blob: 040f4cb6ab2d0fb20ac7d97af1a7d6d10f246c03 [file] [log] [blame]
/*
* Copyright 2008 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
*/
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/sync_file.h>
#include <linux/dma-buf.h>
#include <drm/amdgpu_drm.h>
#include <drm/drm_syncobj.h>
#include <drm/ttm/ttm_tt.h>
#include "amdgpu_cs.h"
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_gmc.h"
#include "amdgpu_gem.h"
#include "amdgpu_ras.h"
static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p,
struct amdgpu_device *adev,
struct drm_file *filp,
union drm_amdgpu_cs *cs)
{
struct amdgpu_fpriv *fpriv = filp->driver_priv;
if (cs->in.num_chunks == 0)
return -EINVAL;
memset(p, 0, sizeof(*p));
p->adev = adev;
p->filp = filp;
p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
if (!p->ctx)
return -EINVAL;
if (atomic_read(&p->ctx->guilty)) {
amdgpu_ctx_put(p->ctx);
return -ECANCELED;
}
amdgpu_sync_create(&p->sync);
return 0;
}
static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p,
struct drm_amdgpu_cs_chunk_ib *chunk_ib)
{
struct drm_sched_entity *entity;
unsigned int i;
int r;
r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type,
chunk_ib->ip_instance,
chunk_ib->ring, &entity);
if (r)
return r;
/*
* Abort if there is no run queue associated with this entity.
* Possibly because of disabled HW IP.
*/
if (entity->rq == NULL)
return -EINVAL;
/* Check if we can add this IB to some existing job */
for (i = 0; i < p->gang_size; ++i)
if (p->entities[i] == entity)
return i;
/* If not increase the gang size if possible */
if (i == AMDGPU_CS_GANG_SIZE)
return -EINVAL;
p->entities[i] = entity;
p->gang_size = i + 1;
return i;
}
static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p,
struct drm_amdgpu_cs_chunk_ib *chunk_ib,
unsigned int *num_ibs)
{
int r;
r = amdgpu_cs_job_idx(p, chunk_ib);
if (r < 0)
return r;
if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type))
return -EINVAL;
++(num_ibs[r]);
p->gang_leader_idx = r;
return 0;
}
static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p,
struct drm_amdgpu_cs_chunk_fence *data,
uint32_t *offset)
{
struct drm_gem_object *gobj;
struct amdgpu_bo *bo;
unsigned long size;
int r;
gobj = drm_gem_object_lookup(p->filp, data->handle);
if (gobj == NULL)
return -EINVAL;
bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
p->uf_entry.priority = 0;
p->uf_entry.tv.bo = &bo->tbo;
drm_gem_object_put(gobj);
size = amdgpu_bo_size(bo);
if (size != PAGE_SIZE || (data->offset + 8) > size) {
r = -EINVAL;
goto error_unref;
}
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
r = -EINVAL;
goto error_unref;
}
*offset = data->offset;
return 0;
error_unref:
amdgpu_bo_unref(&bo);
return r;
}
static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p,
struct drm_amdgpu_bo_list_in *data)
{
struct drm_amdgpu_bo_list_entry *info;
int r;
r = amdgpu_bo_create_list_entry_array(data, &info);
if (r)
return r;
r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number,
&p->bo_list);
if (r)
goto error_free;
kvfree(info);
return 0;
error_free:
kvfree(info);
return r;
}
/* Copy the data from userspace and go over it the first time */
static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p,
union drm_amdgpu_cs *cs)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { };
struct amdgpu_vm *vm = &fpriv->vm;
uint64_t *chunk_array_user;
uint64_t *chunk_array;
uint32_t uf_offset = 0;
size_t size;
int ret;
int i;
chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t),
GFP_KERNEL);
if (!chunk_array)
return -ENOMEM;
/* get chunks */
chunk_array_user = u64_to_user_ptr(cs->in.chunks);
if (copy_from_user(chunk_array, chunk_array_user,
sizeof(uint64_t)*cs->in.num_chunks)) {
ret = -EFAULT;
goto free_chunk;
}
p->nchunks = cs->in.num_chunks;
p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
GFP_KERNEL);
if (!p->chunks) {
ret = -ENOMEM;
goto free_chunk;
}
for (i = 0; i < p->nchunks; i++) {
struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
struct drm_amdgpu_cs_chunk user_chunk;
uint32_t __user *cdata;
chunk_ptr = u64_to_user_ptr(chunk_array[i]);
if (copy_from_user(&user_chunk, chunk_ptr,
sizeof(struct drm_amdgpu_cs_chunk))) {
ret = -EFAULT;
i--;
goto free_partial_kdata;
}
p->chunks[i].chunk_id = user_chunk.chunk_id;
p->chunks[i].length_dw = user_chunk.length_dw;
size = p->chunks[i].length_dw;
cdata = u64_to_user_ptr(user_chunk.chunk_data);
p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t),
GFP_KERNEL);
if (p->chunks[i].kdata == NULL) {
ret = -ENOMEM;
i--;
goto free_partial_kdata;
}
size *= sizeof(uint32_t);
if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
ret = -EFAULT;
goto free_partial_kdata;
}
/* Assume the worst on the following checks */
ret = -EINVAL;
switch (p->chunks[i].chunk_id) {
case AMDGPU_CHUNK_ID_IB:
if (size < sizeof(struct drm_amdgpu_cs_chunk_ib))
goto free_partial_kdata;
ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs);
if (ret)
goto free_partial_kdata;
break;
case AMDGPU_CHUNK_ID_FENCE:
if (size < sizeof(struct drm_amdgpu_cs_chunk_fence))
goto free_partial_kdata;
ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata,
&uf_offset);
if (ret)
goto free_partial_kdata;
break;
case AMDGPU_CHUNK_ID_BO_HANDLES:
if (size < sizeof(struct drm_amdgpu_bo_list_in))
goto free_partial_kdata;
ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata);
if (ret)
goto free_partial_kdata;
break;
case AMDGPU_CHUNK_ID_DEPENDENCIES:
case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
case AMDGPU_CHUNK_ID_CP_GFX_SHADOW:
break;
default:
goto free_partial_kdata;
}
}
if (!p->gang_size) {
ret = -EINVAL;
goto free_partial_kdata;
}
for (i = 0; i < p->gang_size; ++i) {
ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm,
num_ibs[i], &p->jobs[i]);
if (ret)
goto free_all_kdata;
}
p->gang_leader = p->jobs[p->gang_leader_idx];
if (p->ctx->generation != p->gang_leader->generation) {
ret = -ECANCELED;
goto free_all_kdata;
}
if (p->uf_entry.tv.bo)
p->gang_leader->uf_addr = uf_offset;
kvfree(chunk_array);
/* Use this opportunity to fill in task info for the vm */
amdgpu_vm_set_task_info(vm);
return 0;
free_all_kdata:
i = p->nchunks - 1;
free_partial_kdata:
for (; i >= 0; i--)
kvfree(p->chunks[i].kdata);
kvfree(p->chunks);
p->chunks = NULL;
p->nchunks = 0;
free_chunk:
kvfree(chunk_array);
return ret;
}
static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk,
unsigned int *ce_preempt,
unsigned int *de_preempt)
{
struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata;
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_ring *ring;
struct amdgpu_job *job;
struct amdgpu_ib *ib;
int r;
r = amdgpu_cs_job_idx(p, chunk_ib);
if (r < 0)
return r;
job = p->jobs[r];
ring = amdgpu_job_ring(job);
ib = &job->ibs[job->num_ibs++];
/* MM engine doesn't support user fences */
if (p->uf_entry.tv.bo && ring->funcs->no_user_fence)
return -EINVAL;
if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX &&
chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) {
if (chunk_ib->flags & AMDGPU_IB_FLAG_CE)
(*ce_preempt)++;
else
(*de_preempt)++;
/* Each GFX command submit allows only 1 IB max
* preemptible for CE & DE */
if (*ce_preempt > 1 || *de_preempt > 1)
return -EINVAL;
}
if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE)
job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT;
r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ?
chunk_ib->ib_bytes : 0,
AMDGPU_IB_POOL_DELAYED, ib);
if (r) {
DRM_ERROR("Failed to get ib !\n");
return r;
}
ib->gpu_addr = chunk_ib->va_start;
ib->length_dw = chunk_ib->ib_bytes / 4;
ib->flags = chunk_ib->flags;
return 0;
}
static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata;
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
unsigned int num_deps;
int i, r;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_dep);
for (i = 0; i < num_deps; ++i) {
struct amdgpu_ctx *ctx;
struct drm_sched_entity *entity;
struct dma_fence *fence;
ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id);
if (ctx == NULL)
return -EINVAL;
r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type,
deps[i].ip_instance,
deps[i].ring, &entity);
if (r) {
amdgpu_ctx_put(ctx);
return r;
}
fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle);
amdgpu_ctx_put(ctx);
if (IS_ERR(fence))
return PTR_ERR(fence);
else if (!fence)
continue;
if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) {
struct drm_sched_fence *s_fence;
struct dma_fence *old = fence;
s_fence = to_drm_sched_fence(fence);
fence = dma_fence_get(&s_fence->scheduled);
dma_fence_put(old);
}
r = amdgpu_sync_fence(&p->sync, fence);
dma_fence_put(fence);
if (r)
return r;
}
return 0;
}
static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p,
uint32_t handle, u64 point,
u64 flags)
{
struct dma_fence *fence;
int r;
r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence);
if (r) {
DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n",
handle, point, r);
return r;
}
r = amdgpu_sync_fence(&p->sync, fence);
dma_fence_put(fence);
return r;
}
static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata;
unsigned int num_deps;
int i, r;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_sem);
for (i = 0; i < num_deps; ++i) {
r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0);
if (r)
return r;
}
return 0;
}
static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata;
unsigned int num_deps;
int i, r;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_syncobj);
for (i = 0; i < num_deps; ++i) {
r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle,
syncobj_deps[i].point,
syncobj_deps[i].flags);
if (r)
return r;
}
return 0;
}
static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata;
unsigned int num_deps;
int i;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_sem);
if (p->post_deps)
return -EINVAL;
p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
GFP_KERNEL);
p->num_post_deps = 0;
if (!p->post_deps)
return -ENOMEM;
for (i = 0; i < num_deps; ++i) {
p->post_deps[i].syncobj =
drm_syncobj_find(p->filp, deps[i].handle);
if (!p->post_deps[i].syncobj)
return -EINVAL;
p->post_deps[i].chain = NULL;
p->post_deps[i].point = 0;
p->num_post_deps++;
}
return 0;
}
static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata;
unsigned int num_deps;
int i;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_syncobj);
if (p->post_deps)
return -EINVAL;
p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
GFP_KERNEL);
p->num_post_deps = 0;
if (!p->post_deps)
return -ENOMEM;
for (i = 0; i < num_deps; ++i) {
struct amdgpu_cs_post_dep *dep = &p->post_deps[i];
dep->chain = NULL;
if (syncobj_deps[i].point) {
dep->chain = dma_fence_chain_alloc();
if (!dep->chain)
return -ENOMEM;
}
dep->syncobj = drm_syncobj_find(p->filp,
syncobj_deps[i].handle);
if (!dep->syncobj) {
dma_fence_chain_free(dep->chain);
return -EINVAL;
}
dep->point = syncobj_deps[i].point;
p->num_post_deps++;
}
return 0;
}
static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata;
int i;
if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW)
return -EINVAL;
for (i = 0; i < p->gang_size; ++i) {
p->jobs[i]->shadow_va = shadow->shadow_va;
p->jobs[i]->csa_va = shadow->csa_va;
p->jobs[i]->gds_va = shadow->gds_va;
p->jobs[i]->init_shadow =
shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW;
}
return 0;
}
static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p)
{
unsigned int ce_preempt = 0, de_preempt = 0;
int i, r;
for (i = 0; i < p->nchunks; ++i) {
struct amdgpu_cs_chunk *chunk;
chunk = &p->chunks[i];
switch (chunk->chunk_id) {
case AMDGPU_CHUNK_ID_IB:
r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt);
if (r)
return r;
break;
case AMDGPU_CHUNK_ID_DEPENDENCIES:
case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
r = amdgpu_cs_p2_dependencies(p, chunk);
if (r)
return r;
break;
case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
r = amdgpu_cs_p2_syncobj_in(p, chunk);
if (r)
return r;
break;
case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
r = amdgpu_cs_p2_syncobj_out(p, chunk);
if (r)
return r;
break;
case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk);
if (r)
return r;
break;
case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk);
if (r)
return r;
break;
case AMDGPU_CHUNK_ID_CP_GFX_SHADOW:
r = amdgpu_cs_p2_shadow(p, chunk);
if (r)
return r;
break;
}
}
return 0;
}
/* Convert microseconds to bytes. */
static u64 us_to_bytes(struct amdgpu_device *adev, s64 us)
{
if (us <= 0 || !adev->mm_stats.log2_max_MBps)
return 0;
/* Since accum_us is incremented by a million per second, just
* multiply it by the number of MB/s to get the number of bytes.
*/
return us << adev->mm_stats.log2_max_MBps;
}
static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes)
{
if (!adev->mm_stats.log2_max_MBps)
return 0;
return bytes >> adev->mm_stats.log2_max_MBps;
}
/* Returns how many bytes TTM can move right now. If no bytes can be moved,
* it returns 0. If it returns non-zero, it's OK to move at least one buffer,
* which means it can go over the threshold once. If that happens, the driver
* will be in debt and no other buffer migrations can be done until that debt
* is repaid.
*
* This approach allows moving a buffer of any size (it's important to allow
* that).
*
* The currency is simply time in microseconds and it increases as the clock
* ticks. The accumulated microseconds (us) are converted to bytes and
* returned.
*/
static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev,
u64 *max_bytes,
u64 *max_vis_bytes)
{
s64 time_us, increment_us;
u64 free_vram, total_vram, used_vram;
/* Allow a maximum of 200 accumulated ms. This is basically per-IB
* throttling.
*
* It means that in order to get full max MBps, at least 5 IBs per
* second must be submitted and not more than 200ms apart from each
* other.
*/
const s64 us_upper_bound = 200000;
if (!adev->mm_stats.log2_max_MBps) {
*max_bytes = 0;
*max_vis_bytes = 0;
return;
}
total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size);
used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager);
free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram;
spin_lock(&adev->mm_stats.lock);
/* Increase the amount of accumulated us. */
time_us = ktime_to_us(ktime_get());
increment_us = time_us - adev->mm_stats.last_update_us;
adev->mm_stats.last_update_us = time_us;
adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us,
us_upper_bound);
/* This prevents the short period of low performance when the VRAM
* usage is low and the driver is in debt or doesn't have enough
* accumulated us to fill VRAM quickly.
*
* The situation can occur in these cases:
* - a lot of VRAM is freed by userspace
* - the presence of a big buffer causes a lot of evictions
* (solution: split buffers into smaller ones)
*
* If 128 MB or 1/8th of VRAM is free, start filling it now by setting
* accum_us to a positive number.
*/
if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) {
s64 min_us;
/* Be more aggressive on dGPUs. Try to fill a portion of free
* VRAM now.
*/
if (!(adev->flags & AMD_IS_APU))
min_us = bytes_to_us(adev, free_vram / 4);
else
min_us = 0; /* Reset accum_us on APUs. */
adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us);
}
/* This is set to 0 if the driver is in debt to disallow (optional)
* buffer moves.
*/
*max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us);
/* Do the same for visible VRAM if half of it is free */
if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) {
u64 total_vis_vram = adev->gmc.visible_vram_size;
u64 used_vis_vram =
amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr);
if (used_vis_vram < total_vis_vram) {
u64 free_vis_vram = total_vis_vram - used_vis_vram;
adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis +
increment_us, us_upper_bound);
if (free_vis_vram >= total_vis_vram / 2)
adev->mm_stats.accum_us_vis =
max(bytes_to_us(adev, free_vis_vram / 2),
adev->mm_stats.accum_us_vis);
}
*max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis);
} else {
*max_vis_bytes = 0;
}
spin_unlock(&adev->mm_stats.lock);
}
/* Report how many bytes have really been moved for the last command
* submission. This can result in a debt that can stop buffer migrations
* temporarily.
*/
void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes,
u64 num_vis_bytes)
{
spin_lock(&adev->mm_stats.lock);
adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes);
adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes);
spin_unlock(&adev->mm_stats.lock);
}
static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
struct amdgpu_cs_parser *p = param;
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
.resv = bo->tbo.base.resv
};
uint32_t domain;
int r;
if (bo->tbo.pin_count)
return 0;
/* Don't move this buffer if we have depleted our allowance
* to move it. Don't move anything if the threshold is zero.
*/
if (p->bytes_moved < p->bytes_moved_threshold &&
(!bo->tbo.base.dma_buf ||
list_empty(&bo->tbo.base.dma_buf->attachments))) {
if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
(bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) {
/* And don't move a CPU_ACCESS_REQUIRED BO to limited
* visible VRAM if we've depleted our allowance to do
* that.
*/
if (p->bytes_moved_vis < p->bytes_moved_vis_threshold)
domain = bo->preferred_domains;
else
domain = bo->allowed_domains;
} else {
domain = bo->preferred_domains;
}
} else {
domain = bo->allowed_domains;
}
retry:
amdgpu_bo_placement_from_domain(bo, domain);
r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
p->bytes_moved += ctx.bytes_moved;
if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
amdgpu_bo_in_cpu_visible_vram(bo))
p->bytes_moved_vis += ctx.bytes_moved;
if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) {
domain = bo->allowed_domains;
goto retry;
}
return r;
}
static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p,
struct list_head *validated)
{
struct ttm_operation_ctx ctx = { true, false };
struct amdgpu_bo_list_entry *lobj;
int r;
list_for_each_entry(lobj, validated, tv.head) {
struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo);
struct mm_struct *usermm;
usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm);
if (usermm && usermm != current->mm)
return -EPERM;
if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) &&
lobj->user_invalidated && lobj->user_pages) {
amdgpu_bo_placement_from_domain(bo,
AMDGPU_GEM_DOMAIN_CPU);
r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (r)
return r;
amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm,
lobj->user_pages);
}
r = amdgpu_cs_bo_validate(p, bo);
if (r)
return r;
kvfree(lobj->user_pages);
lobj->user_pages = NULL;
}
return 0;
}
static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p,
union drm_amdgpu_cs *cs)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_bo_list_entry *e;
struct list_head duplicates;
unsigned int i;
int r;
INIT_LIST_HEAD(&p->validated);
/* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */
if (cs->in.bo_list_handle) {
if (p->bo_list)
return -EINVAL;
r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle,
&p->bo_list);
if (r)
return r;
} else if (!p->bo_list) {
/* Create a empty bo_list when no handle is provided */
r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0,
&p->bo_list);
if (r)
return r;
}
mutex_lock(&p->bo_list->bo_list_mutex);
/* One for TTM and one for each CS job */
amdgpu_bo_list_for_each_entry(e, p->bo_list)
e->tv.num_shared = 1 + p->gang_size;
p->uf_entry.tv.num_shared = 1 + p->gang_size;
amdgpu_bo_list_get_list(p->bo_list, &p->validated);
INIT_LIST_HEAD(&duplicates);
amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd);
/* Two for VM updates, one for TTM and one for each CS job */
p->vm_pd.tv.num_shared = 3 + p->gang_size;
if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent)
list_add(&p->uf_entry.tv.head, &p->validated);
/* Get userptr backing pages. If pages are updated after registered
* in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do
* amdgpu_ttm_backend_bind() to flush and invalidate new pages
*/
amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
bool userpage_invalidated = false;
int i;
e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages,
sizeof(struct page *),
GFP_KERNEL | __GFP_ZERO);
if (!e->user_pages) {
DRM_ERROR("kvmalloc_array failure\n");
r = -ENOMEM;
goto out_free_user_pages;
}
r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range);
if (r) {
kvfree(e->user_pages);
e->user_pages = NULL;
goto out_free_user_pages;
}
for (i = 0; i < bo->tbo.ttm->num_pages; i++) {
if (bo->tbo.ttm->pages[i] != e->user_pages[i]) {
userpage_invalidated = true;
break;
}
}
e->user_invalidated = userpage_invalidated;
}
r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true,
&duplicates);
if (unlikely(r != 0)) {
if (r != -ERESTARTSYS)
DRM_ERROR("ttm_eu_reserve_buffers failed.\n");
goto out_free_user_pages;
}
amdgpu_bo_list_for_each_entry(e, p->bo_list) {
struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
e->bo_va = amdgpu_vm_bo_find(vm, bo);
}
amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold,
&p->bytes_moved_vis_threshold);
p->bytes_moved = 0;
p->bytes_moved_vis = 0;
r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm,
amdgpu_cs_bo_validate, p);
if (r) {
DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n");
goto error_validate;
}
r = amdgpu_cs_list_validate(p, &duplicates);
if (r)
goto error_validate;
r = amdgpu_cs_list_validate(p, &p->validated);
if (r)
goto error_validate;
if (p->uf_entry.tv.bo) {
struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo);
r = amdgpu_ttm_alloc_gart(&uf->tbo);
if (r)
goto error_validate;
p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(uf);
}
amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved,
p->bytes_moved_vis);
for (i = 0; i < p->gang_size; ++i)
amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj,
p->bo_list->gws_obj,
p->bo_list->oa_obj);
return 0;
error_validate:
ttm_eu_backoff_reservation(&p->ticket, &p->validated);
out_free_user_pages:
amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
if (!e->user_pages)
continue;
amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range);
kvfree(e->user_pages);
e->user_pages = NULL;
e->range = NULL;
}
mutex_unlock(&p->bo_list->bo_list_mutex);
return r;
}
static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p)
{
int i, j;
if (!trace_amdgpu_cs_enabled())
return;
for (i = 0; i < p->gang_size; ++i) {
struct amdgpu_job *job = p->jobs[i];
for (j = 0; j < job->num_ibs; ++j)
trace_amdgpu_cs(p, job, &job->ibs[j]);
}
}
static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p,
struct amdgpu_job *job)
{
struct amdgpu_ring *ring = amdgpu_job_ring(job);
unsigned int i;
int r;
/* Only for UVD/VCE VM emulation */
if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place)
return 0;
for (i = 0; i < job->num_ibs; ++i) {
struct amdgpu_ib *ib = &job->ibs[i];
struct amdgpu_bo_va_mapping *m;
struct amdgpu_bo *aobj;
uint64_t va_start;
uint8_t *kptr;
va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK;
r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m);
if (r) {
DRM_ERROR("IB va_start is invalid\n");
return r;
}
if ((va_start + ib->length_dw * 4) >
(m->last + 1) * AMDGPU_GPU_PAGE_SIZE) {
DRM_ERROR("IB va_start+ib_bytes is invalid\n");
return -EINVAL;
}
/* the IB should be reserved at this point */
r = amdgpu_bo_kmap(aobj, (void **)&kptr);
if (r)
return r;
kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE);
if (ring->funcs->parse_cs) {
memcpy(ib->ptr, kptr, ib->length_dw * 4);
amdgpu_bo_kunmap(aobj);
r = amdgpu_ring_parse_cs(ring, p, job, ib);
if (r)
return r;
} else {
ib->ptr = (uint32_t *)kptr;
r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib);
amdgpu_bo_kunmap(aobj);
if (r)
return r;
}
}
return 0;
}
static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p)
{
unsigned int i;
int r;
for (i = 0; i < p->gang_size; ++i) {
r = amdgpu_cs_patch_ibs(p, p->jobs[i]);
if (r)
return r;
}
return 0;
}
static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_job *job = p->gang_leader;
struct amdgpu_device *adev = p->adev;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_bo_list_entry *e;
struct amdgpu_bo_va *bo_va;
struct amdgpu_bo *bo;
unsigned int i;
int r;
r = amdgpu_vm_clear_freed(adev, vm, NULL);
if (r)
return r;
r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false);
if (r)
return r;
r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update);
if (r)
return r;
if (fpriv->csa_va) {
bo_va = fpriv->csa_va;
BUG_ON(!bo_va);
r = amdgpu_vm_bo_update(adev, bo_va, false);
if (r)
return r;
r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update);
if (r)
return r;
}
amdgpu_bo_list_for_each_entry(e, p->bo_list) {
/* ignore duplicates */
bo = ttm_to_amdgpu_bo(e->tv.bo);
if (!bo)
continue;
bo_va = e->bo_va;
if (bo_va == NULL)
continue;
r = amdgpu_vm_bo_update(adev, bo_va, false);
if (r)
return r;
r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update);
if (r)
return r;
}
r = amdgpu_vm_handle_moved(adev, vm);
if (r)
return r;
r = amdgpu_vm_update_pdes(adev, vm, false);
if (r)
return r;
r = amdgpu_sync_fence(&p->sync, vm->last_update);
if (r)
return r;
for (i = 0; i < p->gang_size; ++i) {
job = p->jobs[i];
if (!job->vm)
continue;
job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo);
}
if (amdgpu_vm_debug) {
/* Invalidate all BOs to test for userspace bugs */
amdgpu_bo_list_for_each_entry(e, p->bo_list) {
struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
/* ignore duplicates */
if (!bo)
continue;
amdgpu_vm_bo_invalidate(adev, bo, false);
}
}
return 0;
}
static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct drm_gpu_scheduler *sched;
struct amdgpu_bo_list_entry *e;
struct dma_fence *fence;
unsigned int i;
int r;
r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]);
if (r) {
if (r != -ERESTARTSYS)
DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n");
return r;
}
list_for_each_entry(e, &p->validated, tv.head) {
struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
struct dma_resv *resv = bo->tbo.base.resv;
enum amdgpu_sync_mode sync_mode;
sync_mode = amdgpu_bo_explicit_sync(bo) ?
AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER;
r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode,
&fpriv->vm);
if (r)
return r;
}
for (i = 0; i < p->gang_size; ++i) {
r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]);
if (r)
return r;
}
sched = p->gang_leader->base.entity->rq->sched;
while ((fence = amdgpu_sync_get_fence(&p->sync))) {
struct drm_sched_fence *s_fence = to_drm_sched_fence(fence);
/*
* When we have an dependency it might be necessary to insert a
* pipeline sync to make sure that all caches etc are flushed and the
* next job actually sees the results from the previous one
* before we start executing on the same scheduler ring.
*/
if (!s_fence || s_fence->sched != sched) {
dma_fence_put(fence);
continue;
}
r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence);
dma_fence_put(fence);
if (r)
return r;
}
return 0;
}
static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p)
{
int i;
for (i = 0; i < p->num_post_deps; ++i) {
if (p->post_deps[i].chain && p->post_deps[i].point) {
drm_syncobj_add_point(p->post_deps[i].syncobj,
p->post_deps[i].chain,
p->fence, p->post_deps[i].point);
p->post_deps[i].chain = NULL;
} else {
drm_syncobj_replace_fence(p->post_deps[i].syncobj,
p->fence);
}
}
}
static int amdgpu_cs_submit(struct amdgpu_cs_parser *p,
union drm_amdgpu_cs *cs)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_job *leader = p->gang_leader;
struct amdgpu_bo_list_entry *e;
unsigned int i;
uint64_t seq;
int r;
for (i = 0; i < p->gang_size; ++i)
drm_sched_job_arm(&p->jobs[i]->base);
for (i = 0; i < p->gang_size; ++i) {
struct dma_fence *fence;
if (p->jobs[i] == leader)
continue;
fence = &p->jobs[i]->base.s_fence->scheduled;
dma_fence_get(fence);
r = drm_sched_job_add_dependency(&leader->base, fence);
if (r) {
dma_fence_put(fence);
return r;
}
}
if (p->gang_size > 1) {
for (i = 0; i < p->gang_size; ++i)
amdgpu_job_set_gang_leader(p->jobs[i], leader);
}
/* No memory allocation is allowed while holding the notifier lock.
* The lock is held until amdgpu_cs_submit is finished and fence is
* added to BOs.
*/
mutex_lock(&p->adev->notifier_lock);
/* If userptr are invalidated after amdgpu_cs_parser_bos(), return
* -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl.
*/
r = 0;
amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range);
e->range = NULL;
}
if (r) {
r = -EAGAIN;
mutex_unlock(&p->adev->notifier_lock);
return r;
}
p->fence = dma_fence_get(&leader->base.s_fence->finished);
list_for_each_entry(e, &p->validated, tv.head) {
/* Everybody except for the gang leader uses READ */
for (i = 0; i < p->gang_size; ++i) {
if (p->jobs[i] == leader)
continue;
dma_resv_add_fence(e->tv.bo->base.resv,
&p->jobs[i]->base.s_fence->finished,
DMA_RESV_USAGE_READ);
}
/* The gang leader is remembered as writer */
e->tv.num_shared = 0;
}
seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx],
p->fence);
amdgpu_cs_post_dependencies(p);
if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) &&
!p->ctx->preamble_presented) {
leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST;
p->ctx->preamble_presented = true;
}
cs->out.handle = seq;
leader->uf_sequence = seq;
amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket);
for (i = 0; i < p->gang_size; ++i) {
amdgpu_job_free_resources(p->jobs[i]);
trace_amdgpu_cs_ioctl(p->jobs[i]);
drm_sched_entity_push_job(&p->jobs[i]->base);
p->jobs[i] = NULL;
}
amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm);
ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence);
mutex_unlock(&p->adev->notifier_lock);
mutex_unlock(&p->bo_list->bo_list_mutex);
return 0;
}
/* Cleanup the parser structure */
static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser)
{
unsigned int i;
amdgpu_sync_free(&parser->sync);
for (i = 0; i < parser->num_post_deps; i++) {
drm_syncobj_put(parser->post_deps[i].syncobj);
kfree(parser->post_deps[i].chain);
}
kfree(parser->post_deps);
dma_fence_put(parser->fence);
if (parser->ctx)
amdgpu_ctx_put(parser->ctx);
if (parser->bo_list)
amdgpu_bo_list_put(parser->bo_list);
for (i = 0; i < parser->nchunks; i++)
kvfree(parser->chunks[i].kdata);
kvfree(parser->chunks);
for (i = 0; i < parser->gang_size; ++i) {
if (parser->jobs[i])
amdgpu_job_free(parser->jobs[i]);
}
if (parser->uf_entry.tv.bo) {
struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo);
amdgpu_bo_unref(&uf);
}
}
int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
{
struct amdgpu_device *adev = drm_to_adev(dev);
struct amdgpu_cs_parser parser;
int r;
if (amdgpu_ras_intr_triggered())
return -EHWPOISON;
if (!adev->accel_working)
return -EBUSY;
r = amdgpu_cs_parser_init(&parser, adev, filp, data);
if (r) {
if (printk_ratelimit())
DRM_ERROR("Failed to initialize parser %d!\n", r);
return r;
}
r = amdgpu_cs_pass1(&parser, data);
if (r)
goto error_fini;
r = amdgpu_cs_pass2(&parser);
if (r)
goto error_fini;
r = amdgpu_cs_parser_bos(&parser, data);
if (r) {
if (r == -ENOMEM)
DRM_ERROR("Not enough memory for command submission!\n");
else if (r != -ERESTARTSYS && r != -EAGAIN)
DRM_ERROR("Failed to process the buffer list %d!\n", r);
goto error_fini;
}
r = amdgpu_cs_patch_jobs(&parser);
if (r)
goto error_backoff;
r = amdgpu_cs_vm_handling(&parser);
if (r)
goto error_backoff;
r = amdgpu_cs_sync_rings(&parser);
if (r)
goto error_backoff;
trace_amdgpu_cs_ibs(&parser);
r = amdgpu_cs_submit(&parser, data);
if (r)
goto error_backoff;
amdgpu_cs_parser_fini(&parser);
return 0;
error_backoff:
ttm_eu_backoff_reservation(&parser.ticket, &parser.validated);
mutex_unlock(&parser.bo_list->bo_list_mutex);
error_fini:
amdgpu_cs_parser_fini(&parser);
return r;
}
/**
* amdgpu_cs_wait_ioctl - wait for a command submission to finish
*
* @dev: drm device
* @data: data from userspace
* @filp: file private
*
* Wait for the command submission identified by handle to finish.
*/
int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
union drm_amdgpu_wait_cs *wait = data;
unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
struct drm_sched_entity *entity;
struct amdgpu_ctx *ctx;
struct dma_fence *fence;
long r;
ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
if (ctx == NULL)
return -EINVAL;
r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance,
wait->in.ring, &entity);
if (r) {
amdgpu_ctx_put(ctx);
return r;
}
fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle);
if (IS_ERR(fence))
r = PTR_ERR(fence);
else if (fence) {
r = dma_fence_wait_timeout(fence, true, timeout);
if (r > 0 && fence->error)
r = fence->error;
dma_fence_put(fence);
} else
r = 1;
amdgpu_ctx_put(ctx);
if (r < 0)
return r;
memset(wait, 0, sizeof(*wait));
wait->out.status = (r == 0);
return 0;
}
/**
* amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence
*
* @adev: amdgpu device
* @filp: file private
* @user: drm_amdgpu_fence copied from user space
*/
static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev,
struct drm_file *filp,
struct drm_amdgpu_fence *user)
{
struct drm_sched_entity *entity;
struct amdgpu_ctx *ctx;
struct dma_fence *fence;
int r;
ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id);
if (ctx == NULL)
return ERR_PTR(-EINVAL);
r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance,
user->ring, &entity);
if (r) {
amdgpu_ctx_put(ctx);
return ERR_PTR(r);
}
fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no);
amdgpu_ctx_put(ctx);
return fence;
}
int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
struct amdgpu_device *adev = drm_to_adev(dev);
union drm_amdgpu_fence_to_handle *info = data;
struct dma_fence *fence;
struct drm_syncobj *syncobj;
struct sync_file *sync_file;
int fd, r;
fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence);
if (IS_ERR(fence))
return PTR_ERR(fence);
if (!fence)
fence = dma_fence_get_stub();
switch (info->in.what) {
case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ:
r = drm_syncobj_create(&syncobj, 0, fence);
dma_fence_put(fence);
if (r)
return r;
r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle);
drm_syncobj_put(syncobj);
return r;
case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD:
r = drm_syncobj_create(&syncobj, 0, fence);
dma_fence_put(fence);
if (r)
return r;
r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle);
drm_syncobj_put(syncobj);
return r;
case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD:
fd = get_unused_fd_flags(O_CLOEXEC);
if (fd < 0) {
dma_fence_put(fence);
return fd;
}
sync_file = sync_file_create(fence);
dma_fence_put(fence);
if (!sync_file) {
put_unused_fd(fd);
return -ENOMEM;
}
fd_install(fd, sync_file->file);
info->out.handle = fd;
return 0;
default:
dma_fence_put(fence);
return -EINVAL;
}
}
/**
* amdgpu_cs_wait_all_fences - wait on all fences to signal
*
* @adev: amdgpu device
* @filp: file private
* @wait: wait parameters
* @fences: array of drm_amdgpu_fence
*/
static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev,
struct drm_file *filp,
union drm_amdgpu_wait_fences *wait,
struct drm_amdgpu_fence *fences)
{
uint32_t fence_count = wait->in.fence_count;
unsigned int i;
long r = 1;
for (i = 0; i < fence_count; i++) {
struct dma_fence *fence;
unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
if (IS_ERR(fence))
return PTR_ERR(fence);
else if (!fence)
continue;
r = dma_fence_wait_timeout(fence, true, timeout);
if (r > 0 && fence->error)
r = fence->error;
dma_fence_put(fence);
if (r < 0)
return r;
if (r == 0)
break;
}
memset(wait, 0, sizeof(*wait));
wait->out.status = (r > 0);
return 0;
}
/**
* amdgpu_cs_wait_any_fence - wait on any fence to signal
*
* @adev: amdgpu device
* @filp: file private
* @wait: wait parameters
* @fences: array of drm_amdgpu_fence
*/
static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev,
struct drm_file *filp,
union drm_amdgpu_wait_fences *wait,
struct drm_amdgpu_fence *fences)
{
unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
uint32_t fence_count = wait->in.fence_count;
uint32_t first = ~0;
struct dma_fence **array;
unsigned int i;
long r;
/* Prepare the fence array */
array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL);
if (array == NULL)
return -ENOMEM;
for (i = 0; i < fence_count; i++) {
struct dma_fence *fence;
fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
if (IS_ERR(fence)) {
r = PTR_ERR(fence);
goto err_free_fence_array;
} else if (fence) {
array[i] = fence;
} else { /* NULL, the fence has been already signaled */
r = 1;
first = i;
goto out;
}
}
r = dma_fence_wait_any_timeout(array, fence_count, true, timeout,
&first);
if (r < 0)
goto err_free_fence_array;
out:
memset(wait, 0, sizeof(*wait));
wait->out.status = (r > 0);
wait->out.first_signaled = first;
if (first < fence_count && array[first])
r = array[first]->error;
else
r = 0;
err_free_fence_array:
for (i = 0; i < fence_count; i++)
dma_fence_put(array[i]);
kfree(array);
return r;
}
/**
* amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish
*
* @dev: drm device
* @data: data from userspace
* @filp: file private
*/
int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
struct amdgpu_device *adev = drm_to_adev(dev);
union drm_amdgpu_wait_fences *wait = data;
uint32_t fence_count = wait->in.fence_count;
struct drm_amdgpu_fence *fences_user;
struct drm_amdgpu_fence *fences;
int r;
/* Get the fences from userspace */
fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence),
GFP_KERNEL);
if (fences == NULL)
return -ENOMEM;
fences_user = u64_to_user_ptr(wait->in.fences);
if (copy_from_user(fences, fences_user,
sizeof(struct drm_amdgpu_fence) * fence_count)) {
r = -EFAULT;
goto err_free_fences;
}
if (wait->in.wait_all)
r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences);
else
r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences);
err_free_fences:
kfree(fences);
return r;
}
/**
* amdgpu_cs_find_mapping - find bo_va for VM address
*
* @parser: command submission parser context
* @addr: VM address
* @bo: resulting BO of the mapping found
* @map: Placeholder to return found BO mapping
*
* Search the buffer objects in the command submission context for a certain
* virtual memory address. Returns allocation structure when found, NULL
* otherwise.
*/
int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
uint64_t addr, struct amdgpu_bo **bo,
struct amdgpu_bo_va_mapping **map)
{
struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
struct ttm_operation_ctx ctx = { false, false };
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_bo_va_mapping *mapping;
int r;
addr /= AMDGPU_GPU_PAGE_SIZE;
mapping = amdgpu_vm_bo_lookup_mapping(vm, addr);
if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo)
return -EINVAL;
*bo = mapping->bo_va->base.bo;
*map = mapping;
/* Double check that the BO is reserved by this CS */
if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket)
return -EINVAL;
if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) {
(*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains);
r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx);
if (r)
return r;
}
return amdgpu_ttm_alloc_gart(&(*bo)->tbo);
}