {
dev_err(hdev->dev,
"Failed to allocate memory for queue testing\n");
return -ENOMEM;
}
*fence_ptr = 0;
fence_pkt = hdev->asic_funcs->asic_dma_pool_zalloc(hdev,
sizeof(struct packet_msg_prot),
GFP_KERNEL, &pkt_dma_addr);
if (!fence_pkt) {
dev_err(hdev->dev,
"Failed to allocate packet for queue testing\n");
rc = -ENOMEM;
goto free_fence_ptr;
}
tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
(1 << GOYA_PKT_CTL_EB_SHIFT) |
(1 << GOYA_PKT_CTL_MB_SHIFT);
fence_pkt->ctl = cpu_to_le32(tmp);
fence_pkt->value = cpu_to_le32(fence_val);
fence_pkt->addr = cpu_to_le64(fence_dma_addr);
rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id,
sizeof(struct packet_msg_prot),
pkt_dma_addr);
if (rc) {
dev_err(hdev->dev,
"Failed to send fence packet\n");
goto free_pkt;
}
rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, (tmp == fence_val),
1000, GOYA_TEST_QUEUE_WAIT_USEC, true);
hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
if (rc == -ETIMEDOUT) {
dev_err(hdev->dev,
"H/W queue %d test failed (scratch(0x%08llX) == 0x%08X)\n",
hw_queue_id, (unsigned long long) fence_dma_addr, tmp);
rc = -EIO;
}
free_pkt:
hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_pkt,
pkt_dma_addr);
free_fence_ptr:
hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr,
fence_dma_addr);
return rc;
}
int goya_test_cpu_queue(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
/*
* check capability here as send_cpu_message() won't update the result
* value if no capability
*/
if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
return 0;
return hl_fw_test_cpu_queue(hdev);
}
int goya_test_queues(struct hl_device *hdev)
{
int i, rc, ret_val = 0;
for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) {
rc = goya_test_queue(hdev, i);
if (rc)
ret_val = -EINVAL;
}
return ret_val;
}
static void *goya_dma_pool_zalloc(struct hl_device *hdev, size_t size,
gfp_t mem_flags, dma_addr_t *dma_handle)
{
void *kernel_addr;
if (size > GOYA_DMA_POOL_BLK_SIZE)
return NULL;
kernel_addr = dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);
/* Shift to the device's base physical address of host memory */
if (kernel_addr)
*dma_handle += HOST_PHYS_BASE;
return kernel_addr;
}
static void goya_dma_pool_free(struct hl_device *hdev, void *vaddr,
dma_addr_t dma_addr)
{
/* Cancel the device's base physical address of host memory */
dma_addr_t fixed_dma_addr = dma_addr - HOST_PHYS_BASE;
dma_pool_free(hdev->dma_pool, vaddr, fixed_dma_addr);
}
void *goya_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle)
{
void *vaddr;
vaddr = hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
*dma_handle = (*dma_handle) - hdev->cpu_accessible_dma_address +
VA_CPU_ACCESSIBLE_MEM_ADDR;
return vaddr;
}
void goya_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr)
{
hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr);
}
static int goya_dma_map_sg(struct hl_device *hdev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (!dma_map_sg(&hdev->pdev->dev, sgl, nents, dir))
return -ENOMEM;
/* Shift to the device's base physical address of host memory */
for_each_sg(sgl, sg, nents, i)
sg->dma_address += HOST_PHYS_BASE;
return 0;
}
static void goya_dma_unmap_sg(struct hl_device *hdev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
/* Cancel the device's base physical address of host memory */
for_each_sg(sgl, sg, nents, i)
sg->dma_address -= HOST_PHYS_BASE;
dma_unmap_sg(&hdev->pdev->dev, sgl, nents, dir);
}
u32 goya_get_dma_desc_list_size(struct hl_device *hdev, struct sg_table *sgt)
{
struct scatterlist *sg, *sg_next_iter;
u32 count, dma_desc_cnt;
u64 len, len_next;
dma_addr_t addr, addr_next;
dma_desc_cnt = 0;
for_each_sg(sgt->sgl, sg, sgt->nents, count) {
len = sg_dma_len(sg);
addr = sg_dma_address(sg);
if (len == 0)
break;
while ((count + 1) < sgt->nents) {
sg_next_iter = sg_next(sg);
len_next = sg_dma_len(sg_next_iter);
addr_next = sg_dma_address(sg_next_iter);
if (len_next == 0)
break;
if ((addr + len == addr_next) &&
(len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
len += len_next;
count++;
sg = sg_next_iter;
} else {
break;
}
}
dma_desc_cnt++;
}
return dma_desc_cnt * sizeof(struct packet_lin_dma);
}
static int goya_pin_memory_before_cs(struct hl_device *hdev,
struct hl_cs_parser *parser,
struct packet_lin_dma *user_dma_pkt,
u64 addr, enum dma_data_direction dir)
{
struct hl_userptr *userptr;
int rc;
if (hl_userptr_is_pinned(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
parser->job_userptr_list, &userptr))
goto already_pinned;
userptr = kzalloc(sizeof(*userptr), GFP_ATOMIC);
if (!userptr)
return -ENOMEM;
rc = hl_pin_host_memory(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
userptr);
if (rc)
goto free_userptr;
list_add_tail(&userptr->job_node, parser->job_userptr_list);
rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
userptr->sgt->nents, dir);
if (rc) {
dev_err(hdev->dev, "failed to map sgt with DMA region\n");
goto unpin_memory;
}
userptr->dma_mapped = true;
userptr->dir = dir;
already_pinned:
parser->patched_cb_size +=
goya_get_dma_desc_list_size(hdev, userptr->sgt);
return 0;
unpin_memory:
hl_unpin_host_memory(hdev, userptr);
free_userptr:
kfree(userptr);
return rc;
}
static int goya_validate_dma_pkt_host(struct hl_device *hdev,
struct hl_cs_parser *parser,
struct packet_lin_dma *user_dma_pkt)
{
u64 device_memory_addr, addr;
enum dma_data_direction dir;
enum goya_dma_direction user_dir;
bool sram_addr = true;
bool skip_host_mem_pin = false;
bool user_memset;
u32 ctl;
int rc = 0;
ctl = le32_to_cpu(user_dma_pkt->ctl);
user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
user_memset = (ctl & GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT;
switch (user_dir) {
case DMA_HOST_TO_DRAM:
dev_dbg(hdev->dev, "DMA direction is HOST --> DRAM\n");
dir = DMA_TO_DEVICE;
sram_addr = false;
addr = le64_to_cpu(user_dma_pkt->src_addr);
device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
if (user_memset)
skip_host_mem_pin = true;
break;
case DMA_DRAM_TO_HOST:
dev_dbg(hdev->dev, "DMA direction is DRAM --> HOST\n");
dir = DMA_FROM_DEVICE;
sram_addr = false;
addr = le64_to_cpu(user_dma_pkt->dst_addr);
device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
break;
case DMA_HOST_TO_SRAM:
dev_dbg(hdev->dev, "DMA direction is HOST --> SRAM\n");
dir = DMA_TO_DEVICE;
addr = le64_to_cpu(user_dma_pkt->src_addr);
device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
if (user_memset)
skip_host_mem_pin = true;
break;
case DMA_SRAM_TO_HOST:
dev_dbg(hdev->dev, "DMA direction is SRAM --> HOST\n");
dir = DMA_FROM_DEVICE;
addr = le64_to_cpu(user_dma_pkt->dst_addr);
device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
break;
default:
dev_err(hdev->dev, "DMA direction is undefined\n");
return -EFAULT;
}
if (sram_addr) {
if (!hl_mem_area_inside_range(device_memory_addr,
le32_to_cpu(user_dma_pkt->tsize),
hdev->asic_prop.sram_user_base_address,
hdev->asic_prop.sram_end_address)) {
dev_err(hdev->dev,
"SRAM address 0x%llx + 0x%x is invalid\n",
device_memory_addr,
user_dma_pkt->tsize);
return -EFAULT;
}
} else {
if (!hl_mem_area_inside_range(device_memory_addr,
le32_to_cpu(user_dma_pkt->tsize),
hdev->asic_prop.dram_user_base_address,
hdev->asic_prop.dram_end_address)) {
dev_err(hdev->dev,
"DRAM address 0x%llx + 0x%x is invalid\n",
device_memory_addr,
user_dma_pkt->tsize);
return -EFAULT;
}
}
if (skip_host_mem_pin)
parser->patched_cb_size += sizeof(*user_dma_pkt);
else {
if ((dir == DMA_TO_DEVICE) &&
(parser->hw_queue_id > GOYA_QUEUE_ID_DMA_1)) {
dev_err(hdev->dev,
"Can't DMA from host on queue other then 1\n");
return -EFAULT;
}
rc = goya_pin_memory_before_cs(hdev, parser, user_dma_pkt,
addr, dir);
}
return rc;
}
static int goya_validate_dma_pkt_no_host(struct hl_device *hdev,
struct hl_cs_parser *parser,
struct packet_lin_dma *user_dma_pkt)
{
u64 sram_memory_addr, dram_memory_addr;
enum goya_dma_direction user_dir;
u32 ctl;
ctl = le32_to_cpu(user_dma_pkt->ctl);
user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
if (user_dir == DMA_DRAM_TO_SRAM) {
dev_dbg(hdev->dev, "DMA direction is DRAM --> SRAM\n");
dram_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
sram_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
} else {
dev_dbg(hdev->dev, "DMA direction is SRAM --> DRAM\n");
sram_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
dram_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
}
if (!hl_mem_area_inside_range(sram_memory_addr,
le32_to_cpu(user_dma_pkt->tsize),
hdev->asic_prop.sram_user_base_address,
hdev->asic_prop.sram_end_address)) {
dev_err(hdev->dev, "SRAM address 0x%llx + 0x%x is invalid\n",
sram_memory_addr, user_dma_pkt->tsize);
return -EFAULT;
}
if (!hl_mem_area_inside_range(dram_memory_addr,
le32_to_cpu(user_dma_pkt->tsize),
hdev->asic_prop.dram_user_base_address,
hdev->asic_prop.dram_end_address)) {
dev_err(hdev->dev, "DRAM address 0x%llx + 0x%x is invalid\n",
dram_memory_addr, user_dma_pkt->tsize);
return -EFAULT;
}
parser->patched_cb_size += sizeof(*user_dma_pkt);
return 0;
}
static int goya_validate_dma_pkt_no_mmu(struct hl_device *hdev,
struct hl_cs_parser *parser,
struct packet_lin_dma *user_dma_pkt)
{
enum goya_dma_direction user_dir;
u32 ctl;
int rc;
dev_dbg(hdev->dev, "DMA packet details:\n");
dev_dbg(hdev->dev, "source == 0x%llx\n",
le64_to_cpu(user_dma_pkt->src_addr));
dev_dbg(hdev->dev, "destination == 0x%llx\n",
le64_to_cpu(user_dma_pkt->dst_addr));
dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize));
ctl = le32_to_cpu(user_dma_pkt->ctl);
user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
/*
* Special handling for DMA with size 0. The H/W has a bug where
* this can cause the QMAN DMA to get stuck, so block it here.
*/
if (user_dma_pkt->tsize == 0) {
dev_err(hdev->dev,
"Got DMA with size 0, might reset the device\n");
return -EINVAL;
}
if ((user_dir == DMA_DRAM_TO_SRAM) || (user_dir == DMA_SRAM_TO_DRAM))
rc = goya_validate_dma_pkt_no_host(hdev, parser, user_dma_pkt);
else
rc = goya_validate_dma_pkt_host(hdev, parser, user_dma_pkt);
return rc;
}
static int goya_validate_dma_pkt_mmu(struct hl_device *hdev,
struct hl_cs_parser *parser,
struct packet_lin_dma *user_dma_pkt)
{
dev_dbg(hdev->dev, "DMA packet details:\n");
dev_dbg(hdev->dev, "source == 0x%llx\n",
le64_to_cpu(user_dma_pkt->src_addr));
dev_dbg(hdev->dev, "destination == 0x%llx\n",
le64_to_cpu(user_dma_pkt->dst_addr));
dev_dbg(hdev->dev, "size == %u\n", le32_to_cpu(user_dma_pkt->tsize));
/*
* WA for HW-23.
* We can't allow user to read from Host using QMANs other than 1.
* PMMU and HPMMU addresses are equal, check only one of them.
*/
if (parser->hw_queue_id != GOYA_QUEUE_ID_DMA_1 &&
hl_mem_area_inside_range(le64_to_cpu(user_dma_pkt->src_addr),
le32_to_cpu(user_dma_pkt->tsize),
hdev->asic_prop.pmmu.start_addr,
hdev->asic_prop.pmmu.end_addr)) {
dev_err(hdev->dev,
"Can't DMA from host on queue other then 1\n");
return -EFAULT;
}
if (user_dma_pkt->tsize == 0) {
dev_err(hdev->dev,
"Got DMA with size 0, might reset the device\n");
return -EINVAL;
}
parser->patched_cb_size += sizeof(*user_dma_pkt);
return 0;
}
static int goya_validate_wreg32(struct hl_device *hdev,
struct hl_cs_parser *parser,
struct packet_wreg32 *wreg_pkt)
{
struct goya_device *goya = hdev->asic_specific;
u32 sob_start_addr, sob_end_addr;
u16 reg_offset;
reg_offset = le32_to_cpu(wreg_pkt->ctl) &
GOYA_PKT_WREG32_CTL_REG_OFFSET_MASK;
dev_dbg(hdev->dev, "WREG32 packet details:\n");
dev_dbg(hdev->dev, "reg_offset == 0x%x\n", reg_offset);
dev_dbg(hdev->dev, "value == 0x%x\n",
le32_to_cpu(wreg_pkt->value));
if (reg_offset != (mmDMA_CH_0_WR_COMP_ADDR_LO & 0x1FFF)) {
dev_err(hdev->dev, "WREG32 packet with illegal address 0x%x\n",
reg_offset);
return -EPERM;
}
/*
* With MMU, DMA channels are not secured, so it doesn't matter where
* the WR COMP will be written to because it will go out with
* non-secured property
*/
if (goya->hw_cap_initialized & HW_CAP_MMU)
return 0;
sob_start_addr = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
sob_end_addr = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1023);
if ((le32_to_cpu(wreg_pkt->value) < sob_start_addr) ||
(le32_to_cpu(wreg_pkt->value) > sob_end_addr)) {
dev_err(hdev->dev, "WREG32 packet with illegal value 0x%x\n",
wreg_pkt->value);
return -EPERM;
}
return 0;
}
static int goya_validate_cb(struct hl_device *hdev,
struct hl_cs_parser *parser, bool is_mmu)
{
u32 cb_parsed_length = 0;
int rc = 0;
parser->patched_cb_size = 0;
/* cb_user_size is more than 0 so loop will always be executed */
while (cb_parsed_length < parser->user_cb_size) {
enum packet_id pkt_id;
u16 pkt_size;
struct goya_packet *user_pkt;
user_pkt = (struct goya_packet *) (uintptr_t)
(parser->user_cb->kernel_address + cb_parsed_length);
pkt_id = (enum packet_id) (
(le64_to_cpu(user_pkt->header) &
PACKET_HEADER_PACKET_ID_MASK) >>
PACKET_HEADER_PACKET_ID_SHIFT);
pkt_size = goya_packet_sizes[pkt_id];
cb_parsed_length += pkt_size;
if (cb_parsed_length > parser->user_cb_size) {
dev_err(hdev->dev,
"packet 0x%x is out of CB boundary\n", pkt_id);
rc = -EINVAL;
break;
}
switch (pkt_id) {
case PACKET_WREG_32:
/*
* Although it is validated after copy in patch_cb(),
* need to validate here as well because patch_cb() is
* not called in MMU path while this function is called
*/
rc = goya_validate_wreg32(hdev,
parser, (struct packet_wreg32 *) user_pkt);
parser->patched_cb_size += pkt_size;
break;
case PACKET_WREG_BULK:
dev_err(hdev->dev,
"User not allowed to use WREG_BULK\n");
rc = -EPERM;
break;
case PACKET_MSG_PROT:
dev_err(hdev->dev,
"User not allowed to use MSG_PROT\n");
rc = -EPERM;
break;
case PACKET_CP_DMA:
dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
rc = -EPERM;
break;
case PACKET_STOP:
dev_err(hdev->dev, "User not allowed to use STOP\n");
rc = -EPERM;
break;
case PACKET_LIN_DMA:
if (is_mmu)
rc = goya_validate_dma_pkt_mmu(hdev, parser,
(struct packet_lin_dma *) user_pkt);
else
rc = goya_validate_dma_pkt_no_mmu(hdev, parser,
(struct packet_lin_dma *) user_pkt);
break;
case PACKET_MSG_LONG:
case PACKET_MSG_SHORT:
case PACKET_FENCE:
case PACKET_NOP:
parser->patched_cb_size += pkt_size;
break;
default:
dev_err(hdev->dev, "Invalid packet header 0x%x\n",
pkt_id);
rc = -EINVAL;
break;
}
if (rc)
break;
}
/*
* The new CB should have space at the end for two MSG_PROT packets:
* 1. A packet that will act as a completion packet
* 2. A packet that will generate MSI-X interrupt
*/
parser->patched_cb_size += sizeof(struct packet_msg_prot) * 2;
return rc;
}
static int goya_patch_dma_packet(struct hl_device *hdev,
struct hl_cs_parser *parser,
struct packet_lin_dma *user_dma_pkt,
struct packet_lin_dma *new_dma_pkt,
u32 *new_dma_pkt_size)
{
struct hl_userptr *userptr;
struct scatterlist *sg, *sg_next_iter;
u32 count, dma_desc_cnt;
u64 len, len_next;
dma_addr_t dma_addr, dma_addr_next;
enum goya_dma_direction user_dir;
u64 device_memory_addr, addr;
enum dma_data_direction dir;
struct sg_table *sgt;
bool skip_host_mem_pin = false;
bool user_memset;
u32 user_rdcomp_mask, user_wrcomp_mask, ctl;
ctl = le32_to_cpu(user_dma_pkt->ctl);
user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
user_memset = (ctl & GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT;
if ((user_dir == DMA_DRAM_TO_SRAM) || (user_dir == DMA_SRAM_TO_DRAM) ||
(user_dma_pkt->tsize == 0)) {
memcpy(new_dma_pkt, user_dma_pkt, sizeof(*new_dma_pkt));
*new_dma_pkt_size = sizeof(*new_dma_pkt);
return 0;
}
if ((user_dir == DMA_HOST_TO_DRAM) || (user_dir == DMA_HOST_TO_SRAM)) {
addr = le64_to_cpu(user_dma_pkt->src_addr);
device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
dir = DMA_TO_DEVICE;
if (user_memset)
skip_host_mem_pin = true;
} else {
addr = le64_to_cpu(user_dma_pkt->dst_addr);
device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
dir = DMA_FROM_DEVICE;
}
if ((!skip_host_mem_pin) &&
(hl_userptr_is_pinned(hdev, addr,
le32_to_cpu(user_dma_pkt->tsize),
parser->job_userptr_list, &userptr) == false)) {
dev_err(hdev->dev, "Userptr 0x%llx + 0x%x NOT mapped\n",
addr, user_dma_pkt->tsize);
return -EFAULT;
}
if ((user_memset) && (dir == DMA_TO_DEVICE)) {
memcpy(new_dma_pkt, user_dma_pkt, sizeof(*user_dma_pkt));
*new_dma_pkt_size = sizeof(*user_dma_pkt);
return 0;
}
user_rdcomp_mask = ctl & GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK;
user_wrcomp_mask = ctl & GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK;
sgt = userptr->sgt;
dma_desc_cnt = 0;
for_each_sg(sgt->sgl, sg, sgt->nents, count) {
len = sg_dma_len(sg);
dma_addr = sg_dma_address(sg);
if (len == 0)
break;
while ((count + 1) < sgt->nents) {
sg_next_iter = sg_next(sg);
len_next = sg_dma_len(sg_next_iter);
dma_addr_next = sg_dma_address(sg_next_iter);
if (len_next == 0)
break;
if ((dma_addr + len == dma_addr_next) &&
(len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
len += len_next;
count++;
sg = sg_next_iter;
} else {
break;
}
}
ctl = le32_to_cpu(user_dma_pkt->ctl);
if (likely(dma_desc_cnt))
ctl &= ~GOYA_PKT_CTL_EB_MASK;
ctl &= ~(GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK |
GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK);
new_dma_pkt->ctl = cpu_to_le32(ctl);
new_dma_pkt->tsize = cpu_to_le32((u32) len);
if (dir == DMA_TO_DEVICE) {
new_dma_pkt->src_addr = cpu_to_le64(dma_addr);
new_dma_pkt->dst_addr = cpu_to_le64(device_memory_addr);
} else {
new_dma_pkt->src_addr = cpu_to_le64(device_memory_addr);
new_dma_pkt->dst_addr = cpu_to_le64(dma_addr);
}
if (!user_memset)
device_memory_addr += len;
dma_desc_cnt++;
new_dma_pkt++;
}
if (!dma_desc_cnt) {
dev_err(hdev->dev,
"Error of 0 SG entries when patching DMA packet\n");
return -EFAULT;
}
/* Fix the last dma packet - rdcomp/wrcomp must be as user set them */
new_dma_pkt--;
new_dma_pkt->ctl |= cpu_to_le32(user_rdcomp_mask | user_wrcomp_mask);
*new_dma_pkt_size = dma_desc_cnt * sizeof(struct packet_lin_dma);
return 0;
}
static int goya_patch_cb(struct hl_device *hdev,
struct hl_cs_parser *parser)
{
u32 cb_parsed_length = 0;
u32 cb_patched_cur_length = 0;
int rc = 0;
/* cb_user_size is more than 0 so loop will always be executed */
while (cb_parsed_length < parser->user_cb_size) {
enum packet_id pkt_id;
u16 pkt_size;
u32 new_pkt_size = 0;
struct goya_packet *user_pkt, *kernel_pkt;
user_pkt = (struct goya_packet *) (uintptr_t)
(parser->user_cb->kernel_address + cb_parsed_length);
kernel_pkt = (struct goya_packet *) (uintptr_t)
(parser->patched_cb->kernel_address +
cb_patched_cur_length);
pkt_id = (enum packet_id) (
(le64_to_cpu(user_pkt->header) &
PACKET_HEADER_PACKET_ID_MASK) >>
PACKET_HEADER_PACKET_ID_SHIFT);
pkt_size = goya_packet_sizes[pkt_id];
cb_parsed_length += pkt_size;
if (cb_parsed_length > parser->user_cb_size) {
dev_err(hdev->dev,
"packet 0x%x is out of CB boundary\n", pkt_id);
rc = -EINVAL;
break;
}
switch (pkt_id) {
case PACKET_LIN_DMA:
rc = goya_patch_dma_packet(hdev, parser,
(struct packet_lin_dma *) user_pkt,
(struct packet_lin_dma *) kernel_pkt,
&new_pkt_size);
cb_patched_cur_length += new_pkt_size;
break;
case PACKET_WREG_32:
memcpy(kernel_pkt, user_pkt, pkt_size);
cb_patched_cur_length += pkt_size;
rc = goya_validate_wreg32(hdev, parser,
(struct packet_wreg32 *) kernel_pkt);
break;
case PACKET_WREG_BULK:
dev_err(hdev->dev,
"User not allowed to use WREG_BULK\n");
rc = -EPERM;
break;
case PACKET_MSG_PROT:
dev_err(hdev->dev,
"User not allowed to use MSG_PROT\n");
rc = -EPERM;
break;
case PACKET_CP_DMA:
dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
rc = -EPERM;
break;
case PACKET_STOP:
dev_err(hdev->dev, "User not allowed to use STOP\n");
rc = -EPERM;
break;
case PACKET_MSG_LONG:
case PACKET_MSG_SHORT:
case PACKET_FENCE:
case PACKET_NOP:
memcpy(kernel_pkt, user_pkt, pkt_size);
cb_patched_cur_length += pkt_size;
break;
default:
dev_err(hdev->dev, "Invalid packet header 0x%x\n",
pkt_id);
rc = -EINVAL;
break;
}
if (rc)
break;
}
return rc;
}
static int goya_parse_cb_mmu(struct hl_device *hdev,
struct hl_cs_parser *parser)
{
u64 patched_cb_handle;
u32 patched_cb_size;
struct hl_cb *user_cb;
int rc;
/*
* The new CB should have space at the end for two MSG_PROT pkt:
* 1. A packet that will act as a completion packet
* 2. A packet that will generate MSI-X interrupt
*/
parser->patched_cb_size = parser->user_cb_size +
sizeof(struct packet_msg_prot) * 2;
rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, parser->patched_cb_size,
&patched_cb_handle, HL_KERNEL_ASID_ID, false);
if (rc) {
dev_err(hdev->dev,
"Failed to allocate patched CB for DMA CS %d\n",
rc);
return rc;
}
patched_cb_handle >>= PAGE_SHIFT;
parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr,
(u32) patched_cb_handle);
/* hl_cb_get should never fail here so use kernel WARN */
WARN(!parser->patched_cb, "DMA CB handle invalid 0x%x\n",
(u32) patched_cb_handle);
if (!parser->patched_cb) {
rc = -EFAULT;
goto out;
}
/*
* The check that parser->user_cb_size <= parser->user_cb->size was done
* in validate_queue_index().
*/
memcpy((void *) (uintptr_t) parser->patched_cb->kernel_address,
(void *) (uintptr_t) parser->user_cb->kernel_address,
parser->user_cb_size);
patched_cb_size = parser->patched_cb_size;
/* validate patched CB instead of user CB */
user_cb = parser->user_cb;
parser->user_cb = parser->patched_cb;
rc = goya_validate_cb(hdev, parser, true);
parser->user_cb = user_cb;
if (rc) {
hl_cb_put(parser->patched_cb);
goto out;
}
if (patched_cb_size != parser->patched_cb_size) {
dev_err(hdev->dev, "user CB size mismatch\n");
hl_cb_put(parser->patched_cb);
rc = -EINVAL;
goto out;
}
out:
/*
* Always call cb destroy here because we still have 1 reference
* to it by calling cb_get earlier. After the job will be completed,
* cb_put will release it, but here we want to remove it from the
* idr
*/
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr,
patched_cb_handle << PAGE_SHIFT);
return rc;
}
static int goya_parse_cb_no_mmu(struct hl_device *hdev,
struct hl_cs_parser *parser)
{
u64 patched_cb_handle;
int rc;
rc = goya_validate_cb(hdev, parser, false);
if (rc)
goto free_userptr;
rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, parser->patched_cb_size,
&patched_cb_handle, HL_KERNEL_ASID_ID, false);
if (rc) {
dev_err(hdev->dev,
"Failed to allocate patched CB for DMA CS %d\n", rc);
goto free_userptr;
}
patched_cb_handle >>= PAGE_SHIFT;
parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr,
(u32) patched_cb_handle);
/* hl_cb_get should never fail here so use kernel WARN */
WARN(!parser->patched_cb, "DMA CB handle invalid 0x%x\n",
(u32) patched_cb_handle);
if (!parser->patched_cb) {
rc = -EFAULT;
goto out;
}
rc = goya_patch_cb(hdev, parser);
if (rc)
hl_cb_put(parser->patched_cb);
out:
/*
* Always call cb destroy here because we still have 1 reference
* to it by calling cb_get earlier. After the job will be completed,
* cb_put will release it, but here we want to remove it from the
* idr
*/
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr,
patched_cb_handle << PAGE_SHIFT);
free_userptr:
if (rc)
hl_userptr_delete_list(hdev, parser->job_userptr_list);
return rc;
}
static int goya_parse_cb_no_ext_queue(struct hl_device *hdev,
struct hl_cs_parser *parser)
{
struct asic_fixed_properties *asic_prop = &hdev->asic_prop;
struct goya_device *goya = hdev->asic_specific;
if (goya->hw_cap_initialized & HW_CAP_MMU)
return 0;
/* For internal queue jobs, just check if CB address is valid */
if (hl_mem_area_inside_range(
(u64) (uintptr_t) parser->user_cb,
parser->user_cb_size,
asic_prop->sram_user_base_address,
asic_prop->sram_end_address))
return 0;
if (hl_mem_area_inside_range(
(u64) (uintptr_t) parser->user_cb,
parser->user_cb_size,
asic_prop->dram_user_base_address,
asic_prop->dram_end_address))
return 0;
dev_err(hdev->dev,
"Internal CB address 0x%px + 0x%x is not in SRAM nor in DRAM\n",
parser->user_cb, parser->user_cb_size);
return -EFAULT;
}
int goya_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser)
{
struct goya_device *goya = hdev->asic_specific;
if (parser->queue_type == QUEUE_TYPE_INT)
return goya_parse_cb_no_ext_queue(hdev, parser);
if (goya->hw_cap_initialized & HW_CAP_MMU)
return goya_parse_cb_mmu(hdev, parser);
else
return goya_parse_cb_no_mmu(hdev, parser);
}
void goya_add_end_of_cb_packets(struct hl_device *hdev, u64 kernel_address,
u32 len, u64 cq_addr, u32 cq_val, u32 msix_vec,
bool eb)
{
struct packet_msg_prot *cq_pkt;
u32 tmp;
cq_pkt = (struct packet_msg_prot *) (uintptr_t)
(kernel_address + len - (sizeof(struct packet_msg_prot) * 2));
tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
(1 << GOYA_PKT_CTL_EB_SHIFT) |
(1 << GOYA_PKT_CTL_MB_SHIFT);
cq_pkt->ctl = cpu_to_le32(tmp);
cq_pkt->value = cpu_to_le32(cq_val);
cq_pkt->addr = cpu_to_le64(cq_addr);
cq_pkt++;
tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
(1 << GOYA_PKT_CTL_MB_SHIFT);
cq_pkt->ctl = cpu_to_le32(tmp);
cq_pkt->value = cpu_to_le32(msix_vec & 0x7FF);
cq_pkt->addr = cpu_to_le64(CFG_BASE + mmPCIE_DBI_MSIX_DOORBELL_OFF);
}
void goya_update_eq_ci(struct hl_device *hdev, u32 val)
{
WREG32(mmCPU_EQ_CI, val);
}
void goya_restore_phase_topology(struct hl_device *hdev)
{
}
static void goya_clear_sm_regs(struct hl_device *hdev)
{
int i, num_of_sob_in_longs, num_of_mon_in_longs;
num_of_sob_in_longs =
((mmSYNC_MNGR_SOB_OBJ_1023 - mmSYNC_MNGR_SOB_OBJ_0) + 4);
num_of_mon_in_longs =
((mmSYNC_MNGR_MON_STATUS_255 - mmSYNC_MNGR_MON_STATUS_0) + 4);
for (i = 0 ; i < num_of_sob_in_longs ; i += 4)
WREG32(mmSYNC_MNGR_SOB_OBJ_0 + i, 0);
for (i = 0 ; i < num_of_mon_in_longs ; i += 4)
WREG32(mmSYNC_MNGR_MON_STATUS_0 + i, 0);
/* Flush all WREG to prevent race */
i = RREG32(mmSYNC_MNGR_SOB_OBJ_0);
}
/*
* goya_debugfs_read32 - read a 32bit value from a given device or a host mapped
* address.
*
* @hdev: pointer to hl_device structure
* @addr: device or host mapped address
* @val: returned value
*
* In case of DDR address that is not mapped into the default aperture that
* the DDR bar exposes, the function will configure the iATU so that the DDR
* bar will be positioned at a base address that allows reading from the
* required address. Configuring the iATU during normal operation can
* lead to undefined behavior and therefore, should be done with extreme care
*
*/
static int goya_debugfs_read32(struct hl_device *hdev, u64 addr, u32 *val)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 ddr_bar_addr;
int rc = 0;
if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) {
*val = RREG32(addr - CFG_BASE);
} else if ((addr >= SRAM_BASE_ADDR) &&
(addr < SRAM_BASE_ADDR + SRAM_SIZE)) {
*val = readl(hdev->pcie_bar[SRAM_CFG_BAR_ID] +
(addr - SRAM_BASE_ADDR));
} else if (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size) {
u64 bar_base_addr = DRAM_PHYS_BASE +
(addr & ~(prop->dram_pci_bar_size - 0x1ull));
ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr);
if (ddr_bar_addr != U64_MAX) {
*val = readl(hdev->pcie_bar[DDR_BAR_ID] +
(addr - bar_base_addr));
ddr_bar_addr = goya_set_ddr_bar_base(hdev,
ddr_bar_addr);
}
if (ddr_bar_addr == U64_MAX)
rc = -EIO;
} else if (addr >= HOST_PHYS_BASE && !iommu_present(&pci_bus_type)) {
*val = *(u32 *) phys_to_virt(addr - HOST_PHYS_BASE);
} else {
rc = -EFAULT;
}
return rc;
}
/*
* goya_debugfs_write32 - write a 32bit value to a given device or a host mapped
* address.
*
* @hdev: pointer to hl_device structure
* @addr: device or host mapped address
* @val: returned value
*
* In case of DDR address that is not mapped into the default aperture that
* the DDR bar exposes, the function will configure the iATU so that the DDR
* bar will be positioned at a base address that allows writing to the
* required address. Configuring the iATU during normal operation can
* lead to undefined behavior and therefore, should be done with extreme care
*
*/
static int goya_debugfs_write32(struct hl_device *hdev, u64 addr, u32 val)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 ddr_bar_addr;
int rc = 0;
if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) {
WREG32(addr - CFG_BASE, val);
} else if ((addr >= SRAM_BASE_ADDR) &&
(addr < SRAM_BASE_ADDR + SRAM_SIZE)) {
writel(val, hdev->pcie_bar[SRAM_CFG_BAR_ID] +
(addr - SRAM_BASE_ADDR));
} else if (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size) {
u64 bar_base_addr = DRAM_PHYS_BASE +
(addr & ~(prop->dram_pci_bar_size - 0x1ull));
ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr);
if (ddr_bar_addr != U64_MAX) {
writel(val, hdev->pcie_bar[DDR_BAR_ID] +
(addr - bar_base_addr));
ddr_bar_addr = goya_set_ddr_bar_base(hdev,
ddr_bar_addr);
}
if (ddr_bar_addr == U64_MAX)
rc = -EIO;
} else if (addr >= HOST_PHYS_BASE && !iommu_present(&pci_bus_type)) {
*(u32 *) phys_to_virt(addr - HOST_PHYS_BASE) = val;
} else {
rc = -EFAULT;
}
return rc;
}
static int goya_debugfs_read64(struct hl_device *hdev, u64 addr, u64 *val)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 ddr_bar_addr;
int rc = 0;
if ((addr >= CFG_BASE) && (addr <= CFG_BASE + CFG_SIZE - sizeof(u64))) {
u32 val_l = RREG32(addr - CFG_BASE);
u32 val_h = RREG32(addr + sizeof(u32) - CFG_BASE);
*val = (((u64) val_h) << 32) | val_l;
} else if ((addr >= SRAM_BASE_ADDR) &&
(addr <= SRAM_BASE_ADDR + SRAM_SIZE - sizeof(u64))) {
*val = readq(hdev->pcie_bar[SRAM_CFG_BAR_ID] +
(addr - SRAM_BASE_ADDR));
} else if (addr <=
DRAM_PHYS_BASE + hdev->asic_prop.dram_size - sizeof(u64)) {
u64 bar_base_addr = DRAM_PHYS_BASE +
(addr & ~(prop->dram_pci_bar_size - 0x1ull));
ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr);
if (ddr_bar_addr != U64_MAX) {
*val = readq(hdev->pcie_bar[DDR_BAR_ID] +
(addr - bar_base_addr));
ddr_bar_addr = goya_set_ddr_bar_base(hdev,
ddr_bar_addr);
}
if (ddr_bar_addr == U64_MAX)
rc = -EIO;
} else if (addr >= HOST_PHYS_BASE && !iommu_present(&pci_bus_type)) {
*val = *(u64 *) phys_to_virt(addr - HOST_PHYS_BASE);
} else {
rc = -EFAULT;
}
return rc;
}
static int goya_debugfs_write64(struct hl_device *hdev, u64 addr, u64 val)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 ddr_bar_addr;
int rc = 0;
if ((addr >= CFG_BASE) && (addr <= CFG_BASE + CFG_SIZE - sizeof(u64))) {
WREG32(addr - CFG_BASE, lower_32_bits(val));
WREG32(addr + sizeof(u32) - CFG_BASE, upper_32_bits(val));
} else if ((addr >= SRAM_BASE_ADDR) &&
(addr <= SRAM_BASE_ADDR + SRAM_SIZE - sizeof(u64))) {
writeq(val, hdev->pcie_bar[SRAM_CFG_BAR_ID] +
(addr - SRAM_BASE_ADDR));
} else if (addr <=
DRAM_PHYS_BASE + hdev->asic_prop.dram_size - sizeof(u64)) {
u64 bar_base_addr = DRAM_PHYS_BASE +
(addr & ~(prop->dram_pci_bar_size - 0x1ull));
ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr);
if (ddr_bar_addr != U64_MAX) {
writeq(val, hdev->pcie_bar[DDR_BAR_ID] +
(addr - bar_base_addr));
ddr_bar_addr = goya_set_ddr_bar_base(hdev,
ddr_bar_addr);
}
if (ddr_bar_addr == U64_MAX)
rc = -EIO;
} else if (addr >= HOST_PHYS_BASE && !iommu_present(&pci_bus_type)) {
*(u64 *) phys_to_virt(addr - HOST_PHYS_BASE) = val;
} else {
rc = -EFAULT;
}
return rc;
}
static u64 goya_read_pte(struct hl_device *hdev, u64 addr)
{
struct goya_device *goya = hdev->asic_specific;
if (hdev->hard_reset_pending)
return U64_MAX;
return readq(hdev->pcie_bar[DDR_BAR_ID] +
(addr - goya->ddr_bar_cur_addr));
}
static void goya_write_pte(struct hl_device *hdev, u64 addr, u64 val)
{
struct goya_device *goya = hdev->asic_specific;
if (hdev->hard_reset_pending)
return;
writeq(val, hdev->pcie_bar[DDR_BAR_ID] +
(addr - goya->ddr_bar_cur_addr));
}
static const char *_goya_get_event_desc(u16 event_type)
{
switch (event_type) {
case GOYA_ASYNC_EVENT_ID_PCIE_IF:
return "PCIe_if";
case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
return "TPC%d_ecc";
case GOYA_ASYNC_EVENT_ID_MME_ECC:
return "MME_ecc";
case GOYA_ASYNC_EVENT_ID_MME_ECC_EXT:
return "MME_ecc_ext";
case GOYA_ASYNC_EVENT_ID_MMU_ECC:
return "MMU_ecc";
case GOYA_ASYNC_EVENT_ID_DMA_MACRO:
return "DMA_macro";
case GOYA_ASYNC_EVENT_ID_DMA_ECC:
return "DMA_ecc";
case GOYA_ASYNC_EVENT_ID_CPU_IF_ECC:
return "CPU_if_ecc";
case GOYA_ASYNC_EVENT_ID_PSOC_MEM:
return "PSOC_mem";
case GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT:
return "PSOC_coresight";
case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
return "SRAM%d";
case GOYA_ASYNC_EVENT_ID_GIC500:
return "GIC500";
case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
return "PLL%d";
case GOYA_ASYNC_EVENT_ID_AXI_ECC:
return "AXI_ecc";
case GOYA_ASYNC_EVENT_ID_L2_RAM_ECC:
return "L2_ram_ecc";
case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET:
return "PSOC_gpio_05_sw_reset";
case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT:
return "PSOC_gpio_10_vrhot_icrit";
case GOYA_ASYNC_EVENT_ID_PCIE_DEC:
return "PCIe_dec";
case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
return "TPC%d_dec";
case GOYA_ASYNC_EVENT_ID_MME_WACS:
return "MME_wacs";
case GOYA_ASYNC_EVENT_ID_MME_WACSD:
return "MME_wacsd";
case GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER:
return "CPU_axi_splitter";
case GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC:
return "PSOC_axi_dec";
case GOYA_ASYNC_EVENT_ID_PSOC:
return "PSOC";
case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
return "TPC%d_krn_err";
case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_CMDQ:
return "TPC%d_cq";
case GOYA_ASYNC_EVENT_ID_TPC0_QM ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
return "TPC%d_qm";
case GOYA_ASYNC_EVENT_ID_MME_QM:
return "MME_qm";
case GOYA_ASYNC_EVENT_ID_MME_CMDQ:
return "MME_cq";
case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
return "DMA%d_qm";
case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
return "DMA%d_ch";
case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
return "TPC%d_bmon_spmu";
case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
return "DMA_bm_ch%d";
case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S:
return "POWER_ENV_S";
case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E:
return "POWER_ENV_E";
case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S:
return "THERMAL_ENV_S";
case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E:
return "THERMAL_ENV_E";
default:
return "N/A";
}
}
static void goya_get_event_desc(u16 event_type, char *desc, size_t size)
{
u8 index;
switch (event_type) {
case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_ECC) / 3;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
index = event_type - GOYA_ASYNC_EVENT_ID_SRAM0;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
index = event_type - GOYA_ASYNC_EVENT_ID_PLL0;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_DEC) / 3;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR) / 10;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_CMDQ:
index = event_type - GOYA_ASYNC_EVENT_ID_TPC0_CMDQ;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_TPC0_QM ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
index = event_type - GOYA_ASYNC_EVENT_ID_TPC0_QM;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
index = event_type - GOYA_ASYNC_EVENT_ID_DMA0_QM;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
index = event_type - GOYA_ASYNC_EVENT_ID_DMA0_CH;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU) / 10;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
index = event_type - GOYA_ASYNC_EVENT_ID_DMA_BM_CH0;
snprintf(desc, size, _goya_get_event_desc(event_type), index);
break;
default:
snprintf(desc, size, _goya_get_event_desc(event_type));
break;
}
}
static void goya_print_razwi_info(struct hl_device *hdev)
{
if (RREG32(mmDMA_MACRO_RAZWI_LBW_WT_VLD)) {
dev_err_ratelimited(hdev->dev, "Illegal write to LBW\n");
WREG32(mmDMA_MACRO_RAZWI_LBW_WT_VLD, 0);
}
if (RREG32(mmDMA_MACRO_RAZWI_LBW_RD_VLD)) {
dev_err_ratelimited(hdev->dev, "Illegal read from LBW\n");
WREG32(mmDMA_MACRO_RAZWI_LBW_RD_VLD, 0);
}
if (RREG32(mmDMA_MACRO_RAZWI_HBW_WT_VLD)) {
dev_err_ratelimited(hdev->dev, "Illegal write to HBW\n");
WREG32(mmDMA_MACRO_RAZWI_HBW_WT_VLD, 0);
}
if (RREG32(mmDMA_MACRO_RAZWI_HBW_RD_VLD)) {
dev_err_ratelimited(hdev->dev, "Illegal read from HBW\n");
WREG32(mmDMA_MACRO_RAZWI_HBW_RD_VLD, 0);
}
}
static void goya_print_mmu_error_info(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
u64 addr;
u32 val;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return;
val = RREG32(mmMMU_PAGE_ERROR_CAPTURE);
if (val & MMU_PAGE_ERROR_CAPTURE_ENTRY_VALID_MASK) {
addr = val & MMU_PAGE_ERROR_CAPTURE_VA_49_32_MASK;
addr <<= 32;
addr |= RREG32(mmMMU_PAGE_ERROR_CAPTURE_VA);
dev_err_ratelimited(hdev->dev, "MMU page fault on va 0x%llx\n",
addr);
WREG32(mmMMU_PAGE_ERROR_CAPTURE, 0);
}
}
static void goya_print_irq_info(struct hl_device *hdev, u16 event_type,
bool razwi)
{
char desc[20] = "";
goya_get_event_desc(event_type, desc, sizeof(desc));
dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
event_type, desc);
if (razwi) {
goya_print_razwi_info(hdev);
goya_print_mmu_error_info(hdev);
}
}
static int goya_unmask_irq_arr(struct hl_device *hdev, u32 *irq_arr,
size_t irq_arr_size)
{
struct armcp_unmask_irq_arr_packet *pkt;
size_t total_pkt_size;
long result;
int rc;
int irq_num_entries, irq_arr_index;
__le32 *goya_irq_arr;
total_pkt_size = sizeof(struct armcp_unmask_irq_arr_packet) +
irq_arr_size;
/* data should be aligned to 8 bytes in order to ArmCP to copy it */
total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
/* total_pkt_size is casted to u16 later on */
if (total_pkt_size > USHRT_MAX) {
dev_err(hdev->dev, "too many elements in IRQ array\n");
return -EINVAL;
}
pkt = kzalloc(total_pkt_size, GFP_KERNEL);
if (!pkt)
return -ENOMEM;
irq_num_entries = irq_arr_size / sizeof(irq_arr[0]);
pkt->length = cpu_to_le32(irq_num_entries);
/* We must perform any necessary endianness conversation on the irq
* array being passed to the goya hardware
*/
for (irq_arr_index = 0, goya_irq_arr = (__le32 *) &pkt->irqs;
irq_arr_index < irq_num_entries ; irq_arr_index++)
goya_irq_arr[irq_arr_index] =
cpu_to_le32(irq_arr[irq_arr_index]);
pkt->armcp_pkt.ctl = cpu_to_le32(ARMCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
rc = goya_send_cpu_message(hdev, (u32 *) pkt, total_pkt_size,
HL_DEVICE_TIMEOUT_USEC, &result);
if (rc)
dev_err(hdev->dev, "failed to unmask IRQ array\n");
kfree(pkt);
return rc;
}
static int goya_soft_reset_late_init(struct hl_device *hdev)
{
/*
* Unmask all IRQs since some could have been received
* during the soft reset
*/
return goya_unmask_irq_arr(hdev, goya_all_events,
sizeof(goya_all_events));
}
static int goya_unmask_irq(struct hl_device *hdev, u16 event_type)
{
struct armcp_packet pkt;
long result;
int rc;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(ARMCP_PACKET_UNMASK_RAZWI_IRQ <<
ARMCP_PKT_CTL_OPCODE_SHIFT);
pkt.value = cpu_to_le64(event_type);
rc = goya_send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
HL_DEVICE_TIMEOUT_USEC, &result);
if (rc)
dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
return rc;
}
static void goya_print_clk_change_info(struct hl_device *hdev, u16 event_type)
{
switch (event_type) {
case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S:
dev_info_ratelimited(hdev->dev,
"Clock throttling due to power consumption\n");
break;
case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E:
dev_info_ratelimited(hdev->dev,
"Power envelop is safe, back to optimal clock\n");
break;
case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S:
dev_info_ratelimited(hdev->dev,
"Clock throttling due to overheating\n");
break;
case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E:
dev_info_ratelimited(hdev->dev,
"Thermal envelop is safe, back to optimal clock\n");
break;
default:
dev_err(hdev->dev, "Received invalid clock change event %d\n",
event_type);
break;
}
}
void goya_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry)
{
u32 ctl = le32_to_cpu(eq_entry->hdr.ctl);
u16 event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK)
>> EQ_CTL_EVENT_TYPE_SHIFT);
struct goya_device *goya = hdev->asic_specific;
goya->events_stat[event_type]++;
goya->events_stat_aggregate[event_type]++;
switch (event_type) {
case GOYA_ASYNC_EVENT_ID_PCIE_IF:
case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
case GOYA_ASYNC_EVENT_ID_MME_ECC:
case GOYA_ASYNC_EVENT_ID_MME_ECC_EXT:
case GOYA_ASYNC_EVENT_ID_MMU_ECC:
case GOYA_ASYNC_EVENT_ID_DMA_MACRO:
case GOYA_ASYNC_EVENT_ID_DMA_ECC:
case GOYA_ASYNC_EVENT_ID_CPU_IF_ECC:
case GOYA_ASYNC_EVENT_ID_PSOC_MEM:
case GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT:
case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
case GOYA_ASYNC_EVENT_ID_GIC500:
case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
case GOYA_ASYNC_EVENT_ID_AXI_ECC:
case GOYA_ASYNC_EVENT_ID_L2_RAM_ECC:
case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET:
goya_print_irq_info(hdev, event_type, false);
hl_device_reset(hdev, true, false);
break;
case GOYA_ASYNC_EVENT_ID_PCIE_DEC:
case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
case GOYA_ASYNC_EVENT_ID_MME_WACS:
case GOYA_ASYNC_EVENT_ID_MME_WACSD:
case GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER:
case GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC:
case GOYA_ASYNC_EVENT_ID_PSOC:
case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
case GOYA_ASYNC_EVENT_ID_MME_QM:
case GOYA_ASYNC_EVENT_ID_MME_CMDQ:
case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
goya_print_irq_info(hdev, event_type, true);
goya_unmask_irq(hdev, event_type);
break;
case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT:
case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
goya_print_irq_info(hdev, event_type, false);
goya_unmask_irq(hdev, event_type);
break;
case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_S:
case GOYA_ASYNC_EVENT_ID_FIX_POWER_ENV_E:
case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_S:
case GOYA_ASYNC_EVENT_ID_FIX_THERMAL_ENV_E:
goya_print_clk_change_info(hdev, event_type);
goya_unmask_irq(hdev, event_type);
break;
default:
dev_err(hdev->dev, "Received invalid H/W interrupt %d\n",
event_type);
break;
}
}
void *goya_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size)
{
struct goya_device *goya = hdev->asic_specific;
if (aggregate) {
*size = (u32) sizeof(goya->events_stat_aggregate);
return goya->events_stat_aggregate;
}
*size = (u32) sizeof(goya->events_stat);
return goya->events_stat;
}
static int goya_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size,
u64 val, bool is_dram)
{
struct packet_lin_dma *lin_dma_pkt;
struct hl_cs_job *job;
u32 cb_size, ctl;
struct hl_cb *cb;
int rc, lin_dma_pkts_cnt;
lin_dma_pkts_cnt = DIV_ROUND_UP_ULL(size, SZ_2G);
cb_size = lin_dma_pkts_cnt * sizeof(struct packet_lin_dma) +
sizeof(struct packet_msg_prot);
cb = hl_cb_kernel_create(hdev, cb_size, false);
if (!cb)
return -ENOMEM;
lin_dma_pkt = (struct packet_lin_dma *) (uintptr_t) cb->kernel_address;
do {
memset(lin_dma_pkt, 0, sizeof(*lin_dma_pkt));
ctl = ((PACKET_LIN_DMA << GOYA_PKT_CTL_OPCODE_SHIFT) |
(1 << GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT) |
(1 << GOYA_PKT_LIN_DMA_CTL_WO_SHIFT) |
(1 << GOYA_PKT_CTL_RB_SHIFT) |
(1 << GOYA_PKT_CTL_MB_SHIFT));
ctl |= (is_dram ? DMA_HOST_TO_DRAM : DMA_HOST_TO_SRAM) <<
GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
lin_dma_pkt->ctl = cpu_to_le32(ctl);
lin_dma_pkt->src_addr = cpu_to_le64(val);
lin_dma_pkt->dst_addr = cpu_to_le64(addr);
if (lin_dma_pkts_cnt > 1)
lin_dma_pkt->tsize = cpu_to_le32(SZ_2G);
else
lin_dma_pkt->tsize = cpu_to_le32(size);
size -= SZ_2G;
addr += SZ_2G;
lin_dma_pkt++;
} while (--lin_dma_pkts_cnt);
job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
if (!job) {
dev_err(hdev->dev, "Failed to allocate a new job\n");
rc = -ENOMEM;
goto release_cb;
}
job->id = 0;
job->user_cb = cb;
job->user_cb->cs_cnt++;
job->user_cb_size = cb_size;
job->hw_queue_id = GOYA_QUEUE_ID_DMA_0;
job->patched_cb = job->user_cb;
job->job_cb_size = job->user_cb_size;
hl_debugfs_add_job(hdev, job);
rc = goya_send_job_on_qman0(hdev, job);
hl_debugfs_remove_job(hdev, job);
kfree(job);
cb->cs_cnt--;
release_cb:
hl_cb_put(cb);
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
return rc;
}
int goya_context_switch(struct hl_device *hdev, u32 asid)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 addr = prop->sram_base_address, sob_addr;
u32 size = hdev->pldm ? 0x10000 : prop->sram_size;
u64 val = 0x7777777777777777ull;
int rc, dma_id;
u32 channel_off = mmDMA_CH_1_WR_COMP_ADDR_LO -
mmDMA_CH_0_WR_COMP_ADDR_LO;
rc = goya_memset_device_memory(hdev, addr, size, val, false);
if (rc) {
dev_err(hdev->dev, "Failed to clear SRAM in context switch\n");
return rc;
}
/* we need to reset registers that the user is allowed to change */
sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1007;
WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO, lower_32_bits(sob_addr));
for (dma_id = 1 ; dma_id < NUMBER_OF_EXT_HW_QUEUES ; dma_id++) {
sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 +
(dma_id - 1) * 4;
WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO + channel_off * dma_id,
lower_32_bits(sob_addr));
}
WREG32(mmTPC_PLL_CLK_RLX_0, 0x200020);
goya_mmu_prepare(hdev, asid);
goya_clear_sm_regs(hdev);
return 0;
}
static int goya_mmu_clear_pgt_range(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct goya_device *goya = hdev->asic_specific;
u64 addr = prop->mmu_pgt_addr;
u32 size = prop->mmu_pgt_size + MMU_DRAM_DEFAULT_PAGE_SIZE +
MMU_CACHE_MNG_SIZE;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return 0;
return goya_memset_device_memory(hdev, addr, size, 0, true);
}
static int goya_mmu_set_dram_default_page(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
u64 addr = hdev->asic_prop.mmu_dram_default_page_addr;
u32 size = MMU_DRAM_DEFAULT_PAGE_SIZE;
u64 val = 0x9999999999999999ull;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return 0;
return goya_memset_device_memory(hdev, addr, size, val, true);
}
static int goya_mmu_add_mappings_for_device_cpu(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct goya_device *goya = hdev->asic_specific;
s64 off, cpu_off;
int rc;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return 0;
for (off = 0 ; off < CPU_FW_IMAGE_SIZE ; off += PAGE_SIZE_2MB) {
rc = hl_mmu_map(hdev->kernel_ctx, prop->dram_base_address + off,
prop->dram_base_address + off, PAGE_SIZE_2MB,
(off + PAGE_SIZE_2MB) == CPU_FW_IMAGE_SIZE);
if (rc) {
dev_err(hdev->dev, "Map failed for address 0x%llx\n",
prop->dram_base_address + off);
goto unmap;
}
}
if (!(hdev->cpu_accessible_dma_address & (PAGE_SIZE_2MB - 1))) {
rc = hl_mmu_map(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR,
hdev->cpu_accessible_dma_address, PAGE_SIZE_2MB, true);
if (rc) {
dev_err(hdev->dev,
"Map failed for CPU accessible memory\n");
off -= PAGE_SIZE_2MB;
goto unmap;
}
} else {
for (cpu_off = 0 ; cpu_off < SZ_2M ; cpu_off += PAGE_SIZE_4KB) {
rc = hl_mmu_map(hdev->kernel_ctx,
VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
hdev->cpu_accessible_dma_address + cpu_off,
PAGE_SIZE_4KB, true);
if (rc) {
dev_err(hdev->dev,
"Map failed for CPU accessible memory\n");
cpu_off -= PAGE_SIZE_4KB;
goto unmap_cpu;
}
}
}
goya_mmu_prepare_reg(hdev, mmCPU_IF_ARUSER_OVR, HL_KERNEL_ASID_ID);
goya_mmu_prepare_reg(hdev, mmCPU_IF_AWUSER_OVR, HL_KERNEL_ASID_ID);
WREG32(mmCPU_IF_ARUSER_OVR_EN, 0x7FF);
WREG32(mmCPU_IF_AWUSER_OVR_EN, 0x7FF);
/* Make sure configuration is flushed to device */
RREG32(mmCPU_IF_AWUSER_OVR_EN);
goya->device_cpu_mmu_mappings_done = true;
return 0;
unmap_cpu:
for (; cpu_off >= 0 ; cpu_off -= PAGE_SIZE_4KB)
if (hl_mmu_unmap(hdev->kernel_ctx,
VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
PAGE_SIZE_4KB, true))
dev_warn_ratelimited(hdev->dev,
"failed to unmap address 0x%llx\n",
VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off);
unmap:
for (; off >= 0 ; off -= PAGE_SIZE_2MB)
if (hl_mmu_unmap(hdev->kernel_ctx,
prop->dram_base_address + off, PAGE_SIZE_2MB,
true))
dev_warn_ratelimited(hdev->dev,
"failed to unmap address 0x%llx\n",
prop->dram_base_address + off);
return rc;
}
void goya_mmu_remove_device_cpu_mappings(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct goya_device *goya = hdev->asic_specific;
u32 off, cpu_off;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return;
if (!goya->device_cpu_mmu_mappings_done)
return;
WREG32(mmCPU_IF_ARUSER_OVR_EN, 0);
WREG32(mmCPU_IF_AWUSER_OVR_EN, 0);
if (!(hdev->cpu_accessible_dma_address & (PAGE_SIZE_2MB - 1))) {
if (hl_mmu_unmap(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR,
PAGE_SIZE_2MB, true))
dev_warn(hdev->dev,
"Failed to unmap CPU accessible memory\n");
} else {
for (cpu_off = 0 ; cpu_off < SZ_2M ; cpu_off += PAGE_SIZE_4KB)
if (hl_mmu_unmap(hdev->kernel_ctx,
VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
PAGE_SIZE_4KB,
(cpu_off + PAGE_SIZE_4KB) >= SZ_2M))
dev_warn_ratelimited(hdev->dev,
"failed to unmap address 0x%llx\n",
VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off);
}
for (off = 0 ; off < CPU_FW_IMAGE_SIZE ; off += PAGE_SIZE_2MB)
if (hl_mmu_unmap(hdev->kernel_ctx,
prop->dram_base_address + off, PAGE_SIZE_2MB,
(off + PAGE_SIZE_2MB) >= CPU_FW_IMAGE_SIZE))
dev_warn_ratelimited(hdev->dev,
"Failed to unmap address 0x%llx\n",
prop->dram_base_address + off);
goya->device_cpu_mmu_mappings_done = false;
}
static void goya_mmu_prepare(struct hl_device *hdev, u32 asid)
{
struct goya_device *goya = hdev->asic_specific;
int i;
if (!(goya->hw_cap_initialized & HW_CAP_MMU))
return;
if (asid & ~MME_QM_GLBL_SECURE_PROPS_ASID_MASK) {
WARN(1, "asid %u is too big\n", asid);
return;
}
/* zero the MMBP and ASID bits and then set the ASID */
for (i = 0 ; i < GOYA_MMU_REGS_NUM ; i++)
goya_mmu_prepare_reg(hdev, goya_mmu_regs[i], asid);
}
static int goya_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard,
u32 flags)
{
struct goya_device *goya = hdev->asic_specific;
u32 status, timeout_usec;
int rc;
if (!(goya->hw_cap_initialized & HW_CAP_MMU) ||
hdev->hard_reset_pending)
return 0;
/* no need in L1 only invalidation in Goya */
if (!is_hard)
return 0;
if (hdev->pldm)
timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
else
timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
mutex_lock(&hdev->mmu_cache_lock);
/* L0 & L1 invalidation */
WREG32(mmSTLB_INV_ALL_START, 1);
rc = hl_poll_timeout(
hdev,
mmSTLB_INV_ALL_START,
status,
!status,
1000,
timeout_usec);
mutex_unlock(&hdev->mmu_cache_lock);
if (rc) {
dev_err_ratelimited(hdev->dev,
"MMU cache invalidation timeout\n");
hl_device_reset(hdev, true, false);
}
return rc;
}
static int goya_mmu_invalidate_cache_range(struct hl_device *hdev,
bool is_hard, u32 asid, u64 va, u64 size)
{
struct goya_device *goya = hdev->asic_specific;
u32 status, timeout_usec, inv_data, pi;
int rc;
if (!(goya->hw_cap_initialized & HW_CAP_MMU) ||
hdev->hard_reset_pending)
return 0;
/* no need in L1 only invalidation in Goya */
if (!is_hard)
return 0;
if (hdev->pldm)
timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
else
timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
mutex_lock(&hdev->mmu_cache_lock);
/*
* TODO: currently invalidate entire L0 & L1 as in regular hard
* invalidation. Need to apply invalidation of specific cache lines with
* mask of ASID & VA & size.
* Note that L1 with be flushed entirely in any case.
*/
/* L0 & L1 invalidation */
inv_data = RREG32(mmSTLB_CACHE_INV);
/* PI is 8 bit */
pi = ((inv_data & STLB_CACHE_INV_PRODUCER_INDEX_MASK) + 1) & 0xFF;
WREG32(mmSTLB_CACHE_INV,
(inv_data & STLB_CACHE_INV_INDEX_MASK_MASK) | pi);
rc = hl_poll_timeout(
hdev,
mmSTLB_INV_CONSUMER_INDEX,
status,
status == pi,
1000,
timeout_usec);
mutex_unlock(&hdev->mmu_cache_lock);
if (rc) {
dev_err_ratelimited(hdev->dev,
"MMU cache invalidation timeout\n");
hl_device_reset(hdev, true, false);
}
return rc;
}
int goya_send_heartbeat(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
return 0;
return hl_fw_send_heartbeat(hdev);
}
int goya_armcp_info_get(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 dram_size;
int rc;
if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
return 0;
rc = hl_fw_armcp_info_get(hdev);
if (rc)
return rc;
dram_size = le64_to_cpu(prop->armcp_info.dram_size);
if (dram_size) {
if ((!is_power_of_2(dram_size)) ||
(dram_size < DRAM_PHYS_DEFAULT_SIZE)) {
dev_err(hdev->dev,
"F/W reported invalid DRAM size %llu. Trying to use default size\n",
dram_size);
dram_size = DRAM_PHYS_DEFAULT_SIZE;
}
prop->dram_size = dram_size;
prop->dram_end_address = prop->dram_base_address + dram_size;
}
if (!strlen(prop->armcp_info.card_name))
strncpy(prop->armcp_info.card_name, GOYA_DEFAULT_CARD_NAME,
CARD_NAME_MAX_LEN);
return 0;
}
static void goya_enable_clock_gating(struct hl_device *hdev)
{
}
static void goya_disable_clock_gating(struct hl_device *hdev)
{
}
static bool goya_is_device_idle(struct hl_device *hdev, u32 *mask,
struct seq_file *s)
{
const char *fmt = "%-5d%-9s%#-14x%#-16x%#x\n";
const char *dma_fmt = "%-5d%-9s%#-14x%#x\n";
u32 qm_glbl_sts0, cmdq_glbl_sts0, dma_core_sts0, tpc_cfg_sts,
mme_arch_sts;
bool is_idle = true, is_eng_idle;
u64 offset;
int i;
if (s)
seq_puts(s, "\nDMA is_idle QM_GLBL_STS0 DMA_CORE_STS0\n"
"--- ------- ------------ -------------\n");
offset = mmDMA_QM_1_GLBL_STS0 - mmDMA_QM_0_GLBL_STS0;
for (i = 0 ; i < DMA_MAX_NUM ; i++) {
qm_glbl_sts0 = RREG32(mmDMA_QM_0_GLBL_STS0 + i * offset);
dma_core_sts0 = RREG32(mmDMA_CH_0_STS0 + i * offset);
is_eng_idle = IS_DMA_QM_IDLE(qm_glbl_sts0) &&
IS_DMA_IDLE(dma_core_sts0);
is_idle &= is_eng_idle;
if (mask)
*mask |= !is_eng_idle << (GOYA_ENGINE_ID_DMA_0 + i);
if (s)
seq_printf(s, dma_fmt, i, is_eng_idle ? "Y" : "N",
qm_glbl_sts0, dma_core_sts0);
}
if (s)
seq_puts(s,
"\nTPC is_idle QM_GLBL_STS0 CMDQ_GLBL_STS0 CFG_STATUS\n"
"--- ------- ------------ -------------- ----------\n");
offset = mmTPC1_QM_GLBL_STS0 - mmTPC0_QM_GLBL_STS0;
for (i = 0 ; i < TPC_MAX_NUM ; i++) {
qm_glbl_sts0 = RREG32(mmTPC0_QM_GLBL_STS0 + i * offset);
cmdq_glbl_sts0 = RREG32(mmTPC0_CMDQ_GLBL_STS0 + i * offset);
tpc_cfg_sts = RREG32(mmTPC0_CFG_STATUS + i * offset);
is_eng_idle = IS_TPC_QM_IDLE(qm_glbl_sts0) &&
IS_TPC_CMDQ_IDLE(cmdq_glbl_sts0) &&
IS_TPC_IDLE(tpc_cfg_sts);
is_idle &= is_eng_idle;
if (mask)
*mask |= !is_eng_idle << (GOYA_ENGINE_ID_TPC_0 + i);
if (s)
seq_printf(s, fmt, i, is_eng_idle ? "Y" : "N",
qm_glbl_sts0, cmdq_glbl_sts0, tpc_cfg_sts);
}
if (s)
seq_puts(s,
"\nMME is_idle QM_GLBL_STS0 CMDQ_GLBL_STS0 ARCH_STATUS\n"
"--- ------- ------------ -------------- -----------\n");
qm_glbl_sts0 = RREG32(mmMME_QM_GLBL_STS0);
cmdq_glbl_sts0 = RREG32(mmMME_CMDQ_GLBL_STS0);
mme_arch_sts = RREG32(mmMME_ARCH_STATUS);
is_eng_idle = IS_MME_QM_IDLE(qm_glbl_sts0) &&
IS_MME_CMDQ_IDLE(cmdq_glbl_sts0) &&
IS_MME_IDLE(mme_arch_sts);
is_idle &= is_eng_idle;
if (mask)
*mask |= !is_eng_idle << GOYA_ENGINE_ID_MME_0;
if (s) {
seq_printf(s, fmt, 0, is_eng_idle ? "Y" : "N", qm_glbl_sts0,
cmdq_glbl_sts0, mme_arch_sts);
seq_puts(s, "\n");
}
return is_idle;
}
static void goya_hw_queues_lock(struct hl_device *hdev)
__acquires(&goya->hw_queues_lock)
{
struct goya_device *goya = hdev->asic_specific;
spin_lock(&goya->hw_queues_lock);
}
static void goya_hw_queues_unlock(struct hl_device *hdev)
__releases(&goya->hw_queues_lock)
{
struct goya_device *goya = hdev->asic_specific;
spin_unlock(&goya->hw_queues_lock);
}
static u32 goya_get_pci_id(struct hl_device *hdev)
{
return hdev->pdev->device;
}
static int goya_get_eeprom_data(struct hl_device *hdev, void *data,
size_t max_size)
{
struct goya_device *goya = hdev->asic_specific;
if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
return 0;
return hl_fw_get_eeprom_data(hdev, data, max_size);
}
static enum hl_device_hw_state goya_get_hw_state(struct hl_device *hdev)
{
return RREG32(mmHW_STATE);
}
int goya_ctx_init(struct hl_ctx *ctx)
{
return 0;
}
u32 goya_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx)
{
return cq_idx;
}
static u32 goya_get_signal_cb_size(struct hl_device *hdev)
{
return 0;
}
static u32 goya_get_wait_cb_size(struct hl_device *hdev)
{
return 0;
}
static void goya_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id)
{
}
static void goya_gen_wait_cb(struct hl_device *hdev, void *data, u16 sob_id,
u16 sob_val, u16 mon_id, u32 q_idx)
{
}
static void goya_reset_sob(struct hl_device *hdev, void *data)
{
}
static void goya_set_dma_mask_from_fw(struct hl_device *hdev)
{
if (RREG32(mmPSOC_GLOBAL_CONF_NON_RST_FLOPS_0) ==
HL_POWER9_HOST_MAGIC) {
dev_dbg(hdev->dev, "Working in 64-bit DMA mode\n");
hdev->power9_64bit_dma_enable = 1;
hdev->dma_mask = 64;
} else {
dev_dbg(hdev->dev, "Working in 48-bit DMA mode\n");
hdev->power9_64bit_dma_enable = 0;
hdev->dma_mask = 48;
}
}
u64 goya_get_device_time(struct hl_device *hdev)
{
u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32;
return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL);
}
static const struct hl_asic_funcs goya_funcs = {
.early_init = goya_early_init,
.early_fini = goya_early_fini,
.late_init = goya_late_init,
.late_fini = goya_late_fini,
.sw_init = goya_sw_init,
.sw_fini = goya_sw_fini,
.hw_init = goya_hw_init,
.hw_fini = goya_hw_fini,
.halt_engines = goya_halt_engines,
.suspend = goya_suspend,
.resume = goya_resume,
.cb_mmap = goya_cb_mmap,
.ring_doorbell = goya_ring_doorbell,
.pqe_write = goya_pqe_write,
.asic_dma_alloc_coherent = goya_dma_alloc_coherent,
.asic_dma_free_coherent = goya_dma_free_coherent,
.get_int_queue_base = goya_get_int_queue_base,
.test_queues = goya_test_queues,
.asic_dma_pool_zalloc = goya_dma_pool_zalloc,
.asic_dma_pool_free = goya_dma_pool_free,
.cpu_accessible_dma_pool_alloc = goya_cpu_accessible_dma_pool_alloc,
.cpu_accessible_dma_pool_free = goya_cpu_accessible_dma_pool_free,
.hl_dma_unmap_sg = goya_dma_unmap_sg,
.cs_parser = goya_cs_parser,
.asic_dma_map_sg = goya_dma_map_sg,
.get_dma_desc_list_size = goya_get_dma_desc_list_size,
.add_end_of_cb_packets = goya_add_end_of_cb_packets,
.update_eq_ci = goya_update_eq_ci,
.context_switch = goya_context_switch,
.restore_phase_topology = goya_restore_phase_topology,
.debugfs_read32 = goya_debugfs_read32,
.debugfs_write32 = goya_debugfs_write32,
.debugfs_read64 = goya_debugfs_read64,
.debugfs_write64 = goya_debugfs_write64,
.add_device_attr = goya_add_device_attr,
.handle_eqe = goya_handle_eqe,
.set_pll_profile = goya_set_pll_profile,
.get_events_stat = goya_get_events_stat,
.read_pte = goya_read_pte,
.write_pte = goya_write_pte,
.mmu_invalidate_cache = goya_mmu_invalidate_cache,
.mmu_invalidate_cache_range = goya_mmu_invalidate_cache_range,
.send_heartbeat = goya_send_heartbeat,
.enable_clock_gating = goya_enable_clock_gating,
.disable_clock_gating = goya_disable_clock_gating,
.debug_coresight = goya_debug_coresight,
.is_device_idle = goya_is_device_idle,
.soft_reset_late_init = goya_soft_reset_late_init,
.hw_queues_lock = goya_hw_queues_lock,
.hw_queues_unlock = goya_hw_queues_unlock,
.get_pci_id = goya_get_pci_id,
.get_eeprom_data = goya_get_eeprom_data,
.send_cpu_message = goya_send_cpu_message,
.get_hw_state = goya_get_hw_state,
.pci_bars_map = goya_pci_bars_map,
.set_dram_bar_base = goya_set_ddr_bar_base,
.init_iatu = goya_init_iatu,
.rreg = hl_rreg,
.wreg = hl_wreg,
.halt_coresight = goya_halt_coresight,
.ctx_init = goya_ctx_init,
.get_clk_rate = goya_get_clk_rate,
.get_queue_id_for_cq = goya_get_queue_id_for_cq,
.read_device_fw_version = goya_read_device_fw_version,
.load_firmware_to_device = goya_load_firmware_to_device,
.load_boot_fit_to_device = goya_load_boot_fit_to_device,
.get_signal_cb_size = goya_get_signal_cb_size,
.get_wait_cb_size = goya_get_wait_cb_size,
.gen_signal_cb = goya_gen_signal_cb,
.gen_wait_cb = goya_gen_wait_cb,
.reset_sob = goya_reset_sob,
.set_dma_mask_from_fw = goya_set_dma_mask_from_fw,
.get_device_time = goya_get_device_time
};
/*
* goya_set_asic_funcs - set Goya function pointers
*
* @*hdev: pointer to hl_device structure
*
*/
void goya_set_asic_funcs(struct hl_device *hdev)
{
hdev->asic_funcs = &goya_funcs;
}