| /* |
| * Copyright 2019 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "amdgpu_ras_eeprom.h" |
| #include "amdgpu.h" |
| #include "amdgpu_ras.h" |
| #include <linux/bits.h> |
| #include "atom.h" |
| #include "amdgpu_eeprom.h" |
| #include "amdgpu_atomfirmware.h" |
| #include <linux/debugfs.h> |
| #include <linux/uaccess.h> |
| |
| #include "amdgpu_reset.h" |
| |
| /* These are memory addresses as would be seen by one or more EEPROM |
| * chips strung on the I2C bus, usually by manipulating pins 1-3 of a |
| * set of EEPROM devices. They form a continuous memory space. |
| * |
| * The I2C device address includes the device type identifier, 1010b, |
| * which is a reserved value and indicates that this is an I2C EEPROM |
| * device. It also includes the top 3 bits of the 19 bit EEPROM memory |
| * address, namely bits 18, 17, and 16. This makes up the 7 bit |
| * address sent on the I2C bus with bit 0 being the direction bit, |
| * which is not represented here, and sent by the hardware directly. |
| * |
| * For instance, |
| * 50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0. |
| * 54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h. |
| * 56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h. |
| * Depending on the size of the I2C EEPROM device(s), bits 18:16 may |
| * address memory in a device or a device on the I2C bus, depending on |
| * the status of pins 1-3. See top of amdgpu_eeprom.c. |
| * |
| * The RAS table lives either at address 0 or address 40000h of EEPROM. |
| */ |
| #define EEPROM_I2C_MADDR_0 0x0 |
| #define EEPROM_I2C_MADDR_4 0x40000 |
| |
| /* |
| * The 2 macros bellow represent the actual size in bytes that |
| * those entities occupy in the EEPROM memory. |
| * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which |
| * uses uint64 to store 6b fields such as retired_page. |
| */ |
| #define RAS_TABLE_HEADER_SIZE 20 |
| #define RAS_TABLE_RECORD_SIZE 24 |
| |
| /* Table hdr is 'AMDR' */ |
| #define RAS_TABLE_HDR_VAL 0x414d4452 |
| |
| /* Bad GPU tag ‘BADG’ */ |
| #define RAS_TABLE_HDR_BAD 0x42414447 |
| |
| /* |
| * EEPROM Table structure v1 |
| * --------------------------------- |
| * | | |
| * | EEPROM TABLE HEADER | |
| * | ( size 20 Bytes ) | |
| * | | |
| * --------------------------------- |
| * | | |
| * | BAD PAGE RECORD AREA | |
| * | | |
| * --------------------------------- |
| */ |
| |
| /* Assume 2-Mbit size EEPROM and take up the whole space. */ |
| #define RAS_TBL_SIZE_BYTES (256 * 1024) |
| #define RAS_TABLE_START 0 |
| #define RAS_HDR_START RAS_TABLE_START |
| #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) |
| #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ |
| / RAS_TABLE_RECORD_SIZE) |
| |
| /* |
| * EEPROM Table structrue v2.1 |
| * --------------------------------- |
| * | | |
| * | EEPROM TABLE HEADER | |
| * | ( size 20 Bytes ) | |
| * | | |
| * --------------------------------- |
| * | | |
| * | EEPROM TABLE RAS INFO | |
| * | (available info size 4 Bytes) | |
| * | ( reserved size 252 Bytes ) | |
| * | | |
| * --------------------------------- |
| * | | |
| * | BAD PAGE RECORD AREA | |
| * | | |
| * --------------------------------- |
| */ |
| |
| /* EEPROM Table V2_1 */ |
| #define RAS_TABLE_V2_1_INFO_SIZE 256 |
| #define RAS_TABLE_V2_1_INFO_START RAS_TABLE_HEADER_SIZE |
| #define RAS_RECORD_START_V2_1 (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \ |
| RAS_TABLE_V2_1_INFO_SIZE) |
| #define RAS_MAX_RECORD_COUNT_V2_1 ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \ |
| RAS_TABLE_V2_1_INFO_SIZE) \ |
| / RAS_TABLE_RECORD_SIZE) |
| |
| /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM |
| * offset off of RAS_TABLE_START. That is, this is something you can |
| * add to control->i2c_address, and then tell I2C layer to read |
| * from/write to there. _N is the so called absolute index, |
| * because it starts right after the table header. |
| */ |
| #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \ |
| (_N) * RAS_TABLE_RECORD_SIZE) |
| |
| #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \ |
| (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE) |
| |
| /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off |
| * of "fri", return the absolute record index off of the end of |
| * the table header. |
| */ |
| #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \ |
| (_C)->ras_max_record_count) |
| |
| #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ |
| RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE) |
| |
| #define RAS_NUM_RECS_V2_1(_tbl_hdr) (((_tbl_hdr)->tbl_size - \ |
| RAS_TABLE_HEADER_SIZE - \ |
| RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE) |
| |
| #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev |
| |
| static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) |
| { |
| switch (adev->ip_versions[MP1_HWIP][0]) { |
| case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */ |
| case IP_VERSION(11, 0, 7): /* Sienna cichlid */ |
| case IP_VERSION(13, 0, 0): |
| case IP_VERSION(13, 0, 2): /* Aldebaran */ |
| case IP_VERSION(13, 0, 10): |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, |
| struct amdgpu_ras_eeprom_control *control) |
| { |
| struct atom_context *atom_ctx = adev->mode_info.atom_context; |
| u8 i2c_addr; |
| |
| if (!control) |
| return false; |
| |
| if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) { |
| /* The address given by VBIOS is an 8-bit, wire-format |
| * address, i.e. the most significant byte. |
| * |
| * Normalize it to a 19-bit EEPROM address. Remove the |
| * device type identifier and make it a 7-bit address; |
| * then make it a 19-bit EEPROM address. See top of |
| * amdgpu_eeprom.c. |
| */ |
| i2c_addr = (i2c_addr & 0x0F) >> 1; |
| control->i2c_address = ((u32) i2c_addr) << 16; |
| |
| return true; |
| } |
| |
| switch (adev->ip_versions[MP1_HWIP][0]) { |
| case IP_VERSION(11, 0, 2): |
| /* VEGA20 and ARCTURUS */ |
| if (adev->asic_type == CHIP_VEGA20) |
| control->i2c_address = EEPROM_I2C_MADDR_0; |
| else if (strnstr(atom_ctx->vbios_version, |
| "D342", |
| sizeof(atom_ctx->vbios_version))) |
| control->i2c_address = EEPROM_I2C_MADDR_0; |
| else |
| control->i2c_address = EEPROM_I2C_MADDR_4; |
| return true; |
| case IP_VERSION(11, 0, 7): |
| control->i2c_address = EEPROM_I2C_MADDR_0; |
| return true; |
| case IP_VERSION(13, 0, 2): |
| if (strnstr(atom_ctx->vbios_version, "D673", |
| sizeof(atom_ctx->vbios_version))) |
| control->i2c_address = EEPROM_I2C_MADDR_4; |
| else |
| control->i2c_address = EEPROM_I2C_MADDR_0; |
| return true; |
| case IP_VERSION(13, 0, 0): |
| case IP_VERSION(13, 0, 10): |
| control->i2c_address = EEPROM_I2C_MADDR_4; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void |
| __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr, |
| unsigned char *buf) |
| { |
| u32 *pp = (uint32_t *)buf; |
| |
| pp[0] = cpu_to_le32(hdr->header); |
| pp[1] = cpu_to_le32(hdr->version); |
| pp[2] = cpu_to_le32(hdr->first_rec_offset); |
| pp[3] = cpu_to_le32(hdr->tbl_size); |
| pp[4] = cpu_to_le32(hdr->checksum); |
| } |
| |
| static void |
| __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr, |
| unsigned char *buf) |
| { |
| u32 *pp = (uint32_t *)buf; |
| |
| hdr->header = le32_to_cpu(pp[0]); |
| hdr->version = le32_to_cpu(pp[1]); |
| hdr->first_rec_offset = le32_to_cpu(pp[2]); |
| hdr->tbl_size = le32_to_cpu(pp[3]); |
| hdr->checksum = le32_to_cpu(pp[4]); |
| } |
| |
| static int __write_table_header(struct amdgpu_ras_eeprom_control *control) |
| { |
| u8 buf[RAS_TABLE_HEADER_SIZE]; |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| int res; |
| |
| memset(buf, 0, sizeof(buf)); |
| __encode_table_header_to_buf(&control->tbl_hdr, buf); |
| |
| /* i2c may be unstable in gpu reset */ |
| down_read(&adev->reset_domain->sem); |
| res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, |
| control->i2c_address + |
| control->ras_header_offset, |
| buf, RAS_TABLE_HEADER_SIZE); |
| up_read(&adev->reset_domain->sem); |
| |
| if (res < 0) { |
| DRM_ERROR("Failed to write EEPROM table header:%d", res); |
| } else if (res < RAS_TABLE_HEADER_SIZE) { |
| DRM_ERROR("Short write:%d out of %d\n", |
| res, RAS_TABLE_HEADER_SIZE); |
| res = -EIO; |
| } else { |
| res = 0; |
| } |
| |
| return res; |
| } |
| |
| static void |
| __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, |
| unsigned char *buf) |
| { |
| u32 *pp = (uint32_t *)buf; |
| u32 tmp; |
| |
| tmp = ((uint32_t)(rai->rma_status) & 0xFF) | |
| (((uint32_t)(rai->health_percent) << 8) & 0xFF00) | |
| (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000); |
| pp[0] = cpu_to_le32(tmp); |
| } |
| |
| static void |
| __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai, |
| unsigned char *buf) |
| { |
| u32 *pp = (uint32_t *)buf; |
| u32 tmp; |
| |
| tmp = le32_to_cpu(pp[0]); |
| rai->rma_status = tmp & 0xFF; |
| rai->health_percent = (tmp >> 8) & 0xFF; |
| rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF; |
| } |
| |
| static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| u8 *buf; |
| int res; |
| |
| buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); |
| if (!buf) { |
| DRM_ERROR("Failed to alloc buf to write table ras info\n"); |
| return -ENOMEM; |
| } |
| |
| __encode_table_ras_info_to_buf(&control->tbl_rai, buf); |
| |
| /* i2c may be unstable in gpu reset */ |
| down_read(&adev->reset_domain->sem); |
| res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, |
| control->i2c_address + |
| control->ras_info_offset, |
| buf, RAS_TABLE_V2_1_INFO_SIZE); |
| up_read(&adev->reset_domain->sem); |
| |
| if (res < 0) { |
| DRM_ERROR("Failed to write EEPROM table ras info:%d", res); |
| } else if (res < RAS_TABLE_V2_1_INFO_SIZE) { |
| DRM_ERROR("Short write:%d out of %d\n", |
| res, RAS_TABLE_V2_1_INFO_SIZE); |
| res = -EIO; |
| } else { |
| res = 0; |
| } |
| |
| kfree(buf); |
| |
| return res; |
| } |
| |
| static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control) |
| { |
| int ii; |
| u8 *pp, csum; |
| size_t sz; |
| |
| /* Header checksum, skip checksum field in the calculation */ |
| sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); |
| pp = (u8 *) &control->tbl_hdr; |
| csum = 0; |
| for (ii = 0; ii < sz; ii++, pp++) |
| csum += *pp; |
| |
| return csum; |
| } |
| |
| static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control) |
| { |
| int ii; |
| u8 *pp, csum; |
| size_t sz; |
| |
| sz = sizeof(control->tbl_rai); |
| pp = (u8 *) &control->tbl_rai; |
| csum = 0; |
| for (ii = 0; ii < sz; ii++, pp++) |
| csum += *pp; |
| |
| return csum; |
| } |
| |
| static int amdgpu_ras_eeprom_correct_header_tag( |
| struct amdgpu_ras_eeprom_control *control, |
| uint32_t header) |
| { |
| struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; |
| u8 *hh; |
| int res; |
| u8 csum; |
| |
| csum = -hdr->checksum; |
| |
| hh = (void *) &hdr->header; |
| csum -= (hh[0] + hh[1] + hh[2] + hh[3]); |
| hh = (void *) &header; |
| csum += hh[0] + hh[1] + hh[2] + hh[3]; |
| csum = -csum; |
| mutex_lock(&control->ras_tbl_mutex); |
| hdr->header = header; |
| hdr->checksum = csum; |
| res = __write_table_header(control); |
| mutex_unlock(&control->ras_tbl_mutex); |
| |
| return res; |
| } |
| |
| /** |
| * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table |
| * @control: pointer to control structure |
| * |
| * Reset the contents of the header of the RAS EEPROM table. |
| * Return 0 on success, -errno on error. |
| */ |
| int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; |
| struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; |
| struct amdgpu_ras *con = amdgpu_ras_get_context(adev); |
| u8 csum; |
| int res; |
| |
| mutex_lock(&control->ras_tbl_mutex); |
| |
| hdr->header = RAS_TABLE_HDR_VAL; |
| if (adev->umc.ras && |
| adev->umc.ras->set_eeprom_table_version) |
| adev->umc.ras->set_eeprom_table_version(hdr); |
| else |
| hdr->version = RAS_TABLE_VER_V1; |
| |
| if (hdr->version == RAS_TABLE_VER_V2_1) { |
| hdr->first_rec_offset = RAS_RECORD_START_V2_1; |
| hdr->tbl_size = RAS_TABLE_HEADER_SIZE + |
| RAS_TABLE_V2_1_INFO_SIZE; |
| rai->rma_status = GPU_HEALTH_USABLE; |
| /** |
| * GPU health represented as a percentage. |
| * 0 means worst health, 100 means fully health. |
| */ |
| rai->health_percent = 100; |
| /* ecc_page_threshold = 0 means disable bad page retirement */ |
| rai->ecc_page_threshold = con->bad_page_cnt_threshold; |
| } else { |
| hdr->first_rec_offset = RAS_RECORD_START; |
| hdr->tbl_size = RAS_TABLE_HEADER_SIZE; |
| } |
| |
| csum = __calc_hdr_byte_sum(control); |
| if (hdr->version == RAS_TABLE_VER_V2_1) |
| csum += __calc_ras_info_byte_sum(control); |
| csum = -csum; |
| hdr->checksum = csum; |
| res = __write_table_header(control); |
| if (!res && hdr->version > RAS_TABLE_VER_V1) |
| res = __write_table_ras_info(control); |
| |
| control->ras_num_recs = 0; |
| control->ras_fri = 0; |
| |
| amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs); |
| |
| control->bad_channel_bitmap = 0; |
| amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap); |
| con->update_channel_flag = false; |
| |
| amdgpu_ras_debugfs_set_ret_size(control); |
| |
| mutex_unlock(&control->ras_tbl_mutex); |
| |
| return res; |
| } |
| |
| static void |
| __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control, |
| struct eeprom_table_record *record, |
| unsigned char *buf) |
| { |
| __le64 tmp = 0; |
| int i = 0; |
| |
| /* Next are all record fields according to EEPROM page spec in LE foramt */ |
| buf[i++] = record->err_type; |
| |
| buf[i++] = record->bank; |
| |
| tmp = cpu_to_le64(record->ts); |
| memcpy(buf + i, &tmp, 8); |
| i += 8; |
| |
| tmp = cpu_to_le64((record->offset & 0xffffffffffff)); |
| memcpy(buf + i, &tmp, 6); |
| i += 6; |
| |
| buf[i++] = record->mem_channel; |
| buf[i++] = record->mcumc_id; |
| |
| tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); |
| memcpy(buf + i, &tmp, 6); |
| } |
| |
| static void |
| __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control, |
| struct eeprom_table_record *record, |
| unsigned char *buf) |
| { |
| __le64 tmp = 0; |
| int i = 0; |
| |
| /* Next are all record fields according to EEPROM page spec in LE foramt */ |
| record->err_type = buf[i++]; |
| |
| record->bank = buf[i++]; |
| |
| memcpy(&tmp, buf + i, 8); |
| record->ts = le64_to_cpu(tmp); |
| i += 8; |
| |
| memcpy(&tmp, buf + i, 6); |
| record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); |
| i += 6; |
| |
| record->mem_channel = buf[i++]; |
| record->mcumc_id = buf[i++]; |
| |
| memcpy(&tmp, buf + i, 6); |
| record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); |
| } |
| |
| bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) |
| { |
| struct amdgpu_ras *con = amdgpu_ras_get_context(adev); |
| |
| if (!__is_ras_eeprom_supported(adev) || |
| !amdgpu_bad_page_threshold) |
| return false; |
| |
| /* skip check eeprom table for VEGA20 Gaming */ |
| if (!con) |
| return false; |
| else |
| if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) |
| return false; |
| |
| if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { |
| if (amdgpu_bad_page_threshold == -1) { |
| dev_warn(adev->dev, "RAS records:%d exceed threshold:%d", |
| con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold); |
| dev_warn(adev->dev, |
| "But GPU can be operated due to bad_page_threshold = -1.\n"); |
| return false; |
| } else { |
| dev_warn(adev->dev, "This GPU is in BAD status."); |
| dev_warn(adev->dev, "Please retire it or set a larger " |
| "threshold value when reloading driver.\n"); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /** |
| * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM |
| * @control: pointer to control structure |
| * @buf: pointer to buffer containing data to write |
| * @fri: start writing at this index |
| * @num: number of records to write |
| * |
| * The caller must hold the table mutex in @control. |
| * Return 0 on success, -errno otherwise. |
| */ |
| static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, |
| u8 *buf, const u32 fri, const u32 num) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| u32 buf_size; |
| int res; |
| |
| /* i2c may be unstable in gpu reset */ |
| down_read(&adev->reset_domain->sem); |
| buf_size = num * RAS_TABLE_RECORD_SIZE; |
| res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus, |
| control->i2c_address + |
| RAS_INDEX_TO_OFFSET(control, fri), |
| buf, buf_size); |
| up_read(&adev->reset_domain->sem); |
| if (res < 0) { |
| DRM_ERROR("Writing %d EEPROM table records error:%d", |
| num, res); |
| } else if (res < buf_size) { |
| /* Short write, return error. |
| */ |
| DRM_ERROR("Wrote %d records out of %d", |
| res / RAS_TABLE_RECORD_SIZE, num); |
| res = -EIO; |
| } else { |
| res = 0; |
| } |
| |
| return res; |
| } |
| |
| static int |
| amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control, |
| struct eeprom_table_record *record, |
| const u32 num) |
| { |
| struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control)); |
| u32 a, b, i; |
| u8 *buf, *pp; |
| int res; |
| |
| buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| /* Encode all of them in one go. |
| */ |
| pp = buf; |
| for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { |
| __encode_table_record_to_buf(control, &record[i], pp); |
| |
| /* update bad channel bitmap */ |
| if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { |
| control->bad_channel_bitmap |= 1 << record[i].mem_channel; |
| con->update_channel_flag = true; |
| } |
| } |
| |
| /* a, first record index to write into. |
| * b, last record index to write into. |
| * a = first index to read (fri) + number of records in the table, |
| * b = a + @num - 1. |
| * Let N = control->ras_max_num_record_count, then we have, |
| * case 0: 0 <= a <= b < N, |
| * just append @num records starting at a; |
| * case 1: 0 <= a < N <= b, |
| * append (N - a) records starting at a, and |
| * append the remainder, b % N + 1, starting at 0. |
| * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases, |
| * case 2a: 0 <= a <= b < N |
| * append num records starting at a; and fix fri if b overwrote it, |
| * and since a <= b, if b overwrote it then a must've also, |
| * and if b didn't overwrite it, then a didn't also. |
| * case 2b: 0 <= b < a < N |
| * write num records starting at a, which wraps around 0=N |
| * and overwrite fri unconditionally. Now from case 2a, |
| * this means that b eclipsed fri to overwrite it and wrap |
| * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally |
| * set fri = b + 1 (mod N). |
| * Now, since fri is updated in every case, except the trivial case 0, |
| * the number of records present in the table after writing, is, |
| * num_recs - 1 = b - fri (mod N), and we take the positive value, |
| * by adding an arbitrary multiple of N before taking the modulo N |
| * as shown below. |
| */ |
| a = control->ras_fri + control->ras_num_recs; |
| b = a + num - 1; |
| if (b < control->ras_max_record_count) { |
| res = __amdgpu_ras_eeprom_write(control, buf, a, num); |
| } else if (a < control->ras_max_record_count) { |
| u32 g0, g1; |
| |
| g0 = control->ras_max_record_count - a; |
| g1 = b % control->ras_max_record_count + 1; |
| res = __amdgpu_ras_eeprom_write(control, buf, a, g0); |
| if (res) |
| goto Out; |
| res = __amdgpu_ras_eeprom_write(control, |
| buf + g0 * RAS_TABLE_RECORD_SIZE, |
| 0, g1); |
| if (res) |
| goto Out; |
| if (g1 > control->ras_fri) |
| control->ras_fri = g1 % control->ras_max_record_count; |
| } else { |
| a %= control->ras_max_record_count; |
| b %= control->ras_max_record_count; |
| |
| if (a <= b) { |
| /* Note that, b - a + 1 = num. */ |
| res = __amdgpu_ras_eeprom_write(control, buf, a, num); |
| if (res) |
| goto Out; |
| if (b >= control->ras_fri) |
| control->ras_fri = (b + 1) % control->ras_max_record_count; |
| } else { |
| u32 g0, g1; |
| |
| /* b < a, which means, we write from |
| * a to the end of the table, and from |
| * the start of the table to b. |
| */ |
| g0 = control->ras_max_record_count - a; |
| g1 = b + 1; |
| res = __amdgpu_ras_eeprom_write(control, buf, a, g0); |
| if (res) |
| goto Out; |
| res = __amdgpu_ras_eeprom_write(control, |
| buf + g0 * RAS_TABLE_RECORD_SIZE, |
| 0, g1); |
| if (res) |
| goto Out; |
| control->ras_fri = g1 % control->ras_max_record_count; |
| } |
| } |
| control->ras_num_recs = 1 + (control->ras_max_record_count + b |
| - control->ras_fri) |
| % control->ras_max_record_count; |
| Out: |
| kfree(buf); |
| return res; |
| } |
| |
| static int |
| amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); |
| u8 *buf, *pp, csum; |
| u32 buf_size; |
| int res; |
| |
| /* Modify the header if it exceeds. |
| */ |
| if (amdgpu_bad_page_threshold != 0 && |
| control->ras_num_recs >= ras->bad_page_cnt_threshold) { |
| dev_warn(adev->dev, |
| "Saved bad pages %d reaches threshold value %d\n", |
| control->ras_num_recs, ras->bad_page_cnt_threshold); |
| control->tbl_hdr.header = RAS_TABLE_HDR_BAD; |
| if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) { |
| control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD; |
| control->tbl_rai.health_percent = 0; |
| } |
| } |
| |
| if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) |
| control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + |
| RAS_TABLE_V2_1_INFO_SIZE + |
| control->ras_num_recs * RAS_TABLE_RECORD_SIZE; |
| else |
| control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + |
| control->ras_num_recs * RAS_TABLE_RECORD_SIZE; |
| control->tbl_hdr.checksum = 0; |
| |
| buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE; |
| buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); |
| if (!buf) { |
| DRM_ERROR("allocating memory for table of size %d bytes failed\n", |
| control->tbl_hdr.tbl_size); |
| res = -ENOMEM; |
| goto Out; |
| } |
| |
| down_read(&adev->reset_domain->sem); |
| res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, |
| control->i2c_address + |
| control->ras_record_offset, |
| buf, buf_size); |
| up_read(&adev->reset_domain->sem); |
| if (res < 0) { |
| DRM_ERROR("EEPROM failed reading records:%d\n", |
| res); |
| goto Out; |
| } else if (res < buf_size) { |
| DRM_ERROR("EEPROM read %d out of %d bytes\n", |
| res, buf_size); |
| res = -EIO; |
| goto Out; |
| } |
| |
| /** |
| * bad page records have been stored in eeprom, |
| * now calculate gpu health percent |
| */ |
| if (amdgpu_bad_page_threshold != 0 && |
| control->tbl_hdr.version == RAS_TABLE_VER_V2_1 && |
| control->ras_num_recs < ras->bad_page_cnt_threshold) |
| control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold - |
| control->ras_num_recs) * 100) / |
| ras->bad_page_cnt_threshold; |
| |
| /* Recalc the checksum. |
| */ |
| csum = 0; |
| for (pp = buf; pp < buf + buf_size; pp++) |
| csum += *pp; |
| |
| csum += __calc_hdr_byte_sum(control); |
| if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) |
| csum += __calc_ras_info_byte_sum(control); |
| /* avoid sign extension when assigning to "checksum" */ |
| csum = -csum; |
| control->tbl_hdr.checksum = csum; |
| res = __write_table_header(control); |
| if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1) |
| res = __write_table_ras_info(control); |
| Out: |
| kfree(buf); |
| return res; |
| } |
| |
| /** |
| * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table |
| * @control: pointer to control structure |
| * @record: array of records to append |
| * @num: number of records in @record array |
| * |
| * Append @num records to the table, calculate the checksum and write |
| * the table back to EEPROM. The maximum number of records that |
| * can be appended is between 1 and control->ras_max_record_count, |
| * regardless of how many records are already stored in the table. |
| * |
| * Return 0 on success or if EEPROM is not supported, -errno on error. |
| */ |
| int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control, |
| struct eeprom_table_record *record, |
| const u32 num) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| int res; |
| |
| if (!__is_ras_eeprom_supported(adev)) |
| return 0; |
| |
| if (num == 0) { |
| DRM_ERROR("will not append 0 records\n"); |
| return -EINVAL; |
| } else if (num > control->ras_max_record_count) { |
| DRM_ERROR("cannot append %d records than the size of table %d\n", |
| num, control->ras_max_record_count); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&control->ras_tbl_mutex); |
| |
| res = amdgpu_ras_eeprom_append_table(control, record, num); |
| if (!res) |
| res = amdgpu_ras_eeprom_update_header(control); |
| if (!res) |
| amdgpu_ras_debugfs_set_ret_size(control); |
| |
| mutex_unlock(&control->ras_tbl_mutex); |
| return res; |
| } |
| |
| /** |
| * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer |
| * @control: pointer to control structure |
| * @buf: pointer to buffer to read into |
| * @fri: first record index, start reading at this index, absolute index |
| * @num: number of records to read |
| * |
| * The caller must hold the table mutex in @control. |
| * Return 0 on success, -errno otherwise. |
| */ |
| static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, |
| u8 *buf, const u32 fri, const u32 num) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| u32 buf_size; |
| int res; |
| |
| /* i2c may be unstable in gpu reset */ |
| down_read(&adev->reset_domain->sem); |
| buf_size = num * RAS_TABLE_RECORD_SIZE; |
| res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, |
| control->i2c_address + |
| RAS_INDEX_TO_OFFSET(control, fri), |
| buf, buf_size); |
| up_read(&adev->reset_domain->sem); |
| if (res < 0) { |
| DRM_ERROR("Reading %d EEPROM table records error:%d", |
| num, res); |
| } else if (res < buf_size) { |
| /* Short read, return error. |
| */ |
| DRM_ERROR("Read %d records out of %d", |
| res / RAS_TABLE_RECORD_SIZE, num); |
| res = -EIO; |
| } else { |
| res = 0; |
| } |
| |
| return res; |
| } |
| |
| /** |
| * amdgpu_ras_eeprom_read -- read EEPROM |
| * @control: pointer to control structure |
| * @record: array of records to read into |
| * @num: number of records in @record |
| * |
| * Reads num records from the RAS table in EEPROM and |
| * writes the data into @record array. |
| * |
| * Returns 0 on success, -errno on error. |
| */ |
| int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, |
| struct eeprom_table_record *record, |
| const u32 num) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| struct amdgpu_ras *con = amdgpu_ras_get_context(adev); |
| int i, res; |
| u8 *buf, *pp; |
| u32 g0, g1; |
| |
| if (!__is_ras_eeprom_supported(adev)) |
| return 0; |
| |
| if (num == 0) { |
| DRM_ERROR("will not read 0 records\n"); |
| return -EINVAL; |
| } else if (num > control->ras_num_recs) { |
| DRM_ERROR("too many records to read:%d available:%d\n", |
| num, control->ras_num_recs); |
| return -EINVAL; |
| } |
| |
| buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| /* Determine how many records to read, from the first record |
| * index, fri, to the end of the table, and from the beginning |
| * of the table, such that the total number of records is |
| * @num, and we handle wrap around when fri > 0 and |
| * fri + num > RAS_MAX_RECORD_COUNT. |
| * |
| * First we compute the index of the last element |
| * which would be fetched from each region, |
| * g0 is in [fri, fri + num - 1], and |
| * g1 is in [0, RAS_MAX_RECORD_COUNT - 1]. |
| * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of |
| * the last element to fetch, we set g0 to _the number_ |
| * of elements to fetch, @num, since we know that the last |
| * indexed to be fetched does not exceed the table. |
| * |
| * If, however, g0 >= RAS_MAX_RECORD_COUNT, then |
| * we set g0 to the number of elements to read |
| * until the end of the table, and g1 to the number of |
| * elements to read from the beginning of the table. |
| */ |
| g0 = control->ras_fri + num - 1; |
| g1 = g0 % control->ras_max_record_count; |
| if (g0 < control->ras_max_record_count) { |
| g0 = num; |
| g1 = 0; |
| } else { |
| g0 = control->ras_max_record_count - control->ras_fri; |
| g1 += 1; |
| } |
| |
| mutex_lock(&control->ras_tbl_mutex); |
| res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0); |
| if (res) |
| goto Out; |
| if (g1) { |
| res = __amdgpu_ras_eeprom_read(control, |
| buf + g0 * RAS_TABLE_RECORD_SIZE, |
| 0, g1); |
| if (res) |
| goto Out; |
| } |
| |
| res = 0; |
| |
| /* Read up everything? Then transform. |
| */ |
| pp = buf; |
| for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) { |
| __decode_table_record_from_buf(control, &record[i], pp); |
| |
| /* update bad channel bitmap */ |
| if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) { |
| control->bad_channel_bitmap |= 1 << record[i].mem_channel; |
| con->update_channel_flag = true; |
| } |
| } |
| Out: |
| kfree(buf); |
| mutex_unlock(&control->ras_tbl_mutex); |
| |
| return res; |
| } |
| |
| uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control) |
| { |
| if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) |
| return RAS_MAX_RECORD_COUNT_V2_1; |
| else |
| return RAS_MAX_RECORD_COUNT; |
| } |
| |
| static ssize_t |
| amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; |
| struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); |
| struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; |
| u8 data[50]; |
| int res; |
| |
| if (!size) |
| return size; |
| |
| if (!ras || !control) { |
| res = snprintf(data, sizeof(data), "Not supported\n"); |
| } else { |
| res = snprintf(data, sizeof(data), "%d bytes or %d records\n", |
| RAS_TBL_SIZE_BYTES, control->ras_max_record_count); |
| } |
| |
| if (*pos >= res) |
| return 0; |
| |
| res -= *pos; |
| res = min_t(size_t, res, size); |
| |
| if (copy_to_user(buf, &data[*pos], res)) |
| return -EFAULT; |
| |
| *pos += res; |
| |
| return res; |
| } |
| |
| const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = { |
| .owner = THIS_MODULE, |
| .read = amdgpu_ras_debugfs_eeprom_size_read, |
| .write = NULL, |
| .llseek = default_llseek, |
| }; |
| |
| static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n"; |
| static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n"; |
| #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1) |
| static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n"; |
| static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n"; |
| #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1) |
| |
| static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = { |
| "ignore", |
| "re", |
| "ue", |
| }; |
| |
| static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control) |
| { |
| return strlen(tbl_hdr_str) + tbl_hdr_fmt_size + |
| strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs; |
| } |
| |
| void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control) |
| { |
| struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras, |
| eeprom_control); |
| struct dentry *de = ras->de_ras_eeprom_table; |
| |
| if (de) |
| d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control); |
| } |
| |
| static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; |
| struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); |
| struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control; |
| const size_t orig_size = size; |
| int res = -EFAULT; |
| size_t data_len; |
| |
| mutex_lock(&control->ras_tbl_mutex); |
| |
| /* We want *pos - data_len > 0, which means there's |
| * bytes to be printed from data. |
| */ |
| data_len = strlen(tbl_hdr_str); |
| if (*pos < data_len) { |
| data_len -= *pos; |
| data_len = min_t(size_t, data_len, size); |
| if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len)) |
| goto Out; |
| buf += data_len; |
| size -= data_len; |
| *pos += data_len; |
| } |
| |
| data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size; |
| if (*pos < data_len && size > 0) { |
| u8 data[tbl_hdr_fmt_size + 1]; |
| loff_t lpos; |
| |
| snprintf(data, sizeof(data), tbl_hdr_fmt, |
| control->tbl_hdr.header, |
| control->tbl_hdr.version, |
| control->tbl_hdr.first_rec_offset, |
| control->tbl_hdr.tbl_size, |
| control->tbl_hdr.checksum); |
| |
| data_len -= *pos; |
| data_len = min_t(size_t, data_len, size); |
| lpos = *pos - strlen(tbl_hdr_str); |
| if (copy_to_user(buf, &data[lpos], data_len)) |
| goto Out; |
| buf += data_len; |
| size -= data_len; |
| *pos += data_len; |
| } |
| |
| data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str); |
| if (*pos < data_len && size > 0) { |
| loff_t lpos; |
| |
| data_len -= *pos; |
| data_len = min_t(size_t, data_len, size); |
| lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size; |
| if (copy_to_user(buf, &rec_hdr_str[lpos], data_len)) |
| goto Out; |
| buf += data_len; |
| size -= data_len; |
| *pos += data_len; |
| } |
| |
| data_len = amdgpu_ras_debugfs_table_size(control); |
| if (*pos < data_len && size > 0) { |
| u8 dare[RAS_TABLE_RECORD_SIZE]; |
| u8 data[rec_hdr_fmt_size + 1]; |
| struct eeprom_table_record record; |
| int s, r; |
| |
| /* Find the starting record index |
| */ |
| s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - |
| strlen(rec_hdr_str); |
| s = s / rec_hdr_fmt_size; |
| r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size - |
| strlen(rec_hdr_str); |
| r = r % rec_hdr_fmt_size; |
| |
| for ( ; size > 0 && s < control->ras_num_recs; s++) { |
| u32 ai = RAS_RI_TO_AI(control, s); |
| /* Read a single record |
| */ |
| res = __amdgpu_ras_eeprom_read(control, dare, ai, 1); |
| if (res) |
| goto Out; |
| __decode_table_record_from_buf(control, &record, dare); |
| snprintf(data, sizeof(data), rec_hdr_fmt, |
| s, |
| RAS_INDEX_TO_OFFSET(control, ai), |
| record_err_type_str[record.err_type], |
| record.bank, |
| record.ts, |
| record.offset, |
| record.mem_channel, |
| record.mcumc_id, |
| record.retired_page); |
| |
| data_len = min_t(size_t, rec_hdr_fmt_size - r, size); |
| if (copy_to_user(buf, &data[r], data_len)) { |
| res = -EFAULT; |
| goto Out; |
| } |
| buf += data_len; |
| size -= data_len; |
| *pos += data_len; |
| r = 0; |
| } |
| } |
| res = 0; |
| Out: |
| mutex_unlock(&control->ras_tbl_mutex); |
| return res < 0 ? res : orig_size - size; |
| } |
| |
| static ssize_t |
| amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; |
| struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); |
| struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL; |
| u8 data[81]; |
| int res; |
| |
| if (!size) |
| return size; |
| |
| if (!ras || !control) { |
| res = snprintf(data, sizeof(data), "Not supported\n"); |
| if (*pos >= res) |
| return 0; |
| |
| res -= *pos; |
| res = min_t(size_t, res, size); |
| |
| if (copy_to_user(buf, &data[*pos], res)) |
| return -EFAULT; |
| |
| *pos += res; |
| |
| return res; |
| } else { |
| return amdgpu_ras_debugfs_table_read(f, buf, size, pos); |
| } |
| } |
| |
| const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = { |
| .owner = THIS_MODULE, |
| .read = amdgpu_ras_debugfs_eeprom_table_read, |
| .write = NULL, |
| .llseek = default_llseek, |
| }; |
| |
| /** |
| * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum |
| * @control: pointer to control structure |
| * |
| * Check the checksum of the stored in EEPROM RAS table. |
| * |
| * Return 0 if the checksum is correct, |
| * positive if it is not correct, and |
| * -errno on I/O error. |
| */ |
| static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| int buf_size, res; |
| u8 csum, *buf, *pp; |
| |
| if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) |
| buf_size = RAS_TABLE_HEADER_SIZE + |
| RAS_TABLE_V2_1_INFO_SIZE + |
| control->ras_num_recs * RAS_TABLE_RECORD_SIZE; |
| else |
| buf_size = RAS_TABLE_HEADER_SIZE + |
| control->ras_num_recs * RAS_TABLE_RECORD_SIZE; |
| |
| buf = kzalloc(buf_size, GFP_KERNEL); |
| if (!buf) { |
| DRM_ERROR("Out of memory checking RAS table checksum.\n"); |
| return -ENOMEM; |
| } |
| |
| res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, |
| control->i2c_address + |
| control->ras_header_offset, |
| buf, buf_size); |
| if (res < buf_size) { |
| DRM_ERROR("Partial read for checksum, res:%d\n", res); |
| /* On partial reads, return -EIO. |
| */ |
| if (res >= 0) |
| res = -EIO; |
| goto Out; |
| } |
| |
| csum = 0; |
| for (pp = buf; pp < buf + buf_size; pp++) |
| csum += *pp; |
| Out: |
| kfree(buf); |
| return res < 0 ? res : csum; |
| } |
| |
| static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control) |
| { |
| struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai; |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| unsigned char *buf; |
| int res; |
| |
| buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL); |
| if (!buf) { |
| DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n"); |
| return -ENOMEM; |
| } |
| |
| /** |
| * EEPROM table V2_1 supports ras info, |
| * read EEPROM table ras info |
| */ |
| res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, |
| control->i2c_address + control->ras_info_offset, |
| buf, RAS_TABLE_V2_1_INFO_SIZE); |
| if (res < RAS_TABLE_V2_1_INFO_SIZE) { |
| DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res); |
| res = res >= 0 ? -EIO : res; |
| goto Out; |
| } |
| |
| __decode_table_ras_info_from_buf(rai, buf); |
| |
| Out: |
| kfree(buf); |
| return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res; |
| } |
| |
| int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control, |
| bool *exceed_err_limit) |
| { |
| struct amdgpu_device *adev = to_amdgpu_device(control); |
| unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 }; |
| struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; |
| struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); |
| int res; |
| |
| *exceed_err_limit = false; |
| |
| if (!__is_ras_eeprom_supported(adev)) |
| return 0; |
| |
| /* Verify i2c adapter is initialized */ |
| if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo) |
| return -ENOENT; |
| |
| if (!__get_eeprom_i2c_addr(adev, control)) |
| return -EINVAL; |
| |
| control->ras_header_offset = RAS_HDR_START; |
| control->ras_info_offset = RAS_TABLE_V2_1_INFO_START; |
| mutex_init(&control->ras_tbl_mutex); |
| |
| /* Read the table header from EEPROM address */ |
| res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus, |
| control->i2c_address + control->ras_header_offset, |
| buf, RAS_TABLE_HEADER_SIZE); |
| if (res < RAS_TABLE_HEADER_SIZE) { |
| DRM_ERROR("Failed to read EEPROM table header, res:%d", res); |
| return res >= 0 ? -EIO : res; |
| } |
| |
| __decode_table_header_from_buf(hdr, buf); |
| |
| if (hdr->version == RAS_TABLE_VER_V2_1) { |
| control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr); |
| control->ras_record_offset = RAS_RECORD_START_V2_1; |
| control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1; |
| } else { |
| control->ras_num_recs = RAS_NUM_RECS(hdr); |
| control->ras_record_offset = RAS_RECORD_START; |
| control->ras_max_record_count = RAS_MAX_RECORD_COUNT; |
| } |
| control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset); |
| |
| if (hdr->header == RAS_TABLE_HDR_VAL) { |
| DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", |
| control->ras_num_recs); |
| |
| if (hdr->version == RAS_TABLE_VER_V2_1) { |
| res = __read_table_ras_info(control); |
| if (res) |
| return res; |
| } |
| |
| res = __verify_ras_table_checksum(control); |
| if (res) |
| DRM_ERROR("RAS table incorrect checksum or error:%d\n", |
| res); |
| |
| /* Warn if we are at 90% of the threshold or above |
| */ |
| if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold) |
| dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d", |
| control->ras_num_recs, |
| ras->bad_page_cnt_threshold); |
| } else if (hdr->header == RAS_TABLE_HDR_BAD && |
| amdgpu_bad_page_threshold != 0) { |
| if (hdr->version == RAS_TABLE_VER_V2_1) { |
| res = __read_table_ras_info(control); |
| if (res) |
| return res; |
| } |
| |
| res = __verify_ras_table_checksum(control); |
| if (res) |
| DRM_ERROR("RAS Table incorrect checksum or error:%d\n", |
| res); |
| if (ras->bad_page_cnt_threshold > control->ras_num_recs) { |
| /* This means that, the threshold was increased since |
| * the last time the system was booted, and now, |
| * ras->bad_page_cnt_threshold - control->num_recs > 0, |
| * so that at least one more record can be saved, |
| * before the page count threshold is reached. |
| */ |
| dev_info(adev->dev, |
| "records:%d threshold:%d, resetting " |
| "RAS table header signature", |
| control->ras_num_recs, |
| ras->bad_page_cnt_threshold); |
| res = amdgpu_ras_eeprom_correct_header_tag(control, |
| RAS_TABLE_HDR_VAL); |
| } else { |
| dev_err(adev->dev, "RAS records:%d exceed threshold:%d", |
| control->ras_num_recs, ras->bad_page_cnt_threshold); |
| if (amdgpu_bad_page_threshold == -1) { |
| dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1."); |
| res = 0; |
| } else { |
| *exceed_err_limit = true; |
| dev_err(adev->dev, |
| "RAS records:%d exceed threshold:%d, " |
| "GPU will not be initialized. Replace this GPU or increase the threshold", |
| control->ras_num_recs, ras->bad_page_cnt_threshold); |
| } |
| } |
| } else { |
| DRM_INFO("Creating a new EEPROM table"); |
| |
| res = amdgpu_ras_eeprom_reset_table(control); |
| } |
| |
| return res < 0 ? res : 0; |
| } |