| /* QLogic qed NIC Driver |
| * Copyright (c) 2015-2017 QLogic Corporation |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and /or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/mutex.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/vmalloc.h> |
| #include <linux/etherdevice.h> |
| #include <linux/qed/qed_chain.h> |
| #include <linux/qed/qed_if.h> |
| #include "qed.h" |
| #include "qed_cxt.h" |
| #include "qed_dcbx.h" |
| #include "qed_dev_api.h" |
| #include "qed_fcoe.h" |
| #include "qed_hsi.h" |
| #include "qed_hw.h" |
| #include "qed_init_ops.h" |
| #include "qed_int.h" |
| #include "qed_iscsi.h" |
| #include "qed_ll2.h" |
| #include "qed_mcp.h" |
| #include "qed_ooo.h" |
| #include "qed_reg_addr.h" |
| #include "qed_sp.h" |
| #include "qed_sriov.h" |
| #include "qed_vf.h" |
| #include "qed_rdma.h" |
| |
| static DEFINE_SPINLOCK(qm_lock); |
| |
| /******************** Doorbell Recovery *******************/ |
| /* The doorbell recovery mechanism consists of a list of entries which represent |
| * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each |
| * entity needs to register with the mechanism and provide the parameters |
| * describing it's doorbell, including a location where last used doorbell data |
| * can be found. The doorbell execute function will traverse the list and |
| * doorbell all of the registered entries. |
| */ |
| struct qed_db_recovery_entry { |
| struct list_head list_entry; |
| void __iomem *db_addr; |
| void *db_data; |
| enum qed_db_rec_width db_width; |
| enum qed_db_rec_space db_space; |
| u8 hwfn_idx; |
| }; |
| |
| /* Display a single doorbell recovery entry */ |
| static void qed_db_recovery_dp_entry(struct qed_hwfn *p_hwfn, |
| struct qed_db_recovery_entry *db_entry, |
| char *action) |
| { |
| DP_VERBOSE(p_hwfn, |
| QED_MSG_SPQ, |
| "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n", |
| action, |
| db_entry, |
| db_entry->db_addr, |
| db_entry->db_data, |
| db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b", |
| db_entry->db_space == DB_REC_USER ? "user" : "kernel", |
| db_entry->hwfn_idx); |
| } |
| |
| /* Doorbell address sanity (address within doorbell bar range) */ |
| static bool qed_db_rec_sanity(struct qed_dev *cdev, |
| void __iomem *db_addr, |
| enum qed_db_rec_width db_width, |
| void *db_data) |
| { |
| u32 width = (db_width == DB_REC_WIDTH_32B) ? 32 : 64; |
| |
| /* Make sure doorbell address is within the doorbell bar */ |
| if (db_addr < cdev->doorbells || |
| (u8 __iomem *)db_addr + width > |
| (u8 __iomem *)cdev->doorbells + cdev->db_size) { |
| WARN(true, |
| "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n", |
| db_addr, |
| cdev->doorbells, |
| (u8 __iomem *)cdev->doorbells + cdev->db_size); |
| return false; |
| } |
| |
| /* ake sure doorbell data pointer is not null */ |
| if (!db_data) { |
| WARN(true, "Illegal doorbell data pointer: %p", db_data); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Find hwfn according to the doorbell address */ |
| static struct qed_hwfn *qed_db_rec_find_hwfn(struct qed_dev *cdev, |
| void __iomem *db_addr) |
| { |
| struct qed_hwfn *p_hwfn; |
| |
| /* In CMT doorbell bar is split down the middle between engine 0 and enigne 1 */ |
| if (cdev->num_hwfns > 1) |
| p_hwfn = db_addr < cdev->hwfns[1].doorbells ? |
| &cdev->hwfns[0] : &cdev->hwfns[1]; |
| else |
| p_hwfn = QED_LEADING_HWFN(cdev); |
| |
| return p_hwfn; |
| } |
| |
| /* Add a new entry to the doorbell recovery mechanism */ |
| int qed_db_recovery_add(struct qed_dev *cdev, |
| void __iomem *db_addr, |
| void *db_data, |
| enum qed_db_rec_width db_width, |
| enum qed_db_rec_space db_space) |
| { |
| struct qed_db_recovery_entry *db_entry; |
| struct qed_hwfn *p_hwfn; |
| |
| /* Shortcircuit VFs, for now */ |
| if (IS_VF(cdev)) { |
| DP_VERBOSE(cdev, |
| QED_MSG_IOV, "db recovery - skipping VF doorbell\n"); |
| return 0; |
| } |
| |
| /* Sanitize doorbell address */ |
| if (!qed_db_rec_sanity(cdev, db_addr, db_width, db_data)) |
| return -EINVAL; |
| |
| /* Obtain hwfn from doorbell address */ |
| p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr); |
| |
| /* Create entry */ |
| db_entry = kzalloc(sizeof(*db_entry), GFP_KERNEL); |
| if (!db_entry) { |
| DP_NOTICE(cdev, "Failed to allocate a db recovery entry\n"); |
| return -ENOMEM; |
| } |
| |
| /* Populate entry */ |
| db_entry->db_addr = db_addr; |
| db_entry->db_data = db_data; |
| db_entry->db_width = db_width; |
| db_entry->db_space = db_space; |
| db_entry->hwfn_idx = p_hwfn->my_id; |
| |
| /* Display */ |
| qed_db_recovery_dp_entry(p_hwfn, db_entry, "Adding"); |
| |
| /* Protect the list */ |
| spin_lock_bh(&p_hwfn->db_recovery_info.lock); |
| list_add_tail(&db_entry->list_entry, &p_hwfn->db_recovery_info.list); |
| spin_unlock_bh(&p_hwfn->db_recovery_info.lock); |
| |
| return 0; |
| } |
| |
| /* Remove an entry from the doorbell recovery mechanism */ |
| int qed_db_recovery_del(struct qed_dev *cdev, |
| void __iomem *db_addr, void *db_data) |
| { |
| struct qed_db_recovery_entry *db_entry = NULL; |
| struct qed_hwfn *p_hwfn; |
| int rc = -EINVAL; |
| |
| /* Shortcircuit VFs, for now */ |
| if (IS_VF(cdev)) { |
| DP_VERBOSE(cdev, |
| QED_MSG_IOV, "db recovery - skipping VF doorbell\n"); |
| return 0; |
| } |
| |
| /* Obtain hwfn from doorbell address */ |
| p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr); |
| |
| /* Protect the list */ |
| spin_lock_bh(&p_hwfn->db_recovery_info.lock); |
| list_for_each_entry(db_entry, |
| &p_hwfn->db_recovery_info.list, list_entry) { |
| /* search according to db_data addr since db_addr is not unique (roce) */ |
| if (db_entry->db_data == db_data) { |
| qed_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting"); |
| list_del(&db_entry->list_entry); |
| rc = 0; |
| break; |
| } |
| } |
| |
| spin_unlock_bh(&p_hwfn->db_recovery_info.lock); |
| |
| if (rc == -EINVAL) |
| |
| DP_NOTICE(p_hwfn, |
| "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n", |
| db_data, db_addr); |
| else |
| kfree(db_entry); |
| |
| return rc; |
| } |
| |
| /* Initialize the doorbell recovery mechanism */ |
| static int qed_db_recovery_setup(struct qed_hwfn *p_hwfn) |
| { |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Setting up db recovery\n"); |
| |
| /* Make sure db_size was set in cdev */ |
| if (!p_hwfn->cdev->db_size) { |
| DP_ERR(p_hwfn->cdev, "db_size not set\n"); |
| return -EINVAL; |
| } |
| |
| INIT_LIST_HEAD(&p_hwfn->db_recovery_info.list); |
| spin_lock_init(&p_hwfn->db_recovery_info.lock); |
| p_hwfn->db_recovery_info.db_recovery_counter = 0; |
| |
| return 0; |
| } |
| |
| /* Destroy the doorbell recovery mechanism */ |
| static void qed_db_recovery_teardown(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_db_recovery_entry *db_entry = NULL; |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Tearing down db recovery\n"); |
| if (!list_empty(&p_hwfn->db_recovery_info.list)) { |
| DP_VERBOSE(p_hwfn, |
| QED_MSG_SPQ, |
| "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n"); |
| while (!list_empty(&p_hwfn->db_recovery_info.list)) { |
| db_entry = |
| list_first_entry(&p_hwfn->db_recovery_info.list, |
| struct qed_db_recovery_entry, |
| list_entry); |
| qed_db_recovery_dp_entry(p_hwfn, db_entry, "Purging"); |
| list_del(&db_entry->list_entry); |
| kfree(db_entry); |
| } |
| } |
| p_hwfn->db_recovery_info.db_recovery_counter = 0; |
| } |
| |
| /* Print the content of the doorbell recovery mechanism */ |
| void qed_db_recovery_dp(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_db_recovery_entry *db_entry = NULL; |
| |
| DP_NOTICE(p_hwfn, |
| "Displaying doorbell recovery database. Counter was %d\n", |
| p_hwfn->db_recovery_info.db_recovery_counter); |
| |
| /* Protect the list */ |
| spin_lock_bh(&p_hwfn->db_recovery_info.lock); |
| list_for_each_entry(db_entry, |
| &p_hwfn->db_recovery_info.list, list_entry) { |
| qed_db_recovery_dp_entry(p_hwfn, db_entry, "Printing"); |
| } |
| |
| spin_unlock_bh(&p_hwfn->db_recovery_info.lock); |
| } |
| |
| /* Ring the doorbell of a single doorbell recovery entry */ |
| static void qed_db_recovery_ring(struct qed_hwfn *p_hwfn, |
| struct qed_db_recovery_entry *db_entry) |
| { |
| /* Print according to width */ |
| if (db_entry->db_width == DB_REC_WIDTH_32B) { |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, |
| "ringing doorbell address %p data %x\n", |
| db_entry->db_addr, |
| *(u32 *)db_entry->db_data); |
| } else { |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, |
| "ringing doorbell address %p data %llx\n", |
| db_entry->db_addr, |
| *(u64 *)(db_entry->db_data)); |
| } |
| |
| /* Sanity */ |
| if (!qed_db_rec_sanity(p_hwfn->cdev, db_entry->db_addr, |
| db_entry->db_width, db_entry->db_data)) |
| return; |
| |
| /* Flush the write combined buffer. Since there are multiple doorbelling |
| * entities using the same address, if we don't flush, a transaction |
| * could be lost. |
| */ |
| wmb(); |
| |
| /* Ring the doorbell */ |
| if (db_entry->db_width == DB_REC_WIDTH_32B) |
| DIRECT_REG_WR(db_entry->db_addr, |
| *(u32 *)(db_entry->db_data)); |
| else |
| DIRECT_REG_WR64(db_entry->db_addr, |
| *(u64 *)(db_entry->db_data)); |
| |
| /* Flush the write combined buffer. Next doorbell may come from a |
| * different entity to the same address... |
| */ |
| wmb(); |
| } |
| |
| /* Traverse the doorbell recovery entry list and ring all the doorbells */ |
| void qed_db_recovery_execute(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_db_recovery_entry *db_entry = NULL; |
| |
| DP_NOTICE(p_hwfn, "Executing doorbell recovery. Counter was %d\n", |
| p_hwfn->db_recovery_info.db_recovery_counter); |
| |
| /* Track amount of times recovery was executed */ |
| p_hwfn->db_recovery_info.db_recovery_counter++; |
| |
| /* Protect the list */ |
| spin_lock_bh(&p_hwfn->db_recovery_info.lock); |
| list_for_each_entry(db_entry, |
| &p_hwfn->db_recovery_info.list, list_entry) |
| qed_db_recovery_ring(p_hwfn, db_entry); |
| spin_unlock_bh(&p_hwfn->db_recovery_info.lock); |
| } |
| |
| /******************** Doorbell Recovery end ****************/ |
| |
| /********************************** NIG LLH ***********************************/ |
| |
| enum qed_llh_filter_type { |
| QED_LLH_FILTER_TYPE_MAC, |
| QED_LLH_FILTER_TYPE_PROTOCOL, |
| }; |
| |
| struct qed_llh_mac_filter { |
| u8 addr[ETH_ALEN]; |
| }; |
| |
| struct qed_llh_protocol_filter { |
| enum qed_llh_prot_filter_type_t type; |
| u16 source_port_or_eth_type; |
| u16 dest_port; |
| }; |
| |
| union qed_llh_filter { |
| struct qed_llh_mac_filter mac; |
| struct qed_llh_protocol_filter protocol; |
| }; |
| |
| struct qed_llh_filter_info { |
| bool b_enabled; |
| u32 ref_cnt; |
| enum qed_llh_filter_type type; |
| union qed_llh_filter filter; |
| }; |
| |
| struct qed_llh_info { |
| /* Number of LLH filters banks */ |
| u8 num_ppfid; |
| |
| #define MAX_NUM_PPFID 8 |
| u8 ppfid_array[MAX_NUM_PPFID]; |
| |
| /* Array of filters arrays: |
| * "num_ppfid" elements of filters banks, where each is an array of |
| * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters. |
| */ |
| struct qed_llh_filter_info **pp_filters; |
| }; |
| |
| static void qed_llh_free(struct qed_dev *cdev) |
| { |
| struct qed_llh_info *p_llh_info = cdev->p_llh_info; |
| u32 i; |
| |
| if (p_llh_info) { |
| if (p_llh_info->pp_filters) |
| for (i = 0; i < p_llh_info->num_ppfid; i++) |
| kfree(p_llh_info->pp_filters[i]); |
| |
| kfree(p_llh_info->pp_filters); |
| } |
| |
| kfree(p_llh_info); |
| cdev->p_llh_info = NULL; |
| } |
| |
| static int qed_llh_alloc(struct qed_dev *cdev) |
| { |
| struct qed_llh_info *p_llh_info; |
| u32 size, i; |
| |
| p_llh_info = kzalloc(sizeof(*p_llh_info), GFP_KERNEL); |
| if (!p_llh_info) |
| return -ENOMEM; |
| cdev->p_llh_info = p_llh_info; |
| |
| for (i = 0; i < MAX_NUM_PPFID; i++) { |
| if (!(cdev->ppfid_bitmap & (0x1 << i))) |
| continue; |
| |
| p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i; |
| DP_VERBOSE(cdev, QED_MSG_SP, "ppfid_array[%d] = %hhd\n", |
| p_llh_info->num_ppfid, i); |
| p_llh_info->num_ppfid++; |
| } |
| |
| size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters); |
| p_llh_info->pp_filters = kzalloc(size, GFP_KERNEL); |
| if (!p_llh_info->pp_filters) |
| return -ENOMEM; |
| |
| size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE * |
| sizeof(**p_llh_info->pp_filters); |
| for (i = 0; i < p_llh_info->num_ppfid; i++) { |
| p_llh_info->pp_filters[i] = kzalloc(size, GFP_KERNEL); |
| if (!p_llh_info->pp_filters[i]) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int qed_llh_shadow_sanity(struct qed_dev *cdev, |
| u8 ppfid, u8 filter_idx, const char *action) |
| { |
| struct qed_llh_info *p_llh_info = cdev->p_llh_info; |
| |
| if (ppfid >= p_llh_info->num_ppfid) { |
| DP_NOTICE(cdev, |
| "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n", |
| action, ppfid, p_llh_info->num_ppfid); |
| return -EINVAL; |
| } |
| |
| if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { |
| DP_NOTICE(cdev, |
| "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n", |
| action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| #define QED_LLH_INVALID_FILTER_IDX 0xff |
| |
| static int |
| qed_llh_shadow_search_filter(struct qed_dev *cdev, |
| u8 ppfid, |
| union qed_llh_filter *p_filter, u8 *p_filter_idx) |
| { |
| struct qed_llh_info *p_llh_info = cdev->p_llh_info; |
| struct qed_llh_filter_info *p_filters; |
| int rc; |
| u8 i; |
| |
| rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "search"); |
| if (rc) |
| return rc; |
| |
| *p_filter_idx = QED_LLH_INVALID_FILTER_IDX; |
| |
| p_filters = p_llh_info->pp_filters[ppfid]; |
| for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { |
| if (!memcmp(p_filter, &p_filters[i].filter, |
| sizeof(*p_filter))) { |
| *p_filter_idx = i; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| qed_llh_shadow_get_free_idx(struct qed_dev *cdev, u8 ppfid, u8 *p_filter_idx) |
| { |
| struct qed_llh_info *p_llh_info = cdev->p_llh_info; |
| struct qed_llh_filter_info *p_filters; |
| int rc; |
| u8 i; |
| |
| rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "get_free_idx"); |
| if (rc) |
| return rc; |
| |
| *p_filter_idx = QED_LLH_INVALID_FILTER_IDX; |
| |
| p_filters = p_llh_info->pp_filters[ppfid]; |
| for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { |
| if (!p_filters[i].b_enabled) { |
| *p_filter_idx = i; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| __qed_llh_shadow_add_filter(struct qed_dev *cdev, |
| u8 ppfid, |
| u8 filter_idx, |
| enum qed_llh_filter_type type, |
| union qed_llh_filter *p_filter, u32 *p_ref_cnt) |
| { |
| struct qed_llh_info *p_llh_info = cdev->p_llh_info; |
| struct qed_llh_filter_info *p_filters; |
| int rc; |
| |
| rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "add"); |
| if (rc) |
| return rc; |
| |
| p_filters = p_llh_info->pp_filters[ppfid]; |
| if (!p_filters[filter_idx].ref_cnt) { |
| p_filters[filter_idx].b_enabled = true; |
| p_filters[filter_idx].type = type; |
| memcpy(&p_filters[filter_idx].filter, p_filter, |
| sizeof(p_filters[filter_idx].filter)); |
| } |
| |
| *p_ref_cnt = ++p_filters[filter_idx].ref_cnt; |
| |
| return 0; |
| } |
| |
| static int |
| qed_llh_shadow_add_filter(struct qed_dev *cdev, |
| u8 ppfid, |
| enum qed_llh_filter_type type, |
| union qed_llh_filter *p_filter, |
| u8 *p_filter_idx, u32 *p_ref_cnt) |
| { |
| int rc; |
| |
| /* Check if the same filter already exist */ |
| rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx); |
| if (rc) |
| return rc; |
| |
| /* Find a new entry in case of a new filter */ |
| if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) { |
| rc = qed_llh_shadow_get_free_idx(cdev, ppfid, p_filter_idx); |
| if (rc) |
| return rc; |
| } |
| |
| /* No free entry was found */ |
| if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) { |
| DP_NOTICE(cdev, |
| "Failed to find an empty LLH filter to utilize [ppfid %d]\n", |
| ppfid); |
| return -EINVAL; |
| } |
| |
| return __qed_llh_shadow_add_filter(cdev, ppfid, *p_filter_idx, type, |
| p_filter, p_ref_cnt); |
| } |
| |
| static int |
| __qed_llh_shadow_remove_filter(struct qed_dev *cdev, |
| u8 ppfid, u8 filter_idx, u32 *p_ref_cnt) |
| { |
| struct qed_llh_info *p_llh_info = cdev->p_llh_info; |
| struct qed_llh_filter_info *p_filters; |
| int rc; |
| |
| rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "remove"); |
| if (rc) |
| return rc; |
| |
| p_filters = p_llh_info->pp_filters[ppfid]; |
| if (!p_filters[filter_idx].ref_cnt) { |
| DP_NOTICE(cdev, |
| "LLH shadow: trying to remove a filter with ref_cnt=0\n"); |
| return -EINVAL; |
| } |
| |
| *p_ref_cnt = --p_filters[filter_idx].ref_cnt; |
| if (!p_filters[filter_idx].ref_cnt) |
| memset(&p_filters[filter_idx], |
| 0, sizeof(p_filters[filter_idx])); |
| |
| return 0; |
| } |
| |
| static int |
| qed_llh_shadow_remove_filter(struct qed_dev *cdev, |
| u8 ppfid, |
| union qed_llh_filter *p_filter, |
| u8 *p_filter_idx, u32 *p_ref_cnt) |
| { |
| int rc; |
| |
| rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx); |
| if (rc) |
| return rc; |
| |
| /* No matching filter was found */ |
| if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) { |
| DP_NOTICE(cdev, "Failed to find a filter in the LLH shadow\n"); |
| return -EINVAL; |
| } |
| |
| return __qed_llh_shadow_remove_filter(cdev, ppfid, *p_filter_idx, |
| p_ref_cnt); |
| } |
| |
| static int qed_llh_abs_ppfid(struct qed_dev *cdev, u8 ppfid, u8 *p_abs_ppfid) |
| { |
| struct qed_llh_info *p_llh_info = cdev->p_llh_info; |
| |
| if (ppfid >= p_llh_info->num_ppfid) { |
| DP_NOTICE(cdev, |
| "ppfid %d is not valid, available indices are 0..%hhd\n", |
| ppfid, p_llh_info->num_ppfid - 1); |
| *p_abs_ppfid = 0; |
| return -EINVAL; |
| } |
| |
| *p_abs_ppfid = p_llh_info->ppfid_array[ppfid]; |
| |
| return 0; |
| } |
| |
| static int |
| qed_llh_set_engine_affin(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_dev *cdev = p_hwfn->cdev; |
| enum qed_eng eng; |
| u8 ppfid; |
| int rc; |
| |
| rc = qed_mcp_get_engine_config(p_hwfn, p_ptt); |
| if (rc != 0 && rc != -EOPNOTSUPP) { |
| DP_NOTICE(p_hwfn, |
| "Failed to get the engine affinity configuration\n"); |
| return rc; |
| } |
| |
| /* RoCE PF is bound to a single engine */ |
| if (QED_IS_ROCE_PERSONALITY(p_hwfn)) { |
| eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0; |
| rc = qed_llh_set_roce_affinity(cdev, eng); |
| if (rc) { |
| DP_NOTICE(cdev, |
| "Failed to set the RoCE engine affinity\n"); |
| return rc; |
| } |
| |
| DP_VERBOSE(cdev, |
| QED_MSG_SP, |
| "LLH: Set the engine affinity of RoCE packets as %d\n", |
| eng); |
| } |
| |
| /* Storage PF is bound to a single engine while L2 PF uses both */ |
| if (QED_IS_FCOE_PERSONALITY(p_hwfn) || QED_IS_ISCSI_PERSONALITY(p_hwfn)) |
| eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0; |
| else /* L2_PERSONALITY */ |
| eng = QED_BOTH_ENG; |
| |
| for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) { |
| rc = qed_llh_set_ppfid_affinity(cdev, ppfid, eng); |
| if (rc) { |
| DP_NOTICE(cdev, |
| "Failed to set the engine affinity of ppfid %d\n", |
| ppfid); |
| return rc; |
| } |
| } |
| |
| DP_VERBOSE(cdev, QED_MSG_SP, |
| "LLH: Set the engine affinity of non-RoCE packets as %d\n", |
| eng); |
| |
| return 0; |
| } |
| |
| static int qed_llh_hw_init_pf(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| struct qed_dev *cdev = p_hwfn->cdev; |
| u8 ppfid, abs_ppfid; |
| int rc; |
| |
| for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) { |
| u32 addr; |
| |
| rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); |
| if (rc) |
| return rc; |
| |
| addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4; |
| qed_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id); |
| } |
| |
| if (test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) && |
| !QED_IS_FCOE_PERSONALITY(p_hwfn)) { |
| rc = qed_llh_add_mac_filter(cdev, 0, |
| p_hwfn->hw_info.hw_mac_addr); |
| if (rc) |
| DP_NOTICE(cdev, |
| "Failed to add an LLH filter with the primary MAC\n"); |
| } |
| |
| if (QED_IS_CMT(cdev)) { |
| rc = qed_llh_set_engine_affin(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| u8 qed_llh_get_num_ppfid(struct qed_dev *cdev) |
| { |
| return cdev->p_llh_info->num_ppfid; |
| } |
| |
| #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK 0x3 |
| #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT 0 |
| #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK 0x3 |
| #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT 2 |
| |
| int qed_llh_set_ppfid_affinity(struct qed_dev *cdev, u8 ppfid, enum qed_eng eng) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); |
| u32 addr, val, eng_sel; |
| u8 abs_ppfid; |
| int rc = 0; |
| |
| if (!p_ptt) |
| return -EAGAIN; |
| |
| if (!QED_IS_CMT(cdev)) |
| goto out; |
| |
| rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); |
| if (rc) |
| goto out; |
| |
| switch (eng) { |
| case QED_ENG0: |
| eng_sel = 0; |
| break; |
| case QED_ENG1: |
| eng_sel = 1; |
| break; |
| case QED_BOTH_ENG: |
| eng_sel = 2; |
| break; |
| default: |
| DP_NOTICE(cdev, "Invalid affinity value for ppfid [%d]\n", eng); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; |
| val = qed_rd(p_hwfn, p_ptt, addr); |
| SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel); |
| qed_wr(p_hwfn, p_ptt, addr, val); |
| |
| /* The iWARP affinity is set as the affinity of ppfid 0 */ |
| if (!ppfid && QED_IS_IWARP_PERSONALITY(p_hwfn)) |
| cdev->iwarp_affin = (eng == QED_ENG1) ? 1 : 0; |
| out: |
| qed_ptt_release(p_hwfn, p_ptt); |
| |
| return rc; |
| } |
| |
| int qed_llh_set_roce_affinity(struct qed_dev *cdev, enum qed_eng eng) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); |
| u32 addr, val, eng_sel; |
| u8 ppfid, abs_ppfid; |
| int rc = 0; |
| |
| if (!p_ptt) |
| return -EAGAIN; |
| |
| if (!QED_IS_CMT(cdev)) |
| goto out; |
| |
| switch (eng) { |
| case QED_ENG0: |
| eng_sel = 0; |
| break; |
| case QED_ENG1: |
| eng_sel = 1; |
| break; |
| case QED_BOTH_ENG: |
| eng_sel = 2; |
| qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL, |
| 0xf); /* QP bit 15 */ |
| break; |
| default: |
| DP_NOTICE(cdev, "Invalid affinity value for RoCE [%d]\n", eng); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) { |
| rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); |
| if (rc) |
| goto out; |
| |
| addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; |
| val = qed_rd(p_hwfn, p_ptt, addr); |
| SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel); |
| qed_wr(p_hwfn, p_ptt, addr, val); |
| } |
| out: |
| qed_ptt_release(p_hwfn, p_ptt); |
| |
| return rc; |
| } |
| |
| struct qed_llh_filter_details { |
| u64 value; |
| u32 mode; |
| u32 protocol_type; |
| u32 hdr_sel; |
| u32 enable; |
| }; |
| |
| static int |
| qed_llh_access_filter(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u8 abs_ppfid, |
| u8 filter_idx, |
| struct qed_llh_filter_details *p_details) |
| { |
| struct qed_dmae_params params = {0}; |
| u32 addr; |
| u8 pfid; |
| int rc; |
| |
| /* The NIG/LLH registers that are accessed in this function have only 16 |
| * rows which are exposed to a PF. I.e. only the 16 filters of its |
| * default ppfid. Accessing filters of other ppfids requires pretending |
| * to another PFs. |
| * The calculation of PPFID->PFID in AH is based on the relative index |
| * of a PF on its port. |
| * For BB the pfid is actually the abs_ppfid. |
| */ |
| if (QED_IS_BB(p_hwfn->cdev)) |
| pfid = abs_ppfid; |
| else |
| pfid = abs_ppfid * p_hwfn->cdev->num_ports_in_engine + |
| MFW_PORT(p_hwfn); |
| |
| /* Filter enable - should be done first when removing a filter */ |
| if (!p_details->enable) { |
| qed_fid_pretend(p_hwfn, p_ptt, |
| pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT); |
| |
| addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4; |
| qed_wr(p_hwfn, p_ptt, addr, p_details->enable); |
| |
| qed_fid_pretend(p_hwfn, p_ptt, |
| p_hwfn->rel_pf_id << |
| PXP_PRETEND_CONCRETE_FID_PFID_SHIFT); |
| } |
| |
| /* Filter value */ |
| addr = NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * filter_idx * 0x4; |
| |
| SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_PF_VALID, 0x1); |
| params.dst_pfid = pfid; |
| rc = qed_dmae_host2grc(p_hwfn, |
| p_ptt, |
| (u64)(uintptr_t)&p_details->value, |
| addr, 2 /* size_in_dwords */, |
| ¶ms); |
| if (rc) |
| return rc; |
| |
| qed_fid_pretend(p_hwfn, p_ptt, |
| pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT); |
| |
| /* Filter mode */ |
| addr = NIG_REG_LLH_FUNC_FILTER_MODE + filter_idx * 0x4; |
| qed_wr(p_hwfn, p_ptt, addr, p_details->mode); |
| |
| /* Filter protocol type */ |
| addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + filter_idx * 0x4; |
| qed_wr(p_hwfn, p_ptt, addr, p_details->protocol_type); |
| |
| /* Filter header select */ |
| addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL + filter_idx * 0x4; |
| qed_wr(p_hwfn, p_ptt, addr, p_details->hdr_sel); |
| |
| /* Filter enable - should be done last when adding a filter */ |
| if (p_details->enable) { |
| addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4; |
| qed_wr(p_hwfn, p_ptt, addr, p_details->enable); |
| } |
| |
| qed_fid_pretend(p_hwfn, p_ptt, |
| p_hwfn->rel_pf_id << |
| PXP_PRETEND_CONCRETE_FID_PFID_SHIFT); |
| |
| return 0; |
| } |
| |
| static int |
| qed_llh_add_filter(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u8 abs_ppfid, |
| u8 filter_idx, u8 filter_prot_type, u32 high, u32 low) |
| { |
| struct qed_llh_filter_details filter_details; |
| |
| filter_details.enable = 1; |
| filter_details.value = ((u64)high << 32) | low; |
| filter_details.hdr_sel = 0; |
| filter_details.protocol_type = filter_prot_type; |
| /* Mode: 0: MAC-address classification 1: protocol classification */ |
| filter_details.mode = filter_prot_type ? 1 : 0; |
| |
| return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, |
| &filter_details); |
| } |
| |
| static int |
| qed_llh_remove_filter(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx) |
| { |
| struct qed_llh_filter_details filter_details = {0}; |
| |
| return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, |
| &filter_details); |
| } |
| |
| int qed_llh_add_mac_filter(struct qed_dev *cdev, |
| u8 ppfid, u8 mac_addr[ETH_ALEN]) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); |
| union qed_llh_filter filter = {}; |
| u8 filter_idx, abs_ppfid = 0; |
| u32 high, low, ref_cnt; |
| int rc = 0; |
| |
| if (!p_ptt) |
| return -EAGAIN; |
| |
| if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits)) |
| goto out; |
| |
| memcpy(filter.mac.addr, mac_addr, ETH_ALEN); |
| rc = qed_llh_shadow_add_filter(cdev, ppfid, |
| QED_LLH_FILTER_TYPE_MAC, |
| &filter, &filter_idx, &ref_cnt); |
| if (rc) |
| goto err; |
| |
| /* Configure the LLH only in case of a new the filter */ |
| if (ref_cnt == 1) { |
| rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); |
| if (rc) |
| goto err; |
| |
| high = mac_addr[1] | (mac_addr[0] << 8); |
| low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) | |
| (mac_addr[2] << 24); |
| rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, |
| 0, high, low); |
| if (rc) |
| goto err; |
| } |
| |
| DP_VERBOSE(cdev, |
| QED_MSG_SP, |
| "LLH: Added MAC filter [%pM] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", |
| mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt); |
| |
| goto out; |
| |
| err: DP_NOTICE(cdev, |
| "LLH: Failed to add MAC filter [%pM] to ppfid %hhd\n", |
| mac_addr, ppfid); |
| out: |
| qed_ptt_release(p_hwfn, p_ptt); |
| |
| return rc; |
| } |
| |
| static int |
| qed_llh_protocol_filter_stringify(struct qed_dev *cdev, |
| enum qed_llh_prot_filter_type_t type, |
| u16 source_port_or_eth_type, |
| u16 dest_port, u8 *str, size_t str_len) |
| { |
| switch (type) { |
| case QED_LLH_FILTER_ETHERTYPE: |
| snprintf(str, str_len, "Ethertype 0x%04x", |
| source_port_or_eth_type); |
| break; |
| case QED_LLH_FILTER_TCP_SRC_PORT: |
| snprintf(str, str_len, "TCP src port 0x%04x", |
| source_port_or_eth_type); |
| break; |
| case QED_LLH_FILTER_UDP_SRC_PORT: |
| snprintf(str, str_len, "UDP src port 0x%04x", |
| source_port_or_eth_type); |
| break; |
| case QED_LLH_FILTER_TCP_DEST_PORT: |
| snprintf(str, str_len, "TCP dst port 0x%04x", dest_port); |
| break; |
| case QED_LLH_FILTER_UDP_DEST_PORT: |
| snprintf(str, str_len, "UDP dst port 0x%04x", dest_port); |
| break; |
| case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: |
| snprintf(str, str_len, "TCP src/dst ports 0x%04x/0x%04x", |
| source_port_or_eth_type, dest_port); |
| break; |
| case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: |
| snprintf(str, str_len, "UDP src/dst ports 0x%04x/0x%04x", |
| source_port_or_eth_type, dest_port); |
| break; |
| default: |
| DP_NOTICE(cdev, |
| "Non valid LLH protocol filter type %d\n", type); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| qed_llh_protocol_filter_to_hilo(struct qed_dev *cdev, |
| enum qed_llh_prot_filter_type_t type, |
| u16 source_port_or_eth_type, |
| u16 dest_port, u32 *p_high, u32 *p_low) |
| { |
| *p_high = 0; |
| *p_low = 0; |
| |
| switch (type) { |
| case QED_LLH_FILTER_ETHERTYPE: |
| *p_high = source_port_or_eth_type; |
| break; |
| case QED_LLH_FILTER_TCP_SRC_PORT: |
| case QED_LLH_FILTER_UDP_SRC_PORT: |
| *p_low = source_port_or_eth_type << 16; |
| break; |
| case QED_LLH_FILTER_TCP_DEST_PORT: |
| case QED_LLH_FILTER_UDP_DEST_PORT: |
| *p_low = dest_port; |
| break; |
| case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: |
| case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: |
| *p_low = (source_port_or_eth_type << 16) | dest_port; |
| break; |
| default: |
| DP_NOTICE(cdev, |
| "Non valid LLH protocol filter type %d\n", type); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int |
| qed_llh_add_protocol_filter(struct qed_dev *cdev, |
| u8 ppfid, |
| enum qed_llh_prot_filter_type_t type, |
| u16 source_port_or_eth_type, u16 dest_port) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); |
| u8 filter_idx, abs_ppfid, str[32], type_bitmap; |
| union qed_llh_filter filter = {}; |
| u32 high, low, ref_cnt; |
| int rc = 0; |
| |
| if (!p_ptt) |
| return -EAGAIN; |
| |
| if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits)) |
| goto out; |
| |
| rc = qed_llh_protocol_filter_stringify(cdev, type, |
| source_port_or_eth_type, |
| dest_port, str, sizeof(str)); |
| if (rc) |
| goto err; |
| |
| filter.protocol.type = type; |
| filter.protocol.source_port_or_eth_type = source_port_or_eth_type; |
| filter.protocol.dest_port = dest_port; |
| rc = qed_llh_shadow_add_filter(cdev, |
| ppfid, |
| QED_LLH_FILTER_TYPE_PROTOCOL, |
| &filter, &filter_idx, &ref_cnt); |
| if (rc) |
| goto err; |
| |
| rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); |
| if (rc) |
| goto err; |
| |
| /* Configure the LLH only in case of a new the filter */ |
| if (ref_cnt == 1) { |
| rc = qed_llh_protocol_filter_to_hilo(cdev, type, |
| source_port_or_eth_type, |
| dest_port, &high, &low); |
| if (rc) |
| goto err; |
| |
| type_bitmap = 0x1 << type; |
| rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, |
| filter_idx, type_bitmap, high, low); |
| if (rc) |
| goto err; |
| } |
| |
| DP_VERBOSE(cdev, |
| QED_MSG_SP, |
| "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", |
| str, ppfid, abs_ppfid, filter_idx, ref_cnt); |
| |
| goto out; |
| |
| err: DP_NOTICE(p_hwfn, |
| "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n", |
| str, ppfid); |
| out: |
| qed_ptt_release(p_hwfn, p_ptt); |
| |
| return rc; |
| } |
| |
| void qed_llh_remove_mac_filter(struct qed_dev *cdev, |
| u8 ppfid, u8 mac_addr[ETH_ALEN]) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); |
| union qed_llh_filter filter = {}; |
| u8 filter_idx, abs_ppfid; |
| int rc = 0; |
| u32 ref_cnt; |
| |
| if (!p_ptt) |
| return; |
| |
| if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits)) |
| goto out; |
| |
| ether_addr_copy(filter.mac.addr, mac_addr); |
| rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx, |
| &ref_cnt); |
| if (rc) |
| goto err; |
| |
| rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); |
| if (rc) |
| goto err; |
| |
| /* Remove from the LLH in case the filter is not in use */ |
| if (!ref_cnt) { |
| rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, |
| filter_idx); |
| if (rc) |
| goto err; |
| } |
| |
| DP_VERBOSE(cdev, |
| QED_MSG_SP, |
| "LLH: Removed MAC filter [%pM] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", |
| mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt); |
| |
| goto out; |
| |
| err: DP_NOTICE(cdev, |
| "LLH: Failed to remove MAC filter [%pM] from ppfid %hhd\n", |
| mac_addr, ppfid); |
| out: |
| qed_ptt_release(p_hwfn, p_ptt); |
| } |
| |
| void qed_llh_remove_protocol_filter(struct qed_dev *cdev, |
| u8 ppfid, |
| enum qed_llh_prot_filter_type_t type, |
| u16 source_port_or_eth_type, u16 dest_port) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); |
| u8 filter_idx, abs_ppfid, str[32]; |
| union qed_llh_filter filter = {}; |
| int rc = 0; |
| u32 ref_cnt; |
| |
| if (!p_ptt) |
| return; |
| |
| if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits)) |
| goto out; |
| |
| rc = qed_llh_protocol_filter_stringify(cdev, type, |
| source_port_or_eth_type, |
| dest_port, str, sizeof(str)); |
| if (rc) |
| goto err; |
| |
| filter.protocol.type = type; |
| filter.protocol.source_port_or_eth_type = source_port_or_eth_type; |
| filter.protocol.dest_port = dest_port; |
| rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx, |
| &ref_cnt); |
| if (rc) |
| goto err; |
| |
| rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); |
| if (rc) |
| goto err; |
| |
| /* Remove from the LLH in case the filter is not in use */ |
| if (!ref_cnt) { |
| rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, |
| filter_idx); |
| if (rc) |
| goto err; |
| } |
| |
| DP_VERBOSE(cdev, |
| QED_MSG_SP, |
| "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", |
| str, ppfid, abs_ppfid, filter_idx, ref_cnt); |
| |
| goto out; |
| |
| err: DP_NOTICE(cdev, |
| "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n", |
| str, ppfid); |
| out: |
| qed_ptt_release(p_hwfn, p_ptt); |
| } |
| |
| /******************************* NIG LLH - End ********************************/ |
| |
| #define QED_MIN_DPIS (4) |
| #define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS) |
| |
| static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, enum BAR_ID bar_id) |
| { |
| u32 bar_reg = (bar_id == BAR_ID_0 ? |
| PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); |
| u32 val; |
| |
| if (IS_VF(p_hwfn->cdev)) |
| return qed_vf_hw_bar_size(p_hwfn, bar_id); |
| |
| val = qed_rd(p_hwfn, p_ptt, bar_reg); |
| if (val) |
| return 1 << (val + 15); |
| |
| /* Old MFW initialized above registered only conditionally */ |
| if (p_hwfn->cdev->num_hwfns > 1) { |
| DP_INFO(p_hwfn, |
| "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); |
| return BAR_ID_0 ? 256 * 1024 : 512 * 1024; |
| } else { |
| DP_INFO(p_hwfn, |
| "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); |
| return 512 * 1024; |
| } |
| } |
| |
| void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) |
| { |
| u32 i; |
| |
| cdev->dp_level = dp_level; |
| cdev->dp_module = dp_module; |
| for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| p_hwfn->dp_level = dp_level; |
| p_hwfn->dp_module = dp_module; |
| } |
| } |
| |
| void qed_init_struct(struct qed_dev *cdev) |
| { |
| u8 i; |
| |
| for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| p_hwfn->cdev = cdev; |
| p_hwfn->my_id = i; |
| p_hwfn->b_active = false; |
| |
| mutex_init(&p_hwfn->dmae_info.mutex); |
| } |
| |
| /* hwfn 0 is always active */ |
| cdev->hwfns[0].b_active = true; |
| |
| /* set the default cache alignment to 128 */ |
| cdev->cache_shift = 7; |
| } |
| |
| static void qed_qm_info_free(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| kfree(qm_info->qm_pq_params); |
| qm_info->qm_pq_params = NULL; |
| kfree(qm_info->qm_vport_params); |
| qm_info->qm_vport_params = NULL; |
| kfree(qm_info->qm_port_params); |
| qm_info->qm_port_params = NULL; |
| kfree(qm_info->wfq_data); |
| qm_info->wfq_data = NULL; |
| } |
| |
| static void qed_dbg_user_data_free(struct qed_hwfn *p_hwfn) |
| { |
| kfree(p_hwfn->dbg_user_info); |
| p_hwfn->dbg_user_info = NULL; |
| } |
| |
| void qed_resc_free(struct qed_dev *cdev) |
| { |
| struct qed_rdma_info *rdma_info; |
| struct qed_hwfn *p_hwfn; |
| int i; |
| |
| if (IS_VF(cdev)) { |
| for_each_hwfn(cdev, i) |
| qed_l2_free(&cdev->hwfns[i]); |
| return; |
| } |
| |
| kfree(cdev->fw_data); |
| cdev->fw_data = NULL; |
| |
| kfree(cdev->reset_stats); |
| cdev->reset_stats = NULL; |
| |
| qed_llh_free(cdev); |
| |
| for_each_hwfn(cdev, i) { |
| p_hwfn = cdev->hwfns + i; |
| rdma_info = p_hwfn->p_rdma_info; |
| |
| qed_cxt_mngr_free(p_hwfn); |
| qed_qm_info_free(p_hwfn); |
| qed_spq_free(p_hwfn); |
| qed_eq_free(p_hwfn); |
| qed_consq_free(p_hwfn); |
| qed_int_free(p_hwfn); |
| #ifdef CONFIG_QED_LL2 |
| qed_ll2_free(p_hwfn); |
| #endif |
| if (p_hwfn->hw_info.personality == QED_PCI_FCOE) |
| qed_fcoe_free(p_hwfn); |
| |
| if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { |
| qed_iscsi_free(p_hwfn); |
| qed_ooo_free(p_hwfn); |
| } |
| |
| if (QED_IS_RDMA_PERSONALITY(p_hwfn) && rdma_info) { |
| qed_spq_unregister_async_cb(p_hwfn, rdma_info->proto); |
| qed_rdma_info_free(p_hwfn); |
| } |
| |
| qed_iov_free(p_hwfn); |
| qed_l2_free(p_hwfn); |
| qed_dmae_info_free(p_hwfn); |
| qed_dcbx_info_free(p_hwfn); |
| qed_dbg_user_data_free(p_hwfn); |
| qed_fw_overlay_mem_free(p_hwfn, p_hwfn->fw_overlay_mem); |
| |
| /* Destroy doorbell recovery mechanism */ |
| qed_db_recovery_teardown(p_hwfn); |
| } |
| } |
| |
| /******************** QM initialization *******************/ |
| #define ACTIVE_TCS_BMAP 0x9f |
| #define ACTIVE_TCS_BMAP_4PORT_K2 0xf |
| |
| /* determines the physical queue flags for a given PF. */ |
| static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn) |
| { |
| u32 flags; |
| |
| /* common flags */ |
| flags = PQ_FLAGS_LB; |
| |
| /* feature flags */ |
| if (IS_QED_SRIOV(p_hwfn->cdev)) |
| flags |= PQ_FLAGS_VFS; |
| |
| /* protocol flags */ |
| switch (p_hwfn->hw_info.personality) { |
| case QED_PCI_ETH: |
| flags |= PQ_FLAGS_MCOS; |
| break; |
| case QED_PCI_FCOE: |
| flags |= PQ_FLAGS_OFLD; |
| break; |
| case QED_PCI_ISCSI: |
| flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; |
| break; |
| case QED_PCI_ETH_ROCE: |
| flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT; |
| if (IS_QED_MULTI_TC_ROCE(p_hwfn)) |
| flags |= PQ_FLAGS_MTC; |
| break; |
| case QED_PCI_ETH_IWARP: |
| flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | |
| PQ_FLAGS_OFLD; |
| break; |
| default: |
| DP_ERR(p_hwfn, |
| "unknown personality %d\n", p_hwfn->hw_info.personality); |
| return 0; |
| } |
| |
| return flags; |
| } |
| |
| /* Getters for resource amounts necessary for qm initialization */ |
| static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn) |
| { |
| return p_hwfn->hw_info.num_hw_tc; |
| } |
| |
| static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn) |
| { |
| return IS_QED_SRIOV(p_hwfn->cdev) ? |
| p_hwfn->cdev->p_iov_info->total_vfs : 0; |
| } |
| |
| static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn) |
| { |
| u32 pq_flags = qed_get_pq_flags(p_hwfn); |
| |
| if (!(PQ_FLAGS_MTC & pq_flags)) |
| return 1; |
| |
| return qed_init_qm_get_num_tcs(p_hwfn); |
| } |
| |
| #define NUM_DEFAULT_RLS 1 |
| |
| static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn) |
| { |
| u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); |
| |
| /* num RLs can't exceed resource amount of rls or vports */ |
| num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL), |
| RESC_NUM(p_hwfn, QED_VPORT)); |
| |
| /* Make sure after we reserve there's something left */ |
| if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) |
| return 0; |
| |
| /* subtract rls necessary for VFs and one default one for the PF */ |
| num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; |
| |
| return num_pf_rls; |
| } |
| |
| static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn) |
| { |
| u32 pq_flags = qed_get_pq_flags(p_hwfn); |
| |
| /* all pqs share the same vport, except for vfs and pf_rl pqs */ |
| return (!!(PQ_FLAGS_RLS & pq_flags)) * |
| qed_init_qm_get_num_pf_rls(p_hwfn) + |
| (!!(PQ_FLAGS_VFS & pq_flags)) * |
| qed_init_qm_get_num_vfs(p_hwfn) + 1; |
| } |
| |
| /* calc amount of PQs according to the requested flags */ |
| static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn) |
| { |
| u32 pq_flags = qed_get_pq_flags(p_hwfn); |
| |
| return (!!(PQ_FLAGS_RLS & pq_flags)) * |
| qed_init_qm_get_num_pf_rls(p_hwfn) + |
| (!!(PQ_FLAGS_MCOS & pq_flags)) * |
| qed_init_qm_get_num_tcs(p_hwfn) + |
| (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) + |
| (!!(PQ_FLAGS_ACK & pq_flags)) + |
| (!!(PQ_FLAGS_OFLD & pq_flags)) * |
| qed_init_qm_get_num_mtc_tcs(p_hwfn) + |
| (!!(PQ_FLAGS_LLT & pq_flags)) * |
| qed_init_qm_get_num_mtc_tcs(p_hwfn) + |
| (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn); |
| } |
| |
| /* initialize the top level QM params */ |
| static void qed_init_qm_params(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| bool four_port; |
| |
| /* pq and vport bases for this PF */ |
| qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ); |
| qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT); |
| |
| /* rate limiting and weighted fair queueing are always enabled */ |
| qm_info->vport_rl_en = true; |
| qm_info->vport_wfq_en = true; |
| |
| /* TC config is different for AH 4 port */ |
| four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2; |
| |
| /* in AH 4 port we have fewer TCs per port */ |
| qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : |
| NUM_OF_PHYS_TCS; |
| |
| /* unless MFW indicated otherwise, ooo_tc == 3 for |
| * AH 4-port and 4 otherwise. |
| */ |
| if (!qm_info->ooo_tc) |
| qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : |
| DCBX_TCP_OOO_TC; |
| } |
| |
| /* initialize qm vport params */ |
| static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| u8 i; |
| |
| /* all vports participate in weighted fair queueing */ |
| for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++) |
| qm_info->qm_vport_params[i].wfq = 1; |
| } |
| |
| /* initialize qm port params */ |
| static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn) |
| { |
| /* Initialize qm port parameters */ |
| u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine; |
| struct qed_dev *cdev = p_hwfn->cdev; |
| |
| /* indicate how ooo and high pri traffic is dealt with */ |
| active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? |
| ACTIVE_TCS_BMAP_4PORT_K2 : |
| ACTIVE_TCS_BMAP; |
| |
| for (i = 0; i < num_ports; i++) { |
| struct init_qm_port_params *p_qm_port = |
| &p_hwfn->qm_info.qm_port_params[i]; |
| u16 pbf_max_cmd_lines; |
| |
| p_qm_port->active = 1; |
| p_qm_port->active_phys_tcs = active_phys_tcs; |
| pbf_max_cmd_lines = (u16)NUM_OF_PBF_CMD_LINES(cdev); |
| p_qm_port->num_pbf_cmd_lines = pbf_max_cmd_lines / num_ports; |
| p_qm_port->num_btb_blocks = NUM_OF_BTB_BLOCKS(cdev) / num_ports; |
| } |
| } |
| |
| /* Reset the params which must be reset for qm init. QM init may be called as |
| * a result of flows other than driver load (e.g. dcbx renegotiation). Other |
| * params may be affected by the init but would simply recalculate to the same |
| * values. The allocations made for QM init, ports, vports, pqs and vfqs are not |
| * affected as these amounts stay the same. |
| */ |
| static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| qm_info->num_pqs = 0; |
| qm_info->num_vports = 0; |
| qm_info->num_pf_rls = 0; |
| qm_info->num_vf_pqs = 0; |
| qm_info->first_vf_pq = 0; |
| qm_info->first_mcos_pq = 0; |
| qm_info->first_rl_pq = 0; |
| } |
| |
| static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| qm_info->num_vports++; |
| |
| if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) |
| DP_ERR(p_hwfn, |
| "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", |
| qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); |
| } |
| |
| /* initialize a single pq and manage qm_info resources accounting. |
| * The pq_init_flags param determines whether the PQ is rate limited |
| * (for VF or PF) and whether a new vport is allocated to the pq or not |
| * (i.e. vport will be shared). |
| */ |
| |
| /* flags for pq init */ |
| #define PQ_INIT_SHARE_VPORT (1 << 0) |
| #define PQ_INIT_PF_RL (1 << 1) |
| #define PQ_INIT_VF_RL (1 << 2) |
| |
| /* defines for pq init */ |
| #define PQ_INIT_DEFAULT_WRR_GROUP 1 |
| #define PQ_INIT_DEFAULT_TC 0 |
| |
| void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc) |
| { |
| p_info->offload_tc = tc; |
| p_info->offload_tc_set = true; |
| } |
| |
| static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn) |
| { |
| return p_hwfn->hw_info.offload_tc_set; |
| } |
| |
| static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn) |
| { |
| if (qed_is_offload_tc_set(p_hwfn)) |
| return p_hwfn->hw_info.offload_tc; |
| |
| return PQ_INIT_DEFAULT_TC; |
| } |
| |
| static void qed_init_qm_pq(struct qed_hwfn *p_hwfn, |
| struct qed_qm_info *qm_info, |
| u8 tc, u32 pq_init_flags) |
| { |
| u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn); |
| |
| if (pq_idx > max_pq) |
| DP_ERR(p_hwfn, |
| "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); |
| |
| /* init pq params */ |
| qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id; |
| qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + |
| qm_info->num_vports; |
| qm_info->qm_pq_params[pq_idx].tc_id = tc; |
| qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; |
| qm_info->qm_pq_params[pq_idx].rl_valid = |
| (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL); |
| |
| /* qm params accounting */ |
| qm_info->num_pqs++; |
| if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) |
| qm_info->num_vports++; |
| |
| if (pq_init_flags & PQ_INIT_PF_RL) |
| qm_info->num_pf_rls++; |
| |
| if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) |
| DP_ERR(p_hwfn, |
| "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", |
| qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); |
| |
| if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn)) |
| DP_ERR(p_hwfn, |
| "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", |
| qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn)); |
| } |
| |
| /* get pq index according to PQ_FLAGS */ |
| static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn, |
| unsigned long pq_flags) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| /* Can't have multiple flags set here */ |
| if (bitmap_weight(&pq_flags, |
| sizeof(pq_flags) * BITS_PER_BYTE) > 1) { |
| DP_ERR(p_hwfn, "requested multiple pq flags 0x%lx\n", pq_flags); |
| goto err; |
| } |
| |
| if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) { |
| DP_ERR(p_hwfn, "pq flag 0x%lx is not set\n", pq_flags); |
| goto err; |
| } |
| |
| switch (pq_flags) { |
| case PQ_FLAGS_RLS: |
| return &qm_info->first_rl_pq; |
| case PQ_FLAGS_MCOS: |
| return &qm_info->first_mcos_pq; |
| case PQ_FLAGS_LB: |
| return &qm_info->pure_lb_pq; |
| case PQ_FLAGS_OOO: |
| return &qm_info->ooo_pq; |
| case PQ_FLAGS_ACK: |
| return &qm_info->pure_ack_pq; |
| case PQ_FLAGS_OFLD: |
| return &qm_info->first_ofld_pq; |
| case PQ_FLAGS_LLT: |
| return &qm_info->first_llt_pq; |
| case PQ_FLAGS_VFS: |
| return &qm_info->first_vf_pq; |
| default: |
| goto err; |
| } |
| |
| err: |
| return &qm_info->start_pq; |
| } |
| |
| /* save pq index in qm info */ |
| static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn, |
| u32 pq_flags, u16 pq_val) |
| { |
| u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); |
| |
| *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; |
| } |
| |
| /* get tx pq index, with the PQ TX base already set (ready for context init) */ |
| u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags) |
| { |
| u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); |
| |
| return *base_pq_idx + CM_TX_PQ_BASE; |
| } |
| |
| u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc) |
| { |
| u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn); |
| |
| if (max_tc == 0) { |
| DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n", |
| PQ_FLAGS_MCOS); |
| return p_hwfn->qm_info.start_pq; |
| } |
| |
| if (tc > max_tc) |
| DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); |
| |
| return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc); |
| } |
| |
| u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf) |
| { |
| u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn); |
| |
| if (max_vf == 0) { |
| DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n", |
| PQ_FLAGS_VFS); |
| return p_hwfn->qm_info.start_pq; |
| } |
| |
| if (vf > max_vf) |
| DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); |
| |
| return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf); |
| } |
| |
| u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc) |
| { |
| u16 first_ofld_pq, pq_offset; |
| |
| first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD); |
| pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ? |
| tc : PQ_INIT_DEFAULT_TC; |
| |
| return first_ofld_pq + pq_offset; |
| } |
| |
| u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc) |
| { |
| u16 first_llt_pq, pq_offset; |
| |
| first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT); |
| pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ? |
| tc : PQ_INIT_DEFAULT_TC; |
| |
| return first_llt_pq + pq_offset; |
| } |
| |
| /* Functions for creating specific types of pqs */ |
| static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) |
| return; |
| |
| qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); |
| qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); |
| } |
| |
| static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) |
| return; |
| |
| qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); |
| qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); |
| } |
| |
| static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) |
| return; |
| |
| qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); |
| qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn), |
| PQ_INIT_SHARE_VPORT); |
| } |
| |
| static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn) |
| { |
| u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn); |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| u8 tc; |
| |
| /* override pq's TC if offload TC is set */ |
| for (tc = 0; tc < num_tcs; tc++) |
| qed_init_qm_pq(p_hwfn, qm_info, |
| qed_is_offload_tc_set(p_hwfn) ? |
| p_hwfn->hw_info.offload_tc : tc, |
| PQ_INIT_SHARE_VPORT); |
| } |
| |
| static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) |
| return; |
| |
| qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); |
| qed_init_qm_mtc_pqs(p_hwfn); |
| } |
| |
| static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT)) |
| return; |
| |
| qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs); |
| qed_init_qm_mtc_pqs(p_hwfn); |
| } |
| |
| static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| u8 tc_idx; |
| |
| if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) |
| return; |
| |
| qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); |
| for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++) |
| qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); |
| } |
| |
| static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); |
| |
| if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) |
| return; |
| |
| qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); |
| qm_info->num_vf_pqs = num_vfs; |
| for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) |
| qed_init_qm_pq(p_hwfn, |
| qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL); |
| } |
| |
| static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn) |
| { |
| u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn); |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) |
| return; |
| |
| qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); |
| for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) |
| qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn), |
| PQ_INIT_PF_RL); |
| } |
| |
| static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn) |
| { |
| /* rate limited pqs, must come first (FW assumption) */ |
| qed_init_qm_rl_pqs(p_hwfn); |
| |
| /* pqs for multi cos */ |
| qed_init_qm_mcos_pqs(p_hwfn); |
| |
| /* pure loopback pq */ |
| qed_init_qm_lb_pq(p_hwfn); |
| |
| /* out of order pq */ |
| qed_init_qm_ooo_pq(p_hwfn); |
| |
| /* pure ack pq */ |
| qed_init_qm_pure_ack_pq(p_hwfn); |
| |
| /* pq for offloaded protocol */ |
| qed_init_qm_offload_pq(p_hwfn); |
| |
| /* low latency pq */ |
| qed_init_qm_low_latency_pq(p_hwfn); |
| |
| /* done sharing vports */ |
| qed_init_qm_advance_vport(p_hwfn); |
| |
| /* pqs for vfs */ |
| qed_init_qm_vf_pqs(p_hwfn); |
| } |
| |
| /* compare values of getters against resources amounts */ |
| static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn) |
| { |
| if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) { |
| DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); |
| return -EINVAL; |
| } |
| |
| if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ)) |
| return 0; |
| |
| if (QED_IS_ROCE_PERSONALITY(p_hwfn)) { |
| p_hwfn->hw_info.multi_tc_roce_en = false; |
| DP_NOTICE(p_hwfn, |
| "multi-tc roce was disabled to reduce requested amount of pqs\n"); |
| if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ)) |
| return 0; |
| } |
| |
| DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); |
| return -EINVAL; |
| } |
| |
| static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| struct init_qm_vport_params *vport; |
| struct init_qm_port_params *port; |
| struct init_qm_pq_params *pq; |
| int i, tc; |
| |
| /* top level params */ |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_HW, |
| "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n", |
| qm_info->start_pq, |
| qm_info->start_vport, |
| qm_info->pure_lb_pq, |
| qm_info->first_ofld_pq, |
| qm_info->first_llt_pq, |
| qm_info->pure_ack_pq); |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_HW, |
| "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n", |
| qm_info->ooo_pq, |
| qm_info->first_vf_pq, |
| qm_info->num_pqs, |
| qm_info->num_vf_pqs, |
| qm_info->num_vports, qm_info->max_phys_tcs_per_port); |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_HW, |
| "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", |
| qm_info->pf_rl_en, |
| qm_info->pf_wfq_en, |
| qm_info->vport_rl_en, |
| qm_info->vport_wfq_en, |
| qm_info->pf_wfq, |
| qm_info->pf_rl, |
| qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn)); |
| |
| /* port table */ |
| for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) { |
| port = &(qm_info->qm_port_params[i]); |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_HW, |
| "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n", |
| i, |
| port->active, |
| port->active_phys_tcs, |
| port->num_pbf_cmd_lines, |
| port->num_btb_blocks, port->reserved); |
| } |
| |
| /* vport table */ |
| for (i = 0; i < qm_info->num_vports; i++) { |
| vport = &(qm_info->qm_vport_params[i]); |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_HW, |
| "vport idx %d, wfq %d, first_tx_pq_id [ ", |
| qm_info->start_vport + i, vport->wfq); |
| for (tc = 0; tc < NUM_OF_TCS; tc++) |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_HW, |
| "%d ", vport->first_tx_pq_id[tc]); |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n"); |
| } |
| |
| /* pq table */ |
| for (i = 0; i < qm_info->num_pqs; i++) { |
| pq = &(qm_info->qm_pq_params[i]); |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_HW, |
| "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d rl_id %d\n", |
| qm_info->start_pq + i, |
| pq->port_id, |
| pq->vport_id, |
| pq->tc_id, pq->wrr_group, pq->rl_valid, pq->rl_id); |
| } |
| } |
| |
| static void qed_init_qm_info(struct qed_hwfn *p_hwfn) |
| { |
| /* reset params required for init run */ |
| qed_init_qm_reset_params(p_hwfn); |
| |
| /* init QM top level params */ |
| qed_init_qm_params(p_hwfn); |
| |
| /* init QM port params */ |
| qed_init_qm_port_params(p_hwfn); |
| |
| /* init QM vport params */ |
| qed_init_qm_vport_params(p_hwfn); |
| |
| /* init QM physical queue params */ |
| qed_init_qm_pq_params(p_hwfn); |
| |
| /* display all that init */ |
| qed_dp_init_qm_params(p_hwfn); |
| } |
| |
| /* This function reconfigures the QM pf on the fly. |
| * For this purpose we: |
| * 1. reconfigure the QM database |
| * 2. set new values to runtime array |
| * 3. send an sdm_qm_cmd through the rbc interface to stop the QM |
| * 4. activate init tool in QM_PF stage |
| * 5. send an sdm_qm_cmd through rbc interface to release the QM |
| */ |
| int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| bool b_rc; |
| int rc; |
| |
| /* initialize qed's qm data structure */ |
| qed_init_qm_info(p_hwfn); |
| |
| /* stop PF's qm queues */ |
| spin_lock_bh(&qm_lock); |
| b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, |
| qm_info->start_pq, qm_info->num_pqs); |
| spin_unlock_bh(&qm_lock); |
| if (!b_rc) |
| return -EINVAL; |
| |
| /* prepare QM portion of runtime array */ |
| qed_qm_init_pf(p_hwfn, p_ptt, false); |
| |
| /* activate init tool on runtime array */ |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, |
| p_hwfn->hw_info.hw_mode); |
| if (rc) |
| return rc; |
| |
| /* start PF's qm queues */ |
| spin_lock_bh(&qm_lock); |
| b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, |
| qm_info->start_pq, qm_info->num_pqs); |
| spin_unlock_bh(&qm_lock); |
| if (!b_rc) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| int rc; |
| |
| rc = qed_init_qm_sanity(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn), |
| sizeof(*qm_info->qm_pq_params), |
| GFP_KERNEL); |
| if (!qm_info->qm_pq_params) |
| goto alloc_err; |
| |
| qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn), |
| sizeof(*qm_info->qm_vport_params), |
| GFP_KERNEL); |
| if (!qm_info->qm_vport_params) |
| goto alloc_err; |
| |
| qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine, |
| sizeof(*qm_info->qm_port_params), |
| GFP_KERNEL); |
| if (!qm_info->qm_port_params) |
| goto alloc_err; |
| |
| qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn), |
| sizeof(*qm_info->wfq_data), |
| GFP_KERNEL); |
| if (!qm_info->wfq_data) |
| goto alloc_err; |
| |
| return 0; |
| |
| alloc_err: |
| DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n"); |
| qed_qm_info_free(p_hwfn); |
| return -ENOMEM; |
| } |
| |
| int qed_resc_alloc(struct qed_dev *cdev) |
| { |
| u32 rdma_tasks, excess_tasks; |
| u32 line_count; |
| int i, rc = 0; |
| |
| if (IS_VF(cdev)) { |
| for_each_hwfn(cdev, i) { |
| rc = qed_l2_alloc(&cdev->hwfns[i]); |
| if (rc) |
| return rc; |
| } |
| return rc; |
| } |
| |
| cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); |
| if (!cdev->fw_data) |
| return -ENOMEM; |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| u32 n_eqes, num_cons; |
| |
| /* Initialize the doorbell recovery mechanism */ |
| rc = qed_db_recovery_setup(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* First allocate the context manager structure */ |
| rc = qed_cxt_mngr_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* Set the HW cid/tid numbers (in the contest manager) |
| * Must be done prior to any further computations. |
| */ |
| rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS); |
| if (rc) |
| goto alloc_err; |
| |
| rc = qed_alloc_qm_data(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* init qm info */ |
| qed_init_qm_info(p_hwfn); |
| |
| /* Compute the ILT client partition */ |
| rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "too many ILT lines; re-computing with less lines\n"); |
| /* In case there are not enough ILT lines we reduce the |
| * number of RDMA tasks and re-compute. |
| */ |
| excess_tasks = |
| qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count); |
| if (!excess_tasks) |
| goto alloc_err; |
| |
| rdma_tasks = RDMA_MAX_TIDS - excess_tasks; |
| rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks); |
| if (rc) |
| goto alloc_err; |
| |
| rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); |
| if (rc) { |
| DP_ERR(p_hwfn, |
| "failed ILT compute. Requested too many lines: %u\n", |
| line_count); |
| |
| goto alloc_err; |
| } |
| } |
| |
| /* CID map / ILT shadow table / T2 |
| * The talbes sizes are determined by the computations above |
| */ |
| rc = qed_cxt_tables_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* SPQ, must follow ILT because initializes SPQ context */ |
| rc = qed_spq_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* SP status block allocation */ |
| p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, |
| RESERVED_PTT_DPC); |
| |
| rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); |
| if (rc) |
| goto alloc_err; |
| |
| rc = qed_iov_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* EQ */ |
| n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); |
| if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { |
| u32 n_srq = qed_cxt_get_total_srq_count(p_hwfn); |
| enum protocol_type rdma_proto; |
| |
| if (QED_IS_ROCE_PERSONALITY(p_hwfn)) |
| rdma_proto = PROTOCOLID_ROCE; |
| else |
| rdma_proto = PROTOCOLID_IWARP; |
| |
| num_cons = qed_cxt_get_proto_cid_count(p_hwfn, |
| rdma_proto, |
| NULL) * 2; |
| /* EQ should be able to get events from all SRQ's |
| * at the same time |
| */ |
| n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq; |
| } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { |
| num_cons = |
| qed_cxt_get_proto_cid_count(p_hwfn, |
| PROTOCOLID_ISCSI, |
| NULL); |
| n_eqes += 2 * num_cons; |
| } |
| |
| if (n_eqes > 0xFFFF) { |
| DP_ERR(p_hwfn, |
| "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", |
| n_eqes, 0xFFFF); |
| goto alloc_no_mem; |
| } |
| |
| rc = qed_eq_alloc(p_hwfn, (u16) n_eqes); |
| if (rc) |
| goto alloc_err; |
| |
| rc = qed_consq_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| rc = qed_l2_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| #ifdef CONFIG_QED_LL2 |
| if (p_hwfn->using_ll2) { |
| rc = qed_ll2_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| } |
| #endif |
| |
| if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { |
| rc = qed_fcoe_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| } |
| |
| if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { |
| rc = qed_iscsi_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| rc = qed_ooo_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| } |
| |
| if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { |
| rc = qed_rdma_info_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| } |
| |
| /* DMA info initialization */ |
| rc = qed_dmae_info_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* DCBX initialization */ |
| rc = qed_dcbx_info_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| rc = qed_dbg_alloc_user_data(p_hwfn, &p_hwfn->dbg_user_info); |
| if (rc) |
| goto alloc_err; |
| } |
| |
| rc = qed_llh_alloc(cdev); |
| if (rc) { |
| DP_NOTICE(cdev, |
| "Failed to allocate memory for the llh_info structure\n"); |
| goto alloc_err; |
| } |
| |
| cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); |
| if (!cdev->reset_stats) |
| goto alloc_no_mem; |
| |
| return 0; |
| |
| alloc_no_mem: |
| rc = -ENOMEM; |
| alloc_err: |
| qed_resc_free(cdev); |
| return rc; |
| } |
| |
| void qed_resc_setup(struct qed_dev *cdev) |
| { |
| int i; |
| |
| if (IS_VF(cdev)) { |
| for_each_hwfn(cdev, i) |
| qed_l2_setup(&cdev->hwfns[i]); |
| return; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| qed_cxt_mngr_setup(p_hwfn); |
| qed_spq_setup(p_hwfn); |
| qed_eq_setup(p_hwfn); |
| qed_consq_setup(p_hwfn); |
| |
| /* Read shadow of current MFW mailbox */ |
| qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); |
| memcpy(p_hwfn->mcp_info->mfw_mb_shadow, |
| p_hwfn->mcp_info->mfw_mb_cur, |
| p_hwfn->mcp_info->mfw_mb_length); |
| |
| qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); |
| |
| qed_l2_setup(p_hwfn); |
| qed_iov_setup(p_hwfn); |
| #ifdef CONFIG_QED_LL2 |
| if (p_hwfn->using_ll2) |
| qed_ll2_setup(p_hwfn); |
| #endif |
| if (p_hwfn->hw_info.personality == QED_PCI_FCOE) |
| qed_fcoe_setup(p_hwfn); |
| |
| if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { |
| qed_iscsi_setup(p_hwfn); |
| qed_ooo_setup(p_hwfn); |
| } |
| } |
| } |
| |
| #define FINAL_CLEANUP_POLL_CNT (100) |
| #define FINAL_CLEANUP_POLL_TIME (10) |
| int qed_final_cleanup(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u16 id, bool is_vf) |
| { |
| u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; |
| int rc = -EBUSY; |
| |
| addr = GTT_BAR0_MAP_REG_USDM_RAM + |
| USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); |
| |
| if (is_vf) |
| id += 0x10; |
| |
| command |= X_FINAL_CLEANUP_AGG_INT << |
| SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; |
| command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; |
| command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; |
| command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; |
| |
| /* Make sure notification is not set before initiating final cleanup */ |
| if (REG_RD(p_hwfn, addr)) { |
| DP_NOTICE(p_hwfn, |
| "Unexpected; Found final cleanup notification before initiating final cleanup\n"); |
| REG_WR(p_hwfn, addr, 0); |
| } |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_IOV, |
| "Sending final cleanup for PFVF[%d] [Command %08x]\n", |
| id, command); |
| |
| qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); |
| |
| /* Poll until completion */ |
| while (!REG_RD(p_hwfn, addr) && count--) |
| msleep(FINAL_CLEANUP_POLL_TIME); |
| |
| if (REG_RD(p_hwfn, addr)) |
| rc = 0; |
| else |
| DP_NOTICE(p_hwfn, |
| "Failed to receive FW final cleanup notification\n"); |
| |
| /* Cleanup afterwards */ |
| REG_WR(p_hwfn, addr, 0); |
| |
| return rc; |
| } |
| |
| static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn) |
| { |
| int hw_mode = 0; |
| |
| if (QED_IS_BB_B0(p_hwfn->cdev)) { |
| hw_mode |= 1 << MODE_BB; |
| } else if (QED_IS_AH(p_hwfn->cdev)) { |
| hw_mode |= 1 << MODE_K2; |
| } else { |
| DP_NOTICE(p_hwfn, "Unknown chip type %#x\n", |
| p_hwfn->cdev->type); |
| return -EINVAL; |
| } |
| |
| switch (p_hwfn->cdev->num_ports_in_engine) { |
| case 1: |
| hw_mode |= 1 << MODE_PORTS_PER_ENG_1; |
| break; |
| case 2: |
| hw_mode |= 1 << MODE_PORTS_PER_ENG_2; |
| break; |
| case 4: |
| hw_mode |= 1 << MODE_PORTS_PER_ENG_4; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", |
| p_hwfn->cdev->num_ports_in_engine); |
| return -EINVAL; |
| } |
| |
| if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) |
| hw_mode |= 1 << MODE_MF_SD; |
| else |
| hw_mode |= 1 << MODE_MF_SI; |
| |
| hw_mode |= 1 << MODE_ASIC; |
| |
| if (p_hwfn->cdev->num_hwfns > 1) |
| hw_mode |= 1 << MODE_100G; |
| |
| p_hwfn->hw_info.hw_mode = hw_mode; |
| |
| DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), |
| "Configuring function for hw_mode: 0x%08x\n", |
| p_hwfn->hw_info.hw_mode); |
| |
| return 0; |
| } |
| |
| /* Init run time data for all PFs on an engine. */ |
| static void qed_init_cau_rt_data(struct qed_dev *cdev) |
| { |
| u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; |
| int i, igu_sb_id; |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| struct qed_igu_info *p_igu_info; |
| struct qed_igu_block *p_block; |
| struct cau_sb_entry sb_entry; |
| |
| p_igu_info = p_hwfn->hw_info.p_igu_info; |
| |
| for (igu_sb_id = 0; |
| igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) { |
| p_block = &p_igu_info->entry[igu_sb_id]; |
| |
| if (!p_block->is_pf) |
| continue; |
| |
| qed_init_cau_sb_entry(p_hwfn, &sb_entry, |
| p_block->function_id, 0, 0); |
| STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, |
| sb_entry); |
| } |
| } |
| } |
| |
| static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| u32 val, wr_mbs, cache_line_size; |
| |
| val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); |
| switch (val) { |
| case 0: |
| wr_mbs = 128; |
| break; |
| case 1: |
| wr_mbs = 256; |
| break; |
| case 2: |
| wr_mbs = 512; |
| break; |
| default: |
| DP_INFO(p_hwfn, |
| "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", |
| val); |
| return; |
| } |
| |
| cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs); |
| switch (cache_line_size) { |
| case 32: |
| val = 0; |
| break; |
| case 64: |
| val = 1; |
| break; |
| case 128: |
| val = 2; |
| break; |
| case 256: |
| val = 3; |
| break; |
| default: |
| DP_INFO(p_hwfn, |
| "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", |
| cache_line_size); |
| } |
| |
| if (L1_CACHE_BYTES > wr_mbs) |
| DP_INFO(p_hwfn, |
| "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", |
| L1_CACHE_BYTES, wr_mbs); |
| |
| STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); |
| if (val > 0) { |
| STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); |
| STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); |
| } |
| } |
| |
| static int qed_hw_init_common(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, int hw_mode) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| struct qed_qm_common_rt_init_params params; |
| struct qed_dev *cdev = p_hwfn->cdev; |
| u8 vf_id, max_num_vfs; |
| u16 num_pfs, pf_id; |
| u32 concrete_fid; |
| int rc = 0; |
| |
| qed_init_cau_rt_data(cdev); |
| |
| /* Program GTT windows */ |
| qed_gtt_init(p_hwfn); |
| |
| if (p_hwfn->mcp_info) { |
| if (p_hwfn->mcp_info->func_info.bandwidth_max) |
| qm_info->pf_rl_en = true; |
| if (p_hwfn->mcp_info->func_info.bandwidth_min) |
| qm_info->pf_wfq_en = true; |
| } |
| |
| memset(¶ms, 0, sizeof(params)); |
| params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; |
| params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; |
| params.pf_rl_en = qm_info->pf_rl_en; |
| params.pf_wfq_en = qm_info->pf_wfq_en; |
| params.global_rl_en = qm_info->vport_rl_en; |
| params.vport_wfq_en = qm_info->vport_wfq_en; |
| params.port_params = qm_info->qm_port_params; |
| |
| qed_qm_common_rt_init(p_hwfn, ¶ms); |
| |
| qed_cxt_hw_init_common(p_hwfn); |
| |
| qed_init_cache_line_size(p_hwfn, p_ptt); |
| |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); |
| if (rc) |
| return rc; |
| |
| qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); |
| qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); |
| |
| if (QED_IS_BB(p_hwfn->cdev)) { |
| num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); |
| for (pf_id = 0; pf_id < num_pfs; pf_id++) { |
| qed_fid_pretend(p_hwfn, p_ptt, pf_id); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); |
| } |
| /* pretend to original PF */ |
| qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); |
| } |
| |
| max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB; |
| for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { |
| concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); |
| qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid); |
| qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); |
| qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); |
| qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); |
| qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); |
| } |
| /* pretend to original PF */ |
| qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); |
| |
| return rc; |
| } |
| |
| static int |
| qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) |
| { |
| u32 dpi_bit_shift, dpi_count, dpi_page_size; |
| u32 min_dpis; |
| u32 n_wids; |
| |
| /* Calculate DPI size */ |
| n_wids = max_t(u32, QED_MIN_WIDS, n_cpus); |
| dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids); |
| dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); |
| dpi_bit_shift = ilog2(dpi_page_size / 4096); |
| dpi_count = pwm_region_size / dpi_page_size; |
| |
| min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; |
| min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis); |
| |
| p_hwfn->dpi_size = dpi_page_size; |
| p_hwfn->dpi_count = dpi_count; |
| |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); |
| |
| if (dpi_count < min_dpis) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| enum QED_ROCE_EDPM_MODE { |
| QED_ROCE_EDPM_MODE_ENABLE = 0, |
| QED_ROCE_EDPM_MODE_FORCE_ON = 1, |
| QED_ROCE_EDPM_MODE_DISABLE = 2, |
| }; |
| |
| bool qed_edpm_enabled(struct qed_hwfn *p_hwfn) |
| { |
| if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm) |
| return false; |
| |
| return true; |
| } |
| |
| static int |
| qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u32 pwm_regsize, norm_regsize; |
| u32 non_pwm_conn, min_addr_reg1; |
| u32 db_bar_size, n_cpus = 1; |
| u32 roce_edpm_mode; |
| u32 pf_dems_shift; |
| int rc = 0; |
| u8 cond; |
| |
| db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); |
| if (p_hwfn->cdev->num_hwfns > 1) |
| db_bar_size /= 2; |
| |
| /* Calculate doorbell regions */ |
| non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + |
| qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, |
| NULL) + |
| qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, |
| NULL); |
| norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE); |
| min_addr_reg1 = norm_regsize / 4096; |
| pwm_regsize = db_bar_size - norm_regsize; |
| |
| /* Check that the normal and PWM sizes are valid */ |
| if (db_bar_size < norm_regsize) { |
| DP_ERR(p_hwfn->cdev, |
| "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", |
| db_bar_size, norm_regsize); |
| return -EINVAL; |
| } |
| |
| if (pwm_regsize < QED_MIN_PWM_REGION) { |
| DP_ERR(p_hwfn->cdev, |
| "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", |
| pwm_regsize, |
| QED_MIN_PWM_REGION, db_bar_size, norm_regsize); |
| return -EINVAL; |
| } |
| |
| /* Calculate number of DPIs */ |
| roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; |
| if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) || |
| ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) { |
| /* Either EDPM is mandatory, or we are attempting to allocate a |
| * WID per CPU. |
| */ |
| n_cpus = num_present_cpus(); |
| rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); |
| } |
| |
| cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) || |
| (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE); |
| if (cond || p_hwfn->dcbx_no_edpm) { |
| /* Either EDPM is disabled from user configuration, or it is |
| * disabled via DCBx, or it is not mandatory and we failed to |
| * allocated a WID per CPU. |
| */ |
| n_cpus = 1; |
| rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); |
| |
| if (cond) |
| qed_rdma_dpm_bar(p_hwfn, p_ptt); |
| } |
| |
| p_hwfn->wid_count = (u16) n_cpus; |
| |
| DP_INFO(p_hwfn, |
| "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n", |
| norm_regsize, |
| pwm_regsize, |
| p_hwfn->dpi_size, |
| p_hwfn->dpi_count, |
| (!qed_edpm_enabled(p_hwfn)) ? |
| "disabled" : "enabled", PAGE_SIZE); |
| |
| if (rc) { |
| DP_ERR(p_hwfn, |
| "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n", |
| p_hwfn->dpi_count, |
| p_hwfn->pf_params.rdma_pf_params.min_dpis); |
| return -EINVAL; |
| } |
| |
| p_hwfn->dpi_start_offset = norm_regsize; |
| |
| /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ |
| pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4); |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); |
| |
| return 0; |
| } |
| |
| static int qed_hw_init_port(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, int hw_mode) |
| { |
| int rc = 0; |
| |
| /* In CMT the gate should be cleared by the 2nd hwfn */ |
| if (!QED_IS_CMT(p_hwfn->cdev) || !IS_LEAD_HWFN(p_hwfn)) |
| STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0); |
| |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode); |
| if (rc) |
| return rc; |
| |
| qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); |
| |
| return 0; |
| } |
| |
| static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_tunnel_info *p_tunn, |
| int hw_mode, |
| bool b_hw_start, |
| enum qed_int_mode int_mode, |
| bool allow_npar_tx_switch) |
| { |
| u8 rel_pf_id = p_hwfn->rel_pf_id; |
| int rc = 0; |
| |
| if (p_hwfn->mcp_info) { |
| struct qed_mcp_function_info *p_info; |
| |
| p_info = &p_hwfn->mcp_info->func_info; |
| if (p_info->bandwidth_min) |
| p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; |
| |
| /* Update rate limit once we'll actually have a link */ |
| p_hwfn->qm_info.pf_rl = 100000; |
| } |
| |
| qed_cxt_hw_init_pf(p_hwfn, p_ptt); |
| |
| qed_int_igu_init_rt(p_hwfn); |
| |
| /* Set VLAN in NIG if needed */ |
| if (hw_mode & BIT(MODE_MF_SD)) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); |
| STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); |
| STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, |
| p_hwfn->hw_info.ovlan); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "Configuring LLH_FUNC_FILTER_HDR_SEL\n"); |
| STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET, |
| 1); |
| } |
| |
| /* Enable classification by MAC if needed */ |
| if (hw_mode & BIT(MODE_MF_SI)) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "Configuring TAGMAC_CLS_TYPE\n"); |
| STORE_RT_REG(p_hwfn, |
| NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); |
| } |
| |
| /* Protocol Configuration */ |
| STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, |
| (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0); |
| STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, |
| (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0); |
| STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); |
| |
| /* Sanity check before the PF init sequence that uses DMAE */ |
| rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase"); |
| if (rc) |
| return rc; |
| |
| /* PF Init sequence */ |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); |
| if (rc) |
| return rc; |
| |
| /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); |
| if (rc) |
| return rc; |
| |
| qed_fw_overlay_init_ram(p_hwfn, p_ptt, p_hwfn->fw_overlay_mem); |
| |
| /* Pure runtime initializations - directly to the HW */ |
| qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); |
| |
| rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| |
| /* Use the leading hwfn since in CMT only NIG #0 is operational */ |
| if (IS_LEAD_HWFN(p_hwfn)) { |
| rc = qed_llh_hw_init_pf(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| } |
| |
| if (b_hw_start) { |
| /* enable interrupts */ |
| qed_int_igu_enable(p_hwfn, p_ptt, int_mode); |
| |
| /* send function start command */ |
| rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn, |
| allow_npar_tx_switch); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); |
| return rc; |
| } |
| if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2)); |
| qed_wr(p_hwfn, p_ptt, |
| PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, |
| 0x100); |
| } |
| } |
| return rc; |
| } |
| |
| int qed_pglueb_set_pfid_enable(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, bool b_enable) |
| { |
| u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0; |
| |
| /* Configure the PF's internal FID_enable for master transactions */ |
| qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); |
| |
| /* Wait until value is set - try for 1 second every 50us */ |
| for (delay_idx = 0; delay_idx < 20000; delay_idx++) { |
| val = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); |
| if (val == set_val) |
| break; |
| |
| usleep_range(50, 60); |
| } |
| |
| if (val != set_val) { |
| DP_NOTICE(p_hwfn, |
| "PFID_ENABLE_MASTER wasn't changed after a second\n"); |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_main_ptt) |
| { |
| /* Read shadow of current MFW mailbox */ |
| qed_mcp_read_mb(p_hwfn, p_main_ptt); |
| memcpy(p_hwfn->mcp_info->mfw_mb_shadow, |
| p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); |
| } |
| |
| static void |
| qed_fill_load_req_params(struct qed_load_req_params *p_load_req, |
| struct qed_drv_load_params *p_drv_load) |
| { |
| memset(p_load_req, 0, sizeof(*p_load_req)); |
| |
| p_load_req->drv_role = p_drv_load->is_crash_kernel ? |
| QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS; |
| p_load_req->timeout_val = p_drv_load->mfw_timeout_val; |
| p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; |
| p_load_req->override_force_load = p_drv_load->override_force_load; |
| } |
| |
| static int qed_vf_start(struct qed_hwfn *p_hwfn, |
| struct qed_hw_init_params *p_params) |
| { |
| if (p_params->p_tunn) { |
| qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn); |
| qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); |
| } |
| |
| p_hwfn->b_int_enabled = true; |
| |
| return 0; |
| } |
| |
| static void qed_pglueb_clear_err(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, |
| BIT(p_hwfn->abs_pf_id)); |
| } |
| |
| int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params) |
| { |
| struct qed_load_req_params load_req_params; |
| u32 load_code, resp, param, drv_mb_param; |
| bool b_default_mtu = true; |
| struct qed_hwfn *p_hwfn; |
| const u32 *fw_overlays; |
| u32 fw_overlays_len; |
| u16 ether_type; |
| int rc = 0, i; |
| |
| if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { |
| DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); |
| return -EINVAL; |
| } |
| |
| if (IS_PF(cdev)) { |
| rc = qed_init_fw_data(cdev, p_params->bin_fw_data); |
| if (rc) |
| return rc; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| p_hwfn = &cdev->hwfns[i]; |
| |
| /* If management didn't provide a default, set one of our own */ |
| if (!p_hwfn->hw_info.mtu) { |
| p_hwfn->hw_info.mtu = 1500; |
| b_default_mtu = false; |
| } |
| |
| if (IS_VF(cdev)) { |
| qed_vf_start(p_hwfn, p_params); |
| continue; |
| } |
| |
| rc = qed_calc_hw_mode(p_hwfn); |
| if (rc) |
| return rc; |
| |
| if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING, |
| &cdev->mf_bits) || |
| test_bit(QED_MF_8021AD_TAGGING, |
| &cdev->mf_bits))) { |
| if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits)) |
| ether_type = ETH_P_8021Q; |
| else |
| ether_type = ETH_P_8021AD; |
| STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET, |
| ether_type); |
| STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET, |
| ether_type); |
| STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET, |
| ether_type); |
| STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, |
| ether_type); |
| } |
| |
| qed_fill_load_req_params(&load_req_params, |
| p_params->p_drv_load_params); |
| rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, |
| &load_req_params); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n"); |
| return rc; |
| } |
| |
| load_code = load_req_params.load_code; |
| DP_VERBOSE(p_hwfn, QED_MSG_SP, |
| "Load request was sent. Load code: 0x%x\n", |
| load_code); |
| |
| /* Only relevant for recovery: |
| * Clear the indication after LOAD_REQ is responded by the MFW. |
| */ |
| cdev->recov_in_prog = false; |
| |
| qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt); |
| |
| qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); |
| |
| /* Clean up chip from previous driver if such remains exist. |
| * This is not needed when the PF is the first one on the |
| * engine, since afterwards we are going to init the FW. |
| */ |
| if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) { |
| rc = qed_final_cleanup(p_hwfn, p_hwfn->p_main_ptt, |
| p_hwfn->rel_pf_id, false); |
| if (rc) { |
| qed_hw_err_notify(p_hwfn, p_hwfn->p_main_ptt, |
| QED_HW_ERR_RAMROD_FAIL, |
| "Final cleanup failed\n"); |
| goto load_err; |
| } |
| } |
| |
| /* Log and clear previous pglue_b errors if such exist */ |
| qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt); |
| |
| /* Enable the PF's internal FID_enable in the PXP */ |
| rc = qed_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt, |
| true); |
| if (rc) |
| goto load_err; |
| |
| /* Clear the pglue_b was_error indication. |
| * In E4 it must be done after the BME and the internal |
| * FID_enable for the PF are set, since VDMs may cause the |
| * indication to be set again. |
| */ |
| qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt); |
| |
| fw_overlays = cdev->fw_data->fw_overlays; |
| fw_overlays_len = cdev->fw_data->fw_overlays_len; |
| p_hwfn->fw_overlay_mem = |
| qed_fw_overlay_mem_alloc(p_hwfn, fw_overlays, |
| fw_overlays_len); |
| if (!p_hwfn->fw_overlay_mem) { |
| DP_NOTICE(p_hwfn, |
| "Failed to allocate fw overlay memory\n"); |
| rc = -ENOMEM; |
| goto load_err; |
| } |
| |
| switch (load_code) { |
| case FW_MSG_CODE_DRV_LOAD_ENGINE: |
| rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, |
| p_hwfn->hw_info.hw_mode); |
| if (rc) |
| break; |
| /* Fall through */ |
| case FW_MSG_CODE_DRV_LOAD_PORT: |
| rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, |
| p_hwfn->hw_info.hw_mode); |
| if (rc) |
| break; |
| |
| /* Fall through */ |
| case FW_MSG_CODE_DRV_LOAD_FUNCTION: |
| rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, |
| p_params->p_tunn, |
| p_hwfn->hw_info.hw_mode, |
| p_params->b_hw_start, |
| p_params->int_mode, |
| p_params->allow_npar_tx_switch); |
| break; |
| default: |
| DP_NOTICE(p_hwfn, |
| "Unexpected load code [0x%08x]", load_code); |
| rc = -EINVAL; |
| break; |
| } |
| |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "init phase failed for loadcode 0x%x (rc %d)\n", |
| load_code, rc); |
| goto load_err; |
| } |
| |
| rc = qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt); |
| if (rc) |
| return rc; |
| |
| /* send DCBX attention request command */ |
| DP_VERBOSE(p_hwfn, |
| QED_MSG_DCB, |
| "sending phony dcbx set command to trigger DCBx attention handling\n"); |
| rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, |
| DRV_MSG_CODE_SET_DCBX, |
| 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, |
| &resp, ¶m); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "Failed to send DCBX attention request\n"); |
| return rc; |
| } |
| |
| p_hwfn->hw_init_done = true; |
| } |
| |
| if (IS_PF(cdev)) { |
| p_hwfn = QED_LEADING_HWFN(cdev); |
| |
| /* Get pre-negotiated values for stag, bandwidth etc. */ |
| DP_VERBOSE(p_hwfn, |
| QED_MSG_SPQ, |
| "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n"); |
| drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET; |
| rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, |
| DRV_MSG_CODE_GET_OEM_UPDATES, |
| drv_mb_param, &resp, ¶m); |
| if (rc) |
| DP_NOTICE(p_hwfn, |
| "Failed to send GET_OEM_UPDATES attention request\n"); |
| |
| drv_mb_param = STORM_FW_VERSION; |
| rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, |
| DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, |
| drv_mb_param, &load_code, ¶m); |
| if (rc) |
| DP_INFO(p_hwfn, "Failed to update firmware version\n"); |
| |
| if (!b_default_mtu) { |
| rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, |
| p_hwfn->hw_info.mtu); |
| if (rc) |
| DP_INFO(p_hwfn, |
| "Failed to update default mtu\n"); |
| } |
| |
| rc = qed_mcp_ov_update_driver_state(p_hwfn, |
| p_hwfn->p_main_ptt, |
| QED_OV_DRIVER_STATE_DISABLED); |
| if (rc) |
| DP_INFO(p_hwfn, "Failed to update driver state\n"); |
| |
| rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, |
| QED_OV_ESWITCH_NONE); |
| if (rc) |
| DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); |
| } |
| |
| return 0; |
| |
| load_err: |
| /* The MFW load lock should be released also when initialization fails. |
| */ |
| qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt); |
| return rc; |
| } |
| |
| #define QED_HW_STOP_RETRY_LIMIT (10) |
| static void qed_hw_timers_stop(struct qed_dev *cdev, |
| struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| int i; |
| |
| /* close timers */ |
| qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); |
| qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); |
| |
| if (cdev->recov_in_prog) |
| return; |
| |
| for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { |
| if ((!qed_rd(p_hwfn, p_ptt, |
| TM_REG_PF_SCAN_ACTIVE_CONN)) && |
| (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) |
| break; |
| |
| /* Dependent on number of connection/tasks, possibly |
| * 1ms sleep is required between polls |
| */ |
| usleep_range(1000, 2000); |
| } |
| |
| if (i < QED_HW_STOP_RETRY_LIMIT) |
| return; |
| |
| DP_NOTICE(p_hwfn, |
| "Timers linear scans are not over [Connection %02x Tasks %02x]\n", |
| (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), |
| (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); |
| } |
| |
| void qed_hw_timers_stop_all(struct qed_dev *cdev) |
| { |
| int j; |
| |
| for_each_hwfn(cdev, j) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; |
| struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; |
| |
| qed_hw_timers_stop(cdev, p_hwfn, p_ptt); |
| } |
| } |
| |
| int qed_hw_stop(struct qed_dev *cdev) |
| { |
| struct qed_hwfn *p_hwfn; |
| struct qed_ptt *p_ptt; |
| int rc, rc2 = 0; |
| int j; |
| |
| for_each_hwfn(cdev, j) { |
| p_hwfn = &cdev->hwfns[j]; |
| p_ptt = p_hwfn->p_main_ptt; |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); |
| |
| if (IS_VF(cdev)) { |
| qed_vf_pf_int_cleanup(p_hwfn); |
| rc = qed_vf_pf_reset(p_hwfn); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "qed_vf_pf_reset failed. rc = %d.\n", |
| rc); |
| rc2 = -EINVAL; |
| } |
| continue; |
| } |
| |
| /* mark the hw as uninitialized... */ |
| p_hwfn->hw_init_done = false; |
| |
| /* Send unload command to MCP */ |
| if (!cdev->recov_in_prog) { |
| rc = qed_mcp_unload_req(p_hwfn, p_ptt); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "Failed sending a UNLOAD_REQ command. rc = %d.\n", |
| rc); |
| rc2 = -EINVAL; |
| } |
| } |
| |
| qed_slowpath_irq_sync(p_hwfn); |
| |
| /* After this point no MFW attentions are expected, e.g. prevent |
| * race between pf stop and dcbx pf update. |
| */ |
| rc = qed_sp_pf_stop(p_hwfn); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", |
| rc); |
| rc2 = -EINVAL; |
| } |
| |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); |
| |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); |
| |
| qed_hw_timers_stop(cdev, p_hwfn, p_ptt); |
| |
| /* Disable Attention Generation */ |
| qed_int_igu_disable_int(p_hwfn, p_ptt); |
| |
| qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); |
| qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); |
| |
| qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); |
| |
| /* Need to wait 1ms to guarantee SBs are cleared */ |
| usleep_range(1000, 2000); |
| |
| /* Disable PF in HW blocks */ |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); |
| qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); |
| |
| if (IS_LEAD_HWFN(p_hwfn) && |
| test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) && |
| !QED_IS_FCOE_PERSONALITY(p_hwfn)) |
| qed_llh_remove_mac_filter(cdev, 0, |
| p_hwfn->hw_info.hw_mac_addr); |
| |
| if (!cdev->recov_in_prog) { |
| rc = qed_mcp_unload_done(p_hwfn, p_ptt); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "Failed sending a UNLOAD_DONE command. rc = %d.\n", |
| rc); |
| rc2 = -EINVAL; |
| } |
| } |
| } |
| |
| if (IS_PF(cdev) && !cdev->recov_in_prog) { |
| p_hwfn = QED_LEADING_HWFN(cdev); |
| p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt; |
| |
| /* Clear the PF's internal FID_enable in the PXP. |
| * In CMT this should only be done for first hw-function, and |
| * only after all transactions have stopped for all active |
| * hw-functions. |
| */ |
| rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "qed_pglueb_set_pfid_enable() failed. rc = %d.\n", |
| rc); |
| rc2 = -EINVAL; |
| } |
| } |
| |
| return rc2; |
| } |
| |
| int qed_hw_stop_fastpath(struct qed_dev *cdev) |
| { |
| int j; |
| |
| for_each_hwfn(cdev, j) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; |
| struct qed_ptt *p_ptt; |
| |
| if (IS_VF(cdev)) { |
| qed_vf_pf_int_cleanup(p_hwfn); |
| continue; |
| } |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EAGAIN; |
| |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); |
| |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); |
| |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); |
| |
| qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); |
| |
| /* Need to wait 1ms to guarantee SBs are cleared */ |
| usleep_range(1000, 2000); |
| qed_ptt_release(p_hwfn, p_ptt); |
| } |
| |
| return 0; |
| } |
| |
| int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ptt *p_ptt; |
| |
| if (IS_VF(p_hwfn->cdev)) |
| return 0; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EAGAIN; |
| |
| if (p_hwfn->p_rdma_info && |
| p_hwfn->p_rdma_info->active && p_hwfn->b_rdma_enabled_in_prs) |
| qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1); |
| |
| /* Re-open incoming traffic */ |
| qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); |
| qed_ptt_release(p_hwfn, p_ptt); |
| |
| return 0; |
| } |
| |
| /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ |
| static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) |
| { |
| qed_ptt_pool_free(p_hwfn); |
| kfree(p_hwfn->hw_info.p_igu_info); |
| p_hwfn->hw_info.p_igu_info = NULL; |
| } |
| |
| /* Setup bar access */ |
| static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) |
| { |
| /* clear indirect access */ |
| if (QED_IS_AH(p_hwfn->cdev)) { |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0); |
| } else { |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); |
| } |
| |
| /* Clean previous pglue_b errors if such exist */ |
| qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt); |
| |
| /* enable internal target-read */ |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); |
| } |
| |
| static void get_function_id(struct qed_hwfn *p_hwfn) |
| { |
| /* ME Register */ |
| p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn, |
| PXP_PF_ME_OPAQUE_ADDR); |
| |
| p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); |
| |
| p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; |
| p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, |
| PXP_CONCRETE_FID_PFID); |
| p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, |
| PXP_CONCRETE_FID_PORT); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, |
| "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", |
| p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); |
| } |
| |
| static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) |
| { |
| u32 *feat_num = p_hwfn->hw_info.feat_num; |
| struct qed_sb_cnt_info sb_cnt; |
| u32 non_l2_sbs = 0; |
| |
| memset(&sb_cnt, 0, sizeof(sb_cnt)); |
| qed_int_get_num_sbs(p_hwfn, &sb_cnt); |
| |
| if (IS_ENABLED(CONFIG_QED_RDMA) && |
| QED_IS_RDMA_PERSONALITY(p_hwfn)) { |
| /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide |
| * the status blocks equally between L2 / RoCE but with |
| * consideration as to how many l2 queues / cnqs we have. |
| */ |
| feat_num[QED_RDMA_CNQ] = |
| min_t(u32, sb_cnt.cnt / 2, |
| RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM)); |
| |
| non_l2_sbs = feat_num[QED_RDMA_CNQ]; |
| } |
| if (QED_IS_L2_PERSONALITY(p_hwfn)) { |
| /* Start by allocating VF queues, then PF's */ |
| feat_num[QED_VF_L2_QUE] = min_t(u32, |
| RESC_NUM(p_hwfn, QED_L2_QUEUE), |
| sb_cnt.iov_cnt); |
| feat_num[QED_PF_L2_QUE] = min_t(u32, |
| sb_cnt.cnt - non_l2_sbs, |
| RESC_NUM(p_hwfn, |
| QED_L2_QUEUE) - |
| FEAT_NUM(p_hwfn, |
| QED_VF_L2_QUE)); |
| } |
| |
| if (QED_IS_FCOE_PERSONALITY(p_hwfn)) |
| feat_num[QED_FCOE_CQ] = min_t(u32, sb_cnt.cnt, |
| RESC_NUM(p_hwfn, |
| QED_CMDQS_CQS)); |
| |
| if (QED_IS_ISCSI_PERSONALITY(p_hwfn)) |
| feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt, |
| RESC_NUM(p_hwfn, |
| QED_CMDQS_CQS)); |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_PROBE, |
| "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n", |
| (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE), |
| (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE), |
| (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ), |
| (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ), |
| (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ), |
| (int)sb_cnt.cnt); |
| } |
| |
| const char *qed_hw_get_resc_name(enum qed_resources res_id) |
| { |
| switch (res_id) { |
| case QED_L2_QUEUE: |
| return "L2_QUEUE"; |
| case QED_VPORT: |
| return "VPORT"; |
| case QED_RSS_ENG: |
| return "RSS_ENG"; |
| case QED_PQ: |
| return "PQ"; |
| case QED_RL: |
| return "RL"; |
| case QED_MAC: |
| return "MAC"; |
| case QED_VLAN: |
| return "VLAN"; |
| case QED_RDMA_CNQ_RAM: |
| return "RDMA_CNQ_RAM"; |
| case QED_ILT: |
| return "ILT"; |
| case QED_LL2_RAM_QUEUE: |
| return "LL2_RAM_QUEUE"; |
| case QED_LL2_CTX_QUEUE: |
| return "LL2_CTX_QUEUE"; |
| case QED_CMDQS_CQS: |
| return "CMDQS_CQS"; |
| case QED_RDMA_STATS_QUEUE: |
| return "RDMA_STATS_QUEUE"; |
| case QED_BDQ: |
| return "BDQ"; |
| case QED_SB: |
| return "SB"; |
| default: |
| return "UNKNOWN_RESOURCE"; |
| } |
| } |
| |
| static int |
| __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| enum qed_resources res_id, |
| u32 resc_max_val, u32 *p_mcp_resp) |
| { |
| int rc; |
| |
| rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, |
| resc_max_val, p_mcp_resp); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "MFW response failure for a max value setting of resource %d [%s]\n", |
| res_id, qed_hw_get_resc_name(res_id)); |
| return rc; |
| } |
| |
| if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) |
| DP_INFO(p_hwfn, |
| "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", |
| res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp); |
| |
| return 0; |
| } |
| |
| static u32 qed_hsi_def_val[][MAX_CHIP_IDS] = { |
| {MAX_NUM_VFS_BB, MAX_NUM_VFS_K2}, |
| {MAX_NUM_L2_QUEUES_BB, MAX_NUM_L2_QUEUES_K2}, |
| {MAX_NUM_PORTS_BB, MAX_NUM_PORTS_K2}, |
| {MAX_SB_PER_PATH_BB, MAX_SB_PER_PATH_K2,}, |
| {MAX_NUM_PFS_BB, MAX_NUM_PFS_K2}, |
| {MAX_NUM_VPORTS_BB, MAX_NUM_VPORTS_K2}, |
| {ETH_RSS_ENGINE_NUM_BB, ETH_RSS_ENGINE_NUM_K2}, |
| {MAX_QM_TX_QUEUES_BB, MAX_QM_TX_QUEUES_K2}, |
| {PXP_NUM_ILT_RECORDS_BB, PXP_NUM_ILT_RECORDS_K2}, |
| {RDMA_NUM_STATISTIC_COUNTERS_BB, RDMA_NUM_STATISTIC_COUNTERS_K2}, |
| {MAX_QM_GLOBAL_RLS, MAX_QM_GLOBAL_RLS}, |
| {PBF_MAX_CMD_LINES, PBF_MAX_CMD_LINES}, |
| {BTB_MAX_BLOCKS_BB, BTB_MAX_BLOCKS_K2}, |
| }; |
| |
| u32 qed_get_hsi_def_val(struct qed_dev *cdev, enum qed_hsi_def_type type) |
| { |
| enum chip_ids chip_id = QED_IS_BB(cdev) ? CHIP_BB : CHIP_K2; |
| |
| if (type >= QED_NUM_HSI_DEFS) { |
| DP_ERR(cdev, "Unexpected HSI definition type [%d]\n", type); |
| return 0; |
| } |
| |
| return qed_hsi_def_val[type][chip_id]; |
| } |
| static int |
| qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u32 resc_max_val, mcp_resp; |
| u8 res_id; |
| int rc; |
| for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { |
| switch (res_id) { |
| case QED_LL2_RAM_QUEUE: |
| resc_max_val = MAX_NUM_LL2_RX_RAM_QUEUES; |
| break; |
| case QED_LL2_CTX_QUEUE: |
| resc_max_val = MAX_NUM_LL2_RX_CTX_QUEUES; |
| break; |
| case QED_RDMA_CNQ_RAM: |
| /* No need for a case for QED_CMDQS_CQS since |
| * CNQ/CMDQS are the same resource. |
| */ |
| resc_max_val = NUM_OF_GLOBAL_QUEUES; |
| break; |
| case QED_RDMA_STATS_QUEUE: |
| resc_max_val = |
| NUM_OF_RDMA_STATISTIC_COUNTERS(p_hwfn->cdev); |
| break; |
| case QED_BDQ: |
| resc_max_val = BDQ_NUM_RESOURCES; |
| break; |
| default: |
| continue; |
| } |
| |
| rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, |
| resc_max_val, &mcp_resp); |
| if (rc) |
| return rc; |
| |
| /* There's no point to continue to the next resource if the |
| * command is not supported by the MFW. |
| * We do continue if the command is supported but the resource |
| * is unknown to the MFW. Such a resource will be later |
| * configured with the default allocation values. |
| */ |
| if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static |
| int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn, |
| enum qed_resources res_id, |
| u32 *p_resc_num, u32 *p_resc_start) |
| { |
| u8 num_funcs = p_hwfn->num_funcs_on_engine; |
| struct qed_dev *cdev = p_hwfn->cdev; |
| |
| switch (res_id) { |
| case QED_L2_QUEUE: |
| *p_resc_num = NUM_OF_L2_QUEUES(cdev) / num_funcs; |
| break; |
| case QED_VPORT: |
| *p_resc_num = NUM_OF_VPORTS(cdev) / num_funcs; |
| break; |
| case QED_RSS_ENG: |
| *p_resc_num = NUM_OF_RSS_ENGINES(cdev) / num_funcs; |
| break; |
| case QED_PQ: |
| *p_resc_num = NUM_OF_QM_TX_QUEUES(cdev) / num_funcs; |
| *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */ |
| break; |
| case QED_RL: |
| *p_resc_num = NUM_OF_QM_GLOBAL_RLS(cdev) / num_funcs; |
| break; |
| case QED_MAC: |
| case QED_VLAN: |
| /* Each VFC resource can accommodate both a MAC and a VLAN */ |
| *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; |
| break; |
| case QED_ILT: |
| *p_resc_num = NUM_OF_PXP_ILT_RECORDS(cdev) / num_funcs; |
| break; |
| case QED_LL2_RAM_QUEUE: |
| *p_resc_num = MAX_NUM_LL2_RX_RAM_QUEUES / num_funcs; |
| break; |
| case QED_LL2_CTX_QUEUE: |
| *p_resc_num = MAX_NUM_LL2_RX_CTX_QUEUES / num_funcs; |
| break; |
| case QED_RDMA_CNQ_RAM: |
| case QED_CMDQS_CQS: |
| /* CNQ/CMDQS are the same resource */ |
| *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs; |
| break; |
| case QED_RDMA_STATS_QUEUE: |
| *p_resc_num = NUM_OF_RDMA_STATISTIC_COUNTERS(cdev) / num_funcs; |
| break; |
| case QED_BDQ: |
| if (p_hwfn->hw_info.personality != QED_PCI_ISCSI && |
| p_hwfn->hw_info.personality != QED_PCI_FCOE) |
| *p_resc_num = 0; |
| else |
| *p_resc_num = 1; |
| break; |
| case QED_SB: |
| /* Since we want its value to reflect whether MFW supports |
| * the new scheme, have a default of 0. |
| */ |
| *p_resc_num = 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (res_id) { |
| case QED_BDQ: |
| if (!*p_resc_num) |
| *p_resc_start = 0; |
| else if (p_hwfn->cdev->num_ports_in_engine == 4) |
| *p_resc_start = p_hwfn->port_id; |
| else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) |
| *p_resc_start = p_hwfn->port_id; |
| else if (p_hwfn->hw_info.personality == QED_PCI_FCOE) |
| *p_resc_start = p_hwfn->port_id + 2; |
| break; |
| default: |
| *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn, |
| enum qed_resources res_id) |
| { |
| u32 dflt_resc_num = 0, dflt_resc_start = 0; |
| u32 mcp_resp, *p_resc_num, *p_resc_start; |
| int rc; |
| |
| p_resc_num = &RESC_NUM(p_hwfn, res_id); |
| p_resc_start = &RESC_START(p_hwfn, res_id); |
| |
| rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, |
| &dflt_resc_start); |
| if (rc) { |
| DP_ERR(p_hwfn, |
| "Failed to get default amount for resource %d [%s]\n", |
| res_id, qed_hw_get_resc_name(res_id)); |
| return rc; |
| } |
| |
| rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, |
| &mcp_resp, p_resc_num, p_resc_start); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "MFW response failure for an allocation request for resource %d [%s]\n", |
| res_id, qed_hw_get_resc_name(res_id)); |
| return rc; |
| } |
| |
| /* Default driver values are applied in the following cases: |
| * - The resource allocation MB command is not supported by the MFW |
| * - There is an internal error in the MFW while processing the request |
| * - The resource ID is unknown to the MFW |
| */ |
| if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { |
| DP_INFO(p_hwfn, |
| "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n", |
| res_id, |
| qed_hw_get_resc_name(res_id), |
| mcp_resp, dflt_resc_num, dflt_resc_start); |
| *p_resc_num = dflt_resc_num; |
| *p_resc_start = dflt_resc_start; |
| goto out; |
| } |
| |
| out: |
| /* PQs have to divide by 8 [that's the HW granularity]. |
| * Reduce number so it would fit. |
| */ |
| if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) { |
| DP_INFO(p_hwfn, |
| "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n", |
| *p_resc_num, |
| (*p_resc_num) & ~0x7, |
| *p_resc_start, (*p_resc_start) & ~0x7); |
| *p_resc_num &= ~0x7; |
| *p_resc_start &= ~0x7; |
| } |
| |
| return 0; |
| } |
| |
| static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn) |
| { |
| int rc; |
| u8 res_id; |
| |
| for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { |
| rc = __qed_hw_set_resc_info(p_hwfn, res_id); |
| if (rc) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int qed_hw_get_ppfid_bitmap(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| struct qed_dev *cdev = p_hwfn->cdev; |
| u8 native_ppfid_idx; |
| int rc; |
| |
| /* Calculation of BB/AH is different for native_ppfid_idx */ |
| if (QED_IS_BB(cdev)) |
| native_ppfid_idx = p_hwfn->rel_pf_id; |
| else |
| native_ppfid_idx = p_hwfn->rel_pf_id / |
| cdev->num_ports_in_engine; |
| |
| rc = qed_mcp_get_ppfid_bitmap(p_hwfn, p_ptt); |
| if (rc != 0 && rc != -EOPNOTSUPP) |
| return rc; |
| else if (rc == -EOPNOTSUPP) |
| cdev->ppfid_bitmap = 0x1 << native_ppfid_idx; |
| |
| if (!(cdev->ppfid_bitmap & (0x1 << native_ppfid_idx))) { |
| DP_INFO(p_hwfn, |
| "Fix the PPFID bitmap to include the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n", |
| native_ppfid_idx, cdev->ppfid_bitmap); |
| cdev->ppfid_bitmap = 0x1 << native_ppfid_idx; |
| } |
| |
| return 0; |
| } |
| |
| static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_resc_unlock_params resc_unlock_params; |
| struct qed_resc_lock_params resc_lock_params; |
| bool b_ah = QED_IS_AH(p_hwfn->cdev); |
| u8 res_id; |
| int rc; |
| |
| /* Setting the max values of the soft resources and the following |
| * resources allocation queries should be atomic. Since several PFs can |
| * run in parallel - a resource lock is needed. |
| * If either the resource lock or resource set value commands are not |
| * supported - skip the the max values setting, release the lock if |
| * needed, and proceed to the queries. Other failures, including a |
| * failure to acquire the lock, will cause this function to fail. |
| */ |
| qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, |
| QED_RESC_LOCK_RESC_ALLOC, false); |
| |
| rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); |
| if (rc && rc != -EINVAL) { |
| return rc; |
| } else if (rc == -EINVAL) { |
| DP_INFO(p_hwfn, |
| "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); |
| } else if (!rc && !resc_lock_params.b_granted) { |
| DP_NOTICE(p_hwfn, |
| "Failed to acquire the resource lock for the resource allocation commands\n"); |
| return -EBUSY; |
| } else { |
| rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt); |
| if (rc && rc != -EINVAL) { |
| DP_NOTICE(p_hwfn, |
| "Failed to set the max values of the soft resources\n"); |
| goto unlock_and_exit; |
| } else if (rc == -EINVAL) { |
| DP_INFO(p_hwfn, |
| "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); |
| rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, |
| &resc_unlock_params); |
| if (rc) |
| DP_INFO(p_hwfn, |
| "Failed to release the resource lock for the resource allocation commands\n"); |
| } |
| } |
| |
| rc = qed_hw_set_resc_info(p_hwfn); |
| if (rc) |
| goto unlock_and_exit; |
| |
| if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { |
| rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); |
| if (rc) |
| DP_INFO(p_hwfn, |
| "Failed to release the resource lock for the resource allocation commands\n"); |
| } |
| |
| /* PPFID bitmap */ |
| if (IS_LEAD_HWFN(p_hwfn)) { |
| rc = qed_hw_get_ppfid_bitmap(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| } |
| |
| /* Sanity for ILT */ |
| if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) || |
| (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) { |
| DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", |
| RESC_START(p_hwfn, QED_ILT), |
| RESC_END(p_hwfn, QED_ILT) - 1); |
| return -EINVAL; |
| } |
| |
| /* This will also learn the number of SBs from MFW */ |
| if (qed_int_igu_reset_cam(p_hwfn, p_ptt)) |
| return -EINVAL; |
| |
| qed_hw_set_feat(p_hwfn); |
| |
| for (res_id = 0; res_id < QED_MAX_RESC; res_id++) |
| DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n", |
| qed_hw_get_resc_name(res_id), |
| RESC_NUM(p_hwfn, res_id), |
| RESC_START(p_hwfn, res_id)); |
| |
| return 0; |
| |
| unlock_and_exit: |
| if (resc_lock_params.b_granted && !resc_unlock_params.b_released) |
| qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); |
| return rc; |
| } |
| |
| static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; |
| u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; |
| struct qed_mcp_link_capabilities *p_caps; |
| struct qed_mcp_link_params *link; |
| |
| /* Read global nvm_cfg address */ |
| nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); |
| |
| /* Verify MCP has initialized it */ |
| if (!nvm_cfg_addr) { |
| DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); |
| return -EINVAL; |
| } |
| |
| /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ |
| nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); |
| |
| addr = MCP_REG_SCRATCH + nvm_cfg1_offset + |
| offsetof(struct nvm_cfg1, glob) + |
| offsetof(struct nvm_cfg1_glob, core_cfg); |
| |
| core_cfg = qed_rd(p_hwfn, p_ptt, addr); |
| |
| switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> |
| NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); |
| break; |
| } |
| |
| /* Read default link configuration */ |
| link = &p_hwfn->mcp_info->link_input; |
| p_caps = &p_hwfn->mcp_info->link_capabilities; |
| port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + |
| offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); |
| link_temp = qed_rd(p_hwfn, p_ptt, |
| port_cfg_addr + |
| offsetof(struct nvm_cfg1_port, speed_cap_mask)); |
| link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; |
| link->speed.advertised_speeds = link_temp; |
| |
| link_temp = link->speed.advertised_speeds; |
| p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp; |
| |
| link_temp = qed_rd(p_hwfn, p_ptt, |
| port_cfg_addr + |
| offsetof(struct nvm_cfg1_port, link_settings)); |
| switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> |
| NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: |
| link->speed.autoneg = true; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: |
| link->speed.forced_speed = 1000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: |
| link->speed.forced_speed = 10000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_20G: |
| link->speed.forced_speed = 20000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: |
| link->speed.forced_speed = 25000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: |
| link->speed.forced_speed = 40000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: |
| link->speed.forced_speed = 50000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: |
| link->speed.forced_speed = 100000; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); |
| } |
| |
| p_hwfn->mcp_info->link_capabilities.default_speed_autoneg = |
| link->speed.autoneg; |
| |
| link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; |
| link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; |
| link->pause.autoneg = !!(link_temp & |
| NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); |
| link->pause.forced_rx = !!(link_temp & |
| NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); |
| link->pause.forced_tx = !!(link_temp & |
| NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); |
| link->loopback_mode = 0; |
| |
| if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) { |
| link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + |
| offsetof(struct nvm_cfg1_port, ext_phy)); |
| link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK; |
| link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET; |
| p_caps->default_eee = QED_MCP_EEE_ENABLED; |
| link->eee.enable = true; |
| switch (link_temp) { |
| case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED: |
| p_caps->default_eee = QED_MCP_EEE_DISABLED; |
| link->eee.enable = false; |
| break; |
| case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED: |
| p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME; |
| break; |
| case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE: |
| p_caps->eee_lpi_timer = |
| EEE_TX_TIMER_USEC_AGGRESSIVE_TIME; |
| break; |
| case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY: |
| p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME; |
| break; |
| } |
| |
| link->eee.tx_lpi_timer = p_caps->eee_lpi_timer; |
| link->eee.tx_lpi_enable = link->eee.enable; |
| link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV; |
| } else { |
| p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED; |
| } |
| |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_LINK, |
| "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n", |
| link->speed.forced_speed, |
| link->speed.advertised_speeds, |
| link->speed.autoneg, |
| link->pause.autoneg, |
| p_caps->default_eee, p_caps->eee_lpi_timer); |
| |
| if (IS_LEAD_HWFN(p_hwfn)) { |
| struct qed_dev *cdev = p_hwfn->cdev; |
| |
| /* Read Multi-function information from shmem */ |
| addr = MCP_REG_SCRATCH + nvm_cfg1_offset + |
| offsetof(struct nvm_cfg1, glob) + |
| offsetof(struct nvm_cfg1_glob, generic_cont0); |
| |
| generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); |
| |
| mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> |
| NVM_CFG1_GLOB_MF_MODE_OFFSET; |
| |
| switch (mf_mode) { |
| case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: |
| cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS); |
| break; |
| case NVM_CFG1_GLOB_MF_MODE_UFP: |
| cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) | |
| BIT(QED_MF_LLH_PROTO_CLSS) | |
| BIT(QED_MF_UFP_SPECIFIC) | |
| BIT(QED_MF_8021Q_TAGGING) | |
| BIT(QED_MF_DONT_ADD_VLAN0_TAG); |
| break; |
| case NVM_CFG1_GLOB_MF_MODE_BD: |
| cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) | |
| BIT(QED_MF_LLH_PROTO_CLSS) | |
| BIT(QED_MF_8021AD_TAGGING) | |
| BIT(QED_MF_DONT_ADD_VLAN0_TAG); |
| break; |
| case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: |
| cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) | |
| BIT(QED_MF_LLH_PROTO_CLSS) | |
| BIT(QED_MF_LL2_NON_UNICAST) | |
| BIT(QED_MF_INTER_PF_SWITCH); |
| break; |
| case NVM_CFG1_GLOB_MF_MODE_DEFAULT: |
| cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) | |
| BIT(QED_MF_LLH_PROTO_CLSS) | |
| BIT(QED_MF_LL2_NON_UNICAST); |
| if (QED_IS_BB(p_hwfn->cdev)) |
| cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF); |
| break; |
| } |
| |
| DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", |
| cdev->mf_bits); |
| } |
| |
| DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", |
| p_hwfn->cdev->mf_bits); |
| |
| /* Read device capabilities information from shmem */ |
| addr = MCP_REG_SCRATCH + nvm_cfg1_offset + |
| offsetof(struct nvm_cfg1, glob) + |
| offsetof(struct nvm_cfg1_glob, device_capabilities); |
| |
| device_capabilities = qed_rd(p_hwfn, p_ptt, addr); |
| if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) |
| __set_bit(QED_DEV_CAP_ETH, |
| &p_hwfn->hw_info.device_capabilities); |
| if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) |
| __set_bit(QED_DEV_CAP_FCOE, |
| &p_hwfn->hw_info.device_capabilities); |
| if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) |
| __set_bit(QED_DEV_CAP_ISCSI, |
| &p_hwfn->hw_info.device_capabilities); |
| if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) |
| __set_bit(QED_DEV_CAP_ROCE, |
| &p_hwfn->hw_info.device_capabilities); |
| |
| return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); |
| } |
| |
| static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; |
| u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; |
| struct qed_dev *cdev = p_hwfn->cdev; |
| |
| num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; |
| |
| /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values |
| * in the other bits are selected. |
| * Bits 1-15 are for functions 1-15, respectively, and their value is |
| * '0' only for enabled functions (function 0 always exists and |
| * enabled). |
| * In case of CMT, only the "even" functions are enabled, and thus the |
| * number of functions for both hwfns is learnt from the same bits. |
| */ |
| reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); |
| |
| if (reg_function_hide & 0x1) { |
| if (QED_IS_BB(cdev)) { |
| if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) { |
| num_funcs = 0; |
| eng_mask = 0xaaaa; |
| } else { |
| num_funcs = 1; |
| eng_mask = 0x5554; |
| } |
| } else { |
| num_funcs = 1; |
| eng_mask = 0xfffe; |
| } |
| |
| /* Get the number of the enabled functions on the engine */ |
| tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; |
| while (tmp) { |
| if (tmp & 0x1) |
| num_funcs++; |
| tmp >>= 0x1; |
| } |
| |
| /* Get the PF index within the enabled functions */ |
| low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; |
| tmp = reg_function_hide & eng_mask & low_pfs_mask; |
| while (tmp) { |
| if (tmp & 0x1) |
| enabled_func_idx--; |
| tmp >>= 0x1; |
| } |
| } |
| |
| p_hwfn->num_funcs_on_engine = num_funcs; |
| p_hwfn->enabled_func_idx = enabled_func_idx; |
| |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_PROBE, |
| "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", |
| p_hwfn->rel_pf_id, |
| p_hwfn->abs_pf_id, |
| p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); |
| } |
| |
| static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u32 addr, global_offsize, global_addr, port_mode; |
| struct qed_dev *cdev = p_hwfn->cdev; |
| |
| /* In CMT there is always only one port */ |
| if (cdev->num_hwfns > 1) { |
| cdev->num_ports_in_engine = 1; |
| cdev->num_ports = 1; |
| return; |
| } |
| |
| /* Determine the number of ports per engine */ |
| port_mode = qed_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE); |
| switch (port_mode) { |
| case 0x0: |
| cdev->num_ports_in_engine = 1; |
| break; |
| case 0x1: |
| cdev->num_ports_in_engine = 2; |
| break; |
| case 0x2: |
| cdev->num_ports_in_engine = 4; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "Unknown port mode 0x%08x\n", port_mode); |
| cdev->num_ports_in_engine = 1; /* Default to something */ |
| break; |
| } |
| |
| /* Get the total number of ports of the device */ |
| addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, |
| PUBLIC_GLOBAL); |
| global_offsize = qed_rd(p_hwfn, p_ptt, addr); |
| global_addr = SECTION_ADDR(global_offsize, 0); |
| addr = global_addr + offsetof(struct public_global, max_ports); |
| cdev->num_ports = (u8)qed_rd(p_hwfn, p_ptt, addr); |
| } |
| |
| static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_mcp_link_capabilities *p_caps; |
| u32 eee_status; |
| |
| p_caps = &p_hwfn->mcp_info->link_capabilities; |
| if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED) |
| return; |
| |
| p_caps->eee_speed_caps = 0; |
| eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + |
| offsetof(struct public_port, eee_status)); |
| eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >> |
| EEE_SUPPORTED_SPEED_OFFSET; |
| |
| if (eee_status & EEE_1G_SUPPORTED) |
| p_caps->eee_speed_caps |= QED_EEE_1G_ADV; |
| if (eee_status & EEE_10G_ADV) |
| p_caps->eee_speed_caps |= QED_EEE_10G_ADV; |
| } |
| |
| static int |
| qed_get_hw_info(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| enum qed_pci_personality personality) |
| { |
| int rc; |
| |
| /* Since all information is common, only first hwfns should do this */ |
| if (IS_LEAD_HWFN(p_hwfn)) { |
| rc = qed_iov_hw_info(p_hwfn); |
| if (rc) |
| return rc; |
| } |
| |
| if (IS_LEAD_HWFN(p_hwfn)) |
| qed_hw_info_port_num(p_hwfn, p_ptt); |
| |
| qed_mcp_get_capabilities(p_hwfn, p_ptt); |
| |
| qed_hw_get_nvm_info(p_hwfn, p_ptt); |
| |
| rc = qed_int_igu_read_cam(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| |
| if (qed_mcp_is_init(p_hwfn)) |
| ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, |
| p_hwfn->mcp_info->func_info.mac); |
| else |
| eth_random_addr(p_hwfn->hw_info.hw_mac_addr); |
| |
| if (qed_mcp_is_init(p_hwfn)) { |
| if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) |
| p_hwfn->hw_info.ovlan = |
| p_hwfn->mcp_info->func_info.ovlan; |
| |
| qed_mcp_cmd_port_init(p_hwfn, p_ptt); |
| |
| qed_get_eee_caps(p_hwfn, p_ptt); |
| |
| qed_mcp_read_ufp_config(p_hwfn, p_ptt); |
| } |
| |
| if (qed_mcp_is_init(p_hwfn)) { |
| enum qed_pci_personality protocol; |
| |
| protocol = p_hwfn->mcp_info->func_info.protocol; |
| p_hwfn->hw_info.personality = protocol; |
| } |
| |
| if (QED_IS_ROCE_PERSONALITY(p_hwfn)) |
| p_hwfn->hw_info.multi_tc_roce_en = true; |
| |
| p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; |
| p_hwfn->hw_info.num_active_tc = 1; |
| |
| qed_get_num_funcs(p_hwfn, p_ptt); |
| |
| if (qed_mcp_is_init(p_hwfn)) |
| p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; |
| |
| return qed_hw_get_resc(p_hwfn, p_ptt); |
| } |
| |
| static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_dev *cdev = p_hwfn->cdev; |
| u16 device_id_mask; |
| u32 tmp; |
| |
| /* Read Vendor Id / Device Id */ |
| pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); |
| pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); |
| |
| /* Determine type */ |
| device_id_mask = cdev->device_id & QED_DEV_ID_MASK; |
| switch (device_id_mask) { |
| case QED_DEV_ID_MASK_BB: |
| cdev->type = QED_DEV_TYPE_BB; |
| break; |
| case QED_DEV_ID_MASK_AH: |
| cdev->type = QED_DEV_TYPE_AH; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id); |
| return -EBUSY; |
| } |
| |
| cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); |
| cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); |
| |
| MASK_FIELD(CHIP_REV, cdev->chip_rev); |
| |
| /* Learn number of HW-functions */ |
| tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); |
| |
| if (tmp & (1 << p_hwfn->rel_pf_id)) { |
| DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); |
| cdev->num_hwfns = 2; |
| } else { |
| cdev->num_hwfns = 1; |
| } |
| |
| cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt, |
| MISCS_REG_CHIP_TEST_REG) >> 4; |
| MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); |
| cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); |
| MASK_FIELD(CHIP_METAL, cdev->chip_metal); |
| |
| DP_INFO(cdev->hwfns, |
| "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", |
| QED_IS_BB(cdev) ? "BB" : "AH", |
| 'A' + cdev->chip_rev, |
| (int)cdev->chip_metal, |
| cdev->chip_num, cdev->chip_rev, |
| cdev->chip_bond_id, cdev->chip_metal); |
| |
| return 0; |
| } |
| |
| static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, |
| void __iomem *p_regview, |
| void __iomem *p_doorbells, |
| u64 db_phys_addr, |
| enum qed_pci_personality personality) |
| { |
| struct qed_dev *cdev = p_hwfn->cdev; |
| int rc = 0; |
| |
| /* Split PCI bars evenly between hwfns */ |
| p_hwfn->regview = p_regview; |
| p_hwfn->doorbells = p_doorbells; |
| p_hwfn->db_phys_addr = db_phys_addr; |
| |
| if (IS_VF(p_hwfn->cdev)) |
| return qed_vf_hw_prepare(p_hwfn); |
| |
| /* Validate that chip access is feasible */ |
| if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { |
| DP_ERR(p_hwfn, |
| "Reading the ME register returns all Fs; Preventing further chip access\n"); |
| return -EINVAL; |
| } |
| |
| get_function_id(p_hwfn); |
| |
| /* Allocate PTT pool */ |
| rc = qed_ptt_pool_alloc(p_hwfn); |
| if (rc) |
| goto err0; |
| |
| /* Allocate the main PTT */ |
| p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); |
| |
| /* First hwfn learns basic information, e.g., number of hwfns */ |
| if (!p_hwfn->my_id) { |
| rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); |
| if (rc) |
| goto err1; |
| } |
| |
| qed_hw_hwfn_prepare(p_hwfn); |
| |
| /* Initialize MCP structure */ |
| rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); |
| goto err1; |
| } |
| |
| /* Read the device configuration information from the HW and SHMEM */ |
| rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "Failed to get HW information\n"); |
| goto err2; |
| } |
| |
| /* Sending a mailbox to the MFW should be done after qed_get_hw_info() |
| * is called as it sets the ports number in an engine. |
| */ |
| if (IS_LEAD_HWFN(p_hwfn) && !cdev->recov_in_prog) { |
| rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); |
| if (rc) |
| DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n"); |
| } |
| |
| /* NVRAM info initialization and population */ |
| if (IS_LEAD_HWFN(p_hwfn)) { |
| rc = qed_mcp_nvm_info_populate(p_hwfn); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "Failed to populate nvm info shadow\n"); |
| goto err2; |
| } |
| } |
| |
| /* Allocate the init RT array and initialize the init-ops engine */ |
| rc = qed_init_alloc(p_hwfn); |
| if (rc) |
| goto err3; |
| |
| return rc; |
| err3: |
| if (IS_LEAD_HWFN(p_hwfn)) |
| qed_mcp_nvm_info_free(p_hwfn); |
| err2: |
| if (IS_LEAD_HWFN(p_hwfn)) |
| qed_iov_free_hw_info(p_hwfn->cdev); |
| qed_mcp_free(p_hwfn); |
| err1: |
| qed_hw_hwfn_free(p_hwfn); |
| err0: |
| return rc; |
| } |
| |
| int qed_hw_prepare(struct qed_dev *cdev, |
| int personality) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| int rc; |
| |
| /* Store the precompiled init data ptrs */ |
| if (IS_PF(cdev)) |
| qed_init_iro_array(cdev); |
| |
| /* Initialize the first hwfn - will learn number of hwfns */ |
| rc = qed_hw_prepare_single(p_hwfn, |
| cdev->regview, |
| cdev->doorbells, |
| cdev->db_phys_addr, |
| personality); |
| if (rc) |
| return rc; |
| |
| personality = p_hwfn->hw_info.personality; |
| |
| /* Initialize the rest of the hwfns */ |
| if (cdev->num_hwfns > 1) { |
| void __iomem *p_regview, *p_doorbell; |
| u64 db_phys_addr; |
| u32 offset; |
| |
| /* adjust bar offset for second engine */ |
| offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, |
| BAR_ID_0) / 2; |
| p_regview = cdev->regview + offset; |
| |
| offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, |
| BAR_ID_1) / 2; |
| |
| p_doorbell = cdev->doorbells + offset; |
| |
| db_phys_addr = cdev->db_phys_addr + offset; |
| |
| /* prepare second hw function */ |
| rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, |
| p_doorbell, db_phys_addr, |
| personality); |
| |
| /* in case of error, need to free the previously |
| * initiliazed hwfn 0. |
| */ |
| if (rc) { |
| if (IS_PF(cdev)) { |
| qed_init_free(p_hwfn); |
| qed_mcp_nvm_info_free(p_hwfn); |
| qed_mcp_free(p_hwfn); |
| qed_hw_hwfn_free(p_hwfn); |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| void qed_hw_remove(struct qed_dev *cdev) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| int i; |
| |
| if (IS_PF(cdev)) |
| qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, |
| QED_OV_DRIVER_STATE_NOT_LOADED); |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| if (IS_VF(cdev)) { |
| qed_vf_pf_release(p_hwfn); |
| continue; |
| } |
| |
| qed_init_free(p_hwfn); |
| qed_hw_hwfn_free(p_hwfn); |
| qed_mcp_free(p_hwfn); |
| } |
| |
| qed_iov_free_hw_info(cdev); |
| |
| qed_mcp_nvm_info_free(p_hwfn); |
| } |
| |
| static void qed_chain_free_next_ptr(struct qed_dev *cdev, |
| struct qed_chain *p_chain) |
| { |
| void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL; |
| dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; |
| struct qed_chain_next *p_next; |
| u32 size, i; |
| |
| if (!p_virt) |
| return; |
| |
| size = p_chain->elem_size * p_chain->usable_per_page; |
| |
| for (i = 0; i < p_chain->page_cnt; i++) { |
| if (!p_virt) |
| break; |
| |
| p_next = (struct qed_chain_next *)((u8 *)p_virt + size); |
| p_virt_next = p_next->next_virt; |
| p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); |
| |
| dma_free_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, p_virt, p_phys); |
| |
| p_virt = p_virt_next; |
| p_phys = p_phys_next; |
| } |
| } |
| |
| static void qed_chain_free_single(struct qed_dev *cdev, |
| struct qed_chain *p_chain) |
| { |
| if (!p_chain->p_virt_addr) |
| return; |
| |
| dma_free_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, |
| p_chain->p_virt_addr, p_chain->p_phys_addr); |
| } |
| |
| static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| struct addr_tbl_entry *pp_addr_tbl = p_chain->pbl.pp_addr_tbl; |
| u32 page_cnt = p_chain->page_cnt, i, pbl_size; |
| |
| if (!pp_addr_tbl) |
| return; |
| |
| for (i = 0; i < page_cnt; i++) { |
| if (!pp_addr_tbl[i].virt_addr || !pp_addr_tbl[i].dma_map) |
| break; |
| |
| dma_free_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, |
| pp_addr_tbl[i].virt_addr, |
| pp_addr_tbl[i].dma_map); |
| } |
| |
| pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; |
| |
| if (!p_chain->b_external_pbl) |
| dma_free_coherent(&cdev->pdev->dev, |
| pbl_size, |
| p_chain->pbl_sp.p_virt_table, |
| p_chain->pbl_sp.p_phys_table); |
| |
| vfree(p_chain->pbl.pp_addr_tbl); |
| p_chain->pbl.pp_addr_tbl = NULL; |
| } |
| |
| void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| switch (p_chain->mode) { |
| case QED_CHAIN_MODE_NEXT_PTR: |
| qed_chain_free_next_ptr(cdev, p_chain); |
| break; |
| case QED_CHAIN_MODE_SINGLE: |
| qed_chain_free_single(cdev, p_chain); |
| break; |
| case QED_CHAIN_MODE_PBL: |
| qed_chain_free_pbl(cdev, p_chain); |
| break; |
| } |
| } |
| |
| static int |
| qed_chain_alloc_sanity_check(struct qed_dev *cdev, |
| enum qed_chain_cnt_type cnt_type, |
| size_t elem_size, u32 page_cnt) |
| { |
| u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; |
| |
| /* The actual chain size can be larger than the maximal possible value |
| * after rounding up the requested elements number to pages, and after |
| * taking into acount the unusuable elements (next-ptr elements). |
| * The size of a "u16" chain can be (U16_MAX + 1) since the chain |
| * size/capacity fields are of a u32 type. |
| */ |
| if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 && |
| chain_size > ((u32)U16_MAX + 1)) || |
| (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) { |
| DP_NOTICE(cdev, |
| "The actual chain size (0x%llx) is larger than the maximal possible value\n", |
| chain_size); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| void *p_virt = NULL, *p_virt_prev = NULL; |
| dma_addr_t p_phys = 0; |
| u32 i; |
| |
| for (i = 0; i < p_chain->page_cnt; i++) { |
| p_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, |
| &p_phys, GFP_KERNEL); |
| if (!p_virt) |
| return -ENOMEM; |
| |
| if (i == 0) { |
| qed_chain_init_mem(p_chain, p_virt, p_phys); |
| qed_chain_reset(p_chain); |
| } else { |
| qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, |
| p_virt, p_phys); |
| } |
| |
| p_virt_prev = p_virt; |
| } |
| /* Last page's next element should point to the beginning of the |
| * chain. |
| */ |
| qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, |
| p_chain->p_virt_addr, |
| p_chain->p_phys_addr); |
| |
| return 0; |
| } |
| |
| static int |
| qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| dma_addr_t p_phys = 0; |
| void *p_virt = NULL; |
| |
| p_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); |
| if (!p_virt) |
| return -ENOMEM; |
| |
| qed_chain_init_mem(p_chain, p_virt, p_phys); |
| qed_chain_reset(p_chain); |
| |
| return 0; |
| } |
| |
| static int |
| qed_chain_alloc_pbl(struct qed_dev *cdev, |
| struct qed_chain *p_chain, |
| struct qed_chain_ext_pbl *ext_pbl) |
| { |
| u32 page_cnt = p_chain->page_cnt, size, i; |
| dma_addr_t p_phys = 0, p_pbl_phys = 0; |
| struct addr_tbl_entry *pp_addr_tbl; |
| u8 *p_pbl_virt = NULL; |
| void *p_virt = NULL; |
| |
| size = page_cnt * sizeof(*pp_addr_tbl); |
| pp_addr_tbl = vzalloc(size); |
| if (!pp_addr_tbl) |
| return -ENOMEM; |
| |
| /* The allocation of the PBL table is done with its full size, since it |
| * is expected to be successive. |
| * qed_chain_init_pbl_mem() is called even in a case of an allocation |
| * failure, since tbl was previously allocated, and it |
| * should be saved to allow its freeing during the error flow. |
| */ |
| size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; |
| |
| if (!ext_pbl) { |
| p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| size, &p_pbl_phys, GFP_KERNEL); |
| } else { |
| p_pbl_virt = ext_pbl->p_pbl_virt; |
| p_pbl_phys = ext_pbl->p_pbl_phys; |
| p_chain->b_external_pbl = true; |
| } |
| |
| qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, pp_addr_tbl); |
| if (!p_pbl_virt) |
| return -ENOMEM; |
| |
| for (i = 0; i < page_cnt; i++) { |
| p_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, |
| &p_phys, GFP_KERNEL); |
| if (!p_virt) |
| return -ENOMEM; |
| |
| if (i == 0) { |
| qed_chain_init_mem(p_chain, p_virt, p_phys); |
| qed_chain_reset(p_chain); |
| } |
| |
| /* Fill the PBL table with the physical address of the page */ |
| *(dma_addr_t *)p_pbl_virt = p_phys; |
| /* Keep the virtual address of the page */ |
| p_chain->pbl.pp_addr_tbl[i].virt_addr = p_virt; |
| p_chain->pbl.pp_addr_tbl[i].dma_map = p_phys; |
| |
| p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| int qed_chain_alloc(struct qed_dev *cdev, |
| enum qed_chain_use_mode intended_use, |
| enum qed_chain_mode mode, |
| enum qed_chain_cnt_type cnt_type, |
| u32 num_elems, |
| size_t elem_size, |
| struct qed_chain *p_chain, |
| struct qed_chain_ext_pbl *ext_pbl) |
| { |
| u32 page_cnt; |
| int rc = 0; |
| |
| if (mode == QED_CHAIN_MODE_SINGLE) |
| page_cnt = 1; |
| else |
| page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode); |
| |
| rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt); |
| if (rc) { |
| DP_NOTICE(cdev, |
| "Cannot allocate a chain with the given arguments:\n"); |
| DP_NOTICE(cdev, |
| "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", |
| intended_use, mode, cnt_type, num_elems, elem_size); |
| return rc; |
| } |
| |
| qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use, |
| mode, cnt_type); |
| |
| switch (mode) { |
| case QED_CHAIN_MODE_NEXT_PTR: |
| rc = qed_chain_alloc_next_ptr(cdev, p_chain); |
| break; |
| case QED_CHAIN_MODE_SINGLE: |
| rc = qed_chain_alloc_single(cdev, p_chain); |
| break; |
| case QED_CHAIN_MODE_PBL: |
| rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl); |
| break; |
| } |
| if (rc) |
| goto nomem; |
| |
| return 0; |
| |
| nomem: |
| qed_chain_free(cdev, p_chain); |
| return rc; |
| } |
| |
| int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) |
| { |
| if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { |
| u16 min, max; |
| |
| min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE); |
| max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); |
| DP_NOTICE(p_hwfn, |
| "l2_queue id [%d] is not valid, available indices [%d - %d]\n", |
| src_id, min, max); |
| |
| return -EINVAL; |
| } |
| |
| *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; |
| |
| return 0; |
| } |
| |
| int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) |
| { |
| if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { |
| u8 min, max; |
| |
| min = (u8)RESC_START(p_hwfn, QED_VPORT); |
| max = min + RESC_NUM(p_hwfn, QED_VPORT); |
| DP_NOTICE(p_hwfn, |
| "vport id [%d] is not valid, available indices [%d - %d]\n", |
| src_id, min, max); |
| |
| return -EINVAL; |
| } |
| |
| *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; |
| |
| return 0; |
| } |
| |
| int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) |
| { |
| if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { |
| u8 min, max; |
| |
| min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); |
| max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); |
| DP_NOTICE(p_hwfn, |
| "rss_eng id [%d] is not valid, available indices [%d - %d]\n", |
| src_id, min, max); |
| |
| return -EINVAL; |
| } |
| |
| *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; |
| |
| return 0; |
| } |
| |
| static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, |
| u32 hw_addr, void *p_eth_qzone, |
| size_t eth_qzone_size, u8 timeset) |
| { |
| struct coalescing_timeset *p_coal_timeset; |
| |
| if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { |
| DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); |
| return -EINVAL; |
| } |
| |
| p_coal_timeset = p_eth_qzone; |
| memset(p_eth_qzone, 0, eth_qzone_size); |
| SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); |
| SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); |
| qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); |
| |
| return 0; |
| } |
| |
| int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle) |
| { |
| struct qed_queue_cid *p_cid = p_handle; |
| struct qed_hwfn *p_hwfn; |
| struct qed_ptt *p_ptt; |
| int rc = 0; |
| |
| p_hwfn = p_cid->p_owner; |
| |
| if (IS_VF(p_hwfn->cdev)) |
| return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid); |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EAGAIN; |
| |
| if (rx_coal) { |
| rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); |
| if (rc) |
| goto out; |
| p_hwfn->cdev->rx_coalesce_usecs = rx_coal; |
| } |
| |
| if (tx_coal) { |
| rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid); |
| if (rc) |
| goto out; |
| p_hwfn->cdev->tx_coalesce_usecs = tx_coal; |
| } |
| out: |
| qed_ptt_release(p_hwfn, p_ptt); |
| return rc; |
| } |
| |
| int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u16 coalesce, struct qed_queue_cid *p_cid) |
| { |
| struct ustorm_eth_queue_zone eth_qzone; |
| u8 timeset, timer_res; |
| u32 address; |
| int rc; |
| |
| /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ |
| if (coalesce <= 0x7F) { |
| timer_res = 0; |
| } else if (coalesce <= 0xFF) { |
| timer_res = 1; |
| } else if (coalesce <= 0x1FF) { |
| timer_res = 2; |
| } else { |
| DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); |
| return -EINVAL; |
| } |
| timeset = (u8)(coalesce >> timer_res); |
| |
| rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, |
| p_cid->sb_igu_id, false); |
| if (rc) |
| goto out; |
| |
| address = BAR0_MAP_REG_USDM_RAM + |
| USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); |
| |
| rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, |
| sizeof(struct ustorm_eth_queue_zone), timeset); |
| if (rc) |
| goto out; |
| |
| out: |
| return rc; |
| } |
| |
| int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u16 coalesce, struct qed_queue_cid *p_cid) |
| { |
| struct xstorm_eth_queue_zone eth_qzone; |
| u8 timeset, timer_res; |
| u32 address; |
| int rc; |
| |
| /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ |
| if (coalesce <= 0x7F) { |
| timer_res = 0; |
| } else if (coalesce <= 0xFF) { |
| timer_res = 1; |
| } else if (coalesce <= 0x1FF) { |
| timer_res = 2; |
| } else { |
| DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); |
| return -EINVAL; |
| } |
| timeset = (u8)(coalesce >> timer_res); |
| |
| rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, |
| p_cid->sb_igu_id, true); |
| if (rc) |
| goto out; |
| |
| address = BAR0_MAP_REG_XSDM_RAM + |
| XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id); |
| |
| rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, |
| sizeof(struct xstorm_eth_queue_zone), timeset); |
| out: |
| return rc; |
| } |
| |
| /* Calculate final WFQ values for all vports and configure them. |
| * After this configuration each vport will have |
| * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT) |
| */ |
| static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 min_pf_rate) |
| { |
| struct init_qm_vport_params *vport_params; |
| int i; |
| |
| vport_params = p_hwfn->qm_info.qm_vport_params; |
| |
| for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { |
| u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; |
| |
| vport_params[i].wfq = (wfq_speed * QED_WFQ_UNIT) / |
| min_pf_rate; |
| qed_init_vport_wfq(p_hwfn, p_ptt, |
| vport_params[i].first_tx_pq_id, |
| vport_params[i].wfq); |
| } |
| } |
| |
| static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, |
| u32 min_pf_rate) |
| |
| { |
| int i; |
| |
| for (i = 0; i < p_hwfn->qm_info.num_vports; i++) |
| p_hwfn->qm_info.qm_vport_params[i].wfq = 1; |
| } |
| |
| static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 min_pf_rate) |
| { |
| struct init_qm_vport_params *vport_params; |
| int i; |
| |
| vport_params = p_hwfn->qm_info.qm_vport_params; |
| |
| for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { |
| qed_init_wfq_default_param(p_hwfn, min_pf_rate); |
| qed_init_vport_wfq(p_hwfn, p_ptt, |
| vport_params[i].first_tx_pq_id, |
| vport_params[i].wfq); |
| } |
| } |
| |
| /* This function performs several validations for WFQ |
| * configuration and required min rate for a given vport |
| * 1. req_rate must be greater than one percent of min_pf_rate. |
| * 2. req_rate should not cause other vports [not configured for WFQ explicitly] |
| * rates to get less than one percent of min_pf_rate. |
| * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. |
| */ |
| static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, |
| u16 vport_id, u32 req_rate, u32 min_pf_rate) |
| { |
| u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; |
| int non_requested_count = 0, req_count = 0, i, num_vports; |
| |
| num_vports = p_hwfn->qm_info.num_vports; |
| |
| /* Accounting for the vports which are configured for WFQ explicitly */ |
| for (i = 0; i < num_vports; i++) { |
| u32 tmp_speed; |
| |
| if ((i != vport_id) && |
| p_hwfn->qm_info.wfq_data[i].configured) { |
| req_count++; |
| tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; |
| total_req_min_rate += tmp_speed; |
| } |
| } |
| |
| /* Include current vport data as well */ |
| req_count++; |
| total_req_min_rate += req_rate; |
| non_requested_count = num_vports - req_count; |
| |
| if (req_rate < min_pf_rate / QED_WFQ_UNIT) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", |
| vport_id, req_rate, min_pf_rate); |
| return -EINVAL; |
| } |
| |
| if (num_vports > QED_WFQ_UNIT) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Number of vports is greater than %d\n", |
| QED_WFQ_UNIT); |
| return -EINVAL; |
| } |
| |
| if (total_req_min_rate > min_pf_rate) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", |
| total_req_min_rate, min_pf_rate); |
| return -EINVAL; |
| } |
| |
| total_left_rate = min_pf_rate - total_req_min_rate; |
| |
| left_rate_per_vp = total_left_rate / non_requested_count; |
| if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", |
| left_rate_per_vp, min_pf_rate); |
| return -EINVAL; |
| } |
| |
| p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; |
| p_hwfn->qm_info.wfq_data[vport_id].configured = true; |
| |
| for (i = 0; i < num_vports; i++) { |
| if (p_hwfn->qm_info.wfq_data[i].configured) |
| continue; |
| |
| p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; |
| } |
| |
| return 0; |
| } |
| |
| static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u16 vp_id, u32 rate) |
| { |
| struct qed_mcp_link_state *p_link; |
| int rc = 0; |
| |
| p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; |
| |
| if (!p_link->min_pf_rate) { |
| p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; |
| p_hwfn->qm_info.wfq_data[vp_id].configured = true; |
| return rc; |
| } |
| |
| rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); |
| |
| if (!rc) |
| qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, |
| p_link->min_pf_rate); |
| else |
| DP_NOTICE(p_hwfn, |
| "Validation failed while configuring min rate\n"); |
| |
| return rc; |
| } |
| |
| static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 min_pf_rate) |
| { |
| bool use_wfq = false; |
| int rc = 0; |
| u16 i; |
| |
| /* Validate all pre configured vports for wfq */ |
| for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { |
| u32 rate; |
| |
| if (!p_hwfn->qm_info.wfq_data[i].configured) |
| continue; |
| |
| rate = p_hwfn->qm_info.wfq_data[i].min_speed; |
| use_wfq = true; |
| |
| rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "WFQ validation failed while configuring min rate\n"); |
| break; |
| } |
| } |
| |
| if (!rc && use_wfq) |
| qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); |
| else |
| qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); |
| |
| return rc; |
| } |
| |
| /* Main API for qed clients to configure vport min rate. |
| * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] |
| * rate - Speed in Mbps needs to be assigned to a given vport. |
| */ |
| int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) |
| { |
| int i, rc = -EINVAL; |
| |
| /* Currently not supported; Might change in future */ |
| if (cdev->num_hwfns > 1) { |
| DP_NOTICE(cdev, |
| "WFQ configuration is not supported for this device\n"); |
| return rc; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| struct qed_ptt *p_ptt; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EBUSY; |
| |
| rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); |
| |
| if (rc) { |
| qed_ptt_release(p_hwfn, p_ptt); |
| return rc; |
| } |
| |
| qed_ptt_release(p_hwfn, p_ptt); |
| } |
| |
| return rc; |
| } |
| |
| /* API to configure WFQ from mcp link change */ |
| void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, |
| struct qed_ptt *p_ptt, u32 min_pf_rate) |
| { |
| int i; |
| |
| if (cdev->num_hwfns > 1) { |
| DP_VERBOSE(cdev, |
| NETIF_MSG_LINK, |
| "WFQ configuration is not supported for this device\n"); |
| return; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, |
| min_pf_rate); |
| } |
| } |
| |
| int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_mcp_link_state *p_link, |
| u8 max_bw) |
| { |
| int rc = 0; |
| |
| p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; |
| |
| if (!p_link->line_speed && (max_bw != 100)) |
| return rc; |
| |
| p_link->speed = (p_link->line_speed * max_bw) / 100; |
| p_hwfn->qm_info.pf_rl = p_link->speed; |
| |
| /* Since the limiter also affects Tx-switched traffic, we don't want it |
| * to limit such traffic in case there's no actual limit. |
| * In that case, set limit to imaginary high boundary. |
| */ |
| if (max_bw == 100) |
| p_hwfn->qm_info.pf_rl = 100000; |
| |
| rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, |
| p_hwfn->qm_info.pf_rl); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Configured MAX bandwidth to be %08x Mb/sec\n", |
| p_link->speed); |
| |
| return rc; |
| } |
| |
| /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ |
| int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) |
| { |
| int i, rc = -EINVAL; |
| |
| if (max_bw < 1 || max_bw > 100) { |
| DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); |
| return rc; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); |
| struct qed_mcp_link_state *p_link; |
| struct qed_ptt *p_ptt; |
| |
| p_link = &p_lead->mcp_info->link_output; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EBUSY; |
| |
| rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, |
| p_link, max_bw); |
| |
| qed_ptt_release(p_hwfn, p_ptt); |
| |
| if (rc) |
| break; |
| } |
| |
| return rc; |
| } |
| |
| int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_mcp_link_state *p_link, |
| u8 min_bw) |
| { |
| int rc = 0; |
| |
| p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; |
| p_hwfn->qm_info.pf_wfq = min_bw; |
| |
| if (!p_link->line_speed) |
| return rc; |
| |
| p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; |
| |
| rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Configured MIN bandwidth to be %d Mb/sec\n", |
| p_link->min_pf_rate); |
| |
| return rc; |
| } |
| |
| /* Main API to configure PF min bandwidth where bw range is [1-100] */ |
| int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) |
| { |
| int i, rc = -EINVAL; |
| |
| if (min_bw < 1 || min_bw > 100) { |
| DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); |
| return rc; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); |
| struct qed_mcp_link_state *p_link; |
| struct qed_ptt *p_ptt; |
| |
| p_link = &p_lead->mcp_info->link_output; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EBUSY; |
| |
| rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, |
| p_link, min_bw); |
| if (rc) { |
| qed_ptt_release(p_hwfn, p_ptt); |
| return rc; |
| } |
| |
| if (p_link->min_pf_rate) { |
| u32 min_rate = p_link->min_pf_rate; |
| |
| rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, |
| p_ptt, |
| min_rate); |
| } |
| |
| qed_ptt_release(p_hwfn, p_ptt); |
| } |
| |
| return rc; |
| } |
| |
| void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_mcp_link_state *p_link; |
| |
| p_link = &p_hwfn->mcp_info->link_output; |
| |
| if (p_link->min_pf_rate) |
| qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, |
| p_link->min_pf_rate); |
| |
| memset(p_hwfn->qm_info.wfq_data, 0, |
| sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); |
| } |
| |
| int qed_device_num_ports(struct qed_dev *cdev) |
| { |
| return cdev->num_ports; |
| } |
| |
| void qed_set_fw_mac_addr(__le16 *fw_msb, |
| __le16 *fw_mid, __le16 *fw_lsb, u8 *mac) |
| { |
| ((u8 *)fw_msb)[0] = mac[1]; |
| ((u8 *)fw_msb)[1] = mac[0]; |
| ((u8 *)fw_mid)[0] = mac[3]; |
| ((u8 *)fw_mid)[1] = mac[2]; |
| ((u8 *)fw_lsb)[0] = mac[5]; |
| ((u8 *)fw_lsb)[1] = mac[4]; |
| } |