| /****************************************************************************** |
| * This software may be used and distributed according to the terms of |
| * the GNU General Public License (GPL), incorporated herein by reference. |
| * Drivers based on or derived from this code fall under the GPL and must |
| * retain the authorship, copyright and license notice. This file is not |
| * a complete program and may only be used when the entire operating |
| * system is licensed under the GPL. |
| * See the file COPYING in this distribution for more information. |
| * |
| * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O |
| * Virtualized Server Adapter. |
| * Copyright(c) 2002-2010 Exar Corp. |
| ******************************************************************************/ |
| #include <linux/etherdevice.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #include <linux/prefetch.h> |
| |
| #include "vxge-traffic.h" |
| #include "vxge-config.h" |
| #include "vxge-main.h" |
| |
| /* |
| * vxge_hw_vpath_intr_enable - Enable vpath interrupts. |
| * @vp: Virtual Path handle. |
| * |
| * Enable vpath interrupts. The function is to be executed the last in |
| * vpath initialization sequence. |
| * |
| * See also: vxge_hw_vpath_intr_disable() |
| */ |
| enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 val64; |
| |
| struct __vxge_hw_virtualpath *vpath; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| vpath = vp->vpath; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto exit; |
| } |
| |
| vp_reg = vpath->vp_reg; |
| |
| writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->general_errors_reg); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->pci_config_errors_reg); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->mrpcim_to_vpath_alarm_reg); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->srpcim_to_vpath_alarm_reg); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->vpath_ppif_int_status); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->srpcim_msg_to_vpath_reg); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->vpath_pcipif_int_status); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->prc_alarm_reg); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->wrdma_alarm_status); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->asic_ntwk_vp_err_reg); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->xgmac_vp_int_status); |
| |
| val64 = readq(&vp_reg->vpath_general_int_status); |
| |
| /* Mask unwanted interrupts */ |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->vpath_pcipif_int_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->srpcim_msg_to_vpath_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->srpcim_to_vpath_alarm_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->mrpcim_to_vpath_alarm_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->pci_config_errors_mask); |
| |
| /* Unmask the individual interrupts */ |
| |
| writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW| |
| VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW| |
| VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ| |
| VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32), |
| &vp_reg->general_errors_mask); |
| |
| __vxge_hw_pio_mem_write32_upper( |
| (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR| |
| VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR| |
| VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON| |
| VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON| |
| VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR| |
| VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32), |
| &vp_reg->kdfcctl_errors_mask); |
| |
| __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask); |
| |
| __vxge_hw_pio_mem_write32_upper( |
| (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32), |
| &vp_reg->prc_alarm_mask); |
| |
| __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask); |
| __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask); |
| |
| if (vpath->hldev->first_vp_id != vpath->vp_id) |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->asic_ntwk_vp_err_mask); |
| else |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(( |
| VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT | |
| VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32), |
| &vp_reg->asic_ntwk_vp_err_mask); |
| |
| __vxge_hw_pio_mem_write32_upper(0, |
| &vp_reg->vpath_general_int_mask); |
| exit: |
| return status; |
| |
| } |
| |
| /* |
| * vxge_hw_vpath_intr_disable - Disable vpath interrupts. |
| * @vp: Virtual Path handle. |
| * |
| * Disable vpath interrupts. The function is to be executed the last in |
| * vpath initialization sequence. |
| * |
| * See also: vxge_hw_vpath_intr_enable() |
| */ |
| enum vxge_hw_status vxge_hw_vpath_intr_disable( |
| struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 val64; |
| |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| vpath = vp->vpath; |
| |
| if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { |
| status = VXGE_HW_ERR_VPATH_NOT_OPEN; |
| goto exit; |
| } |
| vp_reg = vpath->vp_reg; |
| |
| __vxge_hw_pio_mem_write32_upper( |
| (u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->vpath_general_int_mask); |
| |
| val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id)); |
| |
| writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->general_errors_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->pci_config_errors_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->mrpcim_to_vpath_alarm_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->srpcim_to_vpath_alarm_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->vpath_ppif_int_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->srpcim_msg_to_vpath_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->vpath_pcipif_int_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->wrdma_alarm_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->prc_alarm_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->xgmac_vp_int_mask); |
| |
| __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->asic_ntwk_vp_err_mask); |
| |
| exit: |
| return status; |
| } |
| |
| void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo) |
| { |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| struct vxge_hw_vp_config *config; |
| u64 val64; |
| |
| if (fifo->config->enable != VXGE_HW_FIFO_ENABLE) |
| return; |
| |
| vp_reg = fifo->vp_reg; |
| config = container_of(fifo->config, struct vxge_hw_vp_config, fifo); |
| |
| if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) { |
| config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE; |
| val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]); |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; |
| fifo->tim_tti_cfg1_saved = val64; |
| writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]); |
| } |
| } |
| |
| void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring) |
| { |
| u64 val64 = ring->tim_rti_cfg1_saved; |
| |
| val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; |
| ring->tim_rti_cfg1_saved = val64; |
| writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]); |
| } |
| |
| void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo) |
| { |
| u64 val64 = fifo->tim_tti_cfg3_saved; |
| u64 timer = (fifo->rtimer * 1000) / 272; |
| |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff); |
| if (timer) |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) | |
| VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5); |
| |
| writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]); |
| /* tti_cfg3_saved is not updated again because it is |
| * initialized at one place only - init time. |
| */ |
| } |
| |
| void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring) |
| { |
| u64 val64 = ring->tim_rti_cfg3_saved; |
| u64 timer = (ring->rtimer * 1000) / 272; |
| |
| val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff); |
| if (timer) |
| val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) | |
| VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4); |
| |
| writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]); |
| /* rti_cfg3_saved is not updated again because it is |
| * initialized at one place only - init time. |
| */ |
| } |
| |
| /** |
| * vxge_hw_channel_msix_mask - Mask MSIX Vector. |
| * @channeh: Channel for rx or tx handle |
| * @msix_id: MSIX ID |
| * |
| * The function masks the msix interrupt for the given msix_id |
| * |
| * Returns: 0 |
| */ |
| void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id) |
| { |
| |
| __vxge_hw_pio_mem_write32_upper( |
| (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32), |
| &channel->common_reg->set_msix_mask_vect[msix_id%4]); |
| } |
| |
| /** |
| * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector. |
| * @channeh: Channel for rx or tx handle |
| * @msix_id: MSI ID |
| * |
| * The function unmasks the msix interrupt for the given msix_id |
| * |
| * Returns: 0 |
| */ |
| void |
| vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id) |
| { |
| |
| __vxge_hw_pio_mem_write32_upper( |
| (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32), |
| &channel->common_reg->clear_msix_mask_vect[msix_id%4]); |
| } |
| |
| /** |
| * vxge_hw_channel_msix_clear - Unmask the MSIX Vector. |
| * @channel: Channel for rx or tx handle |
| * @msix_id: MSI ID |
| * |
| * The function unmasks the msix interrupt for the given msix_id |
| * if configured in MSIX oneshot mode |
| * |
| * Returns: 0 |
| */ |
| void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id) |
| { |
| __vxge_hw_pio_mem_write32_upper( |
| (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32), |
| &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]); |
| } |
| |
| /** |
| * vxge_hw_device_set_intr_type - Updates the configuration |
| * with new interrupt type. |
| * @hldev: HW device handle. |
| * @intr_mode: New interrupt type |
| */ |
| u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode) |
| { |
| |
| if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) && |
| (intr_mode != VXGE_HW_INTR_MODE_MSIX) && |
| (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) && |
| (intr_mode != VXGE_HW_INTR_MODE_DEF)) |
| intr_mode = VXGE_HW_INTR_MODE_IRQLINE; |
| |
| hldev->config.intr_mode = intr_mode; |
| return intr_mode; |
| } |
| |
| /** |
| * vxge_hw_device_intr_enable - Enable interrupts. |
| * @hldev: HW device handle. |
| * @op: One of the enum vxge_hw_device_intr enumerated values specifying |
| * the type(s) of interrupts to enable. |
| * |
| * Enable Titan interrupts. The function is to be executed the last in |
| * Titan initialization sequence. |
| * |
| * See also: vxge_hw_device_intr_disable() |
| */ |
| void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev) |
| { |
| u32 i; |
| u64 val64; |
| u32 val32; |
| |
| vxge_hw_device_mask_all(hldev); |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| |
| if (!(hldev->vpaths_deployed & vxge_mBIT(i))) |
| continue; |
| |
| vxge_hw_vpath_intr_enable( |
| VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i])); |
| } |
| |
| if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) { |
| val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] | |
| hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]; |
| |
| if (val64 != 0) { |
| writeq(val64, &hldev->common_reg->tim_int_status0); |
| |
| writeq(~val64, &hldev->common_reg->tim_int_mask0); |
| } |
| |
| val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] | |
| hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]; |
| |
| if (val32 != 0) { |
| __vxge_hw_pio_mem_write32_upper(val32, |
| &hldev->common_reg->tim_int_status1); |
| |
| __vxge_hw_pio_mem_write32_upper(~val32, |
| &hldev->common_reg->tim_int_mask1); |
| } |
| } |
| |
| val64 = readq(&hldev->common_reg->titan_general_int_status); |
| |
| vxge_hw_device_unmask_all(hldev); |
| } |
| |
| /** |
| * vxge_hw_device_intr_disable - Disable Titan interrupts. |
| * @hldev: HW device handle. |
| * @op: One of the enum vxge_hw_device_intr enumerated values specifying |
| * the type(s) of interrupts to disable. |
| * |
| * Disable Titan interrupts. |
| * |
| * See also: vxge_hw_device_intr_enable() |
| */ |
| void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev) |
| { |
| u32 i; |
| |
| vxge_hw_device_mask_all(hldev); |
| |
| /* mask all the tim interrupts */ |
| writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0); |
| __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32, |
| &hldev->common_reg->tim_int_mask1); |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| |
| if (!(hldev->vpaths_deployed & vxge_mBIT(i))) |
| continue; |
| |
| vxge_hw_vpath_intr_disable( |
| VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i])); |
| } |
| } |
| |
| /** |
| * vxge_hw_device_mask_all - Mask all device interrupts. |
| * @hldev: HW device handle. |
| * |
| * Mask all device interrupts. |
| * |
| * See also: vxge_hw_device_unmask_all() |
| */ |
| void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev) |
| { |
| u64 val64; |
| |
| val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM | |
| VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC; |
| |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), |
| &hldev->common_reg->titan_mask_all_int); |
| } |
| |
| /** |
| * vxge_hw_device_unmask_all - Unmask all device interrupts. |
| * @hldev: HW device handle. |
| * |
| * Unmask all device interrupts. |
| * |
| * See also: vxge_hw_device_mask_all() |
| */ |
| void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev) |
| { |
| u64 val64 = 0; |
| |
| if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) |
| val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC; |
| |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), |
| &hldev->common_reg->titan_mask_all_int); |
| } |
| |
| /** |
| * vxge_hw_device_flush_io - Flush io writes. |
| * @hldev: HW device handle. |
| * |
| * The function performs a read operation to flush io writes. |
| * |
| * Returns: void |
| */ |
| void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev) |
| { |
| u32 val32; |
| |
| val32 = readl(&hldev->common_reg->titan_general_int_status); |
| } |
| |
| /** |
| * __vxge_hw_device_handle_error - Handle error |
| * @hldev: HW device |
| * @vp_id: Vpath Id |
| * @type: Error type. Please see enum vxge_hw_event{} |
| * |
| * Handle error. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id, |
| enum vxge_hw_event type) |
| { |
| switch (type) { |
| case VXGE_HW_EVENT_UNKNOWN: |
| break; |
| case VXGE_HW_EVENT_RESET_START: |
| case VXGE_HW_EVENT_RESET_COMPLETE: |
| case VXGE_HW_EVENT_LINK_DOWN: |
| case VXGE_HW_EVENT_LINK_UP: |
| goto out; |
| case VXGE_HW_EVENT_ALARM_CLEARED: |
| goto out; |
| case VXGE_HW_EVENT_ECCERR: |
| case VXGE_HW_EVENT_MRPCIM_ECCERR: |
| goto out; |
| case VXGE_HW_EVENT_FIFO_ERR: |
| case VXGE_HW_EVENT_VPATH_ERR: |
| case VXGE_HW_EVENT_CRITICAL_ERR: |
| case VXGE_HW_EVENT_SERR: |
| break; |
| case VXGE_HW_EVENT_SRPCIM_SERR: |
| case VXGE_HW_EVENT_MRPCIM_SERR: |
| goto out; |
| case VXGE_HW_EVENT_SLOT_FREEZE: |
| break; |
| default: |
| vxge_assert(0); |
| goto out; |
| } |
| |
| /* notify driver */ |
| if (hldev->uld_callbacks->crit_err) |
| hldev->uld_callbacks->crit_err(hldev, |
| type, vp_id); |
| out: |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_device_handle_link_down_ind |
| * @hldev: HW device handle. |
| * |
| * Link down indication handler. The function is invoked by HW when |
| * Titan indicates that the link is down. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev) |
| { |
| /* |
| * If the previous link state is not down, return. |
| */ |
| if (hldev->link_state == VXGE_HW_LINK_DOWN) |
| goto exit; |
| |
| hldev->link_state = VXGE_HW_LINK_DOWN; |
| |
| /* notify driver */ |
| if (hldev->uld_callbacks->link_down) |
| hldev->uld_callbacks->link_down(hldev); |
| exit: |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_device_handle_link_up_ind |
| * @hldev: HW device handle. |
| * |
| * Link up indication handler. The function is invoked by HW when |
| * Titan indicates that the link is up for programmable amount of time. |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev) |
| { |
| /* |
| * If the previous link state is not down, return. |
| */ |
| if (hldev->link_state == VXGE_HW_LINK_UP) |
| goto exit; |
| |
| hldev->link_state = VXGE_HW_LINK_UP; |
| |
| /* notify driver */ |
| if (hldev->uld_callbacks->link_up) |
| hldev->uld_callbacks->link_up(hldev); |
| exit: |
| return VXGE_HW_OK; |
| } |
| |
| /* |
| * __vxge_hw_vpath_alarm_process - Process Alarms. |
| * @vpath: Virtual Path. |
| * @skip_alarms: Do not clear the alarms |
| * |
| * Process vpath alarms. |
| * |
| */ |
| static enum vxge_hw_status |
| __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath, |
| u32 skip_alarms) |
| { |
| u64 val64; |
| u64 alarm_status; |
| u64 pic_status; |
| struct __vxge_hw_device *hldev = NULL; |
| enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN; |
| u64 mask64; |
| struct vxge_hw_vpath_stats_sw_info *sw_stats; |
| struct vxge_hw_vpath_reg __iomem *vp_reg; |
| |
| if (vpath == NULL) { |
| alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN, |
| alarm_event); |
| goto out2; |
| } |
| |
| hldev = vpath->hldev; |
| vp_reg = vpath->vp_reg; |
| alarm_status = readq(&vp_reg->vpath_general_int_status); |
| |
| if (alarm_status == VXGE_HW_ALL_FOXES) { |
| alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE, |
| alarm_event); |
| goto out; |
| } |
| |
| sw_stats = vpath->sw_stats; |
| |
| if (alarm_status & ~( |
| VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT | |
| VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT | |
| VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT | |
| VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) { |
| sw_stats->error_stats.unknown_alarms++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN, |
| alarm_event); |
| goto out; |
| } |
| |
| if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) { |
| |
| val64 = readq(&vp_reg->xgmac_vp_int_status); |
| |
| if (val64 & |
| VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) { |
| |
| val64 = readq(&vp_reg->asic_ntwk_vp_err_reg); |
| |
| if (((val64 & |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) && |
| (!(val64 & |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) || |
| ((val64 & |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) && |
| (!(val64 & |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) |
| ))) { |
| sw_stats->error_stats.network_sustained_fault++; |
| |
| writeq( |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT, |
| &vp_reg->asic_ntwk_vp_err_mask); |
| |
| __vxge_hw_device_handle_link_down_ind(hldev); |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_LINK_DOWN, alarm_event); |
| } |
| |
| if (((val64 & |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) && |
| (!(val64 & |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) || |
| ((val64 & |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) && |
| (!(val64 & |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) |
| ))) { |
| |
| sw_stats->error_stats.network_sustained_ok++; |
| |
| writeq( |
| VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK, |
| &vp_reg->asic_ntwk_vp_err_mask); |
| |
| __vxge_hw_device_handle_link_up_ind(hldev); |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_LINK_UP, alarm_event); |
| } |
| |
| writeq(VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->asic_ntwk_vp_err_reg); |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_ALARM_CLEARED, alarm_event); |
| |
| if (skip_alarms) |
| return VXGE_HW_OK; |
| } |
| } |
| |
| if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) { |
| |
| pic_status = readq(&vp_reg->vpath_ppif_int_status); |
| |
| if (pic_status & |
| VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) { |
| |
| val64 = readq(&vp_reg->general_errors_reg); |
| mask64 = readq(&vp_reg->general_errors_mask); |
| |
| if ((val64 & |
| VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) & |
| ~mask64) { |
| sw_stats->error_stats.ini_serr_det++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_SERR, alarm_event); |
| } |
| |
| if ((val64 & |
| VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) & |
| ~mask64) { |
| sw_stats->error_stats.dblgen_fifo0_overflow++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_FIFO_ERR, alarm_event); |
| } |
| |
| if ((val64 & |
| VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) & |
| ~mask64) |
| sw_stats->error_stats.statsb_pif_chain_error++; |
| |
| if ((val64 & |
| VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) & |
| ~mask64) |
| sw_stats->error_stats.statsb_drop_timeout++; |
| |
| if ((val64 & |
| VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) & |
| ~mask64) |
| sw_stats->error_stats.target_illegal_access++; |
| |
| if (!skip_alarms) { |
| writeq(VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->general_errors_reg); |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_ALARM_CLEARED, |
| alarm_event); |
| } |
| } |
| |
| if (pic_status & |
| VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) { |
| |
| val64 = readq(&vp_reg->kdfcctl_errors_reg); |
| mask64 = readq(&vp_reg->kdfcctl_errors_mask); |
| |
| if ((val64 & |
| VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) & |
| ~mask64) { |
| sw_stats->error_stats.kdfcctl_fifo0_overwrite++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_FIFO_ERR, |
| alarm_event); |
| } |
| |
| if ((val64 & |
| VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) & |
| ~mask64) { |
| sw_stats->error_stats.kdfcctl_fifo0_poison++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_FIFO_ERR, |
| alarm_event); |
| } |
| |
| if ((val64 & |
| VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) & |
| ~mask64) { |
| sw_stats->error_stats.kdfcctl_fifo0_dma_error++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_FIFO_ERR, |
| alarm_event); |
| } |
| |
| if (!skip_alarms) { |
| writeq(VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->kdfcctl_errors_reg); |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_ALARM_CLEARED, |
| alarm_event); |
| } |
| } |
| |
| } |
| |
| if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) { |
| |
| val64 = readq(&vp_reg->wrdma_alarm_status); |
| |
| if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) { |
| |
| val64 = readq(&vp_reg->prc_alarm_reg); |
| mask64 = readq(&vp_reg->prc_alarm_mask); |
| |
| if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)& |
| ~mask64) |
| sw_stats->error_stats.prc_ring_bumps++; |
| |
| if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) & |
| ~mask64) { |
| sw_stats->error_stats.prc_rxdcm_sc_err++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_VPATH_ERR, |
| alarm_event); |
| } |
| |
| if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT) |
| & ~mask64) { |
| sw_stats->error_stats.prc_rxdcm_sc_abort++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_VPATH_ERR, |
| alarm_event); |
| } |
| |
| if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR) |
| & ~mask64) { |
| sw_stats->error_stats.prc_quanta_size_err++; |
| |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_VPATH_ERR, |
| alarm_event); |
| } |
| |
| if (!skip_alarms) { |
| writeq(VXGE_HW_INTR_MASK_ALL, |
| &vp_reg->prc_alarm_reg); |
| alarm_event = VXGE_HW_SET_LEVEL( |
| VXGE_HW_EVENT_ALARM_CLEARED, |
| alarm_event); |
| } |
| } |
| } |
| out: |
| hldev->stats.sw_dev_err_stats.vpath_alarms++; |
| out2: |
| if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) || |
| (alarm_event == VXGE_HW_EVENT_UNKNOWN)) |
| return VXGE_HW_OK; |
| |
| __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event); |
| |
| if (alarm_event == VXGE_HW_EVENT_SERR) |
| return VXGE_HW_ERR_CRITICAL; |
| |
| return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ? |
| VXGE_HW_ERR_SLOT_FREEZE : |
| (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO : |
| VXGE_HW_ERR_VPATH; |
| } |
| |
| /** |
| * vxge_hw_device_begin_irq - Begin IRQ processing. |
| * @hldev: HW device handle. |
| * @skip_alarms: Do not clear the alarms |
| * @reason: "Reason" for the interrupt, the value of Titan's |
| * general_int_status register. |
| * |
| * The function performs two actions, It first checks whether (shared IRQ) the |
| * interrupt was raised by the device. Next, it masks the device interrupts. |
| * |
| * Note: |
| * vxge_hw_device_begin_irq() does not flush MMIO writes through the |
| * bridge. Therefore, two back-to-back interrupts are potentially possible. |
| * |
| * Returns: 0, if the interrupt is not "ours" (note that in this case the |
| * device remain enabled). |
| * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter |
| * status. |
| */ |
| enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev, |
| u32 skip_alarms, u64 *reason) |
| { |
| u32 i; |
| u64 val64; |
| u64 adapter_status; |
| u64 vpath_mask; |
| enum vxge_hw_status ret = VXGE_HW_OK; |
| |
| val64 = readq(&hldev->common_reg->titan_general_int_status); |
| |
| if (unlikely(!val64)) { |
| /* not Titan interrupt */ |
| *reason = 0; |
| ret = VXGE_HW_ERR_WRONG_IRQ; |
| goto exit; |
| } |
| |
| if (unlikely(val64 == VXGE_HW_ALL_FOXES)) { |
| |
| adapter_status = readq(&hldev->common_reg->adapter_status); |
| |
| if (adapter_status == VXGE_HW_ALL_FOXES) { |
| |
| __vxge_hw_device_handle_error(hldev, |
| NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE); |
| *reason = 0; |
| ret = VXGE_HW_ERR_SLOT_FREEZE; |
| goto exit; |
| } |
| } |
| |
| hldev->stats.sw_dev_info_stats.total_intr_cnt++; |
| |
| *reason = val64; |
| |
| vpath_mask = hldev->vpaths_deployed >> |
| (64 - VXGE_HW_MAX_VIRTUAL_PATHS); |
| |
| if (val64 & |
| VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) { |
| hldev->stats.sw_dev_info_stats.traffic_intr_cnt++; |
| |
| return VXGE_HW_OK; |
| } |
| |
| hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++; |
| |
| if (unlikely(val64 & |
| VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) { |
| |
| enum vxge_hw_status error_level = VXGE_HW_OK; |
| |
| hldev->stats.sw_dev_err_stats.vpath_alarms++; |
| |
| for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { |
| |
| if (!(hldev->vpaths_deployed & vxge_mBIT(i))) |
| continue; |
| |
| ret = __vxge_hw_vpath_alarm_process( |
| &hldev->virtual_paths[i], skip_alarms); |
| |
| error_level = VXGE_HW_SET_LEVEL(ret, error_level); |
| |
| if (unlikely((ret == VXGE_HW_ERR_CRITICAL) || |
| (ret == VXGE_HW_ERR_SLOT_FREEZE))) |
| break; |
| } |
| |
| ret = error_level; |
| } |
| exit: |
| return ret; |
| } |
| |
| /** |
| * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the |
| * condition that has caused the Tx and RX interrupt. |
| * @hldev: HW device. |
| * |
| * Acknowledge (that is, clear) the condition that has caused |
| * the Tx and Rx interrupt. |
| * See also: vxge_hw_device_begin_irq(), |
| * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx(). |
| */ |
| void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev) |
| { |
| |
| if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) || |
| (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] | |
| hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]), |
| &hldev->common_reg->tim_int_status0); |
| } |
| |
| if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) || |
| (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| __vxge_hw_pio_mem_write32_upper( |
| (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] | |
| hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]), |
| &hldev->common_reg->tim_int_status1); |
| } |
| } |
| |
| /* |
| * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel |
| * @channel: Channel |
| * @dtrh: Buffer to return the DTR pointer |
| * |
| * Allocates a dtr from the reserve array. If the reserve array is empty, |
| * it swaps the reserve and free arrays. |
| * |
| */ |
| static enum vxge_hw_status |
| vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh) |
| { |
| if (channel->reserve_ptr - channel->reserve_top > 0) { |
| _alloc_after_swap: |
| *dtrh = channel->reserve_arr[--channel->reserve_ptr]; |
| |
| return VXGE_HW_OK; |
| } |
| |
| /* switch between empty and full arrays */ |
| |
| /* the idea behind such a design is that by having free and reserved |
| * arrays separated we basically separated irq and non-irq parts. |
| * i.e. no additional lock need to be done when we free a resource */ |
| |
| if (channel->length - channel->free_ptr > 0) { |
| swap(channel->reserve_arr, channel->free_arr); |
| channel->reserve_ptr = channel->length; |
| channel->reserve_top = channel->free_ptr; |
| channel->free_ptr = channel->length; |
| |
| channel->stats->reserve_free_swaps_cnt++; |
| |
| goto _alloc_after_swap; |
| } |
| |
| channel->stats->full_cnt++; |
| |
| *dtrh = NULL; |
| return VXGE_HW_INF_OUT_OF_DESCRIPTORS; |
| } |
| |
| /* |
| * vxge_hw_channel_dtr_post - Post a dtr to the channel |
| * @channelh: Channel |
| * @dtrh: DTR pointer |
| * |
| * Posts a dtr to work array. |
| * |
| */ |
| static void |
| vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh) |
| { |
| vxge_assert(channel->work_arr[channel->post_index] == NULL); |
| |
| channel->work_arr[channel->post_index++] = dtrh; |
| |
| /* wrap-around */ |
| if (channel->post_index == channel->length) |
| channel->post_index = 0; |
| } |
| |
| /* |
| * vxge_hw_channel_dtr_try_complete - Returns next completed dtr |
| * @channel: Channel |
| * @dtr: Buffer to return the next completed DTR pointer |
| * |
| * Returns the next completed dtr with out removing it from work array |
| * |
| */ |
| void |
| vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh) |
| { |
| vxge_assert(channel->compl_index < channel->length); |
| |
| *dtrh = channel->work_arr[channel->compl_index]; |
| prefetch(*dtrh); |
| } |
| |
| /* |
| * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array |
| * @channel: Channel handle |
| * |
| * Removes the next completed dtr from work array |
| * |
| */ |
| void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel) |
| { |
| channel->work_arr[channel->compl_index] = NULL; |
| |
| /* wrap-around */ |
| if (++channel->compl_index == channel->length) |
| channel->compl_index = 0; |
| |
| channel->stats->total_compl_cnt++; |
| } |
| |
| /* |
| * vxge_hw_channel_dtr_free - Frees a dtr |
| * @channel: Channel handle |
| * @dtr: DTR pointer |
| * |
| * Returns the dtr to free array |
| * |
| */ |
| void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh) |
| { |
| channel->free_arr[--channel->free_ptr] = dtrh; |
| } |
| |
| /* |
| * vxge_hw_channel_dtr_count |
| * @channel: Channel handle. Obtained via vxge_hw_channel_open(). |
| * |
| * Retrieve number of DTRs available. This function can not be called |
| * from data path. ring_initial_replenishi() is the only user. |
| */ |
| int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel) |
| { |
| return (channel->reserve_ptr - channel->reserve_top) + |
| (channel->length - channel->free_ptr); |
| } |
| |
| /** |
| * vxge_hw_ring_rxd_reserve - Reserve ring descriptor. |
| * @ring: Handle to the ring object used for receive |
| * @rxdh: Reserved descriptor. On success HW fills this "out" parameter |
| * with a valid handle. |
| * |
| * Reserve Rx descriptor for the subsequent filling-in driver |
| * and posting on the corresponding channel (@channelh) |
| * via vxge_hw_ring_rxd_post(). |
| * |
| * Returns: VXGE_HW_OK - success. |
| * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available. |
| * |
| */ |
| enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring, |
| void **rxdh) |
| { |
| enum vxge_hw_status status; |
| struct __vxge_hw_channel *channel; |
| |
| channel = &ring->channel; |
| |
| status = vxge_hw_channel_dtr_alloc(channel, rxdh); |
| |
| if (status == VXGE_HW_OK) { |
| struct vxge_hw_ring_rxd_1 *rxdp = |
| (struct vxge_hw_ring_rxd_1 *)*rxdh; |
| |
| rxdp->control_0 = rxdp->control_1 = 0; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * vxge_hw_ring_rxd_free - Free descriptor. |
| * @ring: Handle to the ring object used for receive |
| * @rxdh: Descriptor handle. |
| * |
| * Free the reserved descriptor. This operation is "symmetrical" to |
| * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's |
| * lifecycle. |
| * |
| * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can |
| * be: |
| * |
| * - reserved (vxge_hw_ring_rxd_reserve); |
| * |
| * - posted (vxge_hw_ring_rxd_post); |
| * |
| * - completed (vxge_hw_ring_rxd_next_completed); |
| * |
| * - and recycled again (vxge_hw_ring_rxd_free). |
| * |
| * For alternative state transitions and more details please refer to |
| * the design doc. |
| * |
| */ |
| void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh) |
| { |
| struct __vxge_hw_channel *channel; |
| |
| channel = &ring->channel; |
| |
| vxge_hw_channel_dtr_free(channel, rxdh); |
| |
| } |
| |
| /** |
| * vxge_hw_ring_rxd_pre_post - Prepare rxd and post |
| * @ring: Handle to the ring object used for receive |
| * @rxdh: Descriptor handle. |
| * |
| * This routine prepares a rxd and posts |
| */ |
| void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh) |
| { |
| struct __vxge_hw_channel *channel; |
| |
| channel = &ring->channel; |
| |
| vxge_hw_channel_dtr_post(channel, rxdh); |
| } |
| |
| /** |
| * vxge_hw_ring_rxd_post_post - Process rxd after post. |
| * @ring: Handle to the ring object used for receive |
| * @rxdh: Descriptor handle. |
| * |
| * Processes rxd after post |
| */ |
| void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh) |
| { |
| struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh; |
| |
| rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER; |
| |
| if (ring->stats->common_stats.usage_cnt > 0) |
| ring->stats->common_stats.usage_cnt--; |
| } |
| |
| /** |
| * vxge_hw_ring_rxd_post - Post descriptor on the ring. |
| * @ring: Handle to the ring object used for receive |
| * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve(). |
| * |
| * Post descriptor on the ring. |
| * Prior to posting the descriptor should be filled in accordance with |
| * Host/Titan interface specification for a given service (LL, etc.). |
| * |
| */ |
| void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh) |
| { |
| struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh; |
| struct __vxge_hw_channel *channel; |
| |
| channel = &ring->channel; |
| |
| wmb(); |
| rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER; |
| |
| vxge_hw_channel_dtr_post(channel, rxdh); |
| |
| if (ring->stats->common_stats.usage_cnt > 0) |
| ring->stats->common_stats.usage_cnt--; |
| } |
| |
| /** |
| * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier. |
| * @ring: Handle to the ring object used for receive |
| * @rxdh: Descriptor handle. |
| * |
| * Processes rxd after post with memory barrier. |
| */ |
| void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh) |
| { |
| wmb(); |
| vxge_hw_ring_rxd_post_post(ring, rxdh); |
| } |
| |
| /** |
| * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor. |
| * @ring: Handle to the ring object used for receive |
| * @rxdh: Descriptor handle. Returned by HW. |
| * @t_code: Transfer code, as per Titan User Guide, |
| * Receive Descriptor Format. Returned by HW. |
| * |
| * Retrieve the _next_ completed descriptor. |
| * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy |
| * driver of new completed descriptors. After that |
| * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest |
| * completions (the very first completion is passed by HW via |
| * vxge_hw_ring_callback_f). |
| * |
| * Implementation-wise, the driver is free to call |
| * vxge_hw_ring_rxd_next_completed either immediately from inside the |
| * ring callback, or in a deferred fashion and separate (from HW) |
| * context. |
| * |
| * Non-zero @t_code means failure to fill-in receive buffer(s) |
| * of the descriptor. |
| * For instance, parity error detected during the data transfer. |
| * In this case Titan will complete the descriptor and indicate |
| * for the host that the received data is not to be used. |
| * For details please refer to Titan User Guide. |
| * |
| * Returns: VXGE_HW_OK - success. |
| * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors |
| * are currently available for processing. |
| * |
| * See also: vxge_hw_ring_callback_f{}, |
| * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}. |
| */ |
| enum vxge_hw_status vxge_hw_ring_rxd_next_completed( |
| struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code) |
| { |
| struct __vxge_hw_channel *channel; |
| struct vxge_hw_ring_rxd_1 *rxdp; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| u64 control_0, own; |
| |
| channel = &ring->channel; |
| |
| vxge_hw_channel_dtr_try_complete(channel, rxdh); |
| |
| rxdp = *rxdh; |
| if (rxdp == NULL) { |
| status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS; |
| goto exit; |
| } |
| |
| control_0 = rxdp->control_0; |
| own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER; |
| *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0); |
| |
| /* check whether it is not the end */ |
| if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) { |
| |
| vxge_assert((rxdp)->host_control != |
| 0); |
| |
| ++ring->cmpl_cnt; |
| vxge_hw_channel_dtr_complete(channel); |
| |
| vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED); |
| |
| ring->stats->common_stats.usage_cnt++; |
| if (ring->stats->common_stats.usage_max < |
| ring->stats->common_stats.usage_cnt) |
| ring->stats->common_stats.usage_max = |
| ring->stats->common_stats.usage_cnt; |
| |
| status = VXGE_HW_OK; |
| goto exit; |
| } |
| |
| /* reset it. since we don't want to return |
| * garbage to the driver */ |
| *rxdh = NULL; |
| status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS; |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_ring_handle_tcode - Handle transfer code. |
| * @ring: Handle to the ring object used for receive |
| * @rxdh: Descriptor handle. |
| * @t_code: One of the enumerated (and documented in the Titan user guide) |
| * "transfer codes". |
| * |
| * Handle descriptor's transfer code. The latter comes with each completed |
| * descriptor. |
| * |
| * Returns: one of the enum vxge_hw_status{} enumerated types. |
| * VXGE_HW_OK - for success. |
| * VXGE_HW_ERR_CRITICAL - when encounters critical error. |
| */ |
| enum vxge_hw_status vxge_hw_ring_handle_tcode( |
| struct __vxge_hw_ring *ring, void *rxdh, u8 t_code) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| /* If the t_code is not supported and if the |
| * t_code is other than 0x5 (unparseable packet |
| * such as unknown UPV6 header), Drop it !!! |
| */ |
| |
| if (t_code == VXGE_HW_RING_T_CODE_OK || |
| t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) { |
| status = VXGE_HW_OK; |
| goto exit; |
| } |
| |
| if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) { |
| status = VXGE_HW_ERR_INVALID_TCODE; |
| goto exit; |
| } |
| |
| ring->stats->rxd_t_code_err_cnt[t_code]++; |
| exit: |
| return status; |
| } |
| |
| /** |
| * __vxge_hw_non_offload_db_post - Post non offload doorbell |
| * |
| * @fifo: fifohandle |
| * @txdl_ptr: The starting location of the TxDL in host memory |
| * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256) |
| * @no_snoop: No snoop flags |
| * |
| * This function posts a non-offload doorbell to doorbell FIFO |
| * |
| */ |
| static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo, |
| u64 txdl_ptr, u32 num_txds, u32 no_snoop) |
| { |
| writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) | |
| VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) | |
| VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop), |
| &fifo->nofl_db->control_0); |
| |
| writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr); |
| } |
| |
| /** |
| * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in |
| * the fifo |
| * @fifoh: Handle to the fifo object used for non offload send |
| */ |
| u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh) |
| { |
| return vxge_hw_channel_dtr_count(&fifoh->channel); |
| } |
| |
| /** |
| * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor. |
| * @fifoh: Handle to the fifo object used for non offload send |
| * @txdlh: Reserved descriptor. On success HW fills this "out" parameter |
| * with a valid handle. |
| * @txdl_priv: Buffer to return the pointer to per txdl space |
| * |
| * Reserve a single TxDL (that is, fifo descriptor) |
| * for the subsequent filling-in by driver) |
| * and posting on the corresponding channel (@channelh) |
| * via vxge_hw_fifo_txdl_post(). |
| * |
| * Note: it is the responsibility of driver to reserve multiple descriptors |
| * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor |
| * carries up to configured number (fifo.max_frags) of contiguous buffers. |
| * |
| * Returns: VXGE_HW_OK - success; |
| * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available |
| * |
| */ |
| enum vxge_hw_status vxge_hw_fifo_txdl_reserve( |
| struct __vxge_hw_fifo *fifo, |
| void **txdlh, void **txdl_priv) |
| { |
| struct __vxge_hw_channel *channel; |
| enum vxge_hw_status status; |
| int i; |
| |
| channel = &fifo->channel; |
| |
| status = vxge_hw_channel_dtr_alloc(channel, txdlh); |
| |
| if (status == VXGE_HW_OK) { |
| struct vxge_hw_fifo_txd *txdp = |
| (struct vxge_hw_fifo_txd *)*txdlh; |
| struct __vxge_hw_fifo_txdl_priv *priv; |
| |
| priv = __vxge_hw_fifo_txdl_priv(fifo, txdp); |
| |
| /* reset the TxDL's private */ |
| priv->align_dma_offset = 0; |
| priv->align_vaddr_start = priv->align_vaddr; |
| priv->align_used_frags = 0; |
| priv->frags = 0; |
| priv->alloc_frags = fifo->config->max_frags; |
| priv->next_txdl_priv = NULL; |
| |
| *txdl_priv = (void *)(size_t)txdp->host_control; |
| |
| for (i = 0; i < fifo->config->max_frags; i++) { |
| txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i; |
| txdp->control_0 = txdp->control_1 = 0; |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the |
| * descriptor. |
| * @fifo: Handle to the fifo object used for non offload send |
| * @txdlh: Descriptor handle. |
| * @frag_idx: Index of the data buffer in the caller's scatter-gather list |
| * (of buffers). |
| * @dma_pointer: DMA address of the data buffer referenced by @frag_idx. |
| * @size: Size of the data buffer (in bytes). |
| * |
| * This API is part of the preparation of the transmit descriptor for posting |
| * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include |
| * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits(). |
| * All three APIs fill in the fields of the fifo descriptor, |
| * in accordance with the Titan specification. |
| * |
| */ |
| void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo, |
| void *txdlh, u32 frag_idx, |
| dma_addr_t dma_pointer, u32 size) |
| { |
| struct __vxge_hw_fifo_txdl_priv *txdl_priv; |
| struct vxge_hw_fifo_txd *txdp, *txdp_last; |
| |
| txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh); |
| txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags; |
| |
| if (frag_idx != 0) |
| txdp->control_0 = txdp->control_1 = 0; |
| else { |
| txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE( |
| VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST); |
| txdp->control_1 |= fifo->interrupt_type; |
| txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER( |
| fifo->tx_intr_num); |
| if (txdl_priv->frags) { |
| txdp_last = (struct vxge_hw_fifo_txd *)txdlh + |
| (txdl_priv->frags - 1); |
| txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE( |
| VXGE_HW_FIFO_TXD_GATHER_CODE_LAST); |
| } |
| } |
| |
| vxge_assert(frag_idx < txdl_priv->alloc_frags); |
| |
| txdp->buffer_pointer = (u64)dma_pointer; |
| txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size); |
| fifo->stats->total_buffers++; |
| txdl_priv->frags++; |
| } |
| |
| /** |
| * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel. |
| * @fifo: Handle to the fifo object used for non offload send |
| * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve() |
| * @frags: Number of contiguous buffers that are part of a single |
| * transmit operation. |
| * |
| * Post descriptor on the 'fifo' type channel for transmission. |
| * Prior to posting the descriptor should be filled in accordance with |
| * Host/Titan interface specification for a given service (LL, etc.). |
| * |
| */ |
| void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh) |
| { |
| struct __vxge_hw_fifo_txdl_priv *txdl_priv; |
| struct vxge_hw_fifo_txd *txdp_last; |
| struct vxge_hw_fifo_txd *txdp_first; |
| |
| txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh); |
| txdp_first = txdlh; |
| |
| txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1); |
| txdp_last->control_0 |= |
| VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST); |
| txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER; |
| |
| vxge_hw_channel_dtr_post(&fifo->channel, txdlh); |
| |
| __vxge_hw_non_offload_db_post(fifo, |
| (u64)txdl_priv->dma_addr, |
| txdl_priv->frags - 1, |
| fifo->no_snoop_bits); |
| |
| fifo->stats->total_posts++; |
| fifo->stats->common_stats.usage_cnt++; |
| if (fifo->stats->common_stats.usage_max < |
| fifo->stats->common_stats.usage_cnt) |
| fifo->stats->common_stats.usage_max = |
| fifo->stats->common_stats.usage_cnt; |
| } |
| |
| /** |
| * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor. |
| * @fifo: Handle to the fifo object used for non offload send |
| * @txdlh: Descriptor handle. Returned by HW. |
| * @t_code: Transfer code, as per Titan User Guide, |
| * Transmit Descriptor Format. |
| * Returned by HW. |
| * |
| * Retrieve the _next_ completed descriptor. |
| * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy |
| * driver of new completed descriptors. After that |
| * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest |
| * completions (the very first completion is passed by HW via |
| * vxge_hw_channel_callback_f). |
| * |
| * Implementation-wise, the driver is free to call |
| * vxge_hw_fifo_txdl_next_completed either immediately from inside the |
| * channel callback, or in a deferred fashion and separate (from HW) |
| * context. |
| * |
| * Non-zero @t_code means failure to process the descriptor. |
| * The failure could happen, for instance, when the link is |
| * down, in which case Titan completes the descriptor because it |
| * is not able to send the data out. |
| * |
| * For details please refer to Titan User Guide. |
| * |
| * Returns: VXGE_HW_OK - success. |
| * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors |
| * are currently available for processing. |
| * |
| */ |
| enum vxge_hw_status vxge_hw_fifo_txdl_next_completed( |
| struct __vxge_hw_fifo *fifo, void **txdlh, |
| enum vxge_hw_fifo_tcode *t_code) |
| { |
| struct __vxge_hw_channel *channel; |
| struct vxge_hw_fifo_txd *txdp; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| channel = &fifo->channel; |
| |
| vxge_hw_channel_dtr_try_complete(channel, txdlh); |
| |
| txdp = *txdlh; |
| if (txdp == NULL) { |
| status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS; |
| goto exit; |
| } |
| |
| /* check whether host owns it */ |
| if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) { |
| |
| vxge_assert(txdp->host_control != 0); |
| |
| vxge_hw_channel_dtr_complete(channel); |
| |
| *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0); |
| |
| if (fifo->stats->common_stats.usage_cnt > 0) |
| fifo->stats->common_stats.usage_cnt--; |
| |
| status = VXGE_HW_OK; |
| goto exit; |
| } |
| |
| /* no more completions */ |
| *txdlh = NULL; |
| status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS; |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_fifo_handle_tcode - Handle transfer code. |
| * @fifo: Handle to the fifo object used for non offload send |
| * @txdlh: Descriptor handle. |
| * @t_code: One of the enumerated (and documented in the Titan user guide) |
| * "transfer codes". |
| * |
| * Handle descriptor's transfer code. The latter comes with each completed |
| * descriptor. |
| * |
| * Returns: one of the enum vxge_hw_status{} enumerated types. |
| * VXGE_HW_OK - for success. |
| * VXGE_HW_ERR_CRITICAL - when encounters critical error. |
| */ |
| enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo, |
| void *txdlh, |
| enum vxge_hw_fifo_tcode t_code) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) { |
| status = VXGE_HW_ERR_INVALID_TCODE; |
| goto exit; |
| } |
| |
| fifo->stats->txd_t_code_err_cnt[t_code]++; |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_fifo_txdl_free - Free descriptor. |
| * @fifo: Handle to the fifo object used for non offload send |
| * @txdlh: Descriptor handle. |
| * |
| * Free the reserved descriptor. This operation is "symmetrical" to |
| * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's |
| * lifecycle. |
| * |
| * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can |
| * be: |
| * |
| * - reserved (vxge_hw_fifo_txdl_reserve); |
| * |
| * - posted (vxge_hw_fifo_txdl_post); |
| * |
| * - completed (vxge_hw_fifo_txdl_next_completed); |
| * |
| * - and recycled again (vxge_hw_fifo_txdl_free). |
| * |
| * For alternative state transitions and more details please refer to |
| * the design doc. |
| * |
| */ |
| void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh) |
| { |
| struct __vxge_hw_channel *channel; |
| |
| channel = &fifo->channel; |
| |
| vxge_hw_channel_dtr_free(channel, txdlh); |
| } |
| |
| /** |
| * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath |
| * to MAC address table. |
| * @vp: Vpath handle. |
| * @macaddr: MAC address to be added for this vpath into the list |
| * @macaddr_mask: MAC address mask for macaddr |
| * @duplicate_mode: Duplicate MAC address add mode. Please see |
| * enum vxge_hw_vpath_mac_addr_add_mode{} |
| * |
| * Adds the given mac address and mac address mask into the list for this |
| * vpath. |
| * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and |
| * vxge_hw_vpath_mac_addr_get_next |
| * |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_mac_addr_add( |
| struct __vxge_hw_vpath_handle *vp, |
| u8 (macaddr)[ETH_ALEN], |
| u8 (macaddr_mask)[ETH_ALEN], |
| enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode) |
| { |
| u32 i; |
| u64 data1 = 0ULL; |
| u64 data2 = 0ULL; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| for (i = 0; i < ETH_ALEN; i++) { |
| data1 <<= 8; |
| data1 |= (u8)macaddr[i]; |
| |
| data2 <<= 8; |
| data2 |= (u8)macaddr_mask[i]; |
| } |
| |
| switch (duplicate_mode) { |
| case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE: |
| i = 0; |
| break; |
| case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE: |
| i = 1; |
| break; |
| case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE: |
| i = 2; |
| break; |
| default: |
| i = 0; |
| break; |
| } |
| |
| status = __vxge_hw_vpath_rts_table_set(vp, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 0, |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1), |
| VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)| |
| VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i)); |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath |
| * from MAC address table. |
| * @vp: Vpath handle. |
| * @macaddr: First MAC address entry for this vpath in the list |
| * @macaddr_mask: MAC address mask for macaddr |
| * |
| * Returns the first mac address and mac address mask in the list for this |
| * vpath. |
| * see also: vxge_hw_vpath_mac_addr_get_next |
| * |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_mac_addr_get( |
| struct __vxge_hw_vpath_handle *vp, |
| u8 (macaddr)[ETH_ALEN], |
| u8 (macaddr_mask)[ETH_ALEN]) |
| { |
| u32 i; |
| u64 data1 = 0ULL; |
| u64 data2 = 0ULL; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_rts_table_get(vp, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 0, &data1, &data2); |
| |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1); |
| |
| data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2); |
| |
| for (i = ETH_ALEN; i > 0; i--) { |
| macaddr[i-1] = (u8)(data1 & 0xFF); |
| data1 >>= 8; |
| |
| macaddr_mask[i-1] = (u8)(data2 & 0xFF); |
| data2 >>= 8; |
| } |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this |
| * vpath |
| * from MAC address table. |
| * @vp: Vpath handle. |
| * @macaddr: Next MAC address entry for this vpath in the list |
| * @macaddr_mask: MAC address mask for macaddr |
| * |
| * Returns the next mac address and mac address mask in the list for this |
| * vpath. |
| * see also: vxge_hw_vpath_mac_addr_get |
| * |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_mac_addr_get_next( |
| struct __vxge_hw_vpath_handle *vp, |
| u8 (macaddr)[ETH_ALEN], |
| u8 (macaddr_mask)[ETH_ALEN]) |
| { |
| u32 i; |
| u64 data1 = 0ULL; |
| u64 data2 = 0ULL; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_rts_table_get(vp, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 0, &data1, &data2); |
| |
| if (status != VXGE_HW_OK) |
| goto exit; |
| |
| data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1); |
| |
| data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2); |
| |
| for (i = ETH_ALEN; i > 0; i--) { |
| macaddr[i-1] = (u8)(data1 & 0xFF); |
| data1 >>= 8; |
| |
| macaddr_mask[i-1] = (u8)(data2 & 0xFF); |
| data2 >>= 8; |
| } |
| |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath |
| * to MAC address table. |
| * @vp: Vpath handle. |
| * @macaddr: MAC address to be added for this vpath into the list |
| * @macaddr_mask: MAC address mask for macaddr |
| * |
| * Delete the given mac address and mac address mask into the list for this |
| * vpath. |
| * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and |
| * vxge_hw_vpath_mac_addr_get_next |
| * |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_mac_addr_delete( |
| struct __vxge_hw_vpath_handle *vp, |
| u8 (macaddr)[ETH_ALEN], |
| u8 (macaddr_mask)[ETH_ALEN]) |
| { |
| u32 i; |
| u64 data1 = 0ULL; |
| u64 data2 = 0ULL; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| for (i = 0; i < ETH_ALEN; i++) { |
| data1 <<= 8; |
| data1 |= (u8)macaddr[i]; |
| |
| data2 <<= 8; |
| data2 |= (u8)macaddr_mask[i]; |
| } |
| |
| status = __vxge_hw_vpath_rts_table_set(vp, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA, |
| 0, |
| VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1), |
| VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)); |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath |
| * to vlan id table. |
| * @vp: Vpath handle. |
| * @vid: vlan id to be added for this vpath into the list |
| * |
| * Adds the given vlan id into the list for this vpath. |
| * see also: vxge_hw_vpath_vid_delete |
| * |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_rts_table_set(vp, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID, |
| 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0); |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath |
| * to vlan id table. |
| * @vp: Vpath handle. |
| * @vid: vlan id to be added for this vpath into the list |
| * |
| * Adds the given vlan id into the list for this vpath. |
| * see also: vxge_hw_vpath_vid_add |
| * |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_rts_table_set(vp, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY, |
| VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID, |
| 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0); |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_promisc_enable - Enable promiscuous mode. |
| * @vp: Vpath handle. |
| * |
| * Enable promiscuous mode of Titan-e operation. |
| * |
| * See also: vxge_hw_vpath_promisc_disable(). |
| */ |
| enum vxge_hw_status vxge_hw_vpath_promisc_enable( |
| struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 val64; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| vpath = vp->vpath; |
| |
| /* Enable promiscuous mode for function 0 only */ |
| if (!(vpath->hldev->access_rights & |
| VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) |
| return VXGE_HW_OK; |
| |
| val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| |
| if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) { |
| |
| val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN | |
| VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN | |
| VXGE_HW_RXMAC_VCFG0_BCAST_EN | |
| VXGE_HW_RXMAC_VCFG0_ALL_VID_EN; |
| |
| writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| } |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_promisc_disable - Disable promiscuous mode. |
| * @vp: Vpath handle. |
| * |
| * Disable promiscuous mode of Titan-e operation. |
| * |
| * See also: vxge_hw_vpath_promisc_enable(). |
| */ |
| enum vxge_hw_status vxge_hw_vpath_promisc_disable( |
| struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 val64; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| vpath = vp->vpath; |
| |
| val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| |
| if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) { |
| |
| val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN | |
| VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN | |
| VXGE_HW_RXMAC_VCFG0_ALL_VID_EN); |
| |
| writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_bcast_enable - Enable broadcast |
| * @vp: Vpath handle. |
| * |
| * Enable receiving broadcasts. |
| */ |
| enum vxge_hw_status vxge_hw_vpath_bcast_enable( |
| struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 val64; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| vpath = vp->vpath; |
| |
| val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| |
| if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) { |
| val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN; |
| writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| } |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_mcast_enable - Enable multicast addresses. |
| * @vp: Vpath handle. |
| * |
| * Enable Titan-e multicast addresses. |
| * Returns: VXGE_HW_OK on success. |
| * |
| */ |
| enum vxge_hw_status vxge_hw_vpath_mcast_enable( |
| struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 val64; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| vpath = vp->vpath; |
| |
| val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| |
| if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) { |
| val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN; |
| writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| } |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_mcast_disable - Disable multicast addresses. |
| * @vp: Vpath handle. |
| * |
| * Disable Titan-e multicast addresses. |
| * Returns: VXGE_HW_OK - success. |
| * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle |
| * |
| */ |
| enum vxge_hw_status |
| vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 val64; |
| struct __vxge_hw_virtualpath *vpath; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if ((vp == NULL) || (vp->vpath->ringh == NULL)) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| vpath = vp->vpath; |
| |
| val64 = readq(&vpath->vp_reg->rxmac_vcfg0); |
| |
| if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) { |
| val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN; |
| writeq(val64, &vpath->vp_reg->rxmac_vcfg0); |
| } |
| exit: |
| return status; |
| } |
| |
| /* |
| * vxge_hw_vpath_alarm_process - Process Alarms. |
| * @vpath: Virtual Path. |
| * @skip_alarms: Do not clear the alarms |
| * |
| * Process vpath alarms. |
| * |
| */ |
| enum vxge_hw_status vxge_hw_vpath_alarm_process( |
| struct __vxge_hw_vpath_handle *vp, |
| u32 skip_alarms) |
| { |
| enum vxge_hw_status status = VXGE_HW_OK; |
| |
| if (vp == NULL) { |
| status = VXGE_HW_ERR_INVALID_HANDLE; |
| goto exit; |
| } |
| |
| status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms); |
| exit: |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and |
| * alrms |
| * @vp: Virtual Path handle. |
| * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of |
| * interrupts(Can be repeated). If fifo or ring are not enabled |
| * the MSIX vector for that should be set to 0 |
| * @alarm_msix_id: MSIX vector for alarm. |
| * |
| * This API will associate a given MSIX vector numbers with the four TIM |
| * interrupts and alarm interrupt. |
| */ |
| void |
| vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id, |
| int alarm_msix_id) |
| { |
| u64 val64; |
| struct __vxge_hw_virtualpath *vpath = vp->vpath; |
| struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg; |
| u32 vp_id = vp->vpath->vp_id; |
| |
| val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI( |
| (vp_id * 4) + tim_msix_id[0]) | |
| VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI( |
| (vp_id * 4) + tim_msix_id[1]); |
| |
| writeq(val64, &vp_reg->interrupt_cfg0); |
| |
| writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG( |
| (vpath->hldev->first_vp_id * 4) + alarm_msix_id), |
| &vp_reg->interrupt_cfg2); |
| |
| if (vpath->hldev->config.intr_mode == |
| VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) { |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn( |
| VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN, |
| 0, 32), &vp_reg->one_shot_vect0_en); |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn( |
| VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN, |
| 0, 32), &vp_reg->one_shot_vect1_en); |
| __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn( |
| VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN, |
| 0, 32), &vp_reg->one_shot_vect2_en); |
| } |
| } |
| |
| /** |
| * vxge_hw_vpath_msix_mask - Mask MSIX Vector. |
| * @vp: Virtual Path handle. |
| * @msix_id: MSIX ID |
| * |
| * The function masks the msix interrupt for the given msix_id |
| * |
| * Returns: 0, |
| * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range |
| * status. |
| * See also: |
| */ |
| void |
| vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id) |
| { |
| struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| __vxge_hw_pio_mem_write32_upper( |
| (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32), |
| &hldev->common_reg->set_msix_mask_vect[msix_id % 4]); |
| } |
| |
| /** |
| * vxge_hw_vpath_msix_clear - Clear MSIX Vector. |
| * @vp: Virtual Path handle. |
| * @msix_id: MSI ID |
| * |
| * The function clears the msix interrupt for the given msix_id |
| * |
| * Returns: 0, |
| * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range |
| * status. |
| * See also: |
| */ |
| void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id) |
| { |
| struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| |
| if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) |
| __vxge_hw_pio_mem_write32_upper( |
| (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32), |
| &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]); |
| else |
| __vxge_hw_pio_mem_write32_upper( |
| (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32), |
| &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]); |
| } |
| |
| /** |
| * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector. |
| * @vp: Virtual Path handle. |
| * @msix_id: MSI ID |
| * |
| * The function unmasks the msix interrupt for the given msix_id |
| * |
| * Returns: 0, |
| * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range |
| * status. |
| * See also: |
| */ |
| void |
| vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id) |
| { |
| struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| __vxge_hw_pio_mem_write32_upper( |
| (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32), |
| &hldev->common_reg->clear_msix_mask_vect[msix_id%4]); |
| } |
| |
| /** |
| * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts. |
| * @vp: Virtual Path handle. |
| * |
| * Mask Tx and Rx vpath interrupts. |
| * |
| * See also: vxge_hw_vpath_inta_mask_tx_rx() |
| */ |
| void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 tim_int_mask0[4] = {[0 ...3] = 0}; |
| u32 tim_int_mask1[4] = {[0 ...3] = 0}; |
| u64 val64; |
| struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| |
| VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0, |
| tim_int_mask1, vp->vpath->vp_id); |
| |
| val64 = readq(&hldev->common_reg->tim_int_mask0); |
| |
| if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) || |
| (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] | |
| tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64), |
| &hldev->common_reg->tim_int_mask0); |
| } |
| |
| val64 = readl(&hldev->common_reg->tim_int_mask1); |
| |
| if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) || |
| (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| __vxge_hw_pio_mem_write32_upper( |
| (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] | |
| tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64), |
| &hldev->common_reg->tim_int_mask1); |
| } |
| } |
| |
| /** |
| * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts. |
| * @vp: Virtual Path handle. |
| * |
| * Unmask Tx and Rx vpath interrupts. |
| * |
| * See also: vxge_hw_vpath_inta_mask_tx_rx() |
| */ |
| void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp) |
| { |
| u64 tim_int_mask0[4] = {[0 ...3] = 0}; |
| u32 tim_int_mask1[4] = {[0 ...3] = 0}; |
| u64 val64; |
| struct __vxge_hw_device *hldev = vp->vpath->hldev; |
| |
| VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0, |
| tim_int_mask1, vp->vpath->vp_id); |
| |
| val64 = readq(&hldev->common_reg->tim_int_mask0); |
| |
| if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) || |
| (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] | |
| tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64, |
| &hldev->common_reg->tim_int_mask0); |
| } |
| |
| if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) || |
| (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) { |
| __vxge_hw_pio_mem_write32_upper( |
| (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] | |
| tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64, |
| &hldev->common_reg->tim_int_mask1); |
| } |
| } |
| |
| /** |
| * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed |
| * descriptors and process the same. |
| * @ring: Handle to the ring object used for receive |
| * |
| * The function polls the Rx for the completed descriptors and calls |
| * the driver via supplied completion callback. |
| * |
| * Returns: VXGE_HW_OK, if the polling is completed successful. |
| * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed |
| * descriptors available which are yet to be processed. |
| * |
| * See also: vxge_hw_vpath_poll_rx() |
| */ |
| enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring) |
| { |
| u8 t_code; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| void *first_rxdh; |
| u64 val64 = 0; |
| int new_count = 0; |
| |
| ring->cmpl_cnt = 0; |
| |
| status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code); |
| if (status == VXGE_HW_OK) |
| ring->callback(ring, first_rxdh, |
| t_code, ring->channel.userdata); |
| |
| if (ring->cmpl_cnt != 0) { |
| ring->doorbell_cnt += ring->cmpl_cnt; |
| if (ring->doorbell_cnt >= ring->rxds_limit) { |
| /* |
| * Each RxD is of 4 qwords, update the number of |
| * qwords replenished |
| */ |
| new_count = (ring->doorbell_cnt * 4); |
| |
| /* For each block add 4 more qwords */ |
| ring->total_db_cnt += ring->doorbell_cnt; |
| if (ring->total_db_cnt >= ring->rxds_per_block) { |
| new_count += 4; |
| /* Reset total count */ |
| ring->total_db_cnt %= ring->rxds_per_block; |
| } |
| writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count), |
| &ring->vp_reg->prc_rxd_doorbell); |
| val64 = |
| readl(&ring->common_reg->titan_general_int_status); |
| ring->doorbell_cnt = 0; |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process |
| * the same. |
| * @fifo: Handle to the fifo object used for non offload send |
| * |
| * The function polls the Tx for the completed descriptors and calls |
| * the driver via supplied completion callback. |
| * |
| * Returns: VXGE_HW_OK, if the polling is completed successful. |
| * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed |
| * descriptors available which are yet to be processed. |
| */ |
| enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo, |
| struct sk_buff ***skb_ptr, int nr_skb, |
| int *more) |
| { |
| enum vxge_hw_fifo_tcode t_code; |
| void *first_txdlh; |
| enum vxge_hw_status status = VXGE_HW_OK; |
| struct __vxge_hw_channel *channel; |
| |
| channel = &fifo->channel; |
| |
| status = vxge_hw_fifo_txdl_next_completed(fifo, |
| &first_txdlh, &t_code); |
| if (status == VXGE_HW_OK) |
| if (fifo->callback(fifo, first_txdlh, t_code, |
| channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK) |
| status = VXGE_HW_COMPLETIONS_REMAIN; |
| |
| return status; |
| } |