| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* drivers/net/ethernet/freescale/gianfar.c |
| * |
| * Gianfar Ethernet Driver |
| * This driver is designed for the non-CPM ethernet controllers |
| * on the 85xx and 83xx family of integrated processors |
| * Based on 8260_io/fcc_enet.c |
| * |
| * Author: Andy Fleming |
| * Maintainer: Kumar Gala |
| * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> |
| * |
| * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. |
| * Copyright 2007 MontaVista Software, Inc. |
| * |
| * Gianfar: AKA Lambda Draconis, "Dragon" |
| * RA 11 31 24.2 |
| * Dec +69 19 52 |
| * V 3.84 |
| * B-V +1.62 |
| * |
| * Theory of operation |
| * |
| * The driver is initialized through of_device. Configuration information |
| * is therefore conveyed through an OF-style device tree. |
| * |
| * The Gianfar Ethernet Controller uses a ring of buffer |
| * descriptors. The beginning is indicated by a register |
| * pointing to the physical address of the start of the ring. |
| * The end is determined by a "wrap" bit being set in the |
| * last descriptor of the ring. |
| * |
| * When a packet is received, the RXF bit in the |
| * IEVENT register is set, triggering an interrupt when the |
| * corresponding bit in the IMASK register is also set (if |
| * interrupt coalescing is active, then the interrupt may not |
| * happen immediately, but will wait until either a set number |
| * of frames or amount of time have passed). In NAPI, the |
| * interrupt handler will signal there is work to be done, and |
| * exit. This method will start at the last known empty |
| * descriptor, and process every subsequent descriptor until there |
| * are none left with data (NAPI will stop after a set number of |
| * packets to give time to other tasks, but will eventually |
| * process all the packets). The data arrives inside a |
| * pre-allocated skb, and so after the skb is passed up to the |
| * stack, a new skb must be allocated, and the address field in |
| * the buffer descriptor must be updated to indicate this new |
| * skb. |
| * |
| * When the kernel requests that a packet be transmitted, the |
| * driver starts where it left off last time, and points the |
| * descriptor at the buffer which was passed in. The driver |
| * then informs the DMA engine that there are packets ready to |
| * be transmitted. Once the controller is finished transmitting |
| * the packet, an interrupt may be triggered (under the same |
| * conditions as for reception, but depending on the TXF bit). |
| * The driver then cleans up the buffer. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #define DEBUG |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include <linux/unistd.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/if_vlan.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_mdio.h> |
| #include <linux/of_platform.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/in.h> |
| #include <linux/net_tstamp.h> |
| |
| #include <asm/io.h> |
| #ifdef CONFIG_PPC |
| #include <asm/reg.h> |
| #include <asm/mpc85xx.h> |
| #endif |
| #include <asm/irq.h> |
| #include <linux/uaccess.h> |
| #include <linux/module.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/crc32.h> |
| #include <linux/mii.h> |
| #include <linux/phy.h> |
| #include <linux/phy_fixed.h> |
| #include <linux/of.h> |
| #include <linux/of_net.h> |
| |
| #include "gianfar.h" |
| |
| #define TX_TIMEOUT (5*HZ) |
| |
| MODULE_AUTHOR("Freescale Semiconductor, Inc"); |
| MODULE_DESCRIPTION("Gianfar Ethernet Driver"); |
| MODULE_LICENSE("GPL"); |
| |
| static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, |
| dma_addr_t buf) |
| { |
| u32 lstatus; |
| |
| bdp->bufPtr = cpu_to_be32(buf); |
| |
| lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); |
| if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) |
| lstatus |= BD_LFLAG(RXBD_WRAP); |
| |
| gfar_wmb(); |
| |
| bdp->lstatus = cpu_to_be32(lstatus); |
| } |
| |
| static void gfar_init_tx_rx_base(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 __iomem *baddr; |
| int i; |
| |
| baddr = ®s->tbase0; |
| for (i = 0; i < priv->num_tx_queues; i++) { |
| gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); |
| baddr += 2; |
| } |
| |
| baddr = ®s->rbase0; |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); |
| baddr += 2; |
| } |
| } |
| |
| static void gfar_init_rqprm(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 __iomem *baddr; |
| int i; |
| |
| baddr = ®s->rqprm0; |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | |
| (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); |
| baddr++; |
| } |
| } |
| |
| static void gfar_rx_offload_en(struct gfar_private *priv) |
| { |
| /* set this when rx hw offload (TOE) functions are being used */ |
| priv->uses_rxfcb = 0; |
| |
| if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) |
| priv->uses_rxfcb = 1; |
| |
| if (priv->hwts_rx_en || priv->rx_filer_enable) |
| priv->uses_rxfcb = 1; |
| } |
| |
| static void gfar_mac_rx_config(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 rctrl = 0; |
| |
| if (priv->rx_filer_enable) { |
| rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; |
| /* Program the RIR0 reg with the required distribution */ |
| if (priv->poll_mode == GFAR_SQ_POLLING) |
| gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); |
| else /* GFAR_MQ_POLLING */ |
| gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); |
| } |
| |
| /* Restore PROMISC mode */ |
| if (priv->ndev->flags & IFF_PROMISC) |
| rctrl |= RCTRL_PROM; |
| |
| if (priv->ndev->features & NETIF_F_RXCSUM) |
| rctrl |= RCTRL_CHECKSUMMING; |
| |
| if (priv->extended_hash) |
| rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; |
| |
| if (priv->padding) { |
| rctrl &= ~RCTRL_PAL_MASK; |
| rctrl |= RCTRL_PADDING(priv->padding); |
| } |
| |
| /* Enable HW time stamping if requested from user space */ |
| if (priv->hwts_rx_en) |
| rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; |
| |
| if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; |
| |
| /* Clear the LFC bit */ |
| gfar_write(®s->rctrl, rctrl); |
| /* Init flow control threshold values */ |
| gfar_init_rqprm(priv); |
| gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); |
| rctrl |= RCTRL_LFC; |
| |
| /* Init rctrl based on our settings */ |
| gfar_write(®s->rctrl, rctrl); |
| } |
| |
| static void gfar_mac_tx_config(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tctrl = 0; |
| |
| if (priv->ndev->features & NETIF_F_IP_CSUM) |
| tctrl |= TCTRL_INIT_CSUM; |
| |
| if (priv->prio_sched_en) |
| tctrl |= TCTRL_TXSCHED_PRIO; |
| else { |
| tctrl |= TCTRL_TXSCHED_WRRS; |
| gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); |
| gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); |
| } |
| |
| if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) |
| tctrl |= TCTRL_VLINS; |
| |
| gfar_write(®s->tctrl, tctrl); |
| } |
| |
| static void gfar_configure_coalescing(struct gfar_private *priv, |
| unsigned long tx_mask, unsigned long rx_mask) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 __iomem *baddr; |
| |
| if (priv->mode == MQ_MG_MODE) { |
| int i = 0; |
| |
| baddr = ®s->txic0; |
| for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { |
| gfar_write(baddr + i, 0); |
| if (likely(priv->tx_queue[i]->txcoalescing)) |
| gfar_write(baddr + i, priv->tx_queue[i]->txic); |
| } |
| |
| baddr = ®s->rxic0; |
| for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { |
| gfar_write(baddr + i, 0); |
| if (likely(priv->rx_queue[i]->rxcoalescing)) |
| gfar_write(baddr + i, priv->rx_queue[i]->rxic); |
| } |
| } else { |
| /* Backward compatible case -- even if we enable |
| * multiple queues, there's only single reg to program |
| */ |
| gfar_write(®s->txic, 0); |
| if (likely(priv->tx_queue[0]->txcoalescing)) |
| gfar_write(®s->txic, priv->tx_queue[0]->txic); |
| |
| gfar_write(®s->rxic, 0); |
| if (unlikely(priv->rx_queue[0]->rxcoalescing)) |
| gfar_write(®s->rxic, priv->rx_queue[0]->rxic); |
| } |
| } |
| |
| static void gfar_configure_coalescing_all(struct gfar_private *priv) |
| { |
| gfar_configure_coalescing(priv, 0xFF, 0xFF); |
| } |
| |
| static struct net_device_stats *gfar_get_stats(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; |
| unsigned long tx_packets = 0, tx_bytes = 0; |
| int i; |
| |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| rx_packets += priv->rx_queue[i]->stats.rx_packets; |
| rx_bytes += priv->rx_queue[i]->stats.rx_bytes; |
| rx_dropped += priv->rx_queue[i]->stats.rx_dropped; |
| } |
| |
| dev->stats.rx_packets = rx_packets; |
| dev->stats.rx_bytes = rx_bytes; |
| dev->stats.rx_dropped = rx_dropped; |
| |
| for (i = 0; i < priv->num_tx_queues; i++) { |
| tx_bytes += priv->tx_queue[i]->stats.tx_bytes; |
| tx_packets += priv->tx_queue[i]->stats.tx_packets; |
| } |
| |
| dev->stats.tx_bytes = tx_bytes; |
| dev->stats.tx_packets = tx_packets; |
| |
| return &dev->stats; |
| } |
| |
| /* Set the appropriate hash bit for the given addr */ |
| /* The algorithm works like so: |
| * 1) Take the Destination Address (ie the multicast address), and |
| * do a CRC on it (little endian), and reverse the bits of the |
| * result. |
| * 2) Use the 8 most significant bits as a hash into a 256-entry |
| * table. The table is controlled through 8 32-bit registers: |
| * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is |
| * gaddr7. This means that the 3 most significant bits in the |
| * hash index which gaddr register to use, and the 5 other bits |
| * indicate which bit (assuming an IBM numbering scheme, which |
| * for PowerPC (tm) is usually the case) in the register holds |
| * the entry. |
| */ |
| static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) |
| { |
| u32 tempval; |
| struct gfar_private *priv = netdev_priv(dev); |
| u32 result = ether_crc(ETH_ALEN, addr); |
| int width = priv->hash_width; |
| u8 whichbit = (result >> (32 - width)) & 0x1f; |
| u8 whichreg = result >> (32 - width + 5); |
| u32 value = (1 << (31-whichbit)); |
| |
| tempval = gfar_read(priv->hash_regs[whichreg]); |
| tempval |= value; |
| gfar_write(priv->hash_regs[whichreg], tempval); |
| } |
| |
| /* There are multiple MAC Address register pairs on some controllers |
| * This function sets the numth pair to a given address |
| */ |
| static void gfar_set_mac_for_addr(struct net_device *dev, int num, |
| const u8 *addr) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| u32 __iomem *macptr = ®s->macstnaddr1; |
| |
| macptr += num*2; |
| |
| /* For a station address of 0x12345678ABCD in transmission |
| * order (BE), MACnADDR1 is set to 0xCDAB7856 and |
| * MACnADDR2 is set to 0x34120000. |
| */ |
| tempval = (addr[5] << 24) | (addr[4] << 16) | |
| (addr[3] << 8) | addr[2]; |
| |
| gfar_write(macptr, tempval); |
| |
| tempval = (addr[1] << 24) | (addr[0] << 16); |
| |
| gfar_write(macptr+1, tempval); |
| } |
| |
| static int gfar_set_mac_addr(struct net_device *dev, void *p) |
| { |
| eth_mac_addr(dev, p); |
| |
| gfar_set_mac_for_addr(dev, 0, dev->dev_addr); |
| |
| return 0; |
| } |
| |
| static void gfar_ints_disable(struct gfar_private *priv) |
| { |
| int i; |
| for (i = 0; i < priv->num_grps; i++) { |
| struct gfar __iomem *regs = priv->gfargrp[i].regs; |
| /* Clear IEVENT */ |
| gfar_write(®s->ievent, IEVENT_INIT_CLEAR); |
| |
| /* Initialize IMASK */ |
| gfar_write(®s->imask, IMASK_INIT_CLEAR); |
| } |
| } |
| |
| static void gfar_ints_enable(struct gfar_private *priv) |
| { |
| int i; |
| for (i = 0; i < priv->num_grps; i++) { |
| struct gfar __iomem *regs = priv->gfargrp[i].regs; |
| /* Unmask the interrupts we look for */ |
| gfar_write(®s->imask, IMASK_DEFAULT); |
| } |
| } |
| |
| static int gfar_alloc_tx_queues(struct gfar_private *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_tx_queues; i++) { |
| priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), |
| GFP_KERNEL); |
| if (!priv->tx_queue[i]) |
| return -ENOMEM; |
| |
| priv->tx_queue[i]->tx_skbuff = NULL; |
| priv->tx_queue[i]->qindex = i; |
| priv->tx_queue[i]->dev = priv->ndev; |
| spin_lock_init(&(priv->tx_queue[i]->txlock)); |
| } |
| return 0; |
| } |
| |
| static int gfar_alloc_rx_queues(struct gfar_private *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), |
| GFP_KERNEL); |
| if (!priv->rx_queue[i]) |
| return -ENOMEM; |
| |
| priv->rx_queue[i]->qindex = i; |
| priv->rx_queue[i]->ndev = priv->ndev; |
| } |
| return 0; |
| } |
| |
| static void gfar_free_tx_queues(struct gfar_private *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_tx_queues; i++) |
| kfree(priv->tx_queue[i]); |
| } |
| |
| static void gfar_free_rx_queues(struct gfar_private *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_rx_queues; i++) |
| kfree(priv->rx_queue[i]); |
| } |
| |
| static void unmap_group_regs(struct gfar_private *priv) |
| { |
| int i; |
| |
| for (i = 0; i < MAXGROUPS; i++) |
| if (priv->gfargrp[i].regs) |
| iounmap(priv->gfargrp[i].regs); |
| } |
| |
| static void free_gfar_dev(struct gfar_private *priv) |
| { |
| int i, j; |
| |
| for (i = 0; i < priv->num_grps; i++) |
| for (j = 0; j < GFAR_NUM_IRQS; j++) { |
| kfree(priv->gfargrp[i].irqinfo[j]); |
| priv->gfargrp[i].irqinfo[j] = NULL; |
| } |
| |
| free_netdev(priv->ndev); |
| } |
| |
| static void disable_napi(struct gfar_private *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_grps; i++) { |
| napi_disable(&priv->gfargrp[i].napi_rx); |
| napi_disable(&priv->gfargrp[i].napi_tx); |
| } |
| } |
| |
| static void enable_napi(struct gfar_private *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->num_grps; i++) { |
| napi_enable(&priv->gfargrp[i].napi_rx); |
| napi_enable(&priv->gfargrp[i].napi_tx); |
| } |
| } |
| |
| static int gfar_parse_group(struct device_node *np, |
| struct gfar_private *priv, const char *model) |
| { |
| struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; |
| int i; |
| |
| for (i = 0; i < GFAR_NUM_IRQS; i++) { |
| grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), |
| GFP_KERNEL); |
| if (!grp->irqinfo[i]) |
| return -ENOMEM; |
| } |
| |
| grp->regs = of_iomap(np, 0); |
| if (!grp->regs) |
| return -ENOMEM; |
| |
| gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); |
| |
| /* If we aren't the FEC we have multiple interrupts */ |
| if (model && strcasecmp(model, "FEC")) { |
| gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); |
| gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); |
| if (!gfar_irq(grp, TX)->irq || |
| !gfar_irq(grp, RX)->irq || |
| !gfar_irq(grp, ER)->irq) |
| return -EINVAL; |
| } |
| |
| grp->priv = priv; |
| spin_lock_init(&grp->grplock); |
| if (priv->mode == MQ_MG_MODE) { |
| u32 rxq_mask, txq_mask; |
| int ret; |
| |
| grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); |
| grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); |
| |
| ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); |
| if (!ret) { |
| grp->rx_bit_map = rxq_mask ? |
| rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); |
| } |
| |
| ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); |
| if (!ret) { |
| grp->tx_bit_map = txq_mask ? |
| txq_mask : (DEFAULT_MAPPING >> priv->num_grps); |
| } |
| |
| if (priv->poll_mode == GFAR_SQ_POLLING) { |
| /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ |
| grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); |
| grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); |
| } |
| } else { |
| grp->rx_bit_map = 0xFF; |
| grp->tx_bit_map = 0xFF; |
| } |
| |
| /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses |
| * right to left, so we need to revert the 8 bits to get the q index |
| */ |
| grp->rx_bit_map = bitrev8(grp->rx_bit_map); |
| grp->tx_bit_map = bitrev8(grp->tx_bit_map); |
| |
| /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, |
| * also assign queues to groups |
| */ |
| for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { |
| if (!grp->rx_queue) |
| grp->rx_queue = priv->rx_queue[i]; |
| grp->num_rx_queues++; |
| grp->rstat |= (RSTAT_CLEAR_RHALT >> i); |
| priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); |
| priv->rx_queue[i]->grp = grp; |
| } |
| |
| for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { |
| if (!grp->tx_queue) |
| grp->tx_queue = priv->tx_queue[i]; |
| grp->num_tx_queues++; |
| grp->tstat |= (TSTAT_CLEAR_THALT >> i); |
| priv->tqueue |= (TQUEUE_EN0 >> i); |
| priv->tx_queue[i]->grp = grp; |
| } |
| |
| priv->num_grps++; |
| |
| return 0; |
| } |
| |
| static int gfar_of_group_count(struct device_node *np) |
| { |
| struct device_node *child; |
| int num = 0; |
| |
| for_each_available_child_of_node(np, child) |
| if (of_node_name_eq(child, "queue-group")) |
| num++; |
| |
| return num; |
| } |
| |
| /* Reads the controller's registers to determine what interface |
| * connects it to the PHY. |
| */ |
| static phy_interface_t gfar_get_interface(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 ecntrl; |
| |
| ecntrl = gfar_read(®s->ecntrl); |
| |
| if (ecntrl & ECNTRL_SGMII_MODE) |
| return PHY_INTERFACE_MODE_SGMII; |
| |
| if (ecntrl & ECNTRL_TBI_MODE) { |
| if (ecntrl & ECNTRL_REDUCED_MODE) |
| return PHY_INTERFACE_MODE_RTBI; |
| else |
| return PHY_INTERFACE_MODE_TBI; |
| } |
| |
| if (ecntrl & ECNTRL_REDUCED_MODE) { |
| if (ecntrl & ECNTRL_REDUCED_MII_MODE) { |
| return PHY_INTERFACE_MODE_RMII; |
| } |
| else { |
| phy_interface_t interface = priv->interface; |
| |
| /* This isn't autodetected right now, so it must |
| * be set by the device tree or platform code. |
| */ |
| if (interface == PHY_INTERFACE_MODE_RGMII_ID) |
| return PHY_INTERFACE_MODE_RGMII_ID; |
| |
| return PHY_INTERFACE_MODE_RGMII; |
| } |
| } |
| |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) |
| return PHY_INTERFACE_MODE_GMII; |
| |
| return PHY_INTERFACE_MODE_MII; |
| } |
| |
| static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) |
| { |
| const char *model; |
| const void *mac_addr; |
| int err = 0, i; |
| phy_interface_t interface; |
| struct net_device *dev = NULL; |
| struct gfar_private *priv = NULL; |
| struct device_node *np = ofdev->dev.of_node; |
| struct device_node *child = NULL; |
| u32 stash_len = 0; |
| u32 stash_idx = 0; |
| unsigned int num_tx_qs, num_rx_qs; |
| unsigned short mode, poll_mode; |
| |
| if (!np) |
| return -ENODEV; |
| |
| if (of_device_is_compatible(np, "fsl,etsec2")) { |
| mode = MQ_MG_MODE; |
| poll_mode = GFAR_SQ_POLLING; |
| } else { |
| mode = SQ_SG_MODE; |
| poll_mode = GFAR_SQ_POLLING; |
| } |
| |
| if (mode == SQ_SG_MODE) { |
| num_tx_qs = 1; |
| num_rx_qs = 1; |
| } else { /* MQ_MG_MODE */ |
| /* get the actual number of supported groups */ |
| unsigned int num_grps = gfar_of_group_count(np); |
| |
| if (num_grps == 0 || num_grps > MAXGROUPS) { |
| dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", |
| num_grps); |
| pr_err("Cannot do alloc_etherdev, aborting\n"); |
| return -EINVAL; |
| } |
| |
| if (poll_mode == GFAR_SQ_POLLING) { |
| num_tx_qs = num_grps; /* one txq per int group */ |
| num_rx_qs = num_grps; /* one rxq per int group */ |
| } else { /* GFAR_MQ_POLLING */ |
| u32 tx_queues, rx_queues; |
| int ret; |
| |
| /* parse the num of HW tx and rx queues */ |
| ret = of_property_read_u32(np, "fsl,num_tx_queues", |
| &tx_queues); |
| num_tx_qs = ret ? 1 : tx_queues; |
| |
| ret = of_property_read_u32(np, "fsl,num_rx_queues", |
| &rx_queues); |
| num_rx_qs = ret ? 1 : rx_queues; |
| } |
| } |
| |
| if (num_tx_qs > MAX_TX_QS) { |
| pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", |
| num_tx_qs, MAX_TX_QS); |
| pr_err("Cannot do alloc_etherdev, aborting\n"); |
| return -EINVAL; |
| } |
| |
| if (num_rx_qs > MAX_RX_QS) { |
| pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", |
| num_rx_qs, MAX_RX_QS); |
| pr_err("Cannot do alloc_etherdev, aborting\n"); |
| return -EINVAL; |
| } |
| |
| *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); |
| dev = *pdev; |
| if (NULL == dev) |
| return -ENOMEM; |
| |
| priv = netdev_priv(dev); |
| priv->ndev = dev; |
| |
| priv->mode = mode; |
| priv->poll_mode = poll_mode; |
| |
| priv->num_tx_queues = num_tx_qs; |
| netif_set_real_num_rx_queues(dev, num_rx_qs); |
| priv->num_rx_queues = num_rx_qs; |
| |
| err = gfar_alloc_tx_queues(priv); |
| if (err) |
| goto tx_alloc_failed; |
| |
| err = gfar_alloc_rx_queues(priv); |
| if (err) |
| goto rx_alloc_failed; |
| |
| err = of_property_read_string(np, "model", &model); |
| if (err) { |
| pr_err("Device model property missing, aborting\n"); |
| goto rx_alloc_failed; |
| } |
| |
| /* Init Rx queue filer rule set linked list */ |
| INIT_LIST_HEAD(&priv->rx_list.list); |
| priv->rx_list.count = 0; |
| mutex_init(&priv->rx_queue_access); |
| |
| for (i = 0; i < MAXGROUPS; i++) |
| priv->gfargrp[i].regs = NULL; |
| |
| /* Parse and initialize group specific information */ |
| if (priv->mode == MQ_MG_MODE) { |
| for_each_available_child_of_node(np, child) { |
| if (!of_node_name_eq(child, "queue-group")) |
| continue; |
| |
| err = gfar_parse_group(child, priv, model); |
| if (err) |
| goto err_grp_init; |
| } |
| } else { /* SQ_SG_MODE */ |
| err = gfar_parse_group(np, priv, model); |
| if (err) |
| goto err_grp_init; |
| } |
| |
| if (of_property_read_bool(np, "bd-stash")) { |
| priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; |
| priv->bd_stash_en = 1; |
| } |
| |
| err = of_property_read_u32(np, "rx-stash-len", &stash_len); |
| |
| if (err == 0) |
| priv->rx_stash_size = stash_len; |
| |
| err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); |
| |
| if (err == 0) |
| priv->rx_stash_index = stash_idx; |
| |
| if (stash_len || stash_idx) |
| priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; |
| |
| mac_addr = of_get_mac_address(np); |
| |
| if (!IS_ERR(mac_addr)) |
| ether_addr_copy(dev->dev_addr, mac_addr); |
| |
| if (model && !strcasecmp(model, "TSEC")) |
| priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | |
| FSL_GIANFAR_DEV_HAS_COALESCE | |
| FSL_GIANFAR_DEV_HAS_RMON | |
| FSL_GIANFAR_DEV_HAS_MULTI_INTR; |
| |
| if (model && !strcasecmp(model, "eTSEC")) |
| priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | |
| FSL_GIANFAR_DEV_HAS_COALESCE | |
| FSL_GIANFAR_DEV_HAS_RMON | |
| FSL_GIANFAR_DEV_HAS_MULTI_INTR | |
| FSL_GIANFAR_DEV_HAS_CSUM | |
| FSL_GIANFAR_DEV_HAS_VLAN | |
| FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | |
| FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | |
| FSL_GIANFAR_DEV_HAS_TIMER | |
| FSL_GIANFAR_DEV_HAS_RX_FILER; |
| |
| /* Use PHY connection type from the DT node if one is specified there. |
| * rgmii-id really needs to be specified. Other types can be |
| * detected by hardware |
| */ |
| err = of_get_phy_mode(np, &interface); |
| if (!err) |
| priv->interface = interface; |
| else |
| priv->interface = gfar_get_interface(dev); |
| |
| if (of_find_property(np, "fsl,magic-packet", NULL)) |
| priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; |
| |
| if (of_get_property(np, "fsl,wake-on-filer", NULL)) |
| priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; |
| |
| priv->phy_node = of_parse_phandle(np, "phy-handle", 0); |
| |
| /* In the case of a fixed PHY, the DT node associated |
| * to the PHY is the Ethernet MAC DT node. |
| */ |
| if (!priv->phy_node && of_phy_is_fixed_link(np)) { |
| err = of_phy_register_fixed_link(np); |
| if (err) |
| goto err_grp_init; |
| |
| priv->phy_node = of_node_get(np); |
| } |
| |
| /* Find the TBI PHY. If it's not there, we don't support SGMII */ |
| priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); |
| |
| return 0; |
| |
| err_grp_init: |
| unmap_group_regs(priv); |
| rx_alloc_failed: |
| gfar_free_rx_queues(priv); |
| tx_alloc_failed: |
| gfar_free_tx_queues(priv); |
| free_gfar_dev(priv); |
| return err; |
| } |
| |
| static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, |
| u32 class) |
| { |
| u32 rqfpr = FPR_FILER_MASK; |
| u32 rqfcr = 0x0; |
| |
| rqfar--; |
| rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; |
| priv->ftp_rqfpr[rqfar] = rqfpr; |
| priv->ftp_rqfcr[rqfar] = rqfcr; |
| gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| |
| rqfar--; |
| rqfcr = RQFCR_CMP_NOMATCH; |
| priv->ftp_rqfpr[rqfar] = rqfpr; |
| priv->ftp_rqfcr[rqfar] = rqfcr; |
| gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| |
| rqfar--; |
| rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; |
| rqfpr = class; |
| priv->ftp_rqfcr[rqfar] = rqfcr; |
| priv->ftp_rqfpr[rqfar] = rqfpr; |
| gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| |
| rqfar--; |
| rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; |
| rqfpr = class; |
| priv->ftp_rqfcr[rqfar] = rqfcr; |
| priv->ftp_rqfpr[rqfar] = rqfpr; |
| gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| |
| return rqfar; |
| } |
| |
| static void gfar_init_filer_table(struct gfar_private *priv) |
| { |
| int i = 0x0; |
| u32 rqfar = MAX_FILER_IDX; |
| u32 rqfcr = 0x0; |
| u32 rqfpr = FPR_FILER_MASK; |
| |
| /* Default rule */ |
| rqfcr = RQFCR_CMP_MATCH; |
| priv->ftp_rqfcr[rqfar] = rqfcr; |
| priv->ftp_rqfpr[rqfar] = rqfpr; |
| gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| |
| rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); |
| rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); |
| rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); |
| rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); |
| rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); |
| rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); |
| |
| /* cur_filer_idx indicated the first non-masked rule */ |
| priv->cur_filer_idx = rqfar; |
| |
| /* Rest are masked rules */ |
| rqfcr = RQFCR_CMP_NOMATCH; |
| for (i = 0; i < rqfar; i++) { |
| priv->ftp_rqfcr[i] = rqfcr; |
| priv->ftp_rqfpr[i] = rqfpr; |
| gfar_write_filer(priv, i, rqfcr, rqfpr); |
| } |
| } |
| |
| #ifdef CONFIG_PPC |
| static void __gfar_detect_errata_83xx(struct gfar_private *priv) |
| { |
| unsigned int pvr = mfspr(SPRN_PVR); |
| unsigned int svr = mfspr(SPRN_SVR); |
| unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ |
| unsigned int rev = svr & 0xffff; |
| |
| /* MPC8313 Rev 2.0 and higher; All MPC837x */ |
| if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || |
| (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) |
| priv->errata |= GFAR_ERRATA_74; |
| |
| /* MPC8313 and MPC837x all rev */ |
| if ((pvr == 0x80850010 && mod == 0x80b0) || |
| (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) |
| priv->errata |= GFAR_ERRATA_76; |
| |
| /* MPC8313 Rev < 2.0 */ |
| if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) |
| priv->errata |= GFAR_ERRATA_12; |
| } |
| |
| static void __gfar_detect_errata_85xx(struct gfar_private *priv) |
| { |
| unsigned int svr = mfspr(SPRN_SVR); |
| |
| if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) |
| priv->errata |= GFAR_ERRATA_12; |
| /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ |
| if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || |
| ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || |
| ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) |
| priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ |
| } |
| #endif |
| |
| static void gfar_detect_errata(struct gfar_private *priv) |
| { |
| struct device *dev = &priv->ofdev->dev; |
| |
| /* no plans to fix */ |
| priv->errata |= GFAR_ERRATA_A002; |
| |
| #ifdef CONFIG_PPC |
| if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) |
| __gfar_detect_errata_85xx(priv); |
| else /* non-mpc85xx parts, i.e. e300 core based */ |
| __gfar_detect_errata_83xx(priv); |
| #endif |
| |
| if (priv->errata) |
| dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", |
| priv->errata); |
| } |
| |
| static void gfar_init_addr_hash_table(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { |
| priv->extended_hash = 1; |
| priv->hash_width = 9; |
| |
| priv->hash_regs[0] = ®s->igaddr0; |
| priv->hash_regs[1] = ®s->igaddr1; |
| priv->hash_regs[2] = ®s->igaddr2; |
| priv->hash_regs[3] = ®s->igaddr3; |
| priv->hash_regs[4] = ®s->igaddr4; |
| priv->hash_regs[5] = ®s->igaddr5; |
| priv->hash_regs[6] = ®s->igaddr6; |
| priv->hash_regs[7] = ®s->igaddr7; |
| priv->hash_regs[8] = ®s->gaddr0; |
| priv->hash_regs[9] = ®s->gaddr1; |
| priv->hash_regs[10] = ®s->gaddr2; |
| priv->hash_regs[11] = ®s->gaddr3; |
| priv->hash_regs[12] = ®s->gaddr4; |
| priv->hash_regs[13] = ®s->gaddr5; |
| priv->hash_regs[14] = ®s->gaddr6; |
| priv->hash_regs[15] = ®s->gaddr7; |
| |
| } else { |
| priv->extended_hash = 0; |
| priv->hash_width = 8; |
| |
| priv->hash_regs[0] = ®s->gaddr0; |
| priv->hash_regs[1] = ®s->gaddr1; |
| priv->hash_regs[2] = ®s->gaddr2; |
| priv->hash_regs[3] = ®s->gaddr3; |
| priv->hash_regs[4] = ®s->gaddr4; |
| priv->hash_regs[5] = ®s->gaddr5; |
| priv->hash_regs[6] = ®s->gaddr6; |
| priv->hash_regs[7] = ®s->gaddr7; |
| } |
| } |
| |
| static int __gfar_is_rx_idle(struct gfar_private *priv) |
| { |
| u32 res; |
| |
| /* Normaly TSEC should not hang on GRS commands, so we should |
| * actually wait for IEVENT_GRSC flag. |
| */ |
| if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) |
| return 0; |
| |
| /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are |
| * the same as bits 23-30, the eTSEC Rx is assumed to be idle |
| * and the Rx can be safely reset. |
| */ |
| res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); |
| res &= 0x7f807f80; |
| if ((res & 0xffff) == (res >> 16)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Halt the receive and transmit queues */ |
| static void gfar_halt_nodisable(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| unsigned int timeout; |
| int stopped; |
| |
| gfar_ints_disable(priv); |
| |
| if (gfar_is_dma_stopped(priv)) |
| return; |
| |
| /* Stop the DMA, and wait for it to stop */ |
| tempval = gfar_read(®s->dmactrl); |
| tempval |= (DMACTRL_GRS | DMACTRL_GTS); |
| gfar_write(®s->dmactrl, tempval); |
| |
| retry: |
| timeout = 1000; |
| while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { |
| cpu_relax(); |
| timeout--; |
| } |
| |
| if (!timeout) |
| stopped = gfar_is_dma_stopped(priv); |
| |
| if (!stopped && !gfar_is_rx_dma_stopped(priv) && |
| !__gfar_is_rx_idle(priv)) |
| goto retry; |
| } |
| |
| /* Halt the receive and transmit queues */ |
| static void gfar_halt(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| |
| /* Dissable the Rx/Tx hw queues */ |
| gfar_write(®s->rqueue, 0); |
| gfar_write(®s->tqueue, 0); |
| |
| mdelay(10); |
| |
| gfar_halt_nodisable(priv); |
| |
| /* Disable Rx/Tx DMA */ |
| tempval = gfar_read(®s->maccfg1); |
| tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); |
| gfar_write(®s->maccfg1, tempval); |
| } |
| |
| static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) |
| { |
| struct txbd8 *txbdp; |
| struct gfar_private *priv = netdev_priv(tx_queue->dev); |
| int i, j; |
| |
| txbdp = tx_queue->tx_bd_base; |
| |
| for (i = 0; i < tx_queue->tx_ring_size; i++) { |
| if (!tx_queue->tx_skbuff[i]) |
| continue; |
| |
| dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), |
| be16_to_cpu(txbdp->length), DMA_TO_DEVICE); |
| txbdp->lstatus = 0; |
| for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; |
| j++) { |
| txbdp++; |
| dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), |
| be16_to_cpu(txbdp->length), |
| DMA_TO_DEVICE); |
| } |
| txbdp++; |
| dev_kfree_skb_any(tx_queue->tx_skbuff[i]); |
| tx_queue->tx_skbuff[i] = NULL; |
| } |
| kfree(tx_queue->tx_skbuff); |
| tx_queue->tx_skbuff = NULL; |
| } |
| |
| static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) |
| { |
| int i; |
| |
| struct rxbd8 *rxbdp = rx_queue->rx_bd_base; |
| |
| dev_kfree_skb(rx_queue->skb); |
| |
| for (i = 0; i < rx_queue->rx_ring_size; i++) { |
| struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; |
| |
| rxbdp->lstatus = 0; |
| rxbdp->bufPtr = 0; |
| rxbdp++; |
| |
| if (!rxb->page) |
| continue; |
| |
| dma_unmap_page(rx_queue->dev, rxb->dma, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| __free_page(rxb->page); |
| |
| rxb->page = NULL; |
| } |
| |
| kfree(rx_queue->rx_buff); |
| rx_queue->rx_buff = NULL; |
| } |
| |
| /* If there are any tx skbs or rx skbs still around, free them. |
| * Then free tx_skbuff and rx_skbuff |
| */ |
| static void free_skb_resources(struct gfar_private *priv) |
| { |
| struct gfar_priv_tx_q *tx_queue = NULL; |
| struct gfar_priv_rx_q *rx_queue = NULL; |
| int i; |
| |
| /* Go through all the buffer descriptors and free their data buffers */ |
| for (i = 0; i < priv->num_tx_queues; i++) { |
| struct netdev_queue *txq; |
| |
| tx_queue = priv->tx_queue[i]; |
| txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); |
| if (tx_queue->tx_skbuff) |
| free_skb_tx_queue(tx_queue); |
| netdev_tx_reset_queue(txq); |
| } |
| |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| rx_queue = priv->rx_queue[i]; |
| if (rx_queue->rx_buff) |
| free_skb_rx_queue(rx_queue); |
| } |
| |
| dma_free_coherent(priv->dev, |
| sizeof(struct txbd8) * priv->total_tx_ring_size + |
| sizeof(struct rxbd8) * priv->total_rx_ring_size, |
| priv->tx_queue[0]->tx_bd_base, |
| priv->tx_queue[0]->tx_bd_dma_base); |
| } |
| |
| void stop_gfar(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| netif_tx_stop_all_queues(dev); |
| |
| smp_mb__before_atomic(); |
| set_bit(GFAR_DOWN, &priv->state); |
| smp_mb__after_atomic(); |
| |
| disable_napi(priv); |
| |
| /* disable ints and gracefully shut down Rx/Tx DMA */ |
| gfar_halt(priv); |
| |
| phy_stop(dev->phydev); |
| |
| free_skb_resources(priv); |
| } |
| |
| static void gfar_start(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| int i = 0; |
| |
| /* Enable Rx/Tx hw queues */ |
| gfar_write(®s->rqueue, priv->rqueue); |
| gfar_write(®s->tqueue, priv->tqueue); |
| |
| /* Initialize DMACTRL to have WWR and WOP */ |
| tempval = gfar_read(®s->dmactrl); |
| tempval |= DMACTRL_INIT_SETTINGS; |
| gfar_write(®s->dmactrl, tempval); |
| |
| /* Make sure we aren't stopped */ |
| tempval = gfar_read(®s->dmactrl); |
| tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); |
| gfar_write(®s->dmactrl, tempval); |
| |
| for (i = 0; i < priv->num_grps; i++) { |
| regs = priv->gfargrp[i].regs; |
| /* Clear THLT/RHLT, so that the DMA starts polling now */ |
| gfar_write(®s->tstat, priv->gfargrp[i].tstat); |
| gfar_write(®s->rstat, priv->gfargrp[i].rstat); |
| } |
| |
| /* Enable Rx/Tx DMA */ |
| tempval = gfar_read(®s->maccfg1); |
| tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); |
| gfar_write(®s->maccfg1, tempval); |
| |
| gfar_ints_enable(priv); |
| |
| netif_trans_update(priv->ndev); /* prevent tx timeout */ |
| } |
| |
| static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) |
| { |
| struct page *page; |
| dma_addr_t addr; |
| |
| page = dev_alloc_page(); |
| if (unlikely(!page)) |
| return false; |
| |
| addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(rxq->dev, addr))) { |
| __free_page(page); |
| |
| return false; |
| } |
| |
| rxb->dma = addr; |
| rxb->page = page; |
| rxb->page_offset = 0; |
| |
| return true; |
| } |
| |
| static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) |
| { |
| struct gfar_private *priv = netdev_priv(rx_queue->ndev); |
| struct gfar_extra_stats *estats = &priv->extra_stats; |
| |
| netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); |
| atomic64_inc(&estats->rx_alloc_err); |
| } |
| |
| static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, |
| int alloc_cnt) |
| { |
| struct rxbd8 *bdp; |
| struct gfar_rx_buff *rxb; |
| int i; |
| |
| i = rx_queue->next_to_use; |
| bdp = &rx_queue->rx_bd_base[i]; |
| rxb = &rx_queue->rx_buff[i]; |
| |
| while (alloc_cnt--) { |
| /* try reuse page */ |
| if (unlikely(!rxb->page)) { |
| if (unlikely(!gfar_new_page(rx_queue, rxb))) { |
| gfar_rx_alloc_err(rx_queue); |
| break; |
| } |
| } |
| |
| /* Setup the new RxBD */ |
| gfar_init_rxbdp(rx_queue, bdp, |
| rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); |
| |
| /* Update to the next pointer */ |
| bdp++; |
| rxb++; |
| |
| if (unlikely(++i == rx_queue->rx_ring_size)) { |
| i = 0; |
| bdp = rx_queue->rx_bd_base; |
| rxb = rx_queue->rx_buff; |
| } |
| } |
| |
| rx_queue->next_to_use = i; |
| rx_queue->next_to_alloc = i; |
| } |
| |
| static void gfar_init_bds(struct net_device *ndev) |
| { |
| struct gfar_private *priv = netdev_priv(ndev); |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| struct gfar_priv_tx_q *tx_queue = NULL; |
| struct gfar_priv_rx_q *rx_queue = NULL; |
| struct txbd8 *txbdp; |
| u32 __iomem *rfbptr; |
| int i, j; |
| |
| for (i = 0; i < priv->num_tx_queues; i++) { |
| tx_queue = priv->tx_queue[i]; |
| /* Initialize some variables in our dev structure */ |
| tx_queue->num_txbdfree = tx_queue->tx_ring_size; |
| tx_queue->dirty_tx = tx_queue->tx_bd_base; |
| tx_queue->cur_tx = tx_queue->tx_bd_base; |
| tx_queue->skb_curtx = 0; |
| tx_queue->skb_dirtytx = 0; |
| |
| /* Initialize Transmit Descriptor Ring */ |
| txbdp = tx_queue->tx_bd_base; |
| for (j = 0; j < tx_queue->tx_ring_size; j++) { |
| txbdp->lstatus = 0; |
| txbdp->bufPtr = 0; |
| txbdp++; |
| } |
| |
| /* Set the last descriptor in the ring to indicate wrap */ |
| txbdp--; |
| txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | |
| TXBD_WRAP); |
| } |
| |
| rfbptr = ®s->rfbptr0; |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| rx_queue = priv->rx_queue[i]; |
| |
| rx_queue->next_to_clean = 0; |
| rx_queue->next_to_use = 0; |
| rx_queue->next_to_alloc = 0; |
| |
| /* make sure next_to_clean != next_to_use after this |
| * by leaving at least 1 unused descriptor |
| */ |
| gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); |
| |
| rx_queue->rfbptr = rfbptr; |
| rfbptr += 2; |
| } |
| } |
| |
| static int gfar_alloc_skb_resources(struct net_device *ndev) |
| { |
| void *vaddr; |
| dma_addr_t addr; |
| int i, j; |
| struct gfar_private *priv = netdev_priv(ndev); |
| struct device *dev = priv->dev; |
| struct gfar_priv_tx_q *tx_queue = NULL; |
| struct gfar_priv_rx_q *rx_queue = NULL; |
| |
| priv->total_tx_ring_size = 0; |
| for (i = 0; i < priv->num_tx_queues; i++) |
| priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; |
| |
| priv->total_rx_ring_size = 0; |
| for (i = 0; i < priv->num_rx_queues; i++) |
| priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; |
| |
| /* Allocate memory for the buffer descriptors */ |
| vaddr = dma_alloc_coherent(dev, |
| (priv->total_tx_ring_size * |
| sizeof(struct txbd8)) + |
| (priv->total_rx_ring_size * |
| sizeof(struct rxbd8)), |
| &addr, GFP_KERNEL); |
| if (!vaddr) |
| return -ENOMEM; |
| |
| for (i = 0; i < priv->num_tx_queues; i++) { |
| tx_queue = priv->tx_queue[i]; |
| tx_queue->tx_bd_base = vaddr; |
| tx_queue->tx_bd_dma_base = addr; |
| tx_queue->dev = ndev; |
| /* enet DMA only understands physical addresses */ |
| addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; |
| vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; |
| } |
| |
| /* Start the rx descriptor ring where the tx ring leaves off */ |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| rx_queue = priv->rx_queue[i]; |
| rx_queue->rx_bd_base = vaddr; |
| rx_queue->rx_bd_dma_base = addr; |
| rx_queue->ndev = ndev; |
| rx_queue->dev = dev; |
| addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; |
| vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; |
| } |
| |
| /* Setup the skbuff rings */ |
| for (i = 0; i < priv->num_tx_queues; i++) { |
| tx_queue = priv->tx_queue[i]; |
| tx_queue->tx_skbuff = |
| kmalloc_array(tx_queue->tx_ring_size, |
| sizeof(*tx_queue->tx_skbuff), |
| GFP_KERNEL); |
| if (!tx_queue->tx_skbuff) |
| goto cleanup; |
| |
| for (j = 0; j < tx_queue->tx_ring_size; j++) |
| tx_queue->tx_skbuff[j] = NULL; |
| } |
| |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| rx_queue = priv->rx_queue[i]; |
| rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, |
| sizeof(*rx_queue->rx_buff), |
| GFP_KERNEL); |
| if (!rx_queue->rx_buff) |
| goto cleanup; |
| } |
| |
| gfar_init_bds(ndev); |
| |
| return 0; |
| |
| cleanup: |
| free_skb_resources(priv); |
| return -ENOMEM; |
| } |
| |
| /* Bring the controller up and running */ |
| int startup_gfar(struct net_device *ndev) |
| { |
| struct gfar_private *priv = netdev_priv(ndev); |
| int err; |
| |
| gfar_mac_reset(priv); |
| |
| err = gfar_alloc_skb_resources(ndev); |
| if (err) |
| return err; |
| |
| gfar_init_tx_rx_base(priv); |
| |
| smp_mb__before_atomic(); |
| clear_bit(GFAR_DOWN, &priv->state); |
| smp_mb__after_atomic(); |
| |
| /* Start Rx/Tx DMA and enable the interrupts */ |
| gfar_start(priv); |
| |
| /* force link state update after mac reset */ |
| priv->oldlink = 0; |
| priv->oldspeed = 0; |
| priv->oldduplex = -1; |
| |
| phy_start(ndev->phydev); |
| |
| enable_napi(priv); |
| |
| netif_tx_wake_all_queues(ndev); |
| |
| return 0; |
| } |
| |
| static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) |
| { |
| struct net_device *ndev = priv->ndev; |
| struct phy_device *phydev = ndev->phydev; |
| u32 val = 0; |
| |
| if (!phydev->duplex) |
| return val; |
| |
| if (!priv->pause_aneg_en) { |
| if (priv->tx_pause_en) |
| val |= MACCFG1_TX_FLOW; |
| if (priv->rx_pause_en) |
| val |= MACCFG1_RX_FLOW; |
| } else { |
| u16 lcl_adv, rmt_adv; |
| u8 flowctrl; |
| /* get link partner capabilities */ |
| rmt_adv = 0; |
| if (phydev->pause) |
| rmt_adv = LPA_PAUSE_CAP; |
| if (phydev->asym_pause) |
| rmt_adv |= LPA_PAUSE_ASYM; |
| |
| lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); |
| flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); |
| if (flowctrl & FLOW_CTRL_TX) |
| val |= MACCFG1_TX_FLOW; |
| if (flowctrl & FLOW_CTRL_RX) |
| val |= MACCFG1_RX_FLOW; |
| } |
| |
| return val; |
| } |
| |
| static noinline void gfar_update_link_state(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| struct net_device *ndev = priv->ndev; |
| struct phy_device *phydev = ndev->phydev; |
| struct gfar_priv_rx_q *rx_queue = NULL; |
| int i; |
| |
| if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) |
| return; |
| |
| if (phydev->link) { |
| u32 tempval1 = gfar_read(®s->maccfg1); |
| u32 tempval = gfar_read(®s->maccfg2); |
| u32 ecntrl = gfar_read(®s->ecntrl); |
| u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); |
| |
| if (phydev->duplex != priv->oldduplex) { |
| if (!(phydev->duplex)) |
| tempval &= ~(MACCFG2_FULL_DUPLEX); |
| else |
| tempval |= MACCFG2_FULL_DUPLEX; |
| |
| priv->oldduplex = phydev->duplex; |
| } |
| |
| if (phydev->speed != priv->oldspeed) { |
| switch (phydev->speed) { |
| case 1000: |
| tempval = |
| ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); |
| |
| ecntrl &= ~(ECNTRL_R100); |
| break; |
| case 100: |
| case 10: |
| tempval = |
| ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); |
| |
| /* Reduced mode distinguishes |
| * between 10 and 100 |
| */ |
| if (phydev->speed == SPEED_100) |
| ecntrl |= ECNTRL_R100; |
| else |
| ecntrl &= ~(ECNTRL_R100); |
| break; |
| default: |
| netif_warn(priv, link, priv->ndev, |
| "Ack! Speed (%d) is not 10/100/1000!\n", |
| phydev->speed); |
| break; |
| } |
| |
| priv->oldspeed = phydev->speed; |
| } |
| |
| tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); |
| tempval1 |= gfar_get_flowctrl_cfg(priv); |
| |
| /* Turn last free buffer recording on */ |
| if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| u32 bdp_dma; |
| |
| rx_queue = priv->rx_queue[i]; |
| bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); |
| gfar_write(rx_queue->rfbptr, bdp_dma); |
| } |
| |
| priv->tx_actual_en = 1; |
| } |
| |
| if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) |
| priv->tx_actual_en = 0; |
| |
| gfar_write(®s->maccfg1, tempval1); |
| gfar_write(®s->maccfg2, tempval); |
| gfar_write(®s->ecntrl, ecntrl); |
| |
| if (!priv->oldlink) |
| priv->oldlink = 1; |
| |
| } else if (priv->oldlink) { |
| priv->oldlink = 0; |
| priv->oldspeed = 0; |
| priv->oldduplex = -1; |
| } |
| |
| if (netif_msg_link(priv)) |
| phy_print_status(phydev); |
| } |
| |
| /* Called every time the controller might need to be made |
| * aware of new link state. The PHY code conveys this |
| * information through variables in the phydev structure, and this |
| * function converts those variables into the appropriate |
| * register values, and can bring down the device if needed. |
| */ |
| static void adjust_link(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct phy_device *phydev = dev->phydev; |
| |
| if (unlikely(phydev->link != priv->oldlink || |
| (phydev->link && (phydev->duplex != priv->oldduplex || |
| phydev->speed != priv->oldspeed)))) |
| gfar_update_link_state(priv); |
| } |
| |
| /* Initialize TBI PHY interface for communicating with the |
| * SERDES lynx PHY on the chip. We communicate with this PHY |
| * through the MDIO bus on each controller, treating it as a |
| * "normal" PHY at the address found in the TBIPA register. We assume |
| * that the TBIPA register is valid. Either the MDIO bus code will set |
| * it to a value that doesn't conflict with other PHYs on the bus, or the |
| * value doesn't matter, as there are no other PHYs on the bus. |
| */ |
| static void gfar_configure_serdes(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct phy_device *tbiphy; |
| |
| if (!priv->tbi_node) { |
| dev_warn(&dev->dev, "error: SGMII mode requires that the " |
| "device tree specify a tbi-handle\n"); |
| return; |
| } |
| |
| tbiphy = of_phy_find_device(priv->tbi_node); |
| if (!tbiphy) { |
| dev_err(&dev->dev, "error: Could not get TBI device\n"); |
| return; |
| } |
| |
| /* If the link is already up, we must already be ok, and don't need to |
| * configure and reset the TBI<->SerDes link. Maybe U-Boot configured |
| * everything for us? Resetting it takes the link down and requires |
| * several seconds for it to come back. |
| */ |
| if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { |
| put_device(&tbiphy->mdio.dev); |
| return; |
| } |
| |
| /* Single clk mode, mii mode off(for serdes communication) */ |
| phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); |
| |
| phy_write(tbiphy, MII_ADVERTISE, |
| ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | |
| ADVERTISE_1000XPSE_ASYM); |
| |
| phy_write(tbiphy, MII_BMCR, |
| BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | |
| BMCR_SPEED1000); |
| |
| put_device(&tbiphy->mdio.dev); |
| } |
| |
| /* Initializes driver's PHY state, and attaches to the PHY. |
| * Returns 0 on success. |
| */ |
| static int init_phy(struct net_device *dev) |
| { |
| __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; |
| struct gfar_private *priv = netdev_priv(dev); |
| phy_interface_t interface = priv->interface; |
| struct phy_device *phydev; |
| struct ethtool_eee edata; |
| |
| linkmode_set_bit_array(phy_10_100_features_array, |
| ARRAY_SIZE(phy_10_100_features_array), |
| mask); |
| linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); |
| linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) |
| linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); |
| |
| priv->oldlink = 0; |
| priv->oldspeed = 0; |
| priv->oldduplex = -1; |
| |
| phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, |
| interface); |
| if (!phydev) { |
| dev_err(&dev->dev, "could not attach to PHY\n"); |
| return -ENODEV; |
| } |
| |
| if (interface == PHY_INTERFACE_MODE_SGMII) |
| gfar_configure_serdes(dev); |
| |
| /* Remove any features not supported by the controller */ |
| linkmode_and(phydev->supported, phydev->supported, mask); |
| linkmode_copy(phydev->advertising, phydev->supported); |
| |
| /* Add support for flow control */ |
| phy_support_asym_pause(phydev); |
| |
| /* disable EEE autoneg, EEE not supported by eTSEC */ |
| memset(&edata, 0, sizeof(struct ethtool_eee)); |
| phy_ethtool_set_eee(phydev, &edata); |
| |
| return 0; |
| } |
| |
| static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) |
| { |
| struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); |
| |
| memset(fcb, 0, GMAC_FCB_LEN); |
| |
| return fcb; |
| } |
| |
| static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, |
| int fcb_length) |
| { |
| /* If we're here, it's a IP packet with a TCP or UDP |
| * payload. We set it to checksum, using a pseudo-header |
| * we provide |
| */ |
| u8 flags = TXFCB_DEFAULT; |
| |
| /* Tell the controller what the protocol is |
| * And provide the already calculated phcs |
| */ |
| if (ip_hdr(skb)->protocol == IPPROTO_UDP) { |
| flags |= TXFCB_UDP; |
| fcb->phcs = (__force __be16)(udp_hdr(skb)->check); |
| } else |
| fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); |
| |
| /* l3os is the distance between the start of the |
| * frame (skb->data) and the start of the IP hdr. |
| * l4os is the distance between the start of the |
| * l3 hdr and the l4 hdr |
| */ |
| fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); |
| fcb->l4os = skb_network_header_len(skb); |
| |
| fcb->flags = flags; |
| } |
| |
| static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) |
| { |
| fcb->flags |= TXFCB_VLN; |
| fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); |
| } |
| |
| static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, |
| struct txbd8 *base, int ring_size) |
| { |
| struct txbd8 *new_bd = bdp + stride; |
| |
| return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; |
| } |
| |
| static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, |
| int ring_size) |
| { |
| return skip_txbd(bdp, 1, base, ring_size); |
| } |
| |
| /* eTSEC12: csum generation not supported for some fcb offsets */ |
| static inline bool gfar_csum_errata_12(struct gfar_private *priv, |
| unsigned long fcb_addr) |
| { |
| return (gfar_has_errata(priv, GFAR_ERRATA_12) && |
| (fcb_addr % 0x20) > 0x18); |
| } |
| |
| /* eTSEC76: csum generation for frames larger than 2500 may |
| * cause excess delays before start of transmission |
| */ |
| static inline bool gfar_csum_errata_76(struct gfar_private *priv, |
| unsigned int len) |
| { |
| return (gfar_has_errata(priv, GFAR_ERRATA_76) && |
| (len > 2500)); |
| } |
| |
| /* This is called by the kernel when a frame is ready for transmission. |
| * It is pointed to by the dev->hard_start_xmit function pointer |
| */ |
| static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar_priv_tx_q *tx_queue = NULL; |
| struct netdev_queue *txq; |
| struct gfar __iomem *regs = NULL; |
| struct txfcb *fcb = NULL; |
| struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; |
| u32 lstatus; |
| skb_frag_t *frag; |
| int i, rq = 0; |
| int do_tstamp, do_csum, do_vlan; |
| u32 bufaddr; |
| unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; |
| |
| rq = skb->queue_mapping; |
| tx_queue = priv->tx_queue[rq]; |
| txq = netdev_get_tx_queue(dev, rq); |
| base = tx_queue->tx_bd_base; |
| regs = tx_queue->grp->regs; |
| |
| do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); |
| do_vlan = skb_vlan_tag_present(skb); |
| do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
| priv->hwts_tx_en; |
| |
| if (do_csum || do_vlan) |
| fcb_len = GMAC_FCB_LEN; |
| |
| /* check if time stamp should be generated */ |
| if (unlikely(do_tstamp)) |
| fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; |
| |
| /* make space for additional header when fcb is needed */ |
| if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { |
| struct sk_buff *skb_new; |
| |
| skb_new = skb_realloc_headroom(skb, fcb_len); |
| if (!skb_new) { |
| dev->stats.tx_errors++; |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| if (skb->sk) |
| skb_set_owner_w(skb_new, skb->sk); |
| dev_consume_skb_any(skb); |
| skb = skb_new; |
| } |
| |
| /* total number of fragments in the SKB */ |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| |
| /* calculate the required number of TxBDs for this skb */ |
| if (unlikely(do_tstamp)) |
| nr_txbds = nr_frags + 2; |
| else |
| nr_txbds = nr_frags + 1; |
| |
| /* check if there is space to queue this packet */ |
| if (nr_txbds > tx_queue->num_txbdfree) { |
| /* no space, stop the queue */ |
| netif_tx_stop_queue(txq); |
| dev->stats.tx_fifo_errors++; |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* Update transmit stats */ |
| bytes_sent = skb->len; |
| tx_queue->stats.tx_bytes += bytes_sent; |
| /* keep Tx bytes on wire for BQL accounting */ |
| GFAR_CB(skb)->bytes_sent = bytes_sent; |
| tx_queue->stats.tx_packets++; |
| |
| txbdp = txbdp_start = tx_queue->cur_tx; |
| lstatus = be32_to_cpu(txbdp->lstatus); |
| |
| /* Add TxPAL between FCB and frame if required */ |
| if (unlikely(do_tstamp)) { |
| skb_push(skb, GMAC_TXPAL_LEN); |
| memset(skb->data, 0, GMAC_TXPAL_LEN); |
| } |
| |
| /* Add TxFCB if required */ |
| if (fcb_len) { |
| fcb = gfar_add_fcb(skb); |
| lstatus |= BD_LFLAG(TXBD_TOE); |
| } |
| |
| /* Set up checksumming */ |
| if (do_csum) { |
| gfar_tx_checksum(skb, fcb, fcb_len); |
| |
| if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || |
| unlikely(gfar_csum_errata_76(priv, skb->len))) { |
| __skb_pull(skb, GMAC_FCB_LEN); |
| skb_checksum_help(skb); |
| if (do_vlan || do_tstamp) { |
| /* put back a new fcb for vlan/tstamp TOE */ |
| fcb = gfar_add_fcb(skb); |
| } else { |
| /* Tx TOE not used */ |
| lstatus &= ~(BD_LFLAG(TXBD_TOE)); |
| fcb = NULL; |
| } |
| } |
| } |
| |
| if (do_vlan) |
| gfar_tx_vlan(skb, fcb); |
| |
| bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), |
| DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(priv->dev, bufaddr))) |
| goto dma_map_err; |
| |
| txbdp_start->bufPtr = cpu_to_be32(bufaddr); |
| |
| /* Time stamp insertion requires one additional TxBD */ |
| if (unlikely(do_tstamp)) |
| txbdp_tstamp = txbdp = next_txbd(txbdp, base, |
| tx_queue->tx_ring_size); |
| |
| if (likely(!nr_frags)) { |
| if (likely(!do_tstamp)) |
| lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); |
| } else { |
| u32 lstatus_start = lstatus; |
| |
| /* Place the fragment addresses and lengths into the TxBDs */ |
| frag = &skb_shinfo(skb)->frags[0]; |
| for (i = 0; i < nr_frags; i++, frag++) { |
| unsigned int size; |
| |
| /* Point at the next BD, wrapping as needed */ |
| txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); |
| |
| size = skb_frag_size(frag); |
| |
| lstatus = be32_to_cpu(txbdp->lstatus) | size | |
| BD_LFLAG(TXBD_READY); |
| |
| /* Handle the last BD specially */ |
| if (i == nr_frags - 1) |
| lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); |
| |
| bufaddr = skb_frag_dma_map(priv->dev, frag, 0, |
| size, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(priv->dev, bufaddr))) |
| goto dma_map_err; |
| |
| /* set the TxBD length and buffer pointer */ |
| txbdp->bufPtr = cpu_to_be32(bufaddr); |
| txbdp->lstatus = cpu_to_be32(lstatus); |
| } |
| |
| lstatus = lstatus_start; |
| } |
| |
| /* If time stamping is requested one additional TxBD must be set up. The |
| * first TxBD points to the FCB and must have a data length of |
| * GMAC_FCB_LEN. The second TxBD points to the actual frame data with |
| * the full frame length. |
| */ |
| if (unlikely(do_tstamp)) { |
| u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); |
| |
| bufaddr = be32_to_cpu(txbdp_start->bufPtr); |
| bufaddr += fcb_len; |
| |
| lstatus_ts |= BD_LFLAG(TXBD_READY) | |
| (skb_headlen(skb) - fcb_len); |
| if (!nr_frags) |
| lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); |
| |
| txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); |
| txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); |
| lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; |
| |
| /* Setup tx hardware time stamping */ |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| fcb->ptp = 1; |
| } else { |
| lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); |
| } |
| |
| netdev_tx_sent_queue(txq, bytes_sent); |
| |
| gfar_wmb(); |
| |
| txbdp_start->lstatus = cpu_to_be32(lstatus); |
| |
| gfar_wmb(); /* force lstatus write before tx_skbuff */ |
| |
| tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; |
| |
| /* Update the current skb pointer to the next entry we will use |
| * (wrapping if necessary) |
| */ |
| tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & |
| TX_RING_MOD_MASK(tx_queue->tx_ring_size); |
| |
| tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); |
| |
| /* We can work in parallel with gfar_clean_tx_ring(), except |
| * when modifying num_txbdfree. Note that we didn't grab the lock |
| * when we were reading the num_txbdfree and checking for available |
| * space, that's because outside of this function it can only grow. |
| */ |
| spin_lock_bh(&tx_queue->txlock); |
| /* reduce TxBD free count */ |
| tx_queue->num_txbdfree -= (nr_txbds); |
| spin_unlock_bh(&tx_queue->txlock); |
| |
| /* If the next BD still needs to be cleaned up, then the bds |
| * are full. We need to tell the kernel to stop sending us stuff. |
| */ |
| if (!tx_queue->num_txbdfree) { |
| netif_tx_stop_queue(txq); |
| |
| dev->stats.tx_fifo_errors++; |
| } |
| |
| /* Tell the DMA to go go go */ |
| gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); |
| |
| return NETDEV_TX_OK; |
| |
| dma_map_err: |
| txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); |
| if (do_tstamp) |
| txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); |
| for (i = 0; i < nr_frags; i++) { |
| lstatus = be32_to_cpu(txbdp->lstatus); |
| if (!(lstatus & BD_LFLAG(TXBD_READY))) |
| break; |
| |
| lstatus &= ~BD_LFLAG(TXBD_READY); |
| txbdp->lstatus = cpu_to_be32(lstatus); |
| bufaddr = be32_to_cpu(txbdp->bufPtr); |
| dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), |
| DMA_TO_DEVICE); |
| txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); |
| } |
| gfar_wmb(); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* Changes the mac address if the controller is not running. */ |
| static int gfar_set_mac_address(struct net_device *dev) |
| { |
| gfar_set_mac_for_addr(dev, 0, dev->dev_addr); |
| |
| return 0; |
| } |
| |
| static int gfar_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) |
| cpu_relax(); |
| |
| if (dev->flags & IFF_UP) |
| stop_gfar(dev); |
| |
| dev->mtu = new_mtu; |
| |
| if (dev->flags & IFF_UP) |
| startup_gfar(dev); |
| |
| clear_bit_unlock(GFAR_RESETTING, &priv->state); |
| |
| return 0; |
| } |
| |
| static void reset_gfar(struct net_device *ndev) |
| { |
| struct gfar_private *priv = netdev_priv(ndev); |
| |
| while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) |
| cpu_relax(); |
| |
| stop_gfar(ndev); |
| startup_gfar(ndev); |
| |
| clear_bit_unlock(GFAR_RESETTING, &priv->state); |
| } |
| |
| /* gfar_reset_task gets scheduled when a packet has not been |
| * transmitted after a set amount of time. |
| * For now, assume that clearing out all the structures, and |
| * starting over will fix the problem. |
| */ |
| static void gfar_reset_task(struct work_struct *work) |
| { |
| struct gfar_private *priv = container_of(work, struct gfar_private, |
| reset_task); |
| reset_gfar(priv->ndev); |
| } |
| |
| static void gfar_timeout(struct net_device *dev, unsigned int txqueue) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| dev->stats.tx_errors++; |
| schedule_work(&priv->reset_task); |
| } |
| |
| static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct hwtstamp_config config; |
| struct gfar_private *priv = netdev_priv(netdev); |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| /* reserved for future extensions */ |
| if (config.flags) |
| return -EINVAL; |
| |
| switch (config.tx_type) { |
| case HWTSTAMP_TX_OFF: |
| priv->hwts_tx_en = 0; |
| break; |
| case HWTSTAMP_TX_ON: |
| if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) |
| return -ERANGE; |
| priv->hwts_tx_en = 1; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| if (priv->hwts_rx_en) { |
| priv->hwts_rx_en = 0; |
| reset_gfar(netdev); |
| } |
| break; |
| default: |
| if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) |
| return -ERANGE; |
| if (!priv->hwts_rx_en) { |
| priv->hwts_rx_en = 1; |
| reset_gfar(netdev); |
| } |
| config.rx_filter = HWTSTAMP_FILTER_ALL; |
| break; |
| } |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct hwtstamp_config config; |
| struct gfar_private *priv = netdev_priv(netdev); |
| |
| config.flags = 0; |
| config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; |
| config.rx_filter = (priv->hwts_rx_en ? |
| HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct phy_device *phydev = dev->phydev; |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| |
| if (cmd == SIOCSHWTSTAMP) |
| return gfar_hwtstamp_set(dev, rq); |
| if (cmd == SIOCGHWTSTAMP) |
| return gfar_hwtstamp_get(dev, rq); |
| |
| if (!phydev) |
| return -ENODEV; |
| |
| return phy_mii_ioctl(phydev, rq, cmd); |
| } |
| |
| /* Interrupt Handler for Transmit complete */ |
| static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) |
| { |
| struct net_device *dev = tx_queue->dev; |
| struct netdev_queue *txq; |
| struct gfar_private *priv = netdev_priv(dev); |
| struct txbd8 *bdp, *next = NULL; |
| struct txbd8 *lbdp = NULL; |
| struct txbd8 *base = tx_queue->tx_bd_base; |
| struct sk_buff *skb; |
| int skb_dirtytx; |
| int tx_ring_size = tx_queue->tx_ring_size; |
| int frags = 0, nr_txbds = 0; |
| int i; |
| int howmany = 0; |
| int tqi = tx_queue->qindex; |
| unsigned int bytes_sent = 0; |
| u32 lstatus; |
| size_t buflen; |
| |
| txq = netdev_get_tx_queue(dev, tqi); |
| bdp = tx_queue->dirty_tx; |
| skb_dirtytx = tx_queue->skb_dirtytx; |
| |
| while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { |
| bool do_tstamp; |
| |
| do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
| priv->hwts_tx_en; |
| |
| frags = skb_shinfo(skb)->nr_frags; |
| |
| /* When time stamping, one additional TxBD must be freed. |
| * Also, we need to dma_unmap_single() the TxPAL. |
| */ |
| if (unlikely(do_tstamp)) |
| nr_txbds = frags + 2; |
| else |
| nr_txbds = frags + 1; |
| |
| lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); |
| |
| lstatus = be32_to_cpu(lbdp->lstatus); |
| |
| /* Only clean completed frames */ |
| if ((lstatus & BD_LFLAG(TXBD_READY)) && |
| (lstatus & BD_LENGTH_MASK)) |
| break; |
| |
| if (unlikely(do_tstamp)) { |
| next = next_txbd(bdp, base, tx_ring_size); |
| buflen = be16_to_cpu(next->length) + |
| GMAC_FCB_LEN + GMAC_TXPAL_LEN; |
| } else |
| buflen = be16_to_cpu(bdp->length); |
| |
| dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), |
| buflen, DMA_TO_DEVICE); |
| |
| if (unlikely(do_tstamp)) { |
| struct skb_shared_hwtstamps shhwtstamps; |
| u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & |
| ~0x7UL); |
| |
| memset(&shhwtstamps, 0, sizeof(shhwtstamps)); |
| shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); |
| skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); |
| skb_tstamp_tx(skb, &shhwtstamps); |
| gfar_clear_txbd_status(bdp); |
| bdp = next; |
| } |
| |
| gfar_clear_txbd_status(bdp); |
| bdp = next_txbd(bdp, base, tx_ring_size); |
| |
| for (i = 0; i < frags; i++) { |
| dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), |
| be16_to_cpu(bdp->length), |
| DMA_TO_DEVICE); |
| gfar_clear_txbd_status(bdp); |
| bdp = next_txbd(bdp, base, tx_ring_size); |
| } |
| |
| bytes_sent += GFAR_CB(skb)->bytes_sent; |
| |
| dev_kfree_skb_any(skb); |
| |
| tx_queue->tx_skbuff[skb_dirtytx] = NULL; |
| |
| skb_dirtytx = (skb_dirtytx + 1) & |
| TX_RING_MOD_MASK(tx_ring_size); |
| |
| howmany++; |
| spin_lock(&tx_queue->txlock); |
| tx_queue->num_txbdfree += nr_txbds; |
| spin_unlock(&tx_queue->txlock); |
| } |
| |
| /* If we freed a buffer, we can restart transmission, if necessary */ |
| if (tx_queue->num_txbdfree && |
| netif_tx_queue_stopped(txq) && |
| !(test_bit(GFAR_DOWN, &priv->state))) |
| netif_wake_subqueue(priv->ndev, tqi); |
| |
| /* Update dirty indicators */ |
| tx_queue->skb_dirtytx = skb_dirtytx; |
| tx_queue->dirty_tx = bdp; |
| |
| netdev_tx_completed_queue(txq, howmany, bytes_sent); |
| } |
| |
| static void count_errors(u32 lstatus, struct net_device *ndev) |
| { |
| struct gfar_private *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| struct gfar_extra_stats *estats = &priv->extra_stats; |
| |
| /* If the packet was truncated, none of the other errors matter */ |
| if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { |
| stats->rx_length_errors++; |
| |
| atomic64_inc(&estats->rx_trunc); |
| |
| return; |
| } |
| /* Count the errors, if there were any */ |
| if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { |
| stats->rx_length_errors++; |
| |
| if (lstatus & BD_LFLAG(RXBD_LARGE)) |
| atomic64_inc(&estats->rx_large); |
| else |
| atomic64_inc(&estats->rx_short); |
| } |
| if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { |
| stats->rx_frame_errors++; |
| atomic64_inc(&estats->rx_nonoctet); |
| } |
| if (lstatus & BD_LFLAG(RXBD_CRCERR)) { |
| atomic64_inc(&estats->rx_crcerr); |
| stats->rx_crc_errors++; |
| } |
| if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { |
| atomic64_inc(&estats->rx_overrun); |
| stats->rx_over_errors++; |
| } |
| } |
| |
| static irqreturn_t gfar_receive(int irq, void *grp_id) |
| { |
| struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; |
| unsigned long flags; |
| u32 imask, ievent; |
| |
| ievent = gfar_read(&grp->regs->ievent); |
| |
| if (unlikely(ievent & IEVENT_FGPI)) { |
| gfar_write(&grp->regs->ievent, IEVENT_FGPI); |
| return IRQ_HANDLED; |
| } |
| |
| if (likely(napi_schedule_prep(&grp->napi_rx))) { |
| spin_lock_irqsave(&grp->grplock, flags); |
| imask = gfar_read(&grp->regs->imask); |
| imask &= IMASK_RX_DISABLED; |
| gfar_write(&grp->regs->imask, imask); |
| spin_unlock_irqrestore(&grp->grplock, flags); |
| __napi_schedule(&grp->napi_rx); |
| } else { |
| /* Clear IEVENT, so interrupts aren't called again |
| * because of the packets that have already arrived. |
| */ |
| gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Interrupt Handler for Transmit complete */ |
| static irqreturn_t gfar_transmit(int irq, void *grp_id) |
| { |
| struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; |
| unsigned long flags; |
| u32 imask; |
| |
| if (likely(napi_schedule_prep(&grp->napi_tx))) { |
| spin_lock_irqsave(&grp->grplock, flags); |
| imask = gfar_read(&grp->regs->imask); |
| imask &= IMASK_TX_DISABLED; |
| gfar_write(&grp->regs->imask, imask); |
| spin_unlock_irqrestore(&grp->grplock, flags); |
| __napi_schedule(&grp->napi_tx); |
| } else { |
| /* Clear IEVENT, so interrupts aren't called again |
| * because of the packets that have already arrived. |
| */ |
| gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, |
| struct sk_buff *skb, bool first) |
| { |
| int size = lstatus & BD_LENGTH_MASK; |
| struct page *page = rxb->page; |
| |
| if (likely(first)) { |
| skb_put(skb, size); |
| } else { |
| /* the last fragments' length contains the full frame length */ |
| if (lstatus & BD_LFLAG(RXBD_LAST)) |
| size -= skb->len; |
| |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, |
| rxb->page_offset + RXBUF_ALIGNMENT, |
| size, GFAR_RXB_TRUESIZE); |
| } |
| |
| /* try reuse page */ |
| if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) |
| return false; |
| |
| /* change offset to the other half */ |
| rxb->page_offset ^= GFAR_RXB_TRUESIZE; |
| |
| page_ref_inc(page); |
| |
| return true; |
| } |
| |
| static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, |
| struct gfar_rx_buff *old_rxb) |
| { |
| struct gfar_rx_buff *new_rxb; |
| u16 nta = rxq->next_to_alloc; |
| |
| new_rxb = &rxq->rx_buff[nta]; |
| |
| /* find next buf that can reuse a page */ |
| nta++; |
| rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; |
| |
| /* copy page reference */ |
| *new_rxb = *old_rxb; |
| |
| /* sync for use by the device */ |
| dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, |
| old_rxb->page_offset, |
| GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); |
| } |
| |
| static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, |
| u32 lstatus, struct sk_buff *skb) |
| { |
| struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; |
| struct page *page = rxb->page; |
| bool first = false; |
| |
| if (likely(!skb)) { |
| void *buff_addr = page_address(page) + rxb->page_offset; |
| |
| skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); |
| if (unlikely(!skb)) { |
| gfar_rx_alloc_err(rx_queue); |
| return NULL; |
| } |
| skb_reserve(skb, RXBUF_ALIGNMENT); |
| first = true; |
| } |
| |
| dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, |
| GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); |
| |
| if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { |
| /* reuse the free half of the page */ |
| gfar_reuse_rx_page(rx_queue, rxb); |
| } else { |
| /* page cannot be reused, unmap it */ |
| dma_unmap_page(rx_queue->dev, rxb->dma, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| } |
| |
| /* clear rxb content */ |
| rxb->page = NULL; |
| |
| return skb; |
| } |
| |
| static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) |
| { |
| /* If valid headers were found, and valid sums |
| * were verified, then we tell the kernel that no |
| * checksumming is necessary. Otherwise, it is [FIXME] |
| */ |
| if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == |
| (RXFCB_CIP | RXFCB_CTU)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| else |
| skb_checksum_none_assert(skb); |
| } |
| |
| /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ |
| static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) |
| { |
| struct gfar_private *priv = netdev_priv(ndev); |
| struct rxfcb *fcb = NULL; |
| |
| /* fcb is at the beginning if exists */ |
| fcb = (struct rxfcb *)skb->data; |
| |
| /* Remove the FCB from the skb |
| * Remove the padded bytes, if there are any |
| */ |
| if (priv->uses_rxfcb) |
| skb_pull(skb, GMAC_FCB_LEN); |
| |
| /* Get receive timestamp from the skb */ |
| if (priv->hwts_rx_en) { |
| struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); |
| u64 *ns = (u64 *) skb->data; |
| |
| memset(shhwtstamps, 0, sizeof(*shhwtstamps)); |
| shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); |
| } |
| |
| if (priv->padding) |
| skb_pull(skb, priv->padding); |
| |
| /* Trim off the FCS */ |
| pskb_trim(skb, skb->len - ETH_FCS_LEN); |
| |
| if (ndev->features & NETIF_F_RXCSUM) |
| gfar_rx_checksum(skb, fcb); |
| |
| /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. |
| * Even if vlan rx accel is disabled, on some chips |
| * RXFCB_VLN is pseudo randomly set. |
| */ |
| if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && |
| be16_to_cpu(fcb->flags) & RXFCB_VLN) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| be16_to_cpu(fcb->vlctl)); |
| } |
| |
| /* gfar_clean_rx_ring() -- Processes each frame in the rx ring |
| * until the budget/quota has been reached. Returns the number |
| * of frames handled |
| */ |
| static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, |
| int rx_work_limit) |
| { |
| struct net_device *ndev = rx_queue->ndev; |
| struct gfar_private *priv = netdev_priv(ndev); |
| struct rxbd8 *bdp; |
| int i, howmany = 0; |
| struct sk_buff *skb = rx_queue->skb; |
| int cleaned_cnt = gfar_rxbd_unused(rx_queue); |
| unsigned int total_bytes = 0, total_pkts = 0; |
| |
| /* Get the first full descriptor */ |
| i = rx_queue->next_to_clean; |
| |
| while (rx_work_limit--) { |
| u32 lstatus; |
| |
| if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { |
| gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); |
| cleaned_cnt = 0; |
| } |
| |
| bdp = &rx_queue->rx_bd_base[i]; |
| lstatus = be32_to_cpu(bdp->lstatus); |
| if (lstatus & BD_LFLAG(RXBD_EMPTY)) |
| break; |
| |
| /* order rx buffer descriptor reads */ |
| rmb(); |
| |
| /* fetch next to clean buffer from the ring */ |
| skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); |
| if (unlikely(!skb)) |
| break; |
| |
| cleaned_cnt++; |
| howmany++; |
| |
| if (unlikely(++i == rx_queue->rx_ring_size)) |
| i = 0; |
| |
| rx_queue->next_to_clean = i; |
| |
| /* fetch next buffer if not the last in frame */ |
| if (!(lstatus & BD_LFLAG(RXBD_LAST))) |
| continue; |
| |
| if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { |
| count_errors(lstatus, ndev); |
| |
| /* discard faulty buffer */ |
| dev_kfree_skb(skb); |
| skb = NULL; |
| rx_queue->stats.rx_dropped++; |
| continue; |
| } |
| |
| gfar_process_frame(ndev, skb); |
| |
| /* Increment the number of packets */ |
| total_pkts++; |
| total_bytes += skb->len; |
| |
| skb_record_rx_queue(skb, rx_queue->qindex); |
| |
| skb->protocol = eth_type_trans(skb, ndev); |
| |
| /* Send the packet up the stack */ |
| napi_gro_receive(&rx_queue->grp->napi_rx, skb); |
| |
| skb = NULL; |
| } |
| |
| /* Store incomplete frames for completion */ |
| rx_queue->skb = skb; |
| |
| rx_queue->stats.rx_packets += total_pkts; |
| rx_queue->stats.rx_bytes += total_bytes; |
| |
| if (cleaned_cnt) |
| gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); |
| |
| /* Update Last Free RxBD pointer for LFC */ |
| if (unlikely(priv->tx_actual_en)) { |
| u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); |
| |
| gfar_write(rx_queue->rfbptr, bdp_dma); |
| } |
| |
| return howmany; |
| } |
| |
| static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) |
| { |
| struct gfar_priv_grp *gfargrp = |
| container_of(napi, struct gfar_priv_grp, napi_rx); |
| struct gfar __iomem *regs = gfargrp->regs; |
| struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; |
| int work_done = 0; |
| |
| /* Clear IEVENT, so interrupts aren't called again |
| * because of the packets that have already arrived |
| */ |
| gfar_write(®s->ievent, IEVENT_RX_MASK); |
| |
| work_done = gfar_clean_rx_ring(rx_queue, budget); |
| |
| if (work_done < budget) { |
| u32 imask; |
| napi_complete_done(napi, work_done); |
| /* Clear the halt bit in RSTAT */ |
| gfar_write(®s->rstat, gfargrp->rstat); |
| |
| spin_lock_irq(&gfargrp->grplock); |
| imask = gfar_read(®s->imask); |
| imask |= IMASK_RX_DEFAULT; |
| gfar_write(®s->imask, imask); |
| spin_unlock_irq(&gfargrp->grplock); |
| } |
| |
| return work_done; |
| } |
| |
| static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) |
| { |
| struct gfar_priv_grp *gfargrp = |
| container_of(napi, struct gfar_priv_grp, napi_tx); |
| struct gfar __iomem *regs = gfargrp->regs; |
| struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; |
| u32 imask; |
| |
| /* Clear IEVENT, so interrupts aren't called again |
| * because of the packets that have already arrived |
| */ |
| gfar_write(®s->ievent, IEVENT_TX_MASK); |
| |
| /* run Tx cleanup to completion */ |
| if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) |
| gfar_clean_tx_ring(tx_queue); |
| |
| napi_complete(napi); |
| |
| spin_lock_irq(&gfargrp->grplock); |
| imask = gfar_read(®s->imask); |
| imask |= IMASK_TX_DEFAULT; |
| gfar_write(®s->imask, imask); |
| spin_unlock_irq(&gfargrp->grplock); |
| |
| return 0; |
| } |
| |
| static int gfar_poll_rx(struct napi_struct *napi, int budget) |
| { |
| struct gfar_priv_grp *gfargrp = |
| container_of(napi, struct gfar_priv_grp, napi_rx); |
| struct gfar_private *priv = gfargrp->priv; |
| struct gfar __iomem *regs = gfargrp->regs; |
| struct gfar_priv_rx_q *rx_queue = NULL; |
| int work_done = 0, work_done_per_q = 0; |
| int i, budget_per_q = 0; |
| unsigned long rstat_rxf; |
| int num_act_queues; |
| |
| /* Clear IEVENT, so interrupts aren't called again |
| * because of the packets that have already arrived |
| */ |
| gfar_write(®s->ievent, IEVENT_RX_MASK); |
| |
| rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; |
| |
| num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); |
| if (num_act_queues) |
| budget_per_q = budget/num_act_queues; |
| |
| for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { |
| /* skip queue if not active */ |
| if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) |
| continue; |
| |
| rx_queue = priv->rx_queue[i]; |
| work_done_per_q = |
| gfar_clean_rx_ring(rx_queue, budget_per_q); |
| work_done += work_done_per_q; |
| |
| /* finished processing this queue */ |
| if (work_done_per_q < budget_per_q) { |
| /* clear active queue hw indication */ |
| gfar_write(®s->rstat, |
| RSTAT_CLEAR_RXF0 >> i); |
| num_act_queues--; |
| |
| if (!num_act_queues) |
| break; |
| } |
| } |
| |
| if (!num_act_queues) { |
| u32 imask; |
| napi_complete_done(napi, work_done); |
| |
| /* Clear the halt bit in RSTAT */ |
| gfar_write(®s->rstat, gfargrp->rstat); |
| |
| spin_lock_irq(&gfargrp->grplock); |
| imask = gfar_read(®s->imask); |
| imask |= IMASK_RX_DEFAULT; |
| gfar_write(®s->imask, imask); |
| spin_unlock_irq(&gfargrp->grplock); |
| } |
| |
| return work_done; |
| } |
| |
| static int gfar_poll_tx(struct napi_struct *napi, int budget) |
| { |
| struct gfar_priv_grp *gfargrp = |
| container_of(napi, struct gfar_priv_grp, napi_tx); |
| struct gfar_private *priv = gfargrp->priv; |
| struct gfar __iomem *regs = gfargrp->regs; |
| struct gfar_priv_tx_q *tx_queue = NULL; |
| int has_tx_work = 0; |
| int i; |
| |
| /* Clear IEVENT, so interrupts aren't called again |
| * because of the packets that have already arrived |
| */ |
| gfar_write(®s->ievent, IEVENT_TX_MASK); |
| |
| for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { |
| tx_queue = priv->tx_queue[i]; |
| /* run Tx cleanup to completion */ |
| if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { |
| gfar_clean_tx_ring(tx_queue); |
| has_tx_work = 1; |
| } |
| } |
| |
| if (!has_tx_work) { |
| u32 imask; |
| napi_complete(napi); |
| |
| spin_lock_irq(&gfargrp->grplock); |
| imask = gfar_read(®s->imask); |
| imask |= IMASK_TX_DEFAULT; |
| gfar_write(®s->imask, imask); |
| spin_unlock_irq(&gfargrp->grplock); |
| } |
| |
| return 0; |
| } |
| |
| /* GFAR error interrupt handler */ |
| static irqreturn_t gfar_error(int irq, void *grp_id) |
| { |
| struct gfar_priv_grp *gfargrp = grp_id; |
| struct gfar __iomem *regs = gfargrp->regs; |
| struct gfar_private *priv= gfargrp->priv; |
| struct net_device *dev = priv->ndev; |
| |
| /* Save ievent for future reference */ |
| u32 events = gfar_read(®s->ievent); |
| |
| /* Clear IEVENT */ |
| gfar_write(®s->ievent, events & IEVENT_ERR_MASK); |
| |
| /* Magic Packet is not an error. */ |
| if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && |
| (events & IEVENT_MAG)) |
| events &= ~IEVENT_MAG; |
| |
| /* Hmm... */ |
| if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) |
| netdev_dbg(dev, |
| "error interrupt (ievent=0x%08x imask=0x%08x)\n", |
| events, gfar_read(®s->imask)); |
| |
| /* Update the error counters */ |
| if (events & IEVENT_TXE) { |
| dev->stats.tx_errors++; |
| |
| if (events & IEVENT_LC) |
| dev->stats.tx_window_errors++; |
| if (events & IEVENT_CRL) |
| dev->stats.tx_aborted_errors++; |
| if (events & IEVENT_XFUN) { |
| netif_dbg(priv, tx_err, dev, |
| "TX FIFO underrun, packet dropped\n"); |
| dev->stats.tx_dropped++; |
| atomic64_inc(&priv->extra_stats.tx_underrun); |
| |
| schedule_work(&priv->reset_task); |
| } |
| netif_dbg(priv, tx_err, dev, "Transmit Error\n"); |
| } |
| if (events & IEVENT_BSY) { |
| dev->stats.rx_over_errors++; |
| atomic64_inc(&priv->extra_stats.rx_bsy); |
| |
| netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", |
| gfar_read(®s->rstat)); |
| } |
| if (events & IEVENT_BABR) { |
| dev->stats.rx_errors++; |
| atomic64_inc(&priv->extra_stats.rx_babr); |
| |
| netif_dbg(priv, rx_err, dev, "babbling RX error\n"); |
| } |
| if (events & IEVENT_EBERR) { |
| atomic64_inc(&priv->extra_stats.eberr); |
| netif_dbg(priv, rx_err, dev, "bus error\n"); |
| } |
| if (events & IEVENT_RXC) |
| netif_dbg(priv, rx_status, dev, "control frame\n"); |
| |
| if (events & IEVENT_BABT) { |
| atomic64_inc(&priv->extra_stats.tx_babt); |
| netif_dbg(priv, tx_err, dev, "babbling TX error\n"); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* The interrupt handler for devices with one interrupt */ |
| static irqreturn_t gfar_interrupt(int irq, void *grp_id) |
| { |
| struct gfar_priv_grp *gfargrp = grp_id; |
| |
| /* Save ievent for future reference */ |
| u32 events = gfar_read(&gfargrp->regs->ievent); |
| |
| /* Check for reception */ |
| if (events & IEVENT_RX_MASK) |
| gfar_receive(irq, grp_id); |
| |
| /* Check for transmit completion */ |
| if (events & IEVENT_TX_MASK) |
| gfar_transmit(irq, grp_id); |
| |
| /* Check for errors */ |
| if (events & IEVENT_ERR_MASK) |
| gfar_error(irq, grp_id); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void gfar_netpoll(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| int i; |
| |
| /* If the device has multiple interrupts, run tx/rx */ |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| for (i = 0; i < priv->num_grps; i++) { |
| struct gfar_priv_grp *grp = &priv->gfargrp[i]; |
| |
| disable_irq(gfar_irq(grp, TX)->irq); |
| disable_irq(gfar_irq(grp, RX)->irq); |
| disable_irq(gfar_irq(grp, ER)->irq); |
| gfar_interrupt(gfar_irq(grp, TX)->irq, grp); |
| enable_irq(gfar_irq(grp, ER)->irq); |
| enable_irq(gfar_irq(grp, RX)->irq); |
| enable_irq(gfar_irq(grp, TX)->irq); |
| } |
| } else { |
| for (i = 0; i < priv->num_grps; i++) { |
| struct gfar_priv_grp *grp = &priv->gfargrp[i]; |
| |
| disable_irq(gfar_irq(grp, TX)->irq); |
| gfar_interrupt(gfar_irq(grp, TX)->irq, grp); |
| enable_irq(gfar_irq(grp, TX)->irq); |
| } |
| } |
| } |
| #endif |
| |
| static void free_grp_irqs(struct gfar_priv_grp *grp) |
| { |
| free_irq(gfar_irq(grp, TX)->irq, grp); |
| free_irq(gfar_irq(grp, RX)->irq, grp); |
| free_irq(gfar_irq(grp, ER)->irq, grp); |
| } |
| |
| static int register_grp_irqs(struct gfar_priv_grp *grp) |
| { |
| struct gfar_private *priv = grp->priv; |
| struct net_device *dev = priv->ndev; |
| int err; |
| |
| /* If the device has multiple interrupts, register for |
| * them. Otherwise, only register for the one |
| */ |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| /* Install our interrupt handlers for Error, |
| * Transmit, and Receive |
| */ |
| err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, |
| gfar_irq(grp, ER)->name, grp); |
| if (err < 0) { |
| netif_err(priv, intr, dev, "Can't get IRQ %d\n", |
| gfar_irq(grp, ER)->irq); |
| |
| goto err_irq_fail; |
| } |
| enable_irq_wake(gfar_irq(grp, ER)->irq); |
| |
| err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, |
| gfar_irq(grp, TX)->name, grp); |
| if (err < 0) { |
| netif_err(priv, intr, dev, "Can't get IRQ %d\n", |
| gfar_irq(grp, TX)->irq); |
| goto tx_irq_fail; |
| } |
| err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, |
| gfar_irq(grp, RX)->name, grp); |
| if (err < 0) { |
| netif_err(priv, intr, dev, "Can't get IRQ %d\n", |
| gfar_irq(grp, RX)->irq); |
| goto rx_irq_fail; |
| } |
| enable_irq_wake(gfar_irq(grp, RX)->irq); |
| |
| } else { |
| err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, |
| gfar_irq(grp, TX)->name, grp); |
| if (err < 0) { |
| netif_err(priv, intr, dev, "Can't get IRQ %d\n", |
| gfar_irq(grp, TX)->irq); |
| goto err_irq_fail; |
| } |
| enable_irq_wake(gfar_irq(grp, TX)->irq); |
| } |
| |
| return 0; |
| |
| rx_irq_fail: |
| free_irq(gfar_irq(grp, TX)->irq, grp); |
| tx_irq_fail: |
| free_irq(gfar_irq(grp, ER)->irq, grp); |
| err_irq_fail: |
| return err; |
| |
| } |
| |
| static void gfar_free_irq(struct gfar_private *priv) |
| { |
| int i; |
| |
| /* Free the IRQs */ |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| for (i = 0; i < priv->num_grps; i++) |
| free_grp_irqs(&priv->gfargrp[i]); |
| } else { |
| for (i = 0; i < priv->num_grps; i++) |
| free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, |
| &priv->gfargrp[i]); |
| } |
| } |
| |
| static int gfar_request_irq(struct gfar_private *priv) |
| { |
| int err, i, j; |
| |
| for (i = 0; i < priv->num_grps; i++) { |
| err = register_grp_irqs(&priv->gfargrp[i]); |
| if (err) { |
| for (j = 0; j < i; j++) |
| free_grp_irqs(&priv->gfargrp[j]); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Called when something needs to use the ethernet device |
| * Returns 0 for success. |
| */ |
| static int gfar_enet_open(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| int err; |
| |
| err = init_phy(dev); |
| if (err) |
| return err; |
| |
| err = gfar_request_irq(priv); |
| if (err) |
| return err; |
| |
| err = startup_gfar(dev); |
| if (err) |
| return err; |
| |
| return err; |
| } |
| |
| /* Stops the kernel queue, and halts the controller */ |
| static int gfar_close(struct net_device *dev) |
| { |
| struct gfar_private *priv = netdev_priv(dev); |
| |
| cancel_work_sync(&priv->reset_task); |
| stop_gfar(dev); |
| |
| /* Disconnect from the PHY */ |
| phy_disconnect(dev->phydev); |
| |
| gfar_free_irq(priv); |
| |
| return 0; |
| } |
| |
| /* Clears each of the exact match registers to zero, so they |
| * don't interfere with normal reception |
| */ |
| static void gfar_clear_exact_match(struct net_device *dev) |
| { |
| int idx; |
| static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; |
| |
| for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) |
| gfar_set_mac_for_addr(dev, idx, zero_arr); |
| } |
| |
| /* Update the hash table based on the current list of multicast |
| * addresses we subscribe to. Also, change the promiscuity of |
| * the device based on the flags (this function is called |
| * whenever dev->flags is changed |
| */ |
| static void gfar_set_multi(struct net_device *dev) |
| { |
| struct netdev_hw_addr *ha; |
| struct gfar_private *priv = netdev_priv(dev); |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| |
| if (dev->flags & IFF_PROMISC) { |
| /* Set RCTRL to PROM */ |
| tempval = gfar_read(®s->rctrl); |
| tempval |= RCTRL_PROM; |
| gfar_write(®s->rctrl, tempval); |
| } else { |
| /* Set RCTRL to not PROM */ |
| tempval = gfar_read(®s->rctrl); |
| tempval &= ~(RCTRL_PROM); |
| gfar_write(®s->rctrl, tempval); |
| } |
| |
| if (dev->flags & IFF_ALLMULTI) { |
| /* Set the hash to rx all multicast frames */ |
| gfar_write(®s->igaddr0, 0xffffffff); |
| gfar_write(®s->igaddr1, 0xffffffff); |
| gfar_write(®s->igaddr2, 0xffffffff); |
| gfar_write(®s->igaddr3, 0xffffffff); |
| gfar_write(®s->igaddr4, 0xffffffff); |
| gfar_write(®s->igaddr5, 0xffffffff); |
| gfar_write(®s->igaddr6, 0xffffffff); |
| gfar_write(®s->igaddr7, 0xffffffff); |
| gfar_write(®s->gaddr0, 0xffffffff); |
| gfar_write(®s->gaddr1, 0xffffffff); |
| gfar_write(®s->gaddr2, 0xffffffff); |
| gfar_write(®s->gaddr3, 0xffffffff); |
| gfar_write(®s->gaddr4, 0xffffffff); |
| gfar_write(®s->gaddr5, 0xffffffff); |
| gfar_write(®s->gaddr6, 0xffffffff); |
| gfar_write(®s->gaddr7, 0xffffffff); |
| } else { |
| int em_num; |
| int idx; |
| |
| /* zero out the hash */ |
| gfar_write(®s->igaddr0, 0x0); |
| gfar_write(®s->igaddr1, 0x0); |
| gfar_write(®s->igaddr2, 0x0); |
| gfar_write(®s->igaddr3, 0x0); |
| gfar_write(®s->igaddr4, 0x0); |
| gfar_write(®s->igaddr5, 0x0); |
| gfar_write(®s->igaddr6, 0x0); |
| gfar_write(®s->igaddr7, 0x0); |
| gfar_write(®s->gaddr0, 0x0); |
| gfar_write(®s->gaddr1, 0x0); |
| gfar_write(®s->gaddr2, 0x0); |
| gfar_write(®s->gaddr3, 0x0); |
| gfar_write(®s->gaddr4, 0x0); |
| gfar_write(®s->gaddr5, 0x0); |
| gfar_write(®s->gaddr6, 0x0); |
| gfar_write(®s->gaddr7, 0x0); |
| |
| /* If we have extended hash tables, we need to |
| * clear the exact match registers to prepare for |
| * setting them |
| */ |
| if (priv->extended_hash) { |
| em_num = GFAR_EM_NUM + 1; |
| gfar_clear_exact_match(dev); |
| idx = 1; |
| } else { |
| idx = 0; |
| em_num = 0; |
| } |
| |
| if (netdev_mc_empty(dev)) |
| return; |
| |
| /* Parse the list, and set the appropriate bits */ |
| netdev_for_each_mc_addr(ha, dev) { |
| if (idx < em_num) { |
| gfar_set_mac_for_addr(dev, idx, ha->addr); |
| idx++; |
| } else |
| gfar_set_hash_for_addr(dev, ha->addr); |
| } |
| } |
| } |
| |
| void gfar_mac_reset(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| |
| /* Reset MAC layer */ |
| gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); |
| |
| /* We need to delay at least 3 TX clocks */ |
| udelay(3); |
| |
| /* the soft reset bit is not self-resetting, so we need to |
| * clear it before resuming normal operation |
| */ |
| gfar_write(®s->maccfg1, 0); |
| |
| udelay(3); |
| |
| gfar_rx_offload_en(priv); |
| |
| /* Initialize the max receive frame/buffer lengths */ |
| gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); |
| gfar_write(®s->mrblr, GFAR_RXB_SIZE); |
| |
| /* Initialize the Minimum Frame Length Register */ |
| gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); |
| |
| /* Initialize MACCFG2. */ |
| tempval = MACCFG2_INIT_SETTINGS; |
| |
| /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 |
| * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, |
| * and by checking RxBD[LG] and discarding larger than MAXFRM. |
| */ |
| if (gfar_has_errata(priv, GFAR_ERRATA_74)) |
| tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; |
| |
| gfar_write(®s->maccfg2, tempval); |
| |
| /* Clear mac addr hash registers */ |
| gfar_write(®s->igaddr0, 0); |
| gfar_write(®s->igaddr1, 0); |
| gfar_write(®s->igaddr2, 0); |
| gfar_write(®s->igaddr3, 0); |
| gfar_write(®s->igaddr4, 0); |
| gfar_write(®s->igaddr5, 0); |
| gfar_write(®s->igaddr6, 0); |
| gfar_write(®s->igaddr7, 0); |
| |
| gfar_write(®s->gaddr0, 0); |
| gfar_write(®s->gaddr1, 0); |
| gfar_write(®s->gaddr2, 0); |
| gfar_write(®s->gaddr3, 0); |
| gfar_write(®s->gaddr4, 0); |
| gfar_write(®s->gaddr5, 0); |
| gfar_write(®s->gaddr6, 0); |
| gfar_write(®s->gaddr7, 0); |
| |
| if (priv->extended_hash) |
| gfar_clear_exact_match(priv->ndev); |
| |
| gfar_mac_rx_config(priv); |
| |
| gfar_mac_tx_config(priv); |
| |
| gfar_set_mac_address(priv->ndev); |
| |
| gfar_set_multi(priv->ndev); |
| |
| /* clear ievent and imask before configuring coalescing */ |
| gfar_ints_disable(priv); |
| |
| /* Configure the coalescing support */ |
| gfar_configure_coalescing_all(priv); |
| } |
| |
| static void gfar_hw_init(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 attrs; |
| |
| /* Stop the DMA engine now, in case it was running before |
| * (The firmware could have used it, and left it running). |
| */ |
| gfar_halt(priv); |
| |
| gfar_mac_reset(priv); |
| |
| /* Zero out the rmon mib registers if it has them */ |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { |
| memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); |
| |
| /* Mask off the CAM interrupts */ |
| gfar_write(®s->rmon.cam1, 0xffffffff); |
| gfar_write(®s->rmon.cam2, 0xffffffff); |
| } |
| |
| /* Initialize ECNTRL */ |
| gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); |
| |
| /* Set the extraction length and index */ |
| attrs = ATTRELI_EL(priv->rx_stash_size) | |
| ATTRELI_EI(priv->rx_stash_index); |
| |
| gfar_write(®s->attreli, attrs); |
| |
| /* Start with defaults, and add stashing |
| * depending on driver parameters |
| */ |
| attrs = ATTR_INIT_SETTINGS; |
| |
| if (priv->bd_stash_en) |
| attrs |= ATTR_BDSTASH; |
| |
| if (priv->rx_stash_size != 0) |
| attrs |= ATTR_BUFSTASH; |
| |
| gfar_write(®s->attr, attrs); |
| |
| /* FIFO configs */ |
| gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); |
| gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); |
| gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); |
| |
| /* Program the interrupt steering regs, only for MG devices */ |
| if (priv->num_grps > 1) |
| gfar_write_isrg(priv); |
| } |
| |
| static const struct net_device_ops gfar_netdev_ops = { |
| .ndo_open = gfar_enet_open, |
| .ndo_start_xmit = gfar_start_xmit, |
| .ndo_stop = gfar_close, |
| .ndo_change_mtu = gfar_change_mtu, |
| .ndo_set_features = gfar_set_features, |
| .ndo_set_rx_mode = gfar_set_multi, |
| .ndo_tx_timeout = gfar_timeout, |
| .ndo_do_ioctl = gfar_ioctl, |
| .ndo_get_stats = gfar_get_stats, |
| .ndo_change_carrier = fixed_phy_change_carrier, |
| .ndo_set_mac_address = gfar_set_mac_addr, |
| .ndo_validate_addr = eth_validate_addr, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = gfar_netpoll, |
| #endif |
| }; |
| |
| /* Set up the ethernet device structure, private data, |
| * and anything else we need before we start |
| */ |
| static int gfar_probe(struct platform_device *ofdev) |
| { |
| struct device_node *np = ofdev->dev.of_node; |
| struct net_device *dev = NULL; |
| struct gfar_private *priv = NULL; |
| int err = 0, i; |
| |
| err = gfar_of_init(ofdev, &dev); |
| |
| if (err) |
| return err; |
| |
| priv = netdev_priv(dev); |
| priv->ndev = dev; |
| priv->ofdev = ofdev; |
| priv->dev = &ofdev->dev; |
| SET_NETDEV_DEV(dev, &ofdev->dev); |
| |
| INIT_WORK(&priv->reset_task, gfar_reset_task); |
| |
| platform_set_drvdata(ofdev, priv); |
| |
| gfar_detect_errata(priv); |
| |
| /* Set the dev->base_addr to the gfar reg region */ |
| dev->base_addr = (unsigned long) priv->gfargrp[0].regs; |
| |
| /* Fill in the dev structure */ |
| dev->watchdog_timeo = TX_TIMEOUT; |
| /* MTU range: 50 - 9586 */ |
| dev->mtu = 1500; |
| dev->min_mtu = 50; |
| dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; |
| dev->netdev_ops = &gfar_netdev_ops; |
| dev->ethtool_ops = &gfar_ethtool_ops; |
| |
| /* Register for napi ...We are registering NAPI for each grp */ |
| for (i = 0; i < priv->num_grps; i++) { |
| if (priv->poll_mode == GFAR_SQ_POLLING) { |
| netif_napi_add(dev, &priv->gfargrp[i].napi_rx, |
| gfar_poll_rx_sq, GFAR_DEV_WEIGHT); |
| netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, |
| gfar_poll_tx_sq, 2); |
| } else { |
| netif_napi_add(dev, &priv->gfargrp[i].napi_rx, |
| gfar_poll_rx, GFAR_DEV_WEIGHT); |
| netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, |
| gfar_poll_tx, 2); |
| } |
| } |
| |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { |
| dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | |
| NETIF_F_RXCSUM; |
| dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | |
| NETIF_F_RXCSUM | NETIF_F_HIGHDMA; |
| } |
| |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { |
| dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | |
| NETIF_F_HW_VLAN_CTAG_RX; |
| dev->features |= NETIF_F_HW_VLAN_CTAG_RX; |
| } |
| |
| dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; |
| |
| gfar_init_addr_hash_table(priv); |
| |
| /* Insert receive time stamps into padding alignment bytes, and |
| * plus 2 bytes padding to ensure the cpu alignment. |
| */ |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) |
| priv->padding = 8 + DEFAULT_PADDING; |
| |
| if (dev->features & NETIF_F_IP_CSUM || |
| priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) |
| dev->needed_headroom = GMAC_FCB_LEN; |
| |
| /* Initializing some of the rx/tx queue level parameters */ |
| for (i = 0; i < priv->num_tx_queues; i++) { |
| priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; |
| priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; |
| priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; |
| priv->tx_queue[i]->txic = DEFAULT_TXIC; |
| } |
| |
| for (i = 0; i < priv->num_rx_queues; i++) { |
| priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; |
| priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; |
| priv->rx_queue[i]->rxic = DEFAULT_RXIC; |
| } |
| |
| /* Always enable rx filer if available */ |
| priv->rx_filer_enable = |
| (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; |
| /* Enable most messages by default */ |
| priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; |
| /* use pritority h/w tx queue scheduling for single queue devices */ |
| if (priv->num_tx_queues == 1) |
| priv->prio_sched_en = 1; |
| |
| set_bit(GFAR_DOWN, &priv->state); |
| |
| gfar_hw_init(priv); |
| |
| /* Carrier starts down, phylib will bring it up */ |
| netif_carrier_off(dev); |
| |
| err = register_netdev(dev); |
| |
| if (err) { |
| pr_err("%s: Cannot register net device, aborting\n", dev->name); |
| goto register_fail; |
| } |
| |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) |
| priv->wol_supported |= GFAR_WOL_MAGIC; |
| |
| if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && |
| priv->rx_filer_enable) |
| priv->wol_supported |= GFAR_WOL_FILER_UCAST; |
| |
| device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); |
| |
| /* fill out IRQ number and name fields */ |
| for (i = 0; i < priv->num_grps; i++) { |
| struct gfar_priv_grp *grp = &priv->gfargrp[i]; |
| if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", |
| dev->name, "_g", '0' + i, "_tx"); |
| sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", |
| dev->name, "_g", '0' + i, "_rx"); |
| sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", |
| dev->name, "_g", '0' + i, "_er"); |
| } else |
| strcpy(gfar_irq(grp, TX)->name, dev->name); |
| } |
| |
| /* Initialize the filer table */ |
| gfar_init_filer_table(priv); |
| |
| /* Print out the device info */ |
| netdev_info(dev, "mac: %pM\n", dev->dev_addr); |
| |
| /* Even more device info helps when determining which kernel |
| * provided which set of benchmarks. |
| */ |
| netdev_info(dev, "Running with NAPI enabled\n"); |
| for (i = 0; i < priv->num_rx_queues; i++) |
| netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", |
| i, priv->rx_queue[i]->rx_ring_size); |
| for (i = 0; i < priv->num_tx_queues; i++) |
| netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", |
| i, priv->tx_queue[i]->tx_ring_size); |
| |
| return 0; |
| |
| register_fail: |
| if (of_phy_is_fixed_link(np)) |
| of_phy_deregister_fixed_link(np); |
| unmap_group_regs(priv); |
| gfar_free_rx_queues(priv); |
| gfar_free_tx_queues(priv); |
| of_node_put(priv->phy_node); |
| of_node_put(priv->tbi_node); |
| free_gfar_dev(priv); |
| return err; |
| } |
| |
| static int gfar_remove(struct platform_device *ofdev) |
| { |
| struct gfar_private *priv = platform_get_drvdata(ofdev); |
| struct device_node *np = ofdev->dev.of_node; |
| |
| of_node_put(priv->phy_node); |
| of_node_put(priv->tbi_node); |
| |
| unregister_netdev(priv->ndev); |
| |
| if (of_phy_is_fixed_link(np)) |
| of_phy_deregister_fixed_link(np); |
| |
| unmap_group_regs(priv); |
| gfar_free_rx_queues(priv); |
| gfar_free_tx_queues(priv); |
| free_gfar_dev(priv); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| |
| static void __gfar_filer_disable(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 temp; |
| |
| temp = gfar_read(®s->rctrl); |
| temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); |
| gfar_write(®s->rctrl, temp); |
| } |
| |
| static void __gfar_filer_enable(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 temp; |
| |
| temp = gfar_read(®s->rctrl); |
| temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; |
| gfar_write(®s->rctrl, temp); |
| } |
| |
| /* Filer rules implementing wol capabilities */ |
| static void gfar_filer_config_wol(struct gfar_private *priv) |
| { |
| unsigned int i; |
| u32 rqfcr; |
| |
| __gfar_filer_disable(priv); |
| |
| /* clear the filer table, reject any packet by default */ |
| rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; |
| for (i = 0; i <= MAX_FILER_IDX; i++) |
| gfar_write_filer(priv, i, rqfcr, 0); |
| |
| i = 0; |
| if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { |
| /* unicast packet, accept it */ |
| struct net_device *ndev = priv->ndev; |
| /* get the default rx queue index */ |
| u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; |
| u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | |
| (ndev->dev_addr[1] << 8) | |
| ndev->dev_addr[2]; |
| |
| rqfcr = (qindex << 10) | RQFCR_AND | |
| RQFCR_CMP_EXACT | RQFCR_PID_DAH; |
| |
| gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); |
| |
| dest_mac_addr = (ndev->dev_addr[3] << 16) | |
| (ndev->dev_addr[4] << 8) | |
| ndev->dev_addr[5]; |
| rqfcr = (qindex << 10) | RQFCR_GPI | |
| RQFCR_CMP_EXACT | RQFCR_PID_DAL; |
| gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); |
| } |
| |
| __gfar_filer_enable(priv); |
| } |
| |
| static void gfar_filer_restore_table(struct gfar_private *priv) |
| { |
| u32 rqfcr, rqfpr; |
| unsigned int i; |
| |
| __gfar_filer_disable(priv); |
| |
| for (i = 0; i <= MAX_FILER_IDX; i++) { |
| rqfcr = priv->ftp_rqfcr[i]; |
| rqfpr = priv->ftp_rqfpr[i]; |
| gfar_write_filer(priv, i, rqfcr, rqfpr); |
| } |
| |
| __gfar_filer_enable(priv); |
| } |
| |
| /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ |
| static void gfar_start_wol_filer(struct gfar_private *priv) |
| { |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| int i = 0; |
| |
| /* Enable Rx hw queues */ |
| gfar_write(®s->rqueue, priv->rqueue); |
| |
| /* Initialize DMACTRL to have WWR and WOP */ |
| tempval = gfar_read(®s->dmactrl); |
| tempval |= DMACTRL_INIT_SETTINGS; |
| gfar_write(®s->dmactrl, tempval); |
| |
| /* Make sure we aren't stopped */ |
| tempval = gfar_read(®s->dmactrl); |
| tempval &= ~DMACTRL_GRS; |
| gfar_write(®s->dmactrl, tempval); |
| |
| for (i = 0; i < priv->num_grps; i++) { |
| regs = priv->gfargrp[i].regs; |
| /* Clear RHLT, so that the DMA starts polling now */ |
| gfar_write(®s->rstat, priv->gfargrp[i].rstat); |
| /* enable the Filer General Purpose Interrupt */ |
| gfar_write(®s->imask, IMASK_FGPI); |
| } |
| |
| /* Enable Rx DMA */ |
| tempval = gfar_read(®s->maccfg1); |
| tempval |= MACCFG1_RX_EN; |
| gfar_write(®s->maccfg1, tempval); |
| } |
| |
| static int gfar_suspend(struct device *dev) |
| { |
| struct gfar_private *priv = dev_get_drvdata(dev); |
| struct net_device *ndev = priv->ndev; |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| u16 wol = priv->wol_opts; |
| |
| if (!netif_running(ndev)) |
| return 0; |
| |
| disable_napi(priv); |
| netif_tx_lock(ndev); |
| netif_device_detach(ndev); |
| netif_tx_unlock(ndev); |
| |
| gfar_halt(priv); |
| |
| if (wol & GFAR_WOL_MAGIC) { |
| /* Enable interrupt on Magic Packet */ |
| gfar_write(®s->imask, IMASK_MAG); |
| |
| /* Enable Magic Packet mode */ |
| tempval = gfar_read(®s->maccfg2); |
| tempval |= MACCFG2_MPEN; |
| gfar_write(®s->maccfg2, tempval); |
| |
| /* re-enable the Rx block */ |
| tempval = gfar_read(®s->maccfg1); |
| tempval |= MACCFG1_RX_EN; |
| gfar_write(®s->maccfg1, tempval); |
| |
| } else if (wol & GFAR_WOL_FILER_UCAST) { |
| gfar_filer_config_wol(priv); |
| gfar_start_wol_filer(priv); |
| |
| } else { |
| phy_stop(ndev->phydev); |
| } |
| |
| return 0; |
| } |
| |
| static int gfar_resume(struct device *dev) |
| { |
| struct gfar_private *priv = dev_get_drvdata(dev); |
| struct net_device *ndev = priv->ndev; |
| struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| u32 tempval; |
| u16 wol = priv->wol_opts; |
| |
| if (!netif_running(ndev)) |
| return 0; |
| |
| if (wol & GFAR_WOL_MAGIC) { |
| /* Disable Magic Packet mode */ |
| tempval = gfar_read(®s->maccfg2); |
| tempval &= ~MACCFG2_MPEN; |
| gfar_write(®s->maccfg2, tempval); |
| |
| } else if (wol & GFAR_WOL_FILER_UCAST) { |
| /* need to stop rx only, tx is already down */ |
| gfar_halt(priv); |
| gfar_filer_restore_table(priv); |
| |
| } else { |
| phy_start(ndev->phydev); |
| } |
| |
| gfar_start(priv); |
| |
| netif_device_attach(ndev); |
| enable_napi(priv); |
| |
| return 0; |
| } |
| |
| static int gfar_restore(struct device *dev) |
| { |
| struct gfar_private *priv = dev_get_drvdata(dev); |
| struct net_device *ndev = priv->ndev; |
| |
| if (!netif_running(ndev)) { |
| netif_device_attach(ndev); |
| |
| return 0; |
| } |
| |
| gfar_init_bds(ndev); |
| |
| gfar_mac_reset(priv); |
| |
| gfar_init_tx_rx_base(priv); |
| |
| gfar_start(priv); |
| |
| priv->oldlink = 0; |
| priv->oldspeed = 0; |
| priv->oldduplex = -1; |
| |
| if (ndev->phydev) |
| phy_start(ndev->phydev); |
| |
| netif_device_attach(ndev); |
| enable_napi(priv); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops gfar_pm_ops = { |
| .suspend = gfar_suspend, |
| .resume = gfar_resume, |
| .freeze = gfar_suspend, |
| .thaw = gfar_resume, |
| .restore = gfar_restore, |
| }; |
| |
| #define GFAR_PM_OPS (&gfar_pm_ops) |
| |
| #else |
| |
| #define GFAR_PM_OPS NULL |
| |
| #endif |
| |
| static const struct of_device_id gfar_match[] = |
| { |
| { |
| .type = "network", |
| .compatible = "gianfar", |
| }, |
| { |
| .compatible = "fsl,etsec2", |
| }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, gfar_match); |
| |
| /* Structure for a device driver */ |
| static struct platform_driver gfar_driver = { |
| .driver = { |
| .name = "fsl-gianfar", |
| .pm = GFAR_PM_OPS, |
| .of_match_table = gfar_match, |
| }, |
| .probe = gfar_probe, |
| .remove = gfar_remove, |
| }; |
| |
| module_platform_driver(gfar_driver); |