| /* |
| * Copyright 2009 Jerome Glisse. |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| */ |
| /* |
| * Authors: |
| * Jerome Glisse <glisse@freedesktop.org> |
| * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> |
| * Dave Airlie |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/iommu.h> |
| #include <linux/pagemap.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/mm.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <linux/swap.h> |
| #include <linux/dma-buf.h> |
| #include <linux/sizes.h> |
| #include <linux/module.h> |
| |
| #include <drm/drm_drv.h> |
| #include <drm/ttm/ttm_bo.h> |
| #include <drm/ttm/ttm_placement.h> |
| #include <drm/ttm/ttm_range_manager.h> |
| #include <drm/ttm/ttm_tt.h> |
| |
| #include <drm/amdgpu_drm.h> |
| #include <drm/drm_drv.h> |
| |
| #include "amdgpu.h" |
| #include "amdgpu_object.h" |
| #include "amdgpu_trace.h" |
| #include "amdgpu_amdkfd.h" |
| #include "amdgpu_sdma.h" |
| #include "amdgpu_ras.h" |
| #include "amdgpu_hmm.h" |
| #include "amdgpu_atomfirmware.h" |
| #include "amdgpu_res_cursor.h" |
| #include "bif/bif_4_1_d.h" |
| |
| MODULE_IMPORT_NS(DMA_BUF); |
| |
| #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) |
| |
| static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, |
| struct ttm_tt *ttm, |
| struct ttm_resource *bo_mem); |
| static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, |
| struct ttm_tt *ttm); |
| |
| static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, |
| unsigned int type, |
| uint64_t size_in_page) |
| { |
| return ttm_range_man_init(&adev->mman.bdev, type, |
| false, size_in_page); |
| } |
| |
| /** |
| * amdgpu_evict_flags - Compute placement flags |
| * |
| * @bo: The buffer object to evict |
| * @placement: Possible destination(s) for evicted BO |
| * |
| * Fill in placement data when ttm_bo_evict() is called |
| */ |
| static void amdgpu_evict_flags(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| struct amdgpu_bo *abo; |
| static const struct ttm_place placements = { |
| .fpfn = 0, |
| .lpfn = 0, |
| .mem_type = TTM_PL_SYSTEM, |
| .flags = 0 |
| }; |
| |
| /* Don't handle scatter gather BOs */ |
| if (bo->type == ttm_bo_type_sg) { |
| placement->num_placement = 0; |
| placement->num_busy_placement = 0; |
| return; |
| } |
| |
| /* Object isn't an AMDGPU object so ignore */ |
| if (!amdgpu_bo_is_amdgpu_bo(bo)) { |
| placement->placement = &placements; |
| placement->busy_placement = &placements; |
| placement->num_placement = 1; |
| placement->num_busy_placement = 1; |
| return; |
| } |
| |
| abo = ttm_to_amdgpu_bo(bo); |
| if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { |
| placement->num_placement = 0; |
| placement->num_busy_placement = 0; |
| return; |
| } |
| |
| switch (bo->resource->mem_type) { |
| case AMDGPU_PL_GDS: |
| case AMDGPU_PL_GWS: |
| case AMDGPU_PL_OA: |
| placement->num_placement = 0; |
| placement->num_busy_placement = 0; |
| return; |
| |
| case TTM_PL_VRAM: |
| if (!adev->mman.buffer_funcs_enabled) { |
| /* Move to system memory */ |
| amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); |
| } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && |
| !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && |
| amdgpu_bo_in_cpu_visible_vram(abo)) { |
| |
| /* Try evicting to the CPU inaccessible part of VRAM |
| * first, but only set GTT as busy placement, so this |
| * BO will be evicted to GTT rather than causing other |
| * BOs to be evicted from VRAM |
| */ |
| amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | |
| AMDGPU_GEM_DOMAIN_GTT | |
| AMDGPU_GEM_DOMAIN_CPU); |
| abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; |
| abo->placements[0].lpfn = 0; |
| abo->placement.busy_placement = &abo->placements[1]; |
| abo->placement.num_busy_placement = 1; |
| } else { |
| /* Move to GTT memory */ |
| amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | |
| AMDGPU_GEM_DOMAIN_CPU); |
| } |
| break; |
| case TTM_PL_TT: |
| case AMDGPU_PL_PREEMPT: |
| default: |
| amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); |
| break; |
| } |
| *placement = abo->placement; |
| } |
| |
| /** |
| * amdgpu_ttm_map_buffer - Map memory into the GART windows |
| * @bo: buffer object to map |
| * @mem: memory object to map |
| * @mm_cur: range to map |
| * @window: which GART window to use |
| * @ring: DMA ring to use for the copy |
| * @tmz: if we should setup a TMZ enabled mapping |
| * @size: in number of bytes to map, out number of bytes mapped |
| * @addr: resulting address inside the MC address space |
| * |
| * Setup one of the GART windows to access a specific piece of memory or return |
| * the physical address for local memory. |
| */ |
| static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, |
| struct ttm_resource *mem, |
| struct amdgpu_res_cursor *mm_cur, |
| unsigned int window, struct amdgpu_ring *ring, |
| bool tmz, uint64_t *size, uint64_t *addr) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| unsigned int offset, num_pages, num_dw, num_bytes; |
| uint64_t src_addr, dst_addr; |
| struct amdgpu_job *job; |
| void *cpu_addr; |
| uint64_t flags; |
| unsigned int i; |
| int r; |
| |
| BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < |
| AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); |
| |
| if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) |
| return -EINVAL; |
| |
| /* Map only what can't be accessed directly */ |
| if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { |
| *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + |
| mm_cur->start; |
| return 0; |
| } |
| |
| |
| /* |
| * If start begins at an offset inside the page, then adjust the size |
| * and addr accordingly |
| */ |
| offset = mm_cur->start & ~PAGE_MASK; |
| |
| num_pages = PFN_UP(*size + offset); |
| num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); |
| |
| *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); |
| |
| *addr = adev->gmc.gart_start; |
| *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * |
| AMDGPU_GPU_PAGE_SIZE; |
| *addr += offset; |
| |
| num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); |
| num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; |
| |
| r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, |
| AMDGPU_FENCE_OWNER_UNDEFINED, |
| num_dw * 4 + num_bytes, |
| AMDGPU_IB_POOL_DELAYED, &job); |
| if (r) |
| return r; |
| |
| src_addr = num_dw * 4; |
| src_addr += job->ibs[0].gpu_addr; |
| |
| dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); |
| dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; |
| amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, |
| dst_addr, num_bytes, false); |
| |
| amdgpu_ring_pad_ib(ring, &job->ibs[0]); |
| WARN_ON(job->ibs[0].length_dw > num_dw); |
| |
| flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); |
| if (tmz) |
| flags |= AMDGPU_PTE_TMZ; |
| |
| cpu_addr = &job->ibs[0].ptr[num_dw]; |
| |
| if (mem->mem_type == TTM_PL_TT) { |
| dma_addr_t *dma_addr; |
| |
| dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; |
| amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); |
| } else { |
| dma_addr_t dma_address; |
| |
| dma_address = mm_cur->start; |
| dma_address += adev->vm_manager.vram_base_offset; |
| |
| for (i = 0; i < num_pages; ++i) { |
| amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, |
| flags, cpu_addr); |
| dma_address += PAGE_SIZE; |
| } |
| } |
| |
| dma_fence_put(amdgpu_job_submit(job)); |
| return 0; |
| } |
| |
| /** |
| * amdgpu_ttm_copy_mem_to_mem - Helper function for copy |
| * @adev: amdgpu device |
| * @src: buffer/address where to read from |
| * @dst: buffer/address where to write to |
| * @size: number of bytes to copy |
| * @tmz: if a secure copy should be used |
| * @resv: resv object to sync to |
| * @f: Returns the last fence if multiple jobs are submitted. |
| * |
| * The function copies @size bytes from {src->mem + src->offset} to |
| * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a |
| * move and different for a BO to BO copy. |
| * |
| */ |
| int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, |
| const struct amdgpu_copy_mem *src, |
| const struct amdgpu_copy_mem *dst, |
| uint64_t size, bool tmz, |
| struct dma_resv *resv, |
| struct dma_fence **f) |
| { |
| struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; |
| struct amdgpu_res_cursor src_mm, dst_mm; |
| struct dma_fence *fence = NULL; |
| int r = 0; |
| |
| if (!adev->mman.buffer_funcs_enabled) { |
| DRM_ERROR("Trying to move memory with ring turned off.\n"); |
| return -EINVAL; |
| } |
| |
| amdgpu_res_first(src->mem, src->offset, size, &src_mm); |
| amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); |
| |
| mutex_lock(&adev->mman.gtt_window_lock); |
| while (src_mm.remaining) { |
| uint64_t from, to, cur_size; |
| struct dma_fence *next; |
| |
| /* Never copy more than 256MiB at once to avoid a timeout */ |
| cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); |
| |
| /* Map src to window 0 and dst to window 1. */ |
| r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, |
| 0, ring, tmz, &cur_size, &from); |
| if (r) |
| goto error; |
| |
| r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, |
| 1, ring, tmz, &cur_size, &to); |
| if (r) |
| goto error; |
| |
| r = amdgpu_copy_buffer(ring, from, to, cur_size, |
| resv, &next, false, true, tmz); |
| if (r) |
| goto error; |
| |
| dma_fence_put(fence); |
| fence = next; |
| |
| amdgpu_res_next(&src_mm, cur_size); |
| amdgpu_res_next(&dst_mm, cur_size); |
| } |
| error: |
| mutex_unlock(&adev->mman.gtt_window_lock); |
| if (f) |
| *f = dma_fence_get(fence); |
| dma_fence_put(fence); |
| return r; |
| } |
| |
| /* |
| * amdgpu_move_blit - Copy an entire buffer to another buffer |
| * |
| * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to |
| * help move buffers to and from VRAM. |
| */ |
| static int amdgpu_move_blit(struct ttm_buffer_object *bo, |
| bool evict, |
| struct ttm_resource *new_mem, |
| struct ttm_resource *old_mem) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); |
| struct amdgpu_copy_mem src, dst; |
| struct dma_fence *fence = NULL; |
| int r; |
| |
| src.bo = bo; |
| dst.bo = bo; |
| src.mem = old_mem; |
| dst.mem = new_mem; |
| src.offset = 0; |
| dst.offset = 0; |
| |
| r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, |
| new_mem->size, |
| amdgpu_bo_encrypted(abo), |
| bo->base.resv, &fence); |
| if (r) |
| goto error; |
| |
| /* clear the space being freed */ |
| if (old_mem->mem_type == TTM_PL_VRAM && |
| (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { |
| struct dma_fence *wipe_fence = NULL; |
| |
| r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, |
| false); |
| if (r) { |
| goto error; |
| } else if (wipe_fence) { |
| dma_fence_put(fence); |
| fence = wipe_fence; |
| } |
| } |
| |
| /* Always block for VM page tables before committing the new location */ |
| if (bo->type == ttm_bo_type_kernel) |
| r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); |
| else |
| r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); |
| dma_fence_put(fence); |
| return r; |
| |
| error: |
| if (fence) |
| dma_fence_wait(fence, false); |
| dma_fence_put(fence); |
| return r; |
| } |
| |
| /* |
| * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy |
| * |
| * Called by amdgpu_bo_move() |
| */ |
| static bool amdgpu_mem_visible(struct amdgpu_device *adev, |
| struct ttm_resource *mem) |
| { |
| u64 mem_size = (u64)mem->size; |
| struct amdgpu_res_cursor cursor; |
| u64 end; |
| |
| if (mem->mem_type == TTM_PL_SYSTEM || |
| mem->mem_type == TTM_PL_TT) |
| return true; |
| if (mem->mem_type != TTM_PL_VRAM) |
| return false; |
| |
| amdgpu_res_first(mem, 0, mem_size, &cursor); |
| end = cursor.start + cursor.size; |
| while (cursor.remaining) { |
| amdgpu_res_next(&cursor, cursor.size); |
| |
| if (!cursor.remaining) |
| break; |
| |
| /* ttm_resource_ioremap only supports contiguous memory */ |
| if (end != cursor.start) |
| return false; |
| |
| end = cursor.start + cursor.size; |
| } |
| |
| return end <= adev->gmc.visible_vram_size; |
| } |
| |
| /* |
| * amdgpu_bo_move - Move a buffer object to a new memory location |
| * |
| * Called by ttm_bo_handle_move_mem() |
| */ |
| static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_resource *new_mem, |
| struct ttm_place *hop) |
| { |
| struct amdgpu_device *adev; |
| struct amdgpu_bo *abo; |
| struct ttm_resource *old_mem = bo->resource; |
| int r; |
| |
| if (new_mem->mem_type == TTM_PL_TT || |
| new_mem->mem_type == AMDGPU_PL_PREEMPT) { |
| r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); |
| if (r) |
| return r; |
| } |
| |
| abo = ttm_to_amdgpu_bo(bo); |
| adev = amdgpu_ttm_adev(bo->bdev); |
| |
| if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && |
| bo->ttm == NULL)) { |
| ttm_bo_move_null(bo, new_mem); |
| goto out; |
| } |
| if (old_mem->mem_type == TTM_PL_SYSTEM && |
| (new_mem->mem_type == TTM_PL_TT || |
| new_mem->mem_type == AMDGPU_PL_PREEMPT)) { |
| ttm_bo_move_null(bo, new_mem); |
| goto out; |
| } |
| if ((old_mem->mem_type == TTM_PL_TT || |
| old_mem->mem_type == AMDGPU_PL_PREEMPT) && |
| new_mem->mem_type == TTM_PL_SYSTEM) { |
| r = ttm_bo_wait_ctx(bo, ctx); |
| if (r) |
| return r; |
| |
| amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); |
| ttm_resource_free(bo, &bo->resource); |
| ttm_bo_assign_mem(bo, new_mem); |
| goto out; |
| } |
| |
| if (old_mem->mem_type == AMDGPU_PL_GDS || |
| old_mem->mem_type == AMDGPU_PL_GWS || |
| old_mem->mem_type == AMDGPU_PL_OA || |
| new_mem->mem_type == AMDGPU_PL_GDS || |
| new_mem->mem_type == AMDGPU_PL_GWS || |
| new_mem->mem_type == AMDGPU_PL_OA) { |
| /* Nothing to save here */ |
| ttm_bo_move_null(bo, new_mem); |
| goto out; |
| } |
| |
| if (bo->type == ttm_bo_type_device && |
| new_mem->mem_type == TTM_PL_VRAM && |
| old_mem->mem_type != TTM_PL_VRAM) { |
| /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU |
| * accesses the BO after it's moved. |
| */ |
| abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; |
| } |
| |
| if (adev->mman.buffer_funcs_enabled) { |
| if (((old_mem->mem_type == TTM_PL_SYSTEM && |
| new_mem->mem_type == TTM_PL_VRAM) || |
| (old_mem->mem_type == TTM_PL_VRAM && |
| new_mem->mem_type == TTM_PL_SYSTEM))) { |
| hop->fpfn = 0; |
| hop->lpfn = 0; |
| hop->mem_type = TTM_PL_TT; |
| hop->flags = TTM_PL_FLAG_TEMPORARY; |
| return -EMULTIHOP; |
| } |
| |
| r = amdgpu_move_blit(bo, evict, new_mem, old_mem); |
| } else { |
| r = -ENODEV; |
| } |
| |
| if (r) { |
| /* Check that all memory is CPU accessible */ |
| if (!amdgpu_mem_visible(adev, old_mem) || |
| !amdgpu_mem_visible(adev, new_mem)) { |
| pr_err("Move buffer fallback to memcpy unavailable\n"); |
| return r; |
| } |
| |
| r = ttm_bo_move_memcpy(bo, ctx, new_mem); |
| if (r) |
| return r; |
| } |
| |
| out: |
| /* update statistics */ |
| atomic64_add(bo->base.size, &adev->num_bytes_moved); |
| amdgpu_bo_move_notify(bo, evict, new_mem); |
| return 0; |
| } |
| |
| /* |
| * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault |
| * |
| * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() |
| */ |
| static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, |
| struct ttm_resource *mem) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); |
| size_t bus_size = (size_t)mem->size; |
| |
| switch (mem->mem_type) { |
| case TTM_PL_SYSTEM: |
| /* system memory */ |
| return 0; |
| case TTM_PL_TT: |
| case AMDGPU_PL_PREEMPT: |
| break; |
| case TTM_PL_VRAM: |
| mem->bus.offset = mem->start << PAGE_SHIFT; |
| /* check if it's visible */ |
| if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) |
| return -EINVAL; |
| |
| if (adev->mman.aper_base_kaddr && |
| mem->placement & TTM_PL_FLAG_CONTIGUOUS) |
| mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + |
| mem->bus.offset; |
| |
| mem->bus.offset += adev->gmc.aper_base; |
| mem->bus.is_iomem = true; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, |
| unsigned long page_offset) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| struct amdgpu_res_cursor cursor; |
| |
| amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, |
| &cursor); |
| return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; |
| } |
| |
| /** |
| * amdgpu_ttm_domain_start - Returns GPU start address |
| * @adev: amdgpu device object |
| * @type: type of the memory |
| * |
| * Returns: |
| * GPU start address of a memory domain |
| */ |
| |
| uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) |
| { |
| switch (type) { |
| case TTM_PL_TT: |
| return adev->gmc.gart_start; |
| case TTM_PL_VRAM: |
| return adev->gmc.vram_start; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * TTM backend functions. |
| */ |
| struct amdgpu_ttm_tt { |
| struct ttm_tt ttm; |
| struct drm_gem_object *gobj; |
| u64 offset; |
| uint64_t userptr; |
| struct task_struct *usertask; |
| uint32_t userflags; |
| bool bound; |
| int32_t pool_id; |
| }; |
| |
| #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) |
| |
| #ifdef CONFIG_DRM_AMDGPU_USERPTR |
| /* |
| * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user |
| * memory and start HMM tracking CPU page table update |
| * |
| * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only |
| * once afterwards to stop HMM tracking |
| */ |
| int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, |
| struct hmm_range **range) |
| { |
| struct ttm_tt *ttm = bo->tbo.ttm; |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| unsigned long start = gtt->userptr; |
| struct vm_area_struct *vma; |
| struct mm_struct *mm; |
| bool readonly; |
| int r = 0; |
| |
| /* Make sure get_user_pages_done() can cleanup gracefully */ |
| *range = NULL; |
| |
| mm = bo->notifier.mm; |
| if (unlikely(!mm)) { |
| DRM_DEBUG_DRIVER("BO is not registered?\n"); |
| return -EFAULT; |
| } |
| |
| if (!mmget_not_zero(mm)) /* Happens during process shutdown */ |
| return -ESRCH; |
| |
| mmap_read_lock(mm); |
| vma = vma_lookup(mm, start); |
| if (unlikely(!vma)) { |
| r = -EFAULT; |
| goto out_unlock; |
| } |
| if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && |
| vma->vm_file)) { |
| r = -EPERM; |
| goto out_unlock; |
| } |
| |
| readonly = amdgpu_ttm_tt_is_readonly(ttm); |
| r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, |
| readonly, NULL, pages, range); |
| out_unlock: |
| mmap_read_unlock(mm); |
| if (r) |
| pr_debug("failed %d to get user pages 0x%lx\n", r, start); |
| |
| mmput(mm); |
| |
| return r; |
| } |
| |
| /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations |
| */ |
| void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, |
| struct hmm_range *range) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| |
| if (gtt && gtt->userptr && range) |
| amdgpu_hmm_range_get_pages_done(range); |
| } |
| |
| /* |
| * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change |
| * Check if the pages backing this ttm range have been invalidated |
| * |
| * Returns: true if pages are still valid |
| */ |
| bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, |
| struct hmm_range *range) |
| { |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| |
| if (!gtt || !gtt->userptr || !range) |
| return false; |
| |
| DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", |
| gtt->userptr, ttm->num_pages); |
| |
| WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); |
| |
| return !amdgpu_hmm_range_get_pages_done(range); |
| } |
| #endif |
| |
| /* |
| * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. |
| * |
| * Called by amdgpu_cs_list_validate(). This creates the page list |
| * that backs user memory and will ultimately be mapped into the device |
| * address space. |
| */ |
| void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < ttm->num_pages; ++i) |
| ttm->pages[i] = pages ? pages[i] : NULL; |
| } |
| |
| /* |
| * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages |
| * |
| * Called by amdgpu_ttm_backend_bind() |
| **/ |
| static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, |
| struct ttm_tt *ttm) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); |
| enum dma_data_direction direction = write ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE; |
| int r; |
| |
| /* Allocate an SG array and squash pages into it */ |
| r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, |
| (u64)ttm->num_pages << PAGE_SHIFT, |
| GFP_KERNEL); |
| if (r) |
| goto release_sg; |
| |
| /* Map SG to device */ |
| r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); |
| if (r) |
| goto release_sg; |
| |
| /* convert SG to linear array of pages and dma addresses */ |
| drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, |
| ttm->num_pages); |
| |
| return 0; |
| |
| release_sg: |
| kfree(ttm->sg); |
| ttm->sg = NULL; |
| return r; |
| } |
| |
| /* |
| * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages |
| */ |
| static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, |
| struct ttm_tt *ttm) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); |
| enum dma_data_direction direction = write ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE; |
| |
| /* double check that we don't free the table twice */ |
| if (!ttm->sg || !ttm->sg->sgl) |
| return; |
| |
| /* unmap the pages mapped to the device */ |
| dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); |
| sg_free_table(ttm->sg); |
| } |
| |
| /* |
| * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... |
| * MQDn+CtrlStackn where n is the number of XCCs per partition. |
| * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD |
| * and uses memory type default, UC. The rest of pages_per_xcc are |
| * Ctrl stack and modify their memory type to NC. |
| */ |
| static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, |
| struct ttm_tt *ttm, uint64_t flags) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| uint64_t total_pages = ttm->num_pages; |
| int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); |
| uint64_t page_idx, pages_per_xcc; |
| int i; |
| uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | |
| AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); |
| |
| pages_per_xcc = total_pages; |
| do_div(pages_per_xcc, num_xcc); |
| |
| for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { |
| /* MQD page: use default flags */ |
| amdgpu_gart_bind(adev, |
| gtt->offset + (page_idx << PAGE_SHIFT), |
| 1, >t->ttm.dma_address[page_idx], flags); |
| /* |
| * Ctrl pages - modify the memory type to NC (ctrl_flags) from |
| * the second page of the BO onward. |
| */ |
| amdgpu_gart_bind(adev, |
| gtt->offset + ((page_idx + 1) << PAGE_SHIFT), |
| pages_per_xcc - 1, |
| >t->ttm.dma_address[page_idx + 1], |
| ctrl_flags); |
| } |
| } |
| |
| static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, |
| struct ttm_buffer_object *tbo, |
| uint64_t flags) |
| { |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); |
| struct ttm_tt *ttm = tbo->ttm; |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| |
| if (amdgpu_bo_encrypted(abo)) |
| flags |= AMDGPU_PTE_TMZ; |
| |
| if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { |
| amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); |
| } else { |
| amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, |
| gtt->ttm.dma_address, flags); |
| } |
| } |
| |
| /* |
| * amdgpu_ttm_backend_bind - Bind GTT memory |
| * |
| * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). |
| * This handles binding GTT memory to the device address space. |
| */ |
| static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, |
| struct ttm_tt *ttm, |
| struct ttm_resource *bo_mem) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| uint64_t flags; |
| int r; |
| |
| if (!bo_mem) |
| return -EINVAL; |
| |
| if (gtt->bound) |
| return 0; |
| |
| if (gtt->userptr) { |
| r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); |
| if (r) { |
| DRM_ERROR("failed to pin userptr\n"); |
| return r; |
| } |
| } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { |
| if (!ttm->sg) { |
| struct dma_buf_attachment *attach; |
| struct sg_table *sgt; |
| |
| attach = gtt->gobj->import_attach; |
| sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); |
| if (IS_ERR(sgt)) |
| return PTR_ERR(sgt); |
| |
| ttm->sg = sgt; |
| } |
| |
| drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, |
| ttm->num_pages); |
| } |
| |
| if (!ttm->num_pages) { |
| WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", |
| ttm->num_pages, bo_mem, ttm); |
| } |
| |
| if (bo_mem->mem_type != TTM_PL_TT || |
| !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { |
| gtt->offset = AMDGPU_BO_INVALID_OFFSET; |
| return 0; |
| } |
| |
| /* compute PTE flags relevant to this BO memory */ |
| flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); |
| |
| /* bind pages into GART page tables */ |
| gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; |
| amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, |
| gtt->ttm.dma_address, flags); |
| gtt->bound = true; |
| return 0; |
| } |
| |
| /* |
| * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either |
| * through AGP or GART aperture. |
| * |
| * If bo is accessible through AGP aperture, then use AGP aperture |
| * to access bo; otherwise allocate logical space in GART aperture |
| * and map bo to GART aperture. |
| */ |
| int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| struct ttm_operation_ctx ctx = { false, false }; |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); |
| struct ttm_placement placement; |
| struct ttm_place placements; |
| struct ttm_resource *tmp; |
| uint64_t addr, flags; |
| int r; |
| |
| if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) |
| return 0; |
| |
| addr = amdgpu_gmc_agp_addr(bo); |
| if (addr != AMDGPU_BO_INVALID_OFFSET) { |
| bo->resource->start = addr >> PAGE_SHIFT; |
| return 0; |
| } |
| |
| /* allocate GART space */ |
| placement.num_placement = 1; |
| placement.placement = &placements; |
| placement.num_busy_placement = 1; |
| placement.busy_placement = &placements; |
| placements.fpfn = 0; |
| placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; |
| placements.mem_type = TTM_PL_TT; |
| placements.flags = bo->resource->placement; |
| |
| r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); |
| if (unlikely(r)) |
| return r; |
| |
| /* compute PTE flags for this buffer object */ |
| flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); |
| |
| /* Bind pages */ |
| gtt->offset = (u64)tmp->start << PAGE_SHIFT; |
| amdgpu_ttm_gart_bind(adev, bo, flags); |
| amdgpu_gart_invalidate_tlb(adev); |
| ttm_resource_free(bo, &bo->resource); |
| ttm_bo_assign_mem(bo, tmp); |
| |
| return 0; |
| } |
| |
| /* |
| * amdgpu_ttm_recover_gart - Rebind GTT pages |
| * |
| * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to |
| * rebind GTT pages during a GPU reset. |
| */ |
| void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); |
| uint64_t flags; |
| |
| if (!tbo->ttm) |
| return; |
| |
| flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); |
| amdgpu_ttm_gart_bind(adev, tbo, flags); |
| } |
| |
| /* |
| * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages |
| * |
| * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and |
| * ttm_tt_destroy(). |
| */ |
| static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, |
| struct ttm_tt *ttm) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| |
| /* if the pages have userptr pinning then clear that first */ |
| if (gtt->userptr) { |
| amdgpu_ttm_tt_unpin_userptr(bdev, ttm); |
| } else if (ttm->sg && gtt->gobj->import_attach) { |
| struct dma_buf_attachment *attach; |
| |
| attach = gtt->gobj->import_attach; |
| dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); |
| ttm->sg = NULL; |
| } |
| |
| if (!gtt->bound) |
| return; |
| |
| if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) |
| return; |
| |
| /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ |
| amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); |
| gtt->bound = false; |
| } |
| |
| static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, |
| struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| |
| if (gtt->usertask) |
| put_task_struct(gtt->usertask); |
| |
| ttm_tt_fini(>t->ttm); |
| kfree(gtt); |
| } |
| |
| /** |
| * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO |
| * |
| * @bo: The buffer object to create a GTT ttm_tt object around |
| * @page_flags: Page flags to be added to the ttm_tt object |
| * |
| * Called by ttm_tt_create(). |
| */ |
| static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, |
| uint32_t page_flags) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); |
| struct amdgpu_ttm_tt *gtt; |
| enum ttm_caching caching; |
| |
| gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); |
| if (!gtt) |
| return NULL; |
| |
| gtt->gobj = &bo->base; |
| if (adev->gmc.mem_partitions && abo->xcp_id >= 0) |
| gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); |
| else |
| gtt->pool_id = abo->xcp_id; |
| |
| if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) |
| caching = ttm_write_combined; |
| else |
| caching = ttm_cached; |
| |
| /* allocate space for the uninitialized page entries */ |
| if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { |
| kfree(gtt); |
| return NULL; |
| } |
| return >t->ttm; |
| } |
| |
| /* |
| * amdgpu_ttm_tt_populate - Map GTT pages visible to the device |
| * |
| * Map the pages of a ttm_tt object to an address space visible |
| * to the underlying device. |
| */ |
| static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, |
| struct ttm_tt *ttm, |
| struct ttm_operation_ctx *ctx) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| struct ttm_pool *pool; |
| pgoff_t i; |
| int ret; |
| |
| /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ |
| if (gtt->userptr) { |
| ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); |
| if (!ttm->sg) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) |
| return 0; |
| |
| if (adev->mman.ttm_pools && gtt->pool_id >= 0) |
| pool = &adev->mman.ttm_pools[gtt->pool_id]; |
| else |
| pool = &adev->mman.bdev.pool; |
| ret = ttm_pool_alloc(pool, ttm, ctx); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < ttm->num_pages; ++i) |
| ttm->pages[i]->mapping = bdev->dev_mapping; |
| |
| return 0; |
| } |
| |
| /* |
| * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays |
| * |
| * Unmaps pages of a ttm_tt object from the device address space and |
| * unpopulates the page array backing it. |
| */ |
| static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, |
| struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| struct amdgpu_device *adev; |
| struct ttm_pool *pool; |
| pgoff_t i; |
| |
| amdgpu_ttm_backend_unbind(bdev, ttm); |
| |
| if (gtt->userptr) { |
| amdgpu_ttm_tt_set_user_pages(ttm, NULL); |
| kfree(ttm->sg); |
| ttm->sg = NULL; |
| return; |
| } |
| |
| if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) |
| return; |
| |
| for (i = 0; i < ttm->num_pages; ++i) |
| ttm->pages[i]->mapping = NULL; |
| |
| adev = amdgpu_ttm_adev(bdev); |
| |
| if (adev->mman.ttm_pools && gtt->pool_id >= 0) |
| pool = &adev->mman.ttm_pools[gtt->pool_id]; |
| else |
| pool = &adev->mman.bdev.pool; |
| |
| return ttm_pool_free(pool, ttm); |
| } |
| |
| /** |
| * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current |
| * task |
| * |
| * @tbo: The ttm_buffer_object that contains the userptr |
| * @user_addr: The returned value |
| */ |
| int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, |
| uint64_t *user_addr) |
| { |
| struct amdgpu_ttm_tt *gtt; |
| |
| if (!tbo->ttm) |
| return -EINVAL; |
| |
| gtt = (void *)tbo->ttm; |
| *user_addr = gtt->userptr; |
| return 0; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current |
| * task |
| * |
| * @bo: The ttm_buffer_object to bind this userptr to |
| * @addr: The address in the current tasks VM space to use |
| * @flags: Requirements of userptr object. |
| * |
| * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to |
| * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to |
| * initialize GPU VM for a KFD process. |
| */ |
| int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, |
| uint64_t addr, uint32_t flags) |
| { |
| struct amdgpu_ttm_tt *gtt; |
| |
| if (!bo->ttm) { |
| /* TODO: We want a separate TTM object type for userptrs */ |
| bo->ttm = amdgpu_ttm_tt_create(bo, 0); |
| if (bo->ttm == NULL) |
| return -ENOMEM; |
| } |
| |
| /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ |
| bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; |
| |
| gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); |
| gtt->userptr = addr; |
| gtt->userflags = flags; |
| |
| if (gtt->usertask) |
| put_task_struct(gtt->usertask); |
| gtt->usertask = current->group_leader; |
| get_task_struct(gtt->usertask); |
| |
| return 0; |
| } |
| |
| /* |
| * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object |
| */ |
| struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| |
| if (gtt == NULL) |
| return NULL; |
| |
| if (gtt->usertask == NULL) |
| return NULL; |
| |
| return gtt->usertask->mm; |
| } |
| |
| /* |
| * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an |
| * address range for the current task. |
| * |
| */ |
| bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, |
| unsigned long end, unsigned long *userptr) |
| { |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| unsigned long size; |
| |
| if (gtt == NULL || !gtt->userptr) |
| return false; |
| |
| /* Return false if no part of the ttm_tt object lies within |
| * the range |
| */ |
| size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; |
| if (gtt->userptr > end || gtt->userptr + size <= start) |
| return false; |
| |
| if (userptr) |
| *userptr = gtt->userptr; |
| return true; |
| } |
| |
| /* |
| * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? |
| */ |
| bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| |
| if (gtt == NULL || !gtt->userptr) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? |
| */ |
| bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); |
| |
| if (gtt == NULL) |
| return false; |
| |
| return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); |
| } |
| |
| /** |
| * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object |
| * |
| * @ttm: The ttm_tt object to compute the flags for |
| * @mem: The memory registry backing this ttm_tt object |
| * |
| * Figure out the flags to use for a VM PDE (Page Directory Entry). |
| */ |
| uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) |
| { |
| uint64_t flags = 0; |
| |
| if (mem && mem->mem_type != TTM_PL_SYSTEM) |
| flags |= AMDGPU_PTE_VALID; |
| |
| if (mem && (mem->mem_type == TTM_PL_TT || |
| mem->mem_type == AMDGPU_PL_PREEMPT)) { |
| flags |= AMDGPU_PTE_SYSTEM; |
| |
| if (ttm->caching == ttm_cached) |
| flags |= AMDGPU_PTE_SNOOPED; |
| } |
| |
| if (mem && mem->mem_type == TTM_PL_VRAM && |
| mem->bus.caching == ttm_cached) |
| flags |= AMDGPU_PTE_SNOOPED; |
| |
| return flags; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object |
| * |
| * @adev: amdgpu_device pointer |
| * @ttm: The ttm_tt object to compute the flags for |
| * @mem: The memory registry backing this ttm_tt object |
| * |
| * Figure out the flags to use for a VM PTE (Page Table Entry). |
| */ |
| uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, |
| struct ttm_resource *mem) |
| { |
| uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); |
| |
| flags |= adev->gart.gart_pte_flags; |
| flags |= AMDGPU_PTE_READABLE; |
| |
| if (!amdgpu_ttm_tt_is_readonly(ttm)) |
| flags |= AMDGPU_PTE_WRITEABLE; |
| |
| return flags; |
| } |
| |
| /* |
| * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer |
| * object. |
| * |
| * Return true if eviction is sensible. Called by ttm_mem_evict_first() on |
| * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until |
| * it can find space for a new object and by ttm_bo_force_list_clean() which is |
| * used to clean out a memory space. |
| */ |
| static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, |
| const struct ttm_place *place) |
| { |
| struct dma_resv_iter resv_cursor; |
| struct dma_fence *f; |
| |
| if (!amdgpu_bo_is_amdgpu_bo(bo)) |
| return ttm_bo_eviction_valuable(bo, place); |
| |
| /* Swapout? */ |
| if (bo->resource->mem_type == TTM_PL_SYSTEM) |
| return true; |
| |
| if (bo->type == ttm_bo_type_kernel && |
| !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) |
| return false; |
| |
| /* If bo is a KFD BO, check if the bo belongs to the current process. |
| * If true, then return false as any KFD process needs all its BOs to |
| * be resident to run successfully |
| */ |
| dma_resv_for_each_fence(&resv_cursor, bo->base.resv, |
| DMA_RESV_USAGE_BOOKKEEP, f) { |
| if (amdkfd_fence_check_mm(f, current->mm)) |
| return false; |
| } |
| |
| /* Preemptible BOs don't own system resources managed by the |
| * driver (pages, VRAM, GART space). They point to resources |
| * owned by someone else (e.g. pageable memory in user mode |
| * or a DMABuf). They are used in a preemptible context so we |
| * can guarantee no deadlocks and good QoS in case of MMU |
| * notifiers or DMABuf move notifiers from the resource owner. |
| */ |
| if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) |
| return false; |
| |
| if (bo->resource->mem_type == TTM_PL_TT && |
| amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) |
| return false; |
| |
| return ttm_bo_eviction_valuable(bo, place); |
| } |
| |
| static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, |
| void *buf, size_t size, bool write) |
| { |
| while (size) { |
| uint64_t aligned_pos = ALIGN_DOWN(pos, 4); |
| uint64_t bytes = 4 - (pos & 0x3); |
| uint32_t shift = (pos & 0x3) * 8; |
| uint32_t mask = 0xffffffff << shift; |
| uint32_t value = 0; |
| |
| if (size < bytes) { |
| mask &= 0xffffffff >> (bytes - size) * 8; |
| bytes = size; |
| } |
| |
| if (mask != 0xffffffff) { |
| amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); |
| if (write) { |
| value &= ~mask; |
| value |= (*(uint32_t *)buf << shift) & mask; |
| amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); |
| } else { |
| value = (value & mask) >> shift; |
| memcpy(buf, &value, bytes); |
| } |
| } else { |
| amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); |
| } |
| |
| pos += bytes; |
| buf += bytes; |
| size -= bytes; |
| } |
| } |
| |
| static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, |
| unsigned long offset, void *buf, |
| int len, int write) |
| { |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); |
| struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); |
| struct amdgpu_res_cursor src_mm; |
| struct amdgpu_job *job; |
| struct dma_fence *fence; |
| uint64_t src_addr, dst_addr; |
| unsigned int num_dw; |
| int r, idx; |
| |
| if (len != PAGE_SIZE) |
| return -EINVAL; |
| |
| if (!adev->mman.sdma_access_ptr) |
| return -EACCES; |
| |
| if (!drm_dev_enter(adev_to_drm(adev), &idx)) |
| return -ENODEV; |
| |
| if (write) |
| memcpy(adev->mman.sdma_access_ptr, buf, len); |
| |
| num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); |
| r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, |
| AMDGPU_FENCE_OWNER_UNDEFINED, |
| num_dw * 4, AMDGPU_IB_POOL_DELAYED, |
| &job); |
| if (r) |
| goto out; |
| |
| amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); |
| src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + |
| src_mm.start; |
| dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); |
| if (write) |
| swap(src_addr, dst_addr); |
| |
| amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, |
| PAGE_SIZE, false); |
| |
| amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); |
| WARN_ON(job->ibs[0].length_dw > num_dw); |
| |
| fence = amdgpu_job_submit(job); |
| |
| if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) |
| r = -ETIMEDOUT; |
| dma_fence_put(fence); |
| |
| if (!(r || write)) |
| memcpy(buf, adev->mman.sdma_access_ptr, len); |
| out: |
| drm_dev_exit(idx); |
| return r; |
| } |
| |
| /** |
| * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. |
| * |
| * @bo: The buffer object to read/write |
| * @offset: Offset into buffer object |
| * @buf: Secondary buffer to write/read from |
| * @len: Length in bytes of access |
| * @write: true if writing |
| * |
| * This is used to access VRAM that backs a buffer object via MMIO |
| * access for debugging purposes. |
| */ |
| static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, |
| unsigned long offset, void *buf, int len, |
| int write) |
| { |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); |
| struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); |
| struct amdgpu_res_cursor cursor; |
| int ret = 0; |
| |
| if (bo->resource->mem_type != TTM_PL_VRAM) |
| return -EIO; |
| |
| if (amdgpu_device_has_timeouts_enabled(adev) && |
| !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) |
| return len; |
| |
| amdgpu_res_first(bo->resource, offset, len, &cursor); |
| while (cursor.remaining) { |
| size_t count, size = cursor.size; |
| loff_t pos = cursor.start; |
| |
| count = amdgpu_device_aper_access(adev, pos, buf, size, write); |
| size -= count; |
| if (size) { |
| /* using MM to access rest vram and handle un-aligned address */ |
| pos += count; |
| buf += count; |
| amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); |
| } |
| |
| ret += cursor.size; |
| buf += cursor.size; |
| amdgpu_res_next(&cursor, cursor.size); |
| } |
| |
| return ret; |
| } |
| |
| static void |
| amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) |
| { |
| amdgpu_bo_move_notify(bo, false, NULL); |
| } |
| |
| static struct ttm_device_funcs amdgpu_bo_driver = { |
| .ttm_tt_create = &amdgpu_ttm_tt_create, |
| .ttm_tt_populate = &amdgpu_ttm_tt_populate, |
| .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, |
| .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, |
| .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, |
| .evict_flags = &amdgpu_evict_flags, |
| .move = &amdgpu_bo_move, |
| .delete_mem_notify = &amdgpu_bo_delete_mem_notify, |
| .release_notify = &amdgpu_bo_release_notify, |
| .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, |
| .io_mem_pfn = amdgpu_ttm_io_mem_pfn, |
| .access_memory = &amdgpu_ttm_access_memory, |
| }; |
| |
| /* |
| * Firmware Reservation functions |
| */ |
| /** |
| * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * free fw reserved vram if it has been reserved. |
| */ |
| static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) |
| { |
| amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, |
| NULL, &adev->mman.fw_vram_usage_va); |
| } |
| |
| /* |
| * Driver Reservation functions |
| */ |
| /** |
| * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * free drv reserved vram if it has been reserved. |
| */ |
| static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) |
| { |
| amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, |
| NULL, |
| &adev->mman.drv_vram_usage_va); |
| } |
| |
| /** |
| * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * create bo vram reservation from fw. |
| */ |
| static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) |
| { |
| uint64_t vram_size = adev->gmc.visible_vram_size; |
| |
| adev->mman.fw_vram_usage_va = NULL; |
| adev->mman.fw_vram_usage_reserved_bo = NULL; |
| |
| if (adev->mman.fw_vram_usage_size == 0 || |
| adev->mman.fw_vram_usage_size > vram_size) |
| return 0; |
| |
| return amdgpu_bo_create_kernel_at(adev, |
| adev->mman.fw_vram_usage_start_offset, |
| adev->mman.fw_vram_usage_size, |
| &adev->mman.fw_vram_usage_reserved_bo, |
| &adev->mman.fw_vram_usage_va); |
| } |
| |
| /** |
| * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * create bo vram reservation from drv. |
| */ |
| static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) |
| { |
| u64 vram_size = adev->gmc.visible_vram_size; |
| |
| adev->mman.drv_vram_usage_va = NULL; |
| adev->mman.drv_vram_usage_reserved_bo = NULL; |
| |
| if (adev->mman.drv_vram_usage_size == 0 || |
| adev->mman.drv_vram_usage_size > vram_size) |
| return 0; |
| |
| return amdgpu_bo_create_kernel_at(adev, |
| adev->mman.drv_vram_usage_start_offset, |
| adev->mman.drv_vram_usage_size, |
| &adev->mman.drv_vram_usage_reserved_bo, |
| &adev->mman.drv_vram_usage_va); |
| } |
| |
| /* |
| * Memoy training reservation functions |
| */ |
| |
| /** |
| * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * free memory training reserved vram if it has been reserved. |
| */ |
| static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) |
| { |
| struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; |
| |
| ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; |
| amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); |
| ctx->c2p_bo = NULL; |
| |
| return 0; |
| } |
| |
| static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, |
| uint32_t reserve_size) |
| { |
| struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| |
| ctx->c2p_train_data_offset = |
| ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); |
| ctx->p2c_train_data_offset = |
| (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); |
| ctx->train_data_size = |
| GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; |
| |
| DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", |
| ctx->train_data_size, |
| ctx->p2c_train_data_offset, |
| ctx->c2p_train_data_offset); |
| } |
| |
| /* |
| * reserve TMR memory at the top of VRAM which holds |
| * IP Discovery data and is protected by PSP. |
| */ |
| static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) |
| { |
| struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; |
| bool mem_train_support = false; |
| uint32_t reserve_size = 0; |
| int ret; |
| |
| if (adev->bios && !amdgpu_sriov_vf(adev)) { |
| if (amdgpu_atomfirmware_mem_training_supported(adev)) |
| mem_train_support = true; |
| else |
| DRM_DEBUG("memory training does not support!\n"); |
| } |
| |
| /* |
| * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all |
| * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) |
| * |
| * Otherwise, fallback to legacy approach to check and reserve tmr block for ip |
| * discovery data and G6 memory training data respectively |
| */ |
| if (adev->bios) |
| reserve_size = |
| amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); |
| |
| if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3)) |
| reserve_size = max(reserve_size, (uint32_t)280 << 20); |
| else if (!reserve_size) |
| reserve_size = DISCOVERY_TMR_OFFSET; |
| |
| if (mem_train_support) { |
| /* reserve vram for mem train according to TMR location */ |
| amdgpu_ttm_training_data_block_init(adev, reserve_size); |
| ret = amdgpu_bo_create_kernel_at(adev, |
| ctx->c2p_train_data_offset, |
| ctx->train_data_size, |
| &ctx->c2p_bo, |
| NULL); |
| if (ret) { |
| DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); |
| amdgpu_ttm_training_reserve_vram_fini(adev); |
| return ret; |
| } |
| ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; |
| } |
| |
| if (!adev->gmc.is_app_apu) { |
| ret = amdgpu_bo_create_kernel_at( |
| adev, adev->gmc.real_vram_size - reserve_size, |
| reserve_size, &adev->mman.fw_reserved_memory, NULL); |
| if (ret) { |
| DRM_ERROR("alloc tmr failed(%d)!\n", ret); |
| amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, |
| NULL, NULL); |
| return ret; |
| } |
| } else { |
| DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); |
| } |
| |
| return 0; |
| } |
| |
| static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) |
| { |
| int i; |
| |
| if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) |
| return 0; |
| |
| adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, |
| sizeof(*adev->mman.ttm_pools), |
| GFP_KERNEL); |
| if (!adev->mman.ttm_pools) |
| return -ENOMEM; |
| |
| for (i = 0; i < adev->gmc.num_mem_partitions; i++) { |
| ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, |
| adev->gmc.mem_partitions[i].numa.node, |
| false, false); |
| } |
| return 0; |
| } |
| |
| static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) |
| { |
| int i; |
| |
| if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) |
| return; |
| |
| for (i = 0; i < adev->gmc.num_mem_partitions; i++) |
| ttm_pool_fini(&adev->mman.ttm_pools[i]); |
| |
| kfree(adev->mman.ttm_pools); |
| adev->mman.ttm_pools = NULL; |
| } |
| |
| /* |
| * amdgpu_ttm_init - Init the memory management (ttm) as well as various |
| * gtt/vram related fields. |
| * |
| * This initializes all of the memory space pools that the TTM layer |
| * will need such as the GTT space (system memory mapped to the device), |
| * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which |
| * can be mapped per VMID. |
| */ |
| int amdgpu_ttm_init(struct amdgpu_device *adev) |
| { |
| uint64_t gtt_size; |
| int r; |
| |
| mutex_init(&adev->mman.gtt_window_lock); |
| |
| /* No others user of address space so set it to 0 */ |
| r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, |
| adev_to_drm(adev)->anon_inode->i_mapping, |
| adev_to_drm(adev)->vma_offset_manager, |
| adev->need_swiotlb, |
| dma_addressing_limited(adev->dev)); |
| if (r) { |
| DRM_ERROR("failed initializing buffer object driver(%d).\n", r); |
| return r; |
| } |
| |
| r = amdgpu_ttm_pools_init(adev); |
| if (r) { |
| DRM_ERROR("failed to init ttm pools(%d).\n", r); |
| return r; |
| } |
| adev->mman.initialized = true; |
| |
| /* Initialize VRAM pool with all of VRAM divided into pages */ |
| r = amdgpu_vram_mgr_init(adev); |
| if (r) { |
| DRM_ERROR("Failed initializing VRAM heap.\n"); |
| return r; |
| } |
| |
| /* Change the size here instead of the init above so only lpfn is affected */ |
| amdgpu_ttm_set_buffer_funcs_status(adev, false); |
| #ifdef CONFIG_64BIT |
| #ifdef CONFIG_X86 |
| if (adev->gmc.xgmi.connected_to_cpu) |
| adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, |
| adev->gmc.visible_vram_size); |
| |
| else if (adev->gmc.is_app_apu) |
| DRM_DEBUG_DRIVER( |
| "No need to ioremap when real vram size is 0\n"); |
| else |
| #endif |
| adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, |
| adev->gmc.visible_vram_size); |
| #endif |
| |
| /* |
| *The reserved vram for firmware must be pinned to the specified |
| *place on the VRAM, so reserve it early. |
| */ |
| r = amdgpu_ttm_fw_reserve_vram_init(adev); |
| if (r) |
| return r; |
| |
| /* |
| *The reserved vram for driver must be pinned to the specified |
| *place on the VRAM, so reserve it early. |
| */ |
| r = amdgpu_ttm_drv_reserve_vram_init(adev); |
| if (r) |
| return r; |
| |
| /* |
| * only NAVI10 and onwards ASIC support for IP discovery. |
| * If IP discovery enabled, a block of memory should be |
| * reserved for IP discovey. |
| */ |
| if (adev->mman.discovery_bin) { |
| r = amdgpu_ttm_reserve_tmr(adev); |
| if (r) |
| return r; |
| } |
| |
| /* allocate memory as required for VGA |
| * This is used for VGA emulation and pre-OS scanout buffers to |
| * avoid display artifacts while transitioning between pre-OS |
| * and driver. |
| */ |
| if (!adev->gmc.is_app_apu) { |
| r = amdgpu_bo_create_kernel_at(adev, 0, |
| adev->mman.stolen_vga_size, |
| &adev->mman.stolen_vga_memory, |
| NULL); |
| if (r) |
| return r; |
| |
| r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, |
| adev->mman.stolen_extended_size, |
| &adev->mman.stolen_extended_memory, |
| NULL); |
| |
| if (r) |
| return r; |
| |
| r = amdgpu_bo_create_kernel_at(adev, |
| adev->mman.stolen_reserved_offset, |
| adev->mman.stolen_reserved_size, |
| &adev->mman.stolen_reserved_memory, |
| NULL); |
| if (r) |
| return r; |
| } else { |
| DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); |
| } |
| |
| DRM_INFO("amdgpu: %uM of VRAM memory ready\n", |
| (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); |
| |
| /* Compute GTT size, either based on TTM limit |
| * or whatever the user passed on module init. |
| */ |
| if (amdgpu_gtt_size == -1) |
| gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; |
| else |
| gtt_size = (uint64_t)amdgpu_gtt_size << 20; |
| |
| /* Initialize GTT memory pool */ |
| r = amdgpu_gtt_mgr_init(adev, gtt_size); |
| if (r) { |
| DRM_ERROR("Failed initializing GTT heap.\n"); |
| return r; |
| } |
| DRM_INFO("amdgpu: %uM of GTT memory ready.\n", |
| (unsigned int)(gtt_size / (1024 * 1024))); |
| |
| /* Initialize preemptible memory pool */ |
| r = amdgpu_preempt_mgr_init(adev); |
| if (r) { |
| DRM_ERROR("Failed initializing PREEMPT heap.\n"); |
| return r; |
| } |
| |
| /* Initialize various on-chip memory pools */ |
| r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); |
| if (r) { |
| DRM_ERROR("Failed initializing GDS heap.\n"); |
| return r; |
| } |
| |
| r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); |
| if (r) { |
| DRM_ERROR("Failed initializing gws heap.\n"); |
| return r; |
| } |
| |
| r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); |
| if (r) { |
| DRM_ERROR("Failed initializing oa heap.\n"); |
| return r; |
| } |
| if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, |
| AMDGPU_GEM_DOMAIN_GTT, |
| &adev->mman.sdma_access_bo, NULL, |
| &adev->mman.sdma_access_ptr)) |
| DRM_WARN("Debug VRAM access will use slowpath MM access\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * amdgpu_ttm_fini - De-initialize the TTM memory pools |
| */ |
| void amdgpu_ttm_fini(struct amdgpu_device *adev) |
| { |
| int idx; |
| |
| if (!adev->mman.initialized) |
| return; |
| |
| amdgpu_ttm_pools_fini(adev); |
| |
| amdgpu_ttm_training_reserve_vram_fini(adev); |
| /* return the stolen vga memory back to VRAM */ |
| if (!adev->gmc.is_app_apu) { |
| amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); |
| amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); |
| /* return the FW reserved memory back to VRAM */ |
| amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, |
| NULL); |
| if (adev->mman.stolen_reserved_size) |
| amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, |
| NULL, NULL); |
| } |
| amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, |
| &adev->mman.sdma_access_ptr); |
| amdgpu_ttm_fw_reserve_vram_fini(adev); |
| amdgpu_ttm_drv_reserve_vram_fini(adev); |
| |
| if (drm_dev_enter(adev_to_drm(adev), &idx)) { |
| |
| if (adev->mman.aper_base_kaddr) |
| iounmap(adev->mman.aper_base_kaddr); |
| adev->mman.aper_base_kaddr = NULL; |
| |
| drm_dev_exit(idx); |
| } |
| |
| amdgpu_vram_mgr_fini(adev); |
| amdgpu_gtt_mgr_fini(adev); |
| amdgpu_preempt_mgr_fini(adev); |
| ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); |
| ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); |
| ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); |
| ttm_device_fini(&adev->mman.bdev); |
| adev->mman.initialized = false; |
| DRM_INFO("amdgpu: ttm finalized\n"); |
| } |
| |
| /** |
| * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions |
| * |
| * @adev: amdgpu_device pointer |
| * @enable: true when we can use buffer functions. |
| * |
| * Enable/disable use of buffer functions during suspend/resume. This should |
| * only be called at bootup or when userspace isn't running. |
| */ |
| void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) |
| { |
| struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); |
| uint64_t size; |
| int r; |
| |
| if (!adev->mman.initialized || amdgpu_in_reset(adev) || |
| adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) |
| return; |
| |
| if (enable) { |
| struct amdgpu_ring *ring; |
| struct drm_gpu_scheduler *sched; |
| |
| ring = adev->mman.buffer_funcs_ring; |
| sched = &ring->sched; |
| r = drm_sched_entity_init(&adev->mman.high_pr, |
| DRM_SCHED_PRIORITY_KERNEL, &sched, |
| 1, NULL); |
| if (r) { |
| DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", |
| r); |
| return; |
| } |
| |
| r = drm_sched_entity_init(&adev->mman.low_pr, |
| DRM_SCHED_PRIORITY_NORMAL, &sched, |
| 1, NULL); |
| if (r) { |
| DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", |
| r); |
| goto error_free_entity; |
| } |
| } else { |
| drm_sched_entity_destroy(&adev->mman.high_pr); |
| drm_sched_entity_destroy(&adev->mman.low_pr); |
| dma_fence_put(man->move); |
| man->move = NULL; |
| } |
| |
| /* this just adjusts TTM size idea, which sets lpfn to the correct value */ |
| if (enable) |
| size = adev->gmc.real_vram_size; |
| else |
| size = adev->gmc.visible_vram_size; |
| man->size = size; |
| adev->mman.buffer_funcs_enabled = enable; |
| |
| return; |
| |
| error_free_entity: |
| drm_sched_entity_destroy(&adev->mman.high_pr); |
| } |
| |
| static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, |
| bool direct_submit, |
| unsigned int num_dw, |
| struct dma_resv *resv, |
| bool vm_needs_flush, |
| struct amdgpu_job **job, |
| bool delayed) |
| { |
| enum amdgpu_ib_pool_type pool = direct_submit ? |
| AMDGPU_IB_POOL_DIRECT : |
| AMDGPU_IB_POOL_DELAYED; |
| int r; |
| struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : |
| &adev->mman.high_pr; |
| r = amdgpu_job_alloc_with_ib(adev, entity, |
| AMDGPU_FENCE_OWNER_UNDEFINED, |
| num_dw * 4, pool, job); |
| if (r) |
| return r; |
| |
| if (vm_needs_flush) { |
| (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? |
| adev->gmc.pdb0_bo : |
| adev->gart.bo); |
| (*job)->vm_needs_flush = true; |
| } |
| if (!resv) |
| return 0; |
| |
| return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, |
| DMA_RESV_USAGE_BOOKKEEP); |
| } |
| |
| int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, |
| uint64_t dst_offset, uint32_t byte_count, |
| struct dma_resv *resv, |
| struct dma_fence **fence, bool direct_submit, |
| bool vm_needs_flush, bool tmz) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| unsigned int num_loops, num_dw; |
| struct amdgpu_job *job; |
| uint32_t max_bytes; |
| unsigned int i; |
| int r; |
| |
| if (!direct_submit && !ring->sched.ready) { |
| DRM_ERROR("Trying to move memory with ring turned off.\n"); |
| return -EINVAL; |
| } |
| |
| max_bytes = adev->mman.buffer_funcs->copy_max_bytes; |
| num_loops = DIV_ROUND_UP(byte_count, max_bytes); |
| num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); |
| r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, |
| resv, vm_needs_flush, &job, false); |
| if (r) |
| return r; |
| |
| for (i = 0; i < num_loops; i++) { |
| uint32_t cur_size_in_bytes = min(byte_count, max_bytes); |
| |
| amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, |
| dst_offset, cur_size_in_bytes, tmz); |
| |
| src_offset += cur_size_in_bytes; |
| dst_offset += cur_size_in_bytes; |
| byte_count -= cur_size_in_bytes; |
| } |
| |
| amdgpu_ring_pad_ib(ring, &job->ibs[0]); |
| WARN_ON(job->ibs[0].length_dw > num_dw); |
| if (direct_submit) |
| r = amdgpu_job_submit_direct(job, ring, fence); |
| else |
| *fence = amdgpu_job_submit(job); |
| if (r) |
| goto error_free; |
| |
| return r; |
| |
| error_free: |
| amdgpu_job_free(job); |
| DRM_ERROR("Error scheduling IBs (%d)\n", r); |
| return r; |
| } |
| |
| static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, |
| uint64_t dst_addr, uint32_t byte_count, |
| struct dma_resv *resv, |
| struct dma_fence **fence, |
| bool vm_needs_flush, bool delayed) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| unsigned int num_loops, num_dw; |
| struct amdgpu_job *job; |
| uint32_t max_bytes; |
| unsigned int i; |
| int r; |
| |
| max_bytes = adev->mman.buffer_funcs->fill_max_bytes; |
| num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); |
| num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); |
| r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, |
| &job, delayed); |
| if (r) |
| return r; |
| |
| for (i = 0; i < num_loops; i++) { |
| uint32_t cur_size = min(byte_count, max_bytes); |
| |
| amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, |
| cur_size); |
| |
| dst_addr += cur_size; |
| byte_count -= cur_size; |
| } |
| |
| amdgpu_ring_pad_ib(ring, &job->ibs[0]); |
| WARN_ON(job->ibs[0].length_dw > num_dw); |
| *fence = amdgpu_job_submit(job); |
| return 0; |
| } |
| |
| int amdgpu_fill_buffer(struct amdgpu_bo *bo, |
| uint32_t src_data, |
| struct dma_resv *resv, |
| struct dma_fence **f, |
| bool delayed) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); |
| struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; |
| struct dma_fence *fence = NULL; |
| struct amdgpu_res_cursor dst; |
| int r; |
| |
| if (!adev->mman.buffer_funcs_enabled) { |
| DRM_ERROR("Trying to clear memory with ring turned off.\n"); |
| return -EINVAL; |
| } |
| |
| amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); |
| |
| mutex_lock(&adev->mman.gtt_window_lock); |
| while (dst.remaining) { |
| struct dma_fence *next; |
| uint64_t cur_size, to; |
| |
| /* Never fill more than 256MiB at once to avoid timeouts */ |
| cur_size = min(dst.size, 256ULL << 20); |
| |
| r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, |
| 1, ring, false, &cur_size, &to); |
| if (r) |
| goto error; |
| |
| r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, |
| &next, true, delayed); |
| if (r) |
| goto error; |
| |
| dma_fence_put(fence); |
| fence = next; |
| |
| amdgpu_res_next(&dst, cur_size); |
| } |
| error: |
| mutex_unlock(&adev->mman.gtt_window_lock); |
| if (f) |
| *f = dma_fence_get(fence); |
| dma_fence_put(fence); |
| return r; |
| } |
| |
| /** |
| * amdgpu_ttm_evict_resources - evict memory buffers |
| * @adev: amdgpu device object |
| * @mem_type: evicted BO's memory type |
| * |
| * Evicts all @mem_type buffers on the lru list of the memory type. |
| * |
| * Returns: |
| * 0 for success or a negative error code on failure. |
| */ |
| int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) |
| { |
| struct ttm_resource_manager *man; |
| |
| switch (mem_type) { |
| case TTM_PL_VRAM: |
| case TTM_PL_TT: |
| case AMDGPU_PL_GWS: |
| case AMDGPU_PL_GDS: |
| case AMDGPU_PL_OA: |
| man = ttm_manager_type(&adev->mman.bdev, mem_type); |
| break; |
| default: |
| DRM_ERROR("Trying to evict invalid memory type\n"); |
| return -EINVAL; |
| } |
| |
| return ttm_resource_manager_evict_all(&adev->mman.bdev, man); |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) |
| |
| static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) |
| { |
| struct amdgpu_device *adev = m->private; |
| |
| return ttm_pool_debugfs(&adev->mman.bdev.pool, m); |
| } |
| |
| DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); |
| |
| /* |
| * amdgpu_ttm_vram_read - Linear read access to VRAM |
| * |
| * Accesses VRAM via MMIO for debugging purposes. |
| */ |
| static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| ssize_t result = 0; |
| |
| if (size & 0x3 || *pos & 0x3) |
| return -EINVAL; |
| |
| if (*pos >= adev->gmc.mc_vram_size) |
| return -ENXIO; |
| |
| size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); |
| while (size) { |
| size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); |
| uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; |
| |
| amdgpu_device_vram_access(adev, *pos, value, bytes, false); |
| if (copy_to_user(buf, value, bytes)) |
| return -EFAULT; |
| |
| result += bytes; |
| buf += bytes; |
| *pos += bytes; |
| size -= bytes; |
| } |
| |
| return result; |
| } |
| |
| /* |
| * amdgpu_ttm_vram_write - Linear write access to VRAM |
| * |
| * Accesses VRAM via MMIO for debugging purposes. |
| */ |
| static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| ssize_t result = 0; |
| int r; |
| |
| if (size & 0x3 || *pos & 0x3) |
| return -EINVAL; |
| |
| if (*pos >= adev->gmc.mc_vram_size) |
| return -ENXIO; |
| |
| while (size) { |
| uint32_t value; |
| |
| if (*pos >= adev->gmc.mc_vram_size) |
| return result; |
| |
| r = get_user(value, (uint32_t *)buf); |
| if (r) |
| return r; |
| |
| amdgpu_device_mm_access(adev, *pos, &value, 4, true); |
| |
| result += 4; |
| buf += 4; |
| *pos += 4; |
| size -= 4; |
| } |
| |
| return result; |
| } |
| |
| static const struct file_operations amdgpu_ttm_vram_fops = { |
| .owner = THIS_MODULE, |
| .read = amdgpu_ttm_vram_read, |
| .write = amdgpu_ttm_vram_write, |
| .llseek = default_llseek, |
| }; |
| |
| /* |
| * amdgpu_iomem_read - Virtual read access to GPU mapped memory |
| * |
| * This function is used to read memory that has been mapped to the |
| * GPU and the known addresses are not physical addresses but instead |
| * bus addresses (e.g., what you'd put in an IB or ring buffer). |
| */ |
| static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| struct iommu_domain *dom; |
| ssize_t result = 0; |
| int r; |
| |
| /* retrieve the IOMMU domain if any for this device */ |
| dom = iommu_get_domain_for_dev(adev->dev); |
| |
| while (size) { |
| phys_addr_t addr = *pos & PAGE_MASK; |
| loff_t off = *pos & ~PAGE_MASK; |
| size_t bytes = PAGE_SIZE - off; |
| unsigned long pfn; |
| struct page *p; |
| void *ptr; |
| |
| bytes = bytes < size ? bytes : size; |
| |
| /* Translate the bus address to a physical address. If |
| * the domain is NULL it means there is no IOMMU active |
| * and the address translation is the identity |
| */ |
| addr = dom ? iommu_iova_to_phys(dom, addr) : addr; |
| |
| pfn = addr >> PAGE_SHIFT; |
| if (!pfn_valid(pfn)) |
| return -EPERM; |
| |
| p = pfn_to_page(pfn); |
| if (p->mapping != adev->mman.bdev.dev_mapping) |
| return -EPERM; |
| |
| ptr = kmap_local_page(p); |
| r = copy_to_user(buf, ptr + off, bytes); |
| kunmap_local(ptr); |
| if (r) |
| return -EFAULT; |
| |
| size -= bytes; |
| *pos += bytes; |
| result += bytes; |
| } |
| |
| return result; |
| } |
| |
| /* |
| * amdgpu_iomem_write - Virtual write access to GPU mapped memory |
| * |
| * This function is used to write memory that has been mapped to the |
| * GPU and the known addresses are not physical addresses but instead |
| * bus addresses (e.g., what you'd put in an IB or ring buffer). |
| */ |
| static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| struct iommu_domain *dom; |
| ssize_t result = 0; |
| int r; |
| |
| dom = iommu_get_domain_for_dev(adev->dev); |
| |
| while (size) { |
| phys_addr_t addr = *pos & PAGE_MASK; |
| loff_t off = *pos & ~PAGE_MASK; |
| size_t bytes = PAGE_SIZE - off; |
| unsigned long pfn; |
| struct page *p; |
| void *ptr; |
| |
| bytes = bytes < size ? bytes : size; |
| |
| addr = dom ? iommu_iova_to_phys(dom, addr) : addr; |
| |
| pfn = addr >> PAGE_SHIFT; |
| if (!pfn_valid(pfn)) |
| return -EPERM; |
| |
| p = pfn_to_page(pfn); |
| if (p->mapping != adev->mman.bdev.dev_mapping) |
| return -EPERM; |
| |
| ptr = kmap_local_page(p); |
| r = copy_from_user(ptr + off, buf, bytes); |
| kunmap_local(ptr); |
| if (r) |
| return -EFAULT; |
| |
| size -= bytes; |
| *pos += bytes; |
| result += bytes; |
| } |
| |
| return result; |
| } |
| |
| static const struct file_operations amdgpu_ttm_iomem_fops = { |
| .owner = THIS_MODULE, |
| .read = amdgpu_iomem_read, |
| .write = amdgpu_iomem_write, |
| .llseek = default_llseek |
| }; |
| |
| #endif |
| |
| void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) |
| { |
| #if defined(CONFIG_DEBUG_FS) |
| struct drm_minor *minor = adev_to_drm(adev)->primary; |
| struct dentry *root = minor->debugfs_root; |
| |
| debugfs_create_file_size("amdgpu_vram", 0444, root, adev, |
| &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); |
| debugfs_create_file("amdgpu_iomem", 0444, root, adev, |
| &amdgpu_ttm_iomem_fops); |
| debugfs_create_file("ttm_page_pool", 0444, root, adev, |
| &amdgpu_ttm_page_pool_fops); |
| ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, |
| TTM_PL_VRAM), |
| root, "amdgpu_vram_mm"); |
| ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, |
| TTM_PL_TT), |
| root, "amdgpu_gtt_mm"); |
| ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, |
| AMDGPU_PL_GDS), |
| root, "amdgpu_gds_mm"); |
| ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, |
| AMDGPU_PL_GWS), |
| root, "amdgpu_gws_mm"); |
| ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, |
| AMDGPU_PL_OA), |
| root, "amdgpu_oa_mm"); |
| |
| #endif |
| } |