| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * ARM CoreSight Architecture PMU driver. |
| * |
| * This driver adds support for uncore PMU based on ARM CoreSight Performance |
| * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and |
| * like other uncore PMUs, it does not support process specific events and |
| * cannot be used in sampling mode. |
| * |
| * This code is based on other uncore PMUs like ARM DSU PMU. It provides a |
| * generic implementation to operate the PMU according to CoreSight PMU |
| * architecture and ACPI ARM PMU table (APMT) documents below: |
| * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0. |
| * - APMT document number: ARM DEN0117. |
| * |
| * The user should refer to the vendor technical documentation to get details |
| * about the supported events. |
| * |
| * Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. |
| * |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/cacheinfo.h> |
| #include <linux/ctype.h> |
| #include <linux/interrupt.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #include <linux/module.h> |
| #include <linux/perf_event.h> |
| #include <linux/platform_device.h> |
| #include <acpi/processor.h> |
| |
| #include "arm_cspmu.h" |
| #include "nvidia_cspmu.h" |
| |
| #define PMUNAME "arm_cspmu" |
| #define DRVNAME "arm-cs-arch-pmu" |
| |
| #define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \ |
| ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \ |
| (unsigned long)_config) |
| |
| /* |
| * CoreSight PMU Arch register offsets. |
| */ |
| #define PMEVCNTR_LO 0x0 |
| #define PMEVCNTR_HI 0x4 |
| #define PMEVTYPER 0x400 |
| #define PMCCFILTR 0x47C |
| #define PMEVFILTR 0xA00 |
| #define PMCNTENSET 0xC00 |
| #define PMCNTENCLR 0xC20 |
| #define PMINTENSET 0xC40 |
| #define PMINTENCLR 0xC60 |
| #define PMOVSCLR 0xC80 |
| #define PMOVSSET 0xCC0 |
| #define PMCFGR 0xE00 |
| #define PMCR 0xE04 |
| #define PMIIDR 0xE08 |
| |
| /* PMCFGR register field */ |
| #define PMCFGR_NCG GENMASK(31, 28) |
| #define PMCFGR_HDBG BIT(24) |
| #define PMCFGR_TRO BIT(23) |
| #define PMCFGR_SS BIT(22) |
| #define PMCFGR_FZO BIT(21) |
| #define PMCFGR_MSI BIT(20) |
| #define PMCFGR_UEN BIT(19) |
| #define PMCFGR_NA BIT(17) |
| #define PMCFGR_EX BIT(16) |
| #define PMCFGR_CCD BIT(15) |
| #define PMCFGR_CC BIT(14) |
| #define PMCFGR_SIZE GENMASK(13, 8) |
| #define PMCFGR_N GENMASK(7, 0) |
| |
| /* PMCR register field */ |
| #define PMCR_TRO BIT(11) |
| #define PMCR_HDBG BIT(10) |
| #define PMCR_FZO BIT(9) |
| #define PMCR_NA BIT(8) |
| #define PMCR_DP BIT(5) |
| #define PMCR_X BIT(4) |
| #define PMCR_D BIT(3) |
| #define PMCR_C BIT(2) |
| #define PMCR_P BIT(1) |
| #define PMCR_E BIT(0) |
| |
| /* Each SET/CLR register supports up to 32 counters. */ |
| #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5 |
| #define ARM_CSPMU_SET_CLR_COUNTER_NUM \ |
| (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT) |
| |
| /* Convert counter idx into SET/CLR register number. */ |
| #define COUNTER_TO_SET_CLR_ID(idx) \ |
| (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT) |
| |
| /* Convert counter idx into SET/CLR register bit. */ |
| #define COUNTER_TO_SET_CLR_BIT(idx) \ |
| (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1)) |
| |
| #define ARM_CSPMU_ACTIVE_CPU_MASK 0x0 |
| #define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1 |
| |
| /* Check if field f in flags is set with value v */ |
| #define CHECK_APMT_FLAG(flags, f, v) \ |
| ((flags & (ACPI_APMT_FLAGS_ ## f)) == (ACPI_APMT_FLAGS_ ## f ## _ ## v)) |
| |
| /* Check and use default if implementer doesn't provide attribute callback */ |
| #define CHECK_DEFAULT_IMPL_OPS(ops, callback) \ |
| do { \ |
| if (!ops->callback) \ |
| ops->callback = arm_cspmu_ ## callback; \ |
| } while (0) |
| |
| /* |
| * Maximum poll count for reading counter value using high-low-high sequence. |
| */ |
| #define HILOHI_MAX_POLL 1000 |
| |
| /* JEDEC-assigned JEP106 identification code */ |
| #define ARM_CSPMU_IMPL_ID_NVIDIA 0x36B |
| |
| static unsigned long arm_cspmu_cpuhp_state; |
| |
| /* |
| * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except |
| * counter register. The counter register can be implemented as 32-bit or 64-bit |
| * register depending on the value of PMCFGR.SIZE field. For 64-bit access, |
| * single-copy 64-bit atomic support is implementation defined. APMT node flag |
| * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit |
| * single copy atomic is not supported, the driver treats the register as a pair |
| * of 32-bit register. |
| */ |
| |
| /* |
| * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence. |
| */ |
| static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count) |
| { |
| u32 val_lo, val_hi; |
| u64 val; |
| |
| /* Use high-low-high sequence to avoid tearing */ |
| do { |
| if (max_poll_count-- == 0) { |
| pr_err("ARM CSPMU: timeout hi-low-high sequence\n"); |
| return 0; |
| } |
| |
| val_hi = readl(addr + 4); |
| val_lo = readl(addr); |
| } while (val_hi != readl(addr + 4)); |
| |
| val = (((u64)val_hi << 32) | val_lo); |
| |
| return val; |
| } |
| |
| /* Check if PMU supports 64-bit single copy atomic. */ |
| static inline bool supports_64bit_atomics(const struct arm_cspmu *cspmu) |
| { |
| return CHECK_APMT_FLAG(cspmu->apmt_node->flags, ATOMIC, SUPP); |
| } |
| |
| /* Check if cycle counter is supported. */ |
| static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu) |
| { |
| return (cspmu->pmcfgr & PMCFGR_CC); |
| } |
| |
| /* Get counter size, which is (PMCFGR_SIZE + 1). */ |
| static inline u32 counter_size(const struct arm_cspmu *cspmu) |
| { |
| return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1; |
| } |
| |
| /* Get counter mask. */ |
| static inline u64 counter_mask(const struct arm_cspmu *cspmu) |
| { |
| return GENMASK_ULL(counter_size(cspmu) - 1, 0); |
| } |
| |
| /* Check if counter is implemented as 64-bit register. */ |
| static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu) |
| { |
| return (counter_size(cspmu) > 32); |
| } |
| |
| ssize_t arm_cspmu_sysfs_event_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct dev_ext_attribute *eattr = |
| container_of(attr, struct dev_ext_attribute, attr); |
| return sysfs_emit(buf, "event=0x%llx\n", |
| (unsigned long long)eattr->var); |
| } |
| EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show); |
| |
| /* Default event list. */ |
| static struct attribute *arm_cspmu_event_attrs[] = { |
| ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT), |
| NULL, |
| }; |
| |
| static struct attribute ** |
| arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu) |
| { |
| struct attribute **attrs; |
| |
| attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs, |
| sizeof(arm_cspmu_event_attrs), GFP_KERNEL); |
| |
| return attrs; |
| } |
| |
| static umode_t |
| arm_cspmu_event_attr_is_visible(struct kobject *kobj, |
| struct attribute *attr, int unused) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); |
| struct perf_pmu_events_attr *eattr; |
| |
| eattr = container_of(attr, typeof(*eattr), attr.attr); |
| |
| /* Hide cycle event if not supported */ |
| if (!supports_cycle_counter(cspmu) && |
| eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT) |
| return 0; |
| |
| return attr->mode; |
| } |
| |
| ssize_t arm_cspmu_sysfs_format_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct dev_ext_attribute *eattr = |
| container_of(attr, struct dev_ext_attribute, attr); |
| return sysfs_emit(buf, "%s\n", (char *)eattr->var); |
| } |
| EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show); |
| |
| static struct attribute *arm_cspmu_format_attrs[] = { |
| ARM_CSPMU_FORMAT_EVENT_ATTR, |
| ARM_CSPMU_FORMAT_FILTER_ATTR, |
| NULL, |
| }; |
| |
| static struct attribute ** |
| arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu) |
| { |
| struct attribute **attrs; |
| |
| attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs, |
| sizeof(arm_cspmu_format_attrs), GFP_KERNEL); |
| |
| return attrs; |
| } |
| |
| static u32 arm_cspmu_event_type(const struct perf_event *event) |
| { |
| return event->attr.config & ARM_CSPMU_EVENT_MASK; |
| } |
| |
| static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event) |
| { |
| return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT); |
| } |
| |
| static u32 arm_cspmu_event_filter(const struct perf_event *event) |
| { |
| return event->attr.config1 & ARM_CSPMU_FILTER_MASK; |
| } |
| |
| static ssize_t arm_cspmu_identifier_show(struct device *dev, |
| struct device_attribute *attr, |
| char *page) |
| { |
| struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev)); |
| |
| return sysfs_emit(page, "%s\n", cspmu->identifier); |
| } |
| |
| static struct device_attribute arm_cspmu_identifier_attr = |
| __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL); |
| |
| static struct attribute *arm_cspmu_identifier_attrs[] = { |
| &arm_cspmu_identifier_attr.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group arm_cspmu_identifier_attr_group = { |
| .attrs = arm_cspmu_identifier_attrs, |
| }; |
| |
| static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu) |
| { |
| const char *identifier = |
| devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x", |
| cspmu->impl.pmiidr); |
| return identifier; |
| } |
| |
| static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = { |
| "mc", |
| "smmu", |
| "pcie", |
| "acpi", |
| "cache", |
| }; |
| |
| static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu) |
| { |
| struct device *dev; |
| struct acpi_apmt_node *apmt_node; |
| u8 pmu_type; |
| char *name; |
| char acpi_hid_string[ACPI_ID_LEN] = { 0 }; |
| static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 }; |
| |
| dev = cspmu->dev; |
| apmt_node = cspmu->apmt_node; |
| pmu_type = apmt_node->type; |
| |
| if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) { |
| dev_err(dev, "unsupported PMU type-%u\n", pmu_type); |
| return NULL; |
| } |
| |
| if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) { |
| memcpy(acpi_hid_string, |
| &apmt_node->inst_primary, |
| sizeof(apmt_node->inst_primary)); |
| name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME, |
| arm_cspmu_type_str[pmu_type], |
| acpi_hid_string, |
| apmt_node->inst_secondary); |
| } else { |
| name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME, |
| arm_cspmu_type_str[pmu_type], |
| atomic_fetch_inc(&pmu_idx[pmu_type])); |
| } |
| |
| return name; |
| } |
| |
| static ssize_t arm_cspmu_cpumask_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct pmu *pmu = dev_get_drvdata(dev); |
| struct arm_cspmu *cspmu = to_arm_cspmu(pmu); |
| struct dev_ext_attribute *eattr = |
| container_of(attr, struct dev_ext_attribute, attr); |
| unsigned long mask_id = (unsigned long)eattr->var; |
| const cpumask_t *cpumask; |
| |
| switch (mask_id) { |
| case ARM_CSPMU_ACTIVE_CPU_MASK: |
| cpumask = &cspmu->active_cpu; |
| break; |
| case ARM_CSPMU_ASSOCIATED_CPU_MASK: |
| cpumask = &cspmu->associated_cpus; |
| break; |
| default: |
| return 0; |
| } |
| return cpumap_print_to_pagebuf(true, buf, cpumask); |
| } |
| |
| static struct attribute *arm_cspmu_cpumask_attrs[] = { |
| ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK), |
| ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK), |
| NULL, |
| }; |
| |
| static struct attribute_group arm_cspmu_cpumask_attr_group = { |
| .attrs = arm_cspmu_cpumask_attrs, |
| }; |
| |
| struct impl_match { |
| u32 pmiidr; |
| u32 mask; |
| int (*impl_init_ops)(struct arm_cspmu *cspmu); |
| }; |
| |
| static const struct impl_match impl_match[] = { |
| { |
| .pmiidr = ARM_CSPMU_IMPL_ID_NVIDIA, |
| .mask = ARM_CSPMU_PMIIDR_IMPLEMENTER, |
| .impl_init_ops = nv_cspmu_init_ops |
| }, |
| {} |
| }; |
| |
| static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu) |
| { |
| int ret; |
| struct acpi_apmt_node *apmt_node = cspmu->apmt_node; |
| struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; |
| const struct impl_match *match = impl_match; |
| |
| /* |
| * Get PMU implementer and product id from APMT node. |
| * If APMT node doesn't have implementer/product id, try get it |
| * from PMIIDR. |
| */ |
| cspmu->impl.pmiidr = |
| (apmt_node->impl_id) ? apmt_node->impl_id : |
| readl(cspmu->base0 + PMIIDR); |
| |
| /* Find implementer specific attribute ops. */ |
| for (; match->pmiidr; match++) { |
| const u32 mask = match->mask; |
| |
| if ((match->pmiidr & mask) == (cspmu->impl.pmiidr & mask)) { |
| ret = match->impl_init_ops(cspmu); |
| if (ret) |
| return ret; |
| |
| break; |
| } |
| } |
| |
| /* Use default callbacks if implementer doesn't provide one. */ |
| CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs); |
| CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs); |
| CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier); |
| CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name); |
| CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event); |
| CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type); |
| CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter); |
| CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible); |
| |
| return 0; |
| } |
| |
| static struct attribute_group * |
| arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu) |
| { |
| struct attribute_group *event_group; |
| struct device *dev = cspmu->dev; |
| const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; |
| |
| event_group = |
| devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); |
| if (!event_group) |
| return NULL; |
| |
| event_group->name = "events"; |
| event_group->is_visible = impl_ops->event_attr_is_visible; |
| event_group->attrs = impl_ops->get_event_attrs(cspmu); |
| |
| if (!event_group->attrs) |
| return NULL; |
| |
| return event_group; |
| } |
| |
| static struct attribute_group * |
| arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu) |
| { |
| struct attribute_group *format_group; |
| struct device *dev = cspmu->dev; |
| |
| format_group = |
| devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); |
| if (!format_group) |
| return NULL; |
| |
| format_group->name = "format"; |
| format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu); |
| |
| if (!format_group->attrs) |
| return NULL; |
| |
| return format_group; |
| } |
| |
| static struct attribute_group ** |
| arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu) |
| { |
| struct attribute_group **attr_groups = NULL; |
| struct device *dev = cspmu->dev; |
| const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops; |
| int ret; |
| |
| ret = arm_cspmu_init_impl_ops(cspmu); |
| if (ret) |
| return NULL; |
| |
| cspmu->identifier = impl_ops->get_identifier(cspmu); |
| cspmu->name = impl_ops->get_name(cspmu); |
| |
| if (!cspmu->identifier || !cspmu->name) |
| return NULL; |
| |
| attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *), |
| GFP_KERNEL); |
| if (!attr_groups) |
| return NULL; |
| |
| attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu); |
| attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu); |
| attr_groups[2] = &arm_cspmu_identifier_attr_group; |
| attr_groups[3] = &arm_cspmu_cpumask_attr_group; |
| |
| if (!attr_groups[0] || !attr_groups[1]) |
| return NULL; |
| |
| return attr_groups; |
| } |
| |
| static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu) |
| { |
| u32 pmcr = 0; |
| |
| pmcr |= PMCR_P; |
| pmcr |= PMCR_C; |
| writel(pmcr, cspmu->base0 + PMCR); |
| } |
| |
| static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu) |
| { |
| writel(PMCR_E, cspmu->base0 + PMCR); |
| } |
| |
| static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu) |
| { |
| writel(0, cspmu->base0 + PMCR); |
| } |
| |
| static void arm_cspmu_enable(struct pmu *pmu) |
| { |
| bool disabled; |
| struct arm_cspmu *cspmu = to_arm_cspmu(pmu); |
| |
| disabled = bitmap_empty(cspmu->hw_events.used_ctrs, |
| cspmu->num_logical_ctrs); |
| |
| if (disabled) |
| return; |
| |
| arm_cspmu_start_counters(cspmu); |
| } |
| |
| static void arm_cspmu_disable(struct pmu *pmu) |
| { |
| struct arm_cspmu *cspmu = to_arm_cspmu(pmu); |
| |
| arm_cspmu_stop_counters(cspmu); |
| } |
| |
| static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events, |
| struct perf_event *event) |
| { |
| int idx; |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| |
| if (supports_cycle_counter(cspmu)) { |
| if (cspmu->impl.ops.is_cycle_counter_event(event)) { |
| /* Search for available cycle counter. */ |
| if (test_and_set_bit(cspmu->cycle_counter_logical_idx, |
| hw_events->used_ctrs)) |
| return -EAGAIN; |
| |
| return cspmu->cycle_counter_logical_idx; |
| } |
| |
| /* |
| * Search a regular counter from the used counter bitmap. |
| * The cycle counter divides the bitmap into two parts. Search |
| * the first then second half to exclude the cycle counter bit. |
| */ |
| idx = find_first_zero_bit(hw_events->used_ctrs, |
| cspmu->cycle_counter_logical_idx); |
| if (idx >= cspmu->cycle_counter_logical_idx) { |
| idx = find_next_zero_bit( |
| hw_events->used_ctrs, |
| cspmu->num_logical_ctrs, |
| cspmu->cycle_counter_logical_idx + 1); |
| } |
| } else { |
| idx = find_first_zero_bit(hw_events->used_ctrs, |
| cspmu->num_logical_ctrs); |
| } |
| |
| if (idx >= cspmu->num_logical_ctrs) |
| return -EAGAIN; |
| |
| set_bit(idx, hw_events->used_ctrs); |
| |
| return idx; |
| } |
| |
| static bool arm_cspmu_validate_event(struct pmu *pmu, |
| struct arm_cspmu_hw_events *hw_events, |
| struct perf_event *event) |
| { |
| if (is_software_event(event)) |
| return true; |
| |
| /* Reject groups spanning multiple HW PMUs. */ |
| if (event->pmu != pmu) |
| return false; |
| |
| return (arm_cspmu_get_event_idx(hw_events, event) >= 0); |
| } |
| |
| /* |
| * Make sure the group of events can be scheduled at once |
| * on the PMU. |
| */ |
| static bool arm_cspmu_validate_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct arm_cspmu_hw_events fake_hw_events; |
| |
| if (event->group_leader == event) |
| return true; |
| |
| memset(&fake_hw_events, 0, sizeof(fake_hw_events)); |
| |
| if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader)) |
| return false; |
| |
| for_each_sibling_event(sibling, leader) { |
| if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, |
| sibling)) |
| return false; |
| } |
| |
| return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event); |
| } |
| |
| static int arm_cspmu_event_init(struct perf_event *event) |
| { |
| struct arm_cspmu *cspmu; |
| struct hw_perf_event *hwc = &event->hw; |
| |
| cspmu = to_arm_cspmu(event->pmu); |
| |
| /* |
| * Following other "uncore" PMUs, we do not support sampling mode or |
| * attach to a task (per-process mode). |
| */ |
| if (is_sampling_event(event)) { |
| dev_dbg(cspmu->pmu.dev, |
| "Can't support sampling events\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) { |
| dev_dbg(cspmu->pmu.dev, |
| "Can't support per-task counters\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Make sure the CPU assignment is on one of the CPUs associated with |
| * this PMU. |
| */ |
| if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) { |
| dev_dbg(cspmu->pmu.dev, |
| "Requested cpu is not associated with the PMU\n"); |
| return -EINVAL; |
| } |
| |
| /* Enforce the current active CPU to handle the events in this PMU. */ |
| event->cpu = cpumask_first(&cspmu->active_cpu); |
| if (event->cpu >= nr_cpu_ids) |
| return -EINVAL; |
| |
| if (!arm_cspmu_validate_group(event)) |
| return -EINVAL; |
| |
| /* |
| * The logical counter id is tracked with hw_perf_event.extra_reg.idx. |
| * The physical counter id is tracked with hw_perf_event.idx. |
| * We don't assign an index until we actually place the event onto |
| * hardware. Use -1 to signify that we haven't decided where to put it |
| * yet. |
| */ |
| hwc->idx = -1; |
| hwc->extra_reg.idx = -1; |
| hwc->config = cspmu->impl.ops.event_type(event); |
| |
| return 0; |
| } |
| |
| static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx) |
| { |
| return (PMEVCNTR_LO + (reg_sz * ctr_idx)); |
| } |
| |
| static void arm_cspmu_write_counter(struct perf_event *event, u64 val) |
| { |
| u32 offset; |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| |
| if (use_64b_counter_reg(cspmu)) { |
| offset = counter_offset(sizeof(u64), event->hw.idx); |
| |
| writeq(val, cspmu->base1 + offset); |
| } else { |
| offset = counter_offset(sizeof(u32), event->hw.idx); |
| |
| writel(lower_32_bits(val), cspmu->base1 + offset); |
| } |
| } |
| |
| static u64 arm_cspmu_read_counter(struct perf_event *event) |
| { |
| u32 offset; |
| const void __iomem *counter_addr; |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| |
| if (use_64b_counter_reg(cspmu)) { |
| offset = counter_offset(sizeof(u64), event->hw.idx); |
| counter_addr = cspmu->base1 + offset; |
| |
| return supports_64bit_atomics(cspmu) ? |
| readq(counter_addr) : |
| read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL); |
| } |
| |
| offset = counter_offset(sizeof(u32), event->hw.idx); |
| return readl(cspmu->base1 + offset); |
| } |
| |
| /* |
| * arm_cspmu_set_event_period: Set the period for the counter. |
| * |
| * To handle cases of extreme interrupt latency, we program |
| * the counter with half of the max count for the counters. |
| */ |
| static void arm_cspmu_set_event_period(struct perf_event *event) |
| { |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| u64 val = counter_mask(cspmu) >> 1ULL; |
| |
| local64_set(&event->hw.prev_count, val); |
| arm_cspmu_write_counter(event, val); |
| } |
| |
| static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx) |
| { |
| u32 reg_id, reg_bit, inten_off, cnten_off; |
| |
| reg_id = COUNTER_TO_SET_CLR_ID(idx); |
| reg_bit = COUNTER_TO_SET_CLR_BIT(idx); |
| |
| inten_off = PMINTENSET + (4 * reg_id); |
| cnten_off = PMCNTENSET + (4 * reg_id); |
| |
| writel(BIT(reg_bit), cspmu->base0 + inten_off); |
| writel(BIT(reg_bit), cspmu->base0 + cnten_off); |
| } |
| |
| static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx) |
| { |
| u32 reg_id, reg_bit, inten_off, cnten_off; |
| |
| reg_id = COUNTER_TO_SET_CLR_ID(idx); |
| reg_bit = COUNTER_TO_SET_CLR_BIT(idx); |
| |
| inten_off = PMINTENCLR + (4 * reg_id); |
| cnten_off = PMCNTENCLR + (4 * reg_id); |
| |
| writel(BIT(reg_bit), cspmu->base0 + cnten_off); |
| writel(BIT(reg_bit), cspmu->base0 + inten_off); |
| } |
| |
| static void arm_cspmu_event_update(struct perf_event *event) |
| { |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| u64 delta, prev, now; |
| |
| do { |
| prev = local64_read(&hwc->prev_count); |
| now = arm_cspmu_read_counter(event); |
| } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev); |
| |
| delta = (now - prev) & counter_mask(cspmu); |
| local64_add(delta, &event->count); |
| } |
| |
| static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu, |
| struct hw_perf_event *hwc) |
| { |
| u32 offset = PMEVTYPER + (4 * hwc->idx); |
| |
| writel(hwc->config, cspmu->base0 + offset); |
| } |
| |
| static inline void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu, |
| struct hw_perf_event *hwc, |
| u32 filter) |
| { |
| u32 offset = PMEVFILTR + (4 * hwc->idx); |
| |
| writel(filter, cspmu->base0 + offset); |
| } |
| |
| static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter) |
| { |
| u32 offset = PMCCFILTR; |
| |
| writel(filter, cspmu->base0 + offset); |
| } |
| |
| static void arm_cspmu_start(struct perf_event *event, int pmu_flags) |
| { |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| u32 filter; |
| |
| /* We always reprogram the counter */ |
| if (pmu_flags & PERF_EF_RELOAD) |
| WARN_ON(!(hwc->state & PERF_HES_UPTODATE)); |
| |
| arm_cspmu_set_event_period(event); |
| |
| filter = cspmu->impl.ops.event_filter(event); |
| |
| if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) { |
| arm_cspmu_set_cc_filter(cspmu, filter); |
| } else { |
| arm_cspmu_set_event(cspmu, hwc); |
| arm_cspmu_set_ev_filter(cspmu, hwc, filter); |
| } |
| |
| hwc->state = 0; |
| |
| arm_cspmu_enable_counter(cspmu, hwc->idx); |
| } |
| |
| static void arm_cspmu_stop(struct perf_event *event, int pmu_flags) |
| { |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (hwc->state & PERF_HES_STOPPED) |
| return; |
| |
| arm_cspmu_disable_counter(cspmu, hwc->idx); |
| arm_cspmu_event_update(event); |
| |
| hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| } |
| |
| static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx) |
| { |
| return (idx == cspmu->cycle_counter_logical_idx) ? |
| ARM_CSPMU_CYCLE_CNTR_IDX : idx; |
| } |
| |
| static int arm_cspmu_add(struct perf_event *event, int flags) |
| { |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| |
| if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), |
| &cspmu->associated_cpus))) |
| return -ENOENT; |
| |
| idx = arm_cspmu_get_event_idx(hw_events, event); |
| if (idx < 0) |
| return idx; |
| |
| hw_events->events[idx] = event; |
| hwc->idx = to_phys_idx(cspmu, idx); |
| hwc->extra_reg.idx = idx; |
| hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| |
| if (flags & PERF_EF_START) |
| arm_cspmu_start(event, PERF_EF_RELOAD); |
| |
| /* Propagate changes to the userspace mapping. */ |
| perf_event_update_userpage(event); |
| |
| return 0; |
| } |
| |
| static void arm_cspmu_del(struct perf_event *event, int flags) |
| { |
| struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu); |
| struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events; |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->extra_reg.idx; |
| |
| arm_cspmu_stop(event, PERF_EF_UPDATE); |
| |
| hw_events->events[idx] = NULL; |
| |
| clear_bit(idx, hw_events->used_ctrs); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static void arm_cspmu_read(struct perf_event *event) |
| { |
| arm_cspmu_event_update(event); |
| } |
| |
| static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev) |
| { |
| struct acpi_apmt_node *apmt_node; |
| struct arm_cspmu *cspmu; |
| struct device *dev; |
| |
| dev = &pdev->dev; |
| apmt_node = *(struct acpi_apmt_node **)dev_get_platdata(dev); |
| if (!apmt_node) { |
| dev_err(dev, "failed to get APMT node\n"); |
| return NULL; |
| } |
| |
| cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL); |
| if (!cspmu) |
| return NULL; |
| |
| cspmu->dev = dev; |
| cspmu->apmt_node = apmt_node; |
| |
| platform_set_drvdata(pdev, cspmu); |
| |
| return cspmu; |
| } |
| |
| static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu) |
| { |
| struct device *dev; |
| struct platform_device *pdev; |
| struct acpi_apmt_node *apmt_node; |
| |
| dev = cspmu->dev; |
| pdev = to_platform_device(dev); |
| apmt_node = cspmu->apmt_node; |
| |
| /* Base address for page 0. */ |
| cspmu->base0 = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(cspmu->base0)) { |
| dev_err(dev, "ioremap failed for page-0 resource\n"); |
| return PTR_ERR(cspmu->base0); |
| } |
| |
| /* Base address for page 1 if supported. Otherwise point to page 0. */ |
| cspmu->base1 = cspmu->base0; |
| if (CHECK_APMT_FLAG(apmt_node->flags, DUAL_PAGE, SUPP)) { |
| cspmu->base1 = devm_platform_ioremap_resource(pdev, 1); |
| if (IS_ERR(cspmu->base1)) { |
| dev_err(dev, "ioremap failed for page-1 resource\n"); |
| return PTR_ERR(cspmu->base1); |
| } |
| } |
| |
| cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR); |
| |
| cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1; |
| |
| cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS; |
| |
| if (supports_cycle_counter(cspmu)) { |
| /* |
| * The last logical counter is mapped to cycle counter if |
| * there is a gap between regular and cycle counter. Otherwise, |
| * logical and physical have 1-to-1 mapping. |
| */ |
| cspmu->cycle_counter_logical_idx = |
| (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ? |
| cspmu->num_logical_ctrs - 1 : |
| ARM_CSPMU_CYCLE_CNTR_IDX; |
| } |
| |
| cspmu->num_set_clr_reg = |
| DIV_ROUND_UP(cspmu->num_logical_ctrs, |
| ARM_CSPMU_SET_CLR_COUNTER_NUM); |
| |
| cspmu->hw_events.events = |
| devm_kcalloc(dev, cspmu->num_logical_ctrs, |
| sizeof(*cspmu->hw_events.events), GFP_KERNEL); |
| |
| if (!cspmu->hw_events.events) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu, |
| u32 *pmovs) |
| { |
| int i; |
| u32 pmovclr_offset = PMOVSCLR; |
| u32 has_overflowed = 0; |
| |
| for (i = 0; i < cspmu->num_set_clr_reg; ++i) { |
| pmovs[i] = readl(cspmu->base1 + pmovclr_offset); |
| has_overflowed |= pmovs[i]; |
| writel(pmovs[i], cspmu->base1 + pmovclr_offset); |
| pmovclr_offset += sizeof(u32); |
| } |
| |
| return has_overflowed != 0; |
| } |
| |
| static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev) |
| { |
| int idx, has_overflowed; |
| struct perf_event *event; |
| struct arm_cspmu *cspmu = dev; |
| DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS); |
| bool handled = false; |
| |
| arm_cspmu_stop_counters(cspmu); |
| |
| has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs); |
| if (!has_overflowed) |
| goto done; |
| |
| for_each_set_bit(idx, cspmu->hw_events.used_ctrs, |
| cspmu->num_logical_ctrs) { |
| event = cspmu->hw_events.events[idx]; |
| |
| if (!event) |
| continue; |
| |
| if (!test_bit(event->hw.idx, pmovs)) |
| continue; |
| |
| arm_cspmu_event_update(event); |
| arm_cspmu_set_event_period(event); |
| |
| handled = true; |
| } |
| |
| done: |
| arm_cspmu_start_counters(cspmu); |
| return IRQ_RETVAL(handled); |
| } |
| |
| static int arm_cspmu_request_irq(struct arm_cspmu *cspmu) |
| { |
| int irq, ret; |
| struct device *dev; |
| struct platform_device *pdev; |
| struct acpi_apmt_node *apmt_node; |
| |
| dev = cspmu->dev; |
| pdev = to_platform_device(dev); |
| apmt_node = cspmu->apmt_node; |
| |
| /* Skip IRQ request if the PMU does not support overflow interrupt. */ |
| if (apmt_node->ovflw_irq == 0) |
| return 0; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq, |
| IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev), |
| cspmu); |
| if (ret) { |
| dev_err(dev, "Could not request IRQ %d\n", irq); |
| return ret; |
| } |
| |
| cspmu->irq = irq; |
| |
| return 0; |
| } |
| |
| static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid) |
| { |
| u32 acpi_uid; |
| struct device *cpu_dev = get_cpu_device(cpu); |
| struct acpi_device *acpi_dev = ACPI_COMPANION(cpu_dev); |
| |
| if (!cpu_dev) |
| return -ENODEV; |
| |
| while (acpi_dev) { |
| if (!strcmp(acpi_device_hid(acpi_dev), |
| ACPI_PROCESSOR_CONTAINER_HID) && |
| !kstrtouint(acpi_device_uid(acpi_dev), 0, &acpi_uid) && |
| acpi_uid == container_uid) |
| return 0; |
| |
| acpi_dev = acpi_dev_parent(acpi_dev); |
| } |
| |
| return -ENODEV; |
| } |
| |
| static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu) |
| { |
| struct device *dev; |
| struct acpi_apmt_node *apmt_node; |
| int affinity_flag; |
| int cpu; |
| |
| dev = cspmu->pmu.dev; |
| apmt_node = cspmu->apmt_node; |
| affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY; |
| |
| if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) { |
| for_each_possible_cpu(cpu) { |
| if (apmt_node->proc_affinity == |
| get_acpi_id_for_cpu(cpu)) { |
| cpumask_set_cpu(cpu, &cspmu->associated_cpus); |
| break; |
| } |
| } |
| } else { |
| for_each_possible_cpu(cpu) { |
| if (arm_cspmu_find_cpu_container( |
| cpu, apmt_node->proc_affinity)) |
| continue; |
| |
| cpumask_set_cpu(cpu, &cspmu->associated_cpus); |
| } |
| } |
| |
| if (cpumask_empty(&cspmu->associated_cpus)) { |
| dev_dbg(dev, "No cpu associated with the PMU\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu) |
| { |
| int ret, capabilities; |
| struct attribute_group **attr_groups; |
| |
| attr_groups = arm_cspmu_alloc_attr_group(cspmu); |
| if (!attr_groups) |
| return -ENOMEM; |
| |
| ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state, |
| &cspmu->cpuhp_node); |
| if (ret) |
| return ret; |
| |
| capabilities = PERF_PMU_CAP_NO_EXCLUDE; |
| if (cspmu->irq == 0) |
| capabilities |= PERF_PMU_CAP_NO_INTERRUPT; |
| |
| cspmu->pmu = (struct pmu){ |
| .task_ctx_nr = perf_invalid_context, |
| .module = THIS_MODULE, |
| .pmu_enable = arm_cspmu_enable, |
| .pmu_disable = arm_cspmu_disable, |
| .event_init = arm_cspmu_event_init, |
| .add = arm_cspmu_add, |
| .del = arm_cspmu_del, |
| .start = arm_cspmu_start, |
| .stop = arm_cspmu_stop, |
| .read = arm_cspmu_read, |
| .attr_groups = (const struct attribute_group **)attr_groups, |
| .capabilities = capabilities, |
| }; |
| |
| /* Hardware counter init */ |
| arm_cspmu_stop_counters(cspmu); |
| arm_cspmu_reset_counters(cspmu); |
| |
| ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1); |
| if (ret) { |
| cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, |
| &cspmu->cpuhp_node); |
| } |
| |
| return ret; |
| } |
| |
| static int arm_cspmu_device_probe(struct platform_device *pdev) |
| { |
| int ret; |
| struct arm_cspmu *cspmu; |
| |
| cspmu = arm_cspmu_alloc(pdev); |
| if (!cspmu) |
| return -ENOMEM; |
| |
| ret = arm_cspmu_init_mmio(cspmu); |
| if (ret) |
| return ret; |
| |
| ret = arm_cspmu_request_irq(cspmu); |
| if (ret) |
| return ret; |
| |
| ret = arm_cspmu_get_cpus(cspmu); |
| if (ret) |
| return ret; |
| |
| ret = arm_cspmu_register_pmu(cspmu); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int arm_cspmu_device_remove(struct platform_device *pdev) |
| { |
| struct arm_cspmu *cspmu = platform_get_drvdata(pdev); |
| |
| perf_pmu_unregister(&cspmu->pmu); |
| cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node); |
| |
| return 0; |
| } |
| |
| static struct platform_driver arm_cspmu_driver = { |
| .driver = { |
| .name = DRVNAME, |
| .suppress_bind_attrs = true, |
| }, |
| .probe = arm_cspmu_device_probe, |
| .remove = arm_cspmu_device_remove, |
| }; |
| |
| static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu) |
| { |
| cpumask_set_cpu(cpu, &cspmu->active_cpu); |
| WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu)); |
| } |
| |
| static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node) |
| { |
| struct arm_cspmu *cspmu = |
| hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); |
| |
| if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus)) |
| return 0; |
| |
| /* If the PMU is already managed, there is nothing to do */ |
| if (!cpumask_empty(&cspmu->active_cpu)) |
| return 0; |
| |
| /* Use this CPU for event counting */ |
| arm_cspmu_set_active_cpu(cpu, cspmu); |
| |
| return 0; |
| } |
| |
| static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) |
| { |
| int dst; |
| struct cpumask online_supported; |
| |
| struct arm_cspmu *cspmu = |
| hlist_entry_safe(node, struct arm_cspmu, cpuhp_node); |
| |
| /* Nothing to do if this CPU doesn't own the PMU */ |
| if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu)) |
| return 0; |
| |
| /* Choose a new CPU to migrate ownership of the PMU to */ |
| cpumask_and(&online_supported, &cspmu->associated_cpus, |
| cpu_online_mask); |
| dst = cpumask_any_but(&online_supported, cpu); |
| if (dst >= nr_cpu_ids) |
| return 0; |
| |
| /* Use this CPU for event counting */ |
| perf_pmu_migrate_context(&cspmu->pmu, cpu, dst); |
| arm_cspmu_set_active_cpu(dst, cspmu); |
| |
| return 0; |
| } |
| |
| static int __init arm_cspmu_init(void) |
| { |
| int ret; |
| |
| ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, |
| "perf/arm/cspmu:online", |
| arm_cspmu_cpu_online, |
| arm_cspmu_cpu_teardown); |
| if (ret < 0) |
| return ret; |
| arm_cspmu_cpuhp_state = ret; |
| return platform_driver_register(&arm_cspmu_driver); |
| } |
| |
| static void __exit arm_cspmu_exit(void) |
| { |
| platform_driver_unregister(&arm_cspmu_driver); |
| cpuhp_remove_multi_state(arm_cspmu_cpuhp_state); |
| } |
| |
| module_init(arm_cspmu_init); |
| module_exit(arm_cspmu_exit); |
| |
| MODULE_LICENSE("GPL v2"); |