| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * Copyright (c) 2013 Red Hat, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_mount.h" |
| #include "xfs_da_format.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dir2_priv.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_alloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_attr.h" |
| #include "xfs_attr_leaf.h" |
| #include "xfs_error.h" |
| #include "xfs_trace.h" |
| #include "xfs_cksum.h" |
| #include "xfs_buf_item.h" |
| |
| /* |
| * xfs_da_btree.c |
| * |
| * Routines to implement directories as Btrees of hashed names. |
| */ |
| |
| /*======================================================================== |
| * Function prototypes for the kernel. |
| *========================================================================*/ |
| |
| /* |
| * Routines used for growing the Btree. |
| */ |
| STATIC int xfs_da3_root_split(xfs_da_state_t *state, |
| xfs_da_state_blk_t *existing_root, |
| xfs_da_state_blk_t *new_child); |
| STATIC int xfs_da3_node_split(xfs_da_state_t *state, |
| xfs_da_state_blk_t *existing_blk, |
| xfs_da_state_blk_t *split_blk, |
| xfs_da_state_blk_t *blk_to_add, |
| int treelevel, |
| int *result); |
| STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *node_blk_1, |
| xfs_da_state_blk_t *node_blk_2); |
| STATIC void xfs_da3_node_add(xfs_da_state_t *state, |
| xfs_da_state_blk_t *old_node_blk, |
| xfs_da_state_blk_t *new_node_blk); |
| |
| /* |
| * Routines used for shrinking the Btree. |
| */ |
| STATIC int xfs_da3_root_join(xfs_da_state_t *state, |
| xfs_da_state_blk_t *root_blk); |
| STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval); |
| STATIC void xfs_da3_node_remove(xfs_da_state_t *state, |
| xfs_da_state_blk_t *drop_blk); |
| STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *src_node_blk, |
| xfs_da_state_blk_t *dst_node_blk); |
| |
| /* |
| * Utility routines. |
| */ |
| STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state, |
| xfs_da_state_blk_t *drop_blk, |
| xfs_da_state_blk_t *save_blk); |
| |
| |
| kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */ |
| |
| /* |
| * Allocate a dir-state structure. |
| * We don't put them on the stack since they're large. |
| */ |
| xfs_da_state_t * |
| xfs_da_state_alloc(void) |
| { |
| return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS); |
| } |
| |
| /* |
| * Kill the altpath contents of a da-state structure. |
| */ |
| STATIC void |
| xfs_da_state_kill_altpath(xfs_da_state_t *state) |
| { |
| int i; |
| |
| for (i = 0; i < state->altpath.active; i++) |
| state->altpath.blk[i].bp = NULL; |
| state->altpath.active = 0; |
| } |
| |
| /* |
| * Free a da-state structure. |
| */ |
| void |
| xfs_da_state_free(xfs_da_state_t *state) |
| { |
| xfs_da_state_kill_altpath(state); |
| #ifdef DEBUG |
| memset((char *)state, 0, sizeof(*state)); |
| #endif /* DEBUG */ |
| kmem_zone_free(xfs_da_state_zone, state); |
| } |
| |
| static bool |
| xfs_da3_node_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_target->bt_mount; |
| struct xfs_da_intnode *hdr = bp->b_addr; |
| struct xfs_da3_icnode_hdr ichdr; |
| const struct xfs_dir_ops *ops; |
| |
| ops = xfs_dir_get_ops(mp, NULL); |
| |
| ops->node_hdr_from_disk(&ichdr, hdr); |
| |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| struct xfs_da3_node_hdr *hdr3 = bp->b_addr; |
| |
| if (ichdr.magic != XFS_DA3_NODE_MAGIC) |
| return false; |
| |
| if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid)) |
| return false; |
| if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn) |
| return false; |
| } else { |
| if (ichdr.magic != XFS_DA_NODE_MAGIC) |
| return false; |
| } |
| if (ichdr.level == 0) |
| return false; |
| if (ichdr.level > XFS_DA_NODE_MAXDEPTH) |
| return false; |
| if (ichdr.count == 0) |
| return false; |
| |
| /* |
| * we don't know if the node is for and attribute or directory tree, |
| * so only fail if the count is outside both bounds |
| */ |
| if (ichdr.count > mp->m_dir_node_ents && |
| ichdr.count > mp->m_attr_node_ents) |
| return false; |
| |
| /* XXX: hash order check? */ |
| |
| return true; |
| } |
| |
| static void |
| xfs_da3_node_write_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_target->bt_mount; |
| struct xfs_buf_log_item *bip = bp->b_fspriv; |
| struct xfs_da3_node_hdr *hdr3 = bp->b_addr; |
| |
| if (!xfs_da3_node_verify(bp)) { |
| xfs_buf_ioerror(bp, EFSCORRUPTED); |
| xfs_verifier_error(bp); |
| return; |
| } |
| |
| if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| return; |
| |
| if (bip) |
| hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); |
| |
| xfs_buf_update_cksum(bp, XFS_DA3_NODE_CRC_OFF); |
| } |
| |
| /* |
| * leaf/node format detection on trees is sketchy, so a node read can be done on |
| * leaf level blocks when detection identifies the tree as a node format tree |
| * incorrectly. In this case, we need to swap the verifier to match the correct |
| * format of the block being read. |
| */ |
| static void |
| xfs_da3_node_read_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_da_blkinfo *info = bp->b_addr; |
| |
| switch (be16_to_cpu(info->magic)) { |
| case XFS_DA3_NODE_MAGIC: |
| if (!xfs_buf_verify_cksum(bp, XFS_DA3_NODE_CRC_OFF)) { |
| xfs_buf_ioerror(bp, EFSBADCRC); |
| break; |
| } |
| /* fall through */ |
| case XFS_DA_NODE_MAGIC: |
| if (!xfs_da3_node_verify(bp)) { |
| xfs_buf_ioerror(bp, EFSCORRUPTED); |
| break; |
| } |
| return; |
| case XFS_ATTR_LEAF_MAGIC: |
| case XFS_ATTR3_LEAF_MAGIC: |
| bp->b_ops = &xfs_attr3_leaf_buf_ops; |
| bp->b_ops->verify_read(bp); |
| return; |
| case XFS_DIR2_LEAFN_MAGIC: |
| case XFS_DIR3_LEAFN_MAGIC: |
| bp->b_ops = &xfs_dir3_leafn_buf_ops; |
| bp->b_ops->verify_read(bp); |
| return; |
| default: |
| break; |
| } |
| |
| /* corrupt block */ |
| xfs_verifier_error(bp); |
| } |
| |
| const struct xfs_buf_ops xfs_da3_node_buf_ops = { |
| .verify_read = xfs_da3_node_read_verify, |
| .verify_write = xfs_da3_node_write_verify, |
| }; |
| |
| int |
| xfs_da3_node_read( |
| struct xfs_trans *tp, |
| struct xfs_inode *dp, |
| xfs_dablk_t bno, |
| xfs_daddr_t mappedbno, |
| struct xfs_buf **bpp, |
| int which_fork) |
| { |
| int err; |
| |
| err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp, |
| which_fork, &xfs_da3_node_buf_ops); |
| if (!err && tp) { |
| struct xfs_da_blkinfo *info = (*bpp)->b_addr; |
| int type; |
| |
| switch (be16_to_cpu(info->magic)) { |
| case XFS_DA_NODE_MAGIC: |
| case XFS_DA3_NODE_MAGIC: |
| type = XFS_BLFT_DA_NODE_BUF; |
| break; |
| case XFS_ATTR_LEAF_MAGIC: |
| case XFS_ATTR3_LEAF_MAGIC: |
| type = XFS_BLFT_ATTR_LEAF_BUF; |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| case XFS_DIR3_LEAFN_MAGIC: |
| type = XFS_BLFT_DIR_LEAFN_BUF; |
| break; |
| default: |
| type = 0; |
| ASSERT(0); |
| break; |
| } |
| xfs_trans_buf_set_type(tp, *bpp, type); |
| } |
| return err; |
| } |
| |
| /*======================================================================== |
| * Routines used for growing the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Create the initial contents of an intermediate node. |
| */ |
| int |
| xfs_da3_node_create( |
| struct xfs_da_args *args, |
| xfs_dablk_t blkno, |
| int level, |
| struct xfs_buf **bpp, |
| int whichfork) |
| { |
| struct xfs_da_intnode *node; |
| struct xfs_trans *tp = args->trans; |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_da3_icnode_hdr ichdr = {0}; |
| struct xfs_buf *bp; |
| int error; |
| struct xfs_inode *dp = args->dp; |
| |
| trace_xfs_da_node_create(args); |
| ASSERT(level <= XFS_DA_NODE_MAXDEPTH); |
| |
| error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, whichfork); |
| if (error) |
| return(error); |
| bp->b_ops = &xfs_da3_node_buf_ops; |
| xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); |
| node = bp->b_addr; |
| |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| struct xfs_da3_node_hdr *hdr3 = bp->b_addr; |
| |
| ichdr.magic = XFS_DA3_NODE_MAGIC; |
| hdr3->info.blkno = cpu_to_be64(bp->b_bn); |
| hdr3->info.owner = cpu_to_be64(args->dp->i_ino); |
| uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_uuid); |
| } else { |
| ichdr.magic = XFS_DA_NODE_MAGIC; |
| } |
| ichdr.level = level; |
| |
| dp->d_ops->node_hdr_to_disk(node, &ichdr); |
| xfs_trans_log_buf(tp, bp, |
| XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); |
| |
| *bpp = bp; |
| return(0); |
| } |
| |
| /* |
| * Split a leaf node, rebalance, then possibly split |
| * intermediate nodes, rebalance, etc. |
| */ |
| int /* error */ |
| xfs_da3_split( |
| struct xfs_da_state *state) |
| { |
| struct xfs_da_state_blk *oldblk; |
| struct xfs_da_state_blk *newblk; |
| struct xfs_da_state_blk *addblk; |
| struct xfs_da_intnode *node; |
| struct xfs_buf *bp; |
| int max; |
| int action = 0; |
| int error; |
| int i; |
| |
| trace_xfs_da_split(state->args); |
| |
| /* |
| * Walk back up the tree splitting/inserting/adjusting as necessary. |
| * If we need to insert and there isn't room, split the node, then |
| * decide which fragment to insert the new block from below into. |
| * Note that we may split the root this way, but we need more fixup. |
| */ |
| max = state->path.active - 1; |
| ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH)); |
| ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC || |
| state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC); |
| |
| addblk = &state->path.blk[max]; /* initial dummy value */ |
| for (i = max; (i >= 0) && addblk; state->path.active--, i--) { |
| oldblk = &state->path.blk[i]; |
| newblk = &state->altpath.blk[i]; |
| |
| /* |
| * If a leaf node then |
| * Allocate a new leaf node, then rebalance across them. |
| * else if an intermediate node then |
| * We split on the last layer, must we split the node? |
| */ |
| switch (oldblk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| error = xfs_attr3_leaf_split(state, oldblk, newblk); |
| if ((error != 0) && (error != ENOSPC)) { |
| return(error); /* GROT: attr is inconsistent */ |
| } |
| if (!error) { |
| addblk = newblk; |
| break; |
| } |
| /* |
| * Entry wouldn't fit, split the leaf again. |
| */ |
| state->extravalid = 1; |
| if (state->inleaf) { |
| state->extraafter = 0; /* before newblk */ |
| trace_xfs_attr_leaf_split_before(state->args); |
| error = xfs_attr3_leaf_split(state, oldblk, |
| &state->extrablk); |
| } else { |
| state->extraafter = 1; /* after newblk */ |
| trace_xfs_attr_leaf_split_after(state->args); |
| error = xfs_attr3_leaf_split(state, newblk, |
| &state->extrablk); |
| } |
| if (error) |
| return(error); /* GROT: attr inconsistent */ |
| addblk = newblk; |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| error = xfs_dir2_leafn_split(state, oldblk, newblk); |
| if (error) |
| return error; |
| addblk = newblk; |
| break; |
| case XFS_DA_NODE_MAGIC: |
| error = xfs_da3_node_split(state, oldblk, newblk, addblk, |
| max - i, &action); |
| addblk->bp = NULL; |
| if (error) |
| return(error); /* GROT: dir is inconsistent */ |
| /* |
| * Record the newly split block for the next time thru? |
| */ |
| if (action) |
| addblk = newblk; |
| else |
| addblk = NULL; |
| break; |
| } |
| |
| /* |
| * Update the btree to show the new hashval for this child. |
| */ |
| xfs_da3_fixhashpath(state, &state->path); |
| } |
| if (!addblk) |
| return(0); |
| |
| /* |
| * Split the root node. |
| */ |
| ASSERT(state->path.active == 0); |
| oldblk = &state->path.blk[0]; |
| error = xfs_da3_root_split(state, oldblk, addblk); |
| if (error) { |
| addblk->bp = NULL; |
| return(error); /* GROT: dir is inconsistent */ |
| } |
| |
| /* |
| * Update pointers to the node which used to be block 0 and |
| * just got bumped because of the addition of a new root node. |
| * There might be three blocks involved if a double split occurred, |
| * and the original block 0 could be at any position in the list. |
| * |
| * Note: the magic numbers and sibling pointers are in the same |
| * physical place for both v2 and v3 headers (by design). Hence it |
| * doesn't matter which version of the xfs_da_intnode structure we use |
| * here as the result will be the same using either structure. |
| */ |
| node = oldblk->bp->b_addr; |
| if (node->hdr.info.forw) { |
| if (be32_to_cpu(node->hdr.info.forw) == addblk->blkno) { |
| bp = addblk->bp; |
| } else { |
| ASSERT(state->extravalid); |
| bp = state->extrablk.bp; |
| } |
| node = bp->b_addr; |
| node->hdr.info.back = cpu_to_be32(oldblk->blkno); |
| xfs_trans_log_buf(state->args->trans, bp, |
| XFS_DA_LOGRANGE(node, &node->hdr.info, |
| sizeof(node->hdr.info))); |
| } |
| node = oldblk->bp->b_addr; |
| if (node->hdr.info.back) { |
| if (be32_to_cpu(node->hdr.info.back) == addblk->blkno) { |
| bp = addblk->bp; |
| } else { |
| ASSERT(state->extravalid); |
| bp = state->extrablk.bp; |
| } |
| node = bp->b_addr; |
| node->hdr.info.forw = cpu_to_be32(oldblk->blkno); |
| xfs_trans_log_buf(state->args->trans, bp, |
| XFS_DA_LOGRANGE(node, &node->hdr.info, |
| sizeof(node->hdr.info))); |
| } |
| addblk->bp = NULL; |
| return(0); |
| } |
| |
| /* |
| * Split the root. We have to create a new root and point to the two |
| * parts (the split old root) that we just created. Copy block zero to |
| * the EOF, extending the inode in process. |
| */ |
| STATIC int /* error */ |
| xfs_da3_root_split( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *blk1, |
| struct xfs_da_state_blk *blk2) |
| { |
| struct xfs_da_intnode *node; |
| struct xfs_da_intnode *oldroot; |
| struct xfs_da_node_entry *btree; |
| struct xfs_da3_icnode_hdr nodehdr; |
| struct xfs_da_args *args; |
| struct xfs_buf *bp; |
| struct xfs_inode *dp; |
| struct xfs_trans *tp; |
| struct xfs_mount *mp; |
| struct xfs_dir2_leaf *leaf; |
| xfs_dablk_t blkno; |
| int level; |
| int error; |
| int size; |
| |
| trace_xfs_da_root_split(state->args); |
| |
| /* |
| * Copy the existing (incorrect) block from the root node position |
| * to a free space somewhere. |
| */ |
| args = state->args; |
| error = xfs_da_grow_inode(args, &blkno); |
| if (error) |
| return error; |
| |
| dp = args->dp; |
| tp = args->trans; |
| mp = state->mp; |
| error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork); |
| if (error) |
| return error; |
| node = bp->b_addr; |
| oldroot = blk1->bp->b_addr; |
| if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || |
| oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) { |
| struct xfs_da3_icnode_hdr nodehdr; |
| |
| dp->d_ops->node_hdr_from_disk(&nodehdr, oldroot); |
| btree = dp->d_ops->node_tree_p(oldroot); |
| size = (int)((char *)&btree[nodehdr.count] - (char *)oldroot); |
| level = nodehdr.level; |
| |
| /* |
| * we are about to copy oldroot to bp, so set up the type |
| * of bp while we know exactly what it will be. |
| */ |
| xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF); |
| } else { |
| struct xfs_dir3_icleaf_hdr leafhdr; |
| struct xfs_dir2_leaf_entry *ents; |
| |
| leaf = (xfs_dir2_leaf_t *)oldroot; |
| dp->d_ops->leaf_hdr_from_disk(&leafhdr, leaf); |
| ents = dp->d_ops->leaf_ents_p(leaf); |
| |
| ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC || |
| leafhdr.magic == XFS_DIR3_LEAFN_MAGIC); |
| size = (int)((char *)&ents[leafhdr.count] - (char *)leaf); |
| level = 0; |
| |
| /* |
| * we are about to copy oldroot to bp, so set up the type |
| * of bp while we know exactly what it will be. |
| */ |
| xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF); |
| } |
| |
| /* |
| * we can copy most of the information in the node from one block to |
| * another, but for CRC enabled headers we have to make sure that the |
| * block specific identifiers are kept intact. We update the buffer |
| * directly for this. |
| */ |
| memcpy(node, oldroot, size); |
| if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || |
| oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { |
| struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node; |
| |
| node3->hdr.info.blkno = cpu_to_be64(bp->b_bn); |
| } |
| xfs_trans_log_buf(tp, bp, 0, size - 1); |
| |
| bp->b_ops = blk1->bp->b_ops; |
| xfs_trans_buf_copy_type(bp, blk1->bp); |
| blk1->bp = bp; |
| blk1->blkno = blkno; |
| |
| /* |
| * Set up the new root node. |
| */ |
| error = xfs_da3_node_create(args, |
| (args->whichfork == XFS_DATA_FORK) ? mp->m_dirleafblk : 0, |
| level + 1, &bp, args->whichfork); |
| if (error) |
| return error; |
| |
| node = bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| btree = dp->d_ops->node_tree_p(node); |
| btree[0].hashval = cpu_to_be32(blk1->hashval); |
| btree[0].before = cpu_to_be32(blk1->blkno); |
| btree[1].hashval = cpu_to_be32(blk2->hashval); |
| btree[1].before = cpu_to_be32(blk2->blkno); |
| nodehdr.count = 2; |
| dp->d_ops->node_hdr_to_disk(node, &nodehdr); |
| |
| #ifdef DEBUG |
| if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || |
| oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { |
| ASSERT(blk1->blkno >= mp->m_dirleafblk && |
| blk1->blkno < mp->m_dirfreeblk); |
| ASSERT(blk2->blkno >= mp->m_dirleafblk && |
| blk2->blkno < mp->m_dirfreeblk); |
| } |
| #endif |
| |
| /* Header is already logged by xfs_da_node_create */ |
| xfs_trans_log_buf(tp, bp, |
| XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2)); |
| |
| return 0; |
| } |
| |
| /* |
| * Split the node, rebalance, then add the new entry. |
| */ |
| STATIC int /* error */ |
| xfs_da3_node_split( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *oldblk, |
| struct xfs_da_state_blk *newblk, |
| struct xfs_da_state_blk *addblk, |
| int treelevel, |
| int *result) |
| { |
| struct xfs_da_intnode *node; |
| struct xfs_da3_icnode_hdr nodehdr; |
| xfs_dablk_t blkno; |
| int newcount; |
| int error; |
| int useextra; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_node_split(state->args); |
| |
| node = oldblk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| |
| /* |
| * With V2 dirs the extra block is data or freespace. |
| */ |
| useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK; |
| newcount = 1 + useextra; |
| /* |
| * Do we have to split the node? |
| */ |
| if (nodehdr.count + newcount > state->node_ents) { |
| /* |
| * Allocate a new node, add to the doubly linked chain of |
| * nodes, then move some of our excess entries into it. |
| */ |
| error = xfs_da_grow_inode(state->args, &blkno); |
| if (error) |
| return(error); /* GROT: dir is inconsistent */ |
| |
| error = xfs_da3_node_create(state->args, blkno, treelevel, |
| &newblk->bp, state->args->whichfork); |
| if (error) |
| return(error); /* GROT: dir is inconsistent */ |
| newblk->blkno = blkno; |
| newblk->magic = XFS_DA_NODE_MAGIC; |
| xfs_da3_node_rebalance(state, oldblk, newblk); |
| error = xfs_da3_blk_link(state, oldblk, newblk); |
| if (error) |
| return(error); |
| *result = 1; |
| } else { |
| *result = 0; |
| } |
| |
| /* |
| * Insert the new entry(s) into the correct block |
| * (updating last hashval in the process). |
| * |
| * xfs_da3_node_add() inserts BEFORE the given index, |
| * and as a result of using node_lookup_int() we always |
| * point to a valid entry (not after one), but a split |
| * operation always results in a new block whose hashvals |
| * FOLLOW the current block. |
| * |
| * If we had double-split op below us, then add the extra block too. |
| */ |
| node = oldblk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| if (oldblk->index <= nodehdr.count) { |
| oldblk->index++; |
| xfs_da3_node_add(state, oldblk, addblk); |
| if (useextra) { |
| if (state->extraafter) |
| oldblk->index++; |
| xfs_da3_node_add(state, oldblk, &state->extrablk); |
| state->extravalid = 0; |
| } |
| } else { |
| newblk->index++; |
| xfs_da3_node_add(state, newblk, addblk); |
| if (useextra) { |
| if (state->extraafter) |
| newblk->index++; |
| xfs_da3_node_add(state, newblk, &state->extrablk); |
| state->extravalid = 0; |
| } |
| } |
| |
| return(0); |
| } |
| |
| /* |
| * Balance the btree elements between two intermediate nodes, |
| * usually one full and one empty. |
| * |
| * NOTE: if blk2 is empty, then it will get the upper half of blk1. |
| */ |
| STATIC void |
| xfs_da3_node_rebalance( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *blk1, |
| struct xfs_da_state_blk *blk2) |
| { |
| struct xfs_da_intnode *node1; |
| struct xfs_da_intnode *node2; |
| struct xfs_da_intnode *tmpnode; |
| struct xfs_da_node_entry *btree1; |
| struct xfs_da_node_entry *btree2; |
| struct xfs_da_node_entry *btree_s; |
| struct xfs_da_node_entry *btree_d; |
| struct xfs_da3_icnode_hdr nodehdr1; |
| struct xfs_da3_icnode_hdr nodehdr2; |
| struct xfs_trans *tp; |
| int count; |
| int tmp; |
| int swap = 0; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_node_rebalance(state->args); |
| |
| node1 = blk1->bp->b_addr; |
| node2 = blk2->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); |
| dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); |
| btree1 = dp->d_ops->node_tree_p(node1); |
| btree2 = dp->d_ops->node_tree_p(node2); |
| |
| /* |
| * Figure out how many entries need to move, and in which direction. |
| * Swap the nodes around if that makes it simpler. |
| */ |
| if (nodehdr1.count > 0 && nodehdr2.count > 0 && |
| ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || |
| (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) < |
| be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) { |
| tmpnode = node1; |
| node1 = node2; |
| node2 = tmpnode; |
| dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); |
| dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); |
| btree1 = dp->d_ops->node_tree_p(node1); |
| btree2 = dp->d_ops->node_tree_p(node2); |
| swap = 1; |
| } |
| |
| count = (nodehdr1.count - nodehdr2.count) / 2; |
| if (count == 0) |
| return; |
| tp = state->args->trans; |
| /* |
| * Two cases: high-to-low and low-to-high. |
| */ |
| if (count > 0) { |
| /* |
| * Move elements in node2 up to make a hole. |
| */ |
| tmp = nodehdr2.count; |
| if (tmp > 0) { |
| tmp *= (uint)sizeof(xfs_da_node_entry_t); |
| btree_s = &btree2[0]; |
| btree_d = &btree2[count]; |
| memmove(btree_d, btree_s, tmp); |
| } |
| |
| /* |
| * Move the req'd B-tree elements from high in node1 to |
| * low in node2. |
| */ |
| nodehdr2.count += count; |
| tmp = count * (uint)sizeof(xfs_da_node_entry_t); |
| btree_s = &btree1[nodehdr1.count - count]; |
| btree_d = &btree2[0]; |
| memcpy(btree_d, btree_s, tmp); |
| nodehdr1.count -= count; |
| } else { |
| /* |
| * Move the req'd B-tree elements from low in node2 to |
| * high in node1. |
| */ |
| count = -count; |
| tmp = count * (uint)sizeof(xfs_da_node_entry_t); |
| btree_s = &btree2[0]; |
| btree_d = &btree1[nodehdr1.count]; |
| memcpy(btree_d, btree_s, tmp); |
| nodehdr1.count += count; |
| |
| xfs_trans_log_buf(tp, blk1->bp, |
| XFS_DA_LOGRANGE(node1, btree_d, tmp)); |
| |
| /* |
| * Move elements in node2 down to fill the hole. |
| */ |
| tmp = nodehdr2.count - count; |
| tmp *= (uint)sizeof(xfs_da_node_entry_t); |
| btree_s = &btree2[count]; |
| btree_d = &btree2[0]; |
| memmove(btree_d, btree_s, tmp); |
| nodehdr2.count -= count; |
| } |
| |
| /* |
| * Log header of node 1 and all current bits of node 2. |
| */ |
| dp->d_ops->node_hdr_to_disk(node1, &nodehdr1); |
| xfs_trans_log_buf(tp, blk1->bp, |
| XFS_DA_LOGRANGE(node1, &node1->hdr, dp->d_ops->node_hdr_size)); |
| |
| dp->d_ops->node_hdr_to_disk(node2, &nodehdr2); |
| xfs_trans_log_buf(tp, blk2->bp, |
| XFS_DA_LOGRANGE(node2, &node2->hdr, |
| dp->d_ops->node_hdr_size + |
| (sizeof(btree2[0]) * nodehdr2.count))); |
| |
| /* |
| * Record the last hashval from each block for upward propagation. |
| * (note: don't use the swapped node pointers) |
| */ |
| if (swap) { |
| node1 = blk1->bp->b_addr; |
| node2 = blk2->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr1, node1); |
| dp->d_ops->node_hdr_from_disk(&nodehdr2, node2); |
| btree1 = dp->d_ops->node_tree_p(node1); |
| btree2 = dp->d_ops->node_tree_p(node2); |
| } |
| blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval); |
| blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval); |
| |
| /* |
| * Adjust the expected index for insertion. |
| */ |
| if (blk1->index >= nodehdr1.count) { |
| blk2->index = blk1->index - nodehdr1.count; |
| blk1->index = nodehdr1.count + 1; /* make it invalid */ |
| } |
| } |
| |
| /* |
| * Add a new entry to an intermediate node. |
| */ |
| STATIC void |
| xfs_da3_node_add( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *oldblk, |
| struct xfs_da_state_blk *newblk) |
| { |
| struct xfs_da_intnode *node; |
| struct xfs_da3_icnode_hdr nodehdr; |
| struct xfs_da_node_entry *btree; |
| int tmp; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_node_add(state->args); |
| |
| node = oldblk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| btree = dp->d_ops->node_tree_p(node); |
| |
| ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count); |
| ASSERT(newblk->blkno != 0); |
| if (state->args->whichfork == XFS_DATA_FORK) |
| ASSERT(newblk->blkno >= state->mp->m_dirleafblk && |
| newblk->blkno < state->mp->m_dirfreeblk); |
| |
| /* |
| * We may need to make some room before we insert the new node. |
| */ |
| tmp = 0; |
| if (oldblk->index < nodehdr.count) { |
| tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree); |
| memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp); |
| } |
| btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval); |
| btree[oldblk->index].before = cpu_to_be32(newblk->blkno); |
| xfs_trans_log_buf(state->args->trans, oldblk->bp, |
| XFS_DA_LOGRANGE(node, &btree[oldblk->index], |
| tmp + sizeof(*btree))); |
| |
| nodehdr.count += 1; |
| dp->d_ops->node_hdr_to_disk(node, &nodehdr); |
| xfs_trans_log_buf(state->args->trans, oldblk->bp, |
| XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); |
| |
| /* |
| * Copy the last hash value from the oldblk to propagate upwards. |
| */ |
| oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); |
| } |
| |
| /*======================================================================== |
| * Routines used for shrinking the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Deallocate an empty leaf node, remove it from its parent, |
| * possibly deallocating that block, etc... |
| */ |
| int |
| xfs_da3_join( |
| struct xfs_da_state *state) |
| { |
| struct xfs_da_state_blk *drop_blk; |
| struct xfs_da_state_blk *save_blk; |
| int action = 0; |
| int error; |
| |
| trace_xfs_da_join(state->args); |
| |
| drop_blk = &state->path.blk[ state->path.active-1 ]; |
| save_blk = &state->altpath.blk[ state->path.active-1 ]; |
| ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC); |
| ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC || |
| drop_blk->magic == XFS_DIR2_LEAFN_MAGIC); |
| |
| /* |
| * Walk back up the tree joining/deallocating as necessary. |
| * When we stop dropping blocks, break out. |
| */ |
| for ( ; state->path.active >= 2; drop_blk--, save_blk--, |
| state->path.active--) { |
| /* |
| * See if we can combine the block with a neighbor. |
| * (action == 0) => no options, just leave |
| * (action == 1) => coalesce, then unlink |
| * (action == 2) => block empty, unlink it |
| */ |
| switch (drop_blk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| error = xfs_attr3_leaf_toosmall(state, &action); |
| if (error) |
| return(error); |
| if (action == 0) |
| return(0); |
| xfs_attr3_leaf_unbalance(state, drop_blk, save_blk); |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| error = xfs_dir2_leafn_toosmall(state, &action); |
| if (error) |
| return error; |
| if (action == 0) |
| return 0; |
| xfs_dir2_leafn_unbalance(state, drop_blk, save_blk); |
| break; |
| case XFS_DA_NODE_MAGIC: |
| /* |
| * Remove the offending node, fixup hashvals, |
| * check for a toosmall neighbor. |
| */ |
| xfs_da3_node_remove(state, drop_blk); |
| xfs_da3_fixhashpath(state, &state->path); |
| error = xfs_da3_node_toosmall(state, &action); |
| if (error) |
| return(error); |
| if (action == 0) |
| return 0; |
| xfs_da3_node_unbalance(state, drop_blk, save_blk); |
| break; |
| } |
| xfs_da3_fixhashpath(state, &state->altpath); |
| error = xfs_da3_blk_unlink(state, drop_blk, save_blk); |
| xfs_da_state_kill_altpath(state); |
| if (error) |
| return(error); |
| error = xfs_da_shrink_inode(state->args, drop_blk->blkno, |
| drop_blk->bp); |
| drop_blk->bp = NULL; |
| if (error) |
| return(error); |
| } |
| /* |
| * We joined all the way to the top. If it turns out that |
| * we only have one entry in the root, make the child block |
| * the new root. |
| */ |
| xfs_da3_node_remove(state, drop_blk); |
| xfs_da3_fixhashpath(state, &state->path); |
| error = xfs_da3_root_join(state, &state->path.blk[0]); |
| return(error); |
| } |
| |
| #ifdef DEBUG |
| static void |
| xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level) |
| { |
| __be16 magic = blkinfo->magic; |
| |
| if (level == 1) { |
| ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || |
| magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || |
| magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || |
| magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); |
| } else { |
| ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || |
| magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)); |
| } |
| ASSERT(!blkinfo->forw); |
| ASSERT(!blkinfo->back); |
| } |
| #else /* !DEBUG */ |
| #define xfs_da_blkinfo_onlychild_validate(blkinfo, level) |
| #endif /* !DEBUG */ |
| |
| /* |
| * We have only one entry in the root. Copy the only remaining child of |
| * the old root to block 0 as the new root node. |
| */ |
| STATIC int |
| xfs_da3_root_join( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *root_blk) |
| { |
| struct xfs_da_intnode *oldroot; |
| struct xfs_da_args *args; |
| xfs_dablk_t child; |
| struct xfs_buf *bp; |
| struct xfs_da3_icnode_hdr oldroothdr; |
| struct xfs_da_node_entry *btree; |
| int error; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_root_join(state->args); |
| |
| ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC); |
| |
| args = state->args; |
| oldroot = root_blk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&oldroothdr, oldroot); |
| ASSERT(oldroothdr.forw == 0); |
| ASSERT(oldroothdr.back == 0); |
| |
| /* |
| * If the root has more than one child, then don't do anything. |
| */ |
| if (oldroothdr.count > 1) |
| return 0; |
| |
| /* |
| * Read in the (only) child block, then copy those bytes into |
| * the root block's buffer and free the original child block. |
| */ |
| btree = dp->d_ops->node_tree_p(oldroot); |
| child = be32_to_cpu(btree[0].before); |
| ASSERT(child != 0); |
| error = xfs_da3_node_read(args->trans, dp, child, -1, &bp, |
| args->whichfork); |
| if (error) |
| return error; |
| xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level); |
| |
| /* |
| * This could be copying a leaf back into the root block in the case of |
| * there only being a single leaf block left in the tree. Hence we have |
| * to update the b_ops pointer as well to match the buffer type change |
| * that could occur. For dir3 blocks we also need to update the block |
| * number in the buffer header. |
| */ |
| memcpy(root_blk->bp->b_addr, bp->b_addr, state->blocksize); |
| root_blk->bp->b_ops = bp->b_ops; |
| xfs_trans_buf_copy_type(root_blk->bp, bp); |
| if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) { |
| struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr; |
| da3->blkno = cpu_to_be64(root_blk->bp->b_bn); |
| } |
| xfs_trans_log_buf(args->trans, root_blk->bp, 0, state->blocksize - 1); |
| error = xfs_da_shrink_inode(args, child, bp); |
| return(error); |
| } |
| |
| /* |
| * Check a node block and its neighbors to see if the block should be |
| * collapsed into one or the other neighbor. Always keep the block |
| * with the smaller block number. |
| * If the current block is over 50% full, don't try to join it, return 0. |
| * If the block is empty, fill in the state structure and return 2. |
| * If it can be collapsed, fill in the state structure and return 1. |
| * If nothing can be done, return 0. |
| */ |
| STATIC int |
| xfs_da3_node_toosmall( |
| struct xfs_da_state *state, |
| int *action) |
| { |
| struct xfs_da_intnode *node; |
| struct xfs_da_state_blk *blk; |
| struct xfs_da_blkinfo *info; |
| xfs_dablk_t blkno; |
| struct xfs_buf *bp; |
| struct xfs_da3_icnode_hdr nodehdr; |
| int count; |
| int forward; |
| int error; |
| int retval; |
| int i; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_node_toosmall(state->args); |
| |
| /* |
| * Check for the degenerate case of the block being over 50% full. |
| * If so, it's not worth even looking to see if we might be able |
| * to coalesce with a sibling. |
| */ |
| blk = &state->path.blk[ state->path.active-1 ]; |
| info = blk->bp->b_addr; |
| node = (xfs_da_intnode_t *)info; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| if (nodehdr.count > (state->node_ents >> 1)) { |
| *action = 0; /* blk over 50%, don't try to join */ |
| return(0); /* blk over 50%, don't try to join */ |
| } |
| |
| /* |
| * Check for the degenerate case of the block being empty. |
| * If the block is empty, we'll simply delete it, no need to |
| * coalesce it with a sibling block. We choose (arbitrarily) |
| * to merge with the forward block unless it is NULL. |
| */ |
| if (nodehdr.count == 0) { |
| /* |
| * Make altpath point to the block we want to keep and |
| * path point to the block we want to drop (this one). |
| */ |
| forward = (info->forw != 0); |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| error = xfs_da3_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| if (error) |
| return(error); |
| if (retval) { |
| *action = 0; |
| } else { |
| *action = 2; |
| } |
| return(0); |
| } |
| |
| /* |
| * Examine each sibling block to see if we can coalesce with |
| * at least 25% free space to spare. We need to figure out |
| * whether to merge with the forward or the backward block. |
| * We prefer coalescing with the lower numbered sibling so as |
| * to shrink a directory over time. |
| */ |
| count = state->node_ents; |
| count -= state->node_ents >> 2; |
| count -= nodehdr.count; |
| |
| /* start with smaller blk num */ |
| forward = nodehdr.forw < nodehdr.back; |
| for (i = 0; i < 2; forward = !forward, i++) { |
| struct xfs_da3_icnode_hdr thdr; |
| if (forward) |
| blkno = nodehdr.forw; |
| else |
| blkno = nodehdr.back; |
| if (blkno == 0) |
| continue; |
| error = xfs_da3_node_read(state->args->trans, dp, |
| blkno, -1, &bp, state->args->whichfork); |
| if (error) |
| return(error); |
| |
| node = bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&thdr, node); |
| xfs_trans_brelse(state->args->trans, bp); |
| |
| if (count - thdr.count >= 0) |
| break; /* fits with at least 25% to spare */ |
| } |
| if (i >= 2) { |
| *action = 0; |
| return 0; |
| } |
| |
| /* |
| * Make altpath point to the block we want to keep (the lower |
| * numbered block) and path point to the block we want to drop. |
| */ |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| if (blkno < blk->blkno) { |
| error = xfs_da3_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| } else { |
| error = xfs_da3_path_shift(state, &state->path, forward, |
| 0, &retval); |
| } |
| if (error) |
| return error; |
| if (retval) { |
| *action = 0; |
| return 0; |
| } |
| *action = 1; |
| return 0; |
| } |
| |
| /* |
| * Pick up the last hashvalue from an intermediate node. |
| */ |
| STATIC uint |
| xfs_da3_node_lasthash( |
| struct xfs_inode *dp, |
| struct xfs_buf *bp, |
| int *count) |
| { |
| struct xfs_da_intnode *node; |
| struct xfs_da_node_entry *btree; |
| struct xfs_da3_icnode_hdr nodehdr; |
| |
| node = bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| if (count) |
| *count = nodehdr.count; |
| if (!nodehdr.count) |
| return 0; |
| btree = dp->d_ops->node_tree_p(node); |
| return be32_to_cpu(btree[nodehdr.count - 1].hashval); |
| } |
| |
| /* |
| * Walk back up the tree adjusting hash values as necessary, |
| * when we stop making changes, return. |
| */ |
| void |
| xfs_da3_fixhashpath( |
| struct xfs_da_state *state, |
| struct xfs_da_state_path *path) |
| { |
| struct xfs_da_state_blk *blk; |
| struct xfs_da_intnode *node; |
| struct xfs_da_node_entry *btree; |
| xfs_dahash_t lasthash=0; |
| int level; |
| int count; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_fixhashpath(state->args); |
| |
| level = path->active-1; |
| blk = &path->blk[ level ]; |
| switch (blk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| lasthash = xfs_attr_leaf_lasthash(blk->bp, &count); |
| if (count == 0) |
| return; |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| lasthash = xfs_dir2_leafn_lasthash(dp, blk->bp, &count); |
| if (count == 0) |
| return; |
| break; |
| case XFS_DA_NODE_MAGIC: |
| lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count); |
| if (count == 0) |
| return; |
| break; |
| } |
| for (blk--, level--; level >= 0; blk--, level--) { |
| struct xfs_da3_icnode_hdr nodehdr; |
| |
| node = blk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| btree = dp->d_ops->node_tree_p(node); |
| if (be32_to_cpu(btree[blk->index].hashval) == lasthash) |
| break; |
| blk->hashval = lasthash; |
| btree[blk->index].hashval = cpu_to_be32(lasthash); |
| xfs_trans_log_buf(state->args->trans, blk->bp, |
| XFS_DA_LOGRANGE(node, &btree[blk->index], |
| sizeof(*btree))); |
| |
| lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval); |
| } |
| } |
| |
| /* |
| * Remove an entry from an intermediate node. |
| */ |
| STATIC void |
| xfs_da3_node_remove( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *drop_blk) |
| { |
| struct xfs_da_intnode *node; |
| struct xfs_da3_icnode_hdr nodehdr; |
| struct xfs_da_node_entry *btree; |
| int index; |
| int tmp; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_node_remove(state->args); |
| |
| node = drop_blk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| ASSERT(drop_blk->index < nodehdr.count); |
| ASSERT(drop_blk->index >= 0); |
| |
| /* |
| * Copy over the offending entry, or just zero it out. |
| */ |
| index = drop_blk->index; |
| btree = dp->d_ops->node_tree_p(node); |
| if (index < nodehdr.count - 1) { |
| tmp = nodehdr.count - index - 1; |
| tmp *= (uint)sizeof(xfs_da_node_entry_t); |
| memmove(&btree[index], &btree[index + 1], tmp); |
| xfs_trans_log_buf(state->args->trans, drop_blk->bp, |
| XFS_DA_LOGRANGE(node, &btree[index], tmp)); |
| index = nodehdr.count - 1; |
| } |
| memset(&btree[index], 0, sizeof(xfs_da_node_entry_t)); |
| xfs_trans_log_buf(state->args->trans, drop_blk->bp, |
| XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index]))); |
| nodehdr.count -= 1; |
| dp->d_ops->node_hdr_to_disk(node, &nodehdr); |
| xfs_trans_log_buf(state->args->trans, drop_blk->bp, |
| XFS_DA_LOGRANGE(node, &node->hdr, dp->d_ops->node_hdr_size)); |
| |
| /* |
| * Copy the last hash value from the block to propagate upwards. |
| */ |
| drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval); |
| } |
| |
| /* |
| * Unbalance the elements between two intermediate nodes, |
| * move all Btree elements from one node into another. |
| */ |
| STATIC void |
| xfs_da3_node_unbalance( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *drop_blk, |
| struct xfs_da_state_blk *save_blk) |
| { |
| struct xfs_da_intnode *drop_node; |
| struct xfs_da_intnode *save_node; |
| struct xfs_da_node_entry *drop_btree; |
| struct xfs_da_node_entry *save_btree; |
| struct xfs_da3_icnode_hdr drop_hdr; |
| struct xfs_da3_icnode_hdr save_hdr; |
| struct xfs_trans *tp; |
| int sindex; |
| int tmp; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_node_unbalance(state->args); |
| |
| drop_node = drop_blk->bp->b_addr; |
| save_node = save_blk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&drop_hdr, drop_node); |
| dp->d_ops->node_hdr_from_disk(&save_hdr, save_node); |
| drop_btree = dp->d_ops->node_tree_p(drop_node); |
| save_btree = dp->d_ops->node_tree_p(save_node); |
| tp = state->args->trans; |
| |
| /* |
| * If the dying block has lower hashvals, then move all the |
| * elements in the remaining block up to make a hole. |
| */ |
| if ((be32_to_cpu(drop_btree[0].hashval) < |
| be32_to_cpu(save_btree[0].hashval)) || |
| (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) < |
| be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) { |
| /* XXX: check this - is memmove dst correct? */ |
| tmp = save_hdr.count * sizeof(xfs_da_node_entry_t); |
| memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp); |
| |
| sindex = 0; |
| xfs_trans_log_buf(tp, save_blk->bp, |
| XFS_DA_LOGRANGE(save_node, &save_btree[0], |
| (save_hdr.count + drop_hdr.count) * |
| sizeof(xfs_da_node_entry_t))); |
| } else { |
| sindex = save_hdr.count; |
| xfs_trans_log_buf(tp, save_blk->bp, |
| XFS_DA_LOGRANGE(save_node, &save_btree[sindex], |
| drop_hdr.count * sizeof(xfs_da_node_entry_t))); |
| } |
| |
| /* |
| * Move all the B-tree elements from drop_blk to save_blk. |
| */ |
| tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t); |
| memcpy(&save_btree[sindex], &drop_btree[0], tmp); |
| save_hdr.count += drop_hdr.count; |
| |
| dp->d_ops->node_hdr_to_disk(save_node, &save_hdr); |
| xfs_trans_log_buf(tp, save_blk->bp, |
| XFS_DA_LOGRANGE(save_node, &save_node->hdr, |
| dp->d_ops->node_hdr_size)); |
| |
| /* |
| * Save the last hashval in the remaining block for upward propagation. |
| */ |
| save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval); |
| } |
| |
| /*======================================================================== |
| * Routines used for finding things in the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Walk down the Btree looking for a particular filename, filling |
| * in the state structure as we go. |
| * |
| * We will set the state structure to point to each of the elements |
| * in each of the nodes where either the hashval is or should be. |
| * |
| * We support duplicate hashval's so for each entry in the current |
| * node that could contain the desired hashval, descend. This is a |
| * pruned depth-first tree search. |
| */ |
| int /* error */ |
| xfs_da3_node_lookup_int( |
| struct xfs_da_state *state, |
| int *result) |
| { |
| struct xfs_da_state_blk *blk; |
| struct xfs_da_blkinfo *curr; |
| struct xfs_da_intnode *node; |
| struct xfs_da_node_entry *btree; |
| struct xfs_da3_icnode_hdr nodehdr; |
| struct xfs_da_args *args; |
| xfs_dablk_t blkno; |
| xfs_dahash_t hashval; |
| xfs_dahash_t btreehashval; |
| int probe; |
| int span; |
| int max; |
| int error; |
| int retval; |
| struct xfs_inode *dp = state->args->dp; |
| |
| args = state->args; |
| |
| /* |
| * Descend thru the B-tree searching each level for the right |
| * node to use, until the right hashval is found. |
| */ |
| blkno = (args->whichfork == XFS_DATA_FORK)? state->mp->m_dirleafblk : 0; |
| for (blk = &state->path.blk[0], state->path.active = 1; |
| state->path.active <= XFS_DA_NODE_MAXDEPTH; |
| blk++, state->path.active++) { |
| /* |
| * Read the next node down in the tree. |
| */ |
| blk->blkno = blkno; |
| error = xfs_da3_node_read(args->trans, args->dp, blkno, |
| -1, &blk->bp, args->whichfork); |
| if (error) { |
| blk->blkno = 0; |
| state->path.active--; |
| return(error); |
| } |
| curr = blk->bp->b_addr; |
| blk->magic = be16_to_cpu(curr->magic); |
| |
| if (blk->magic == XFS_ATTR_LEAF_MAGIC || |
| blk->magic == XFS_ATTR3_LEAF_MAGIC) { |
| blk->magic = XFS_ATTR_LEAF_MAGIC; |
| blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); |
| break; |
| } |
| |
| if (blk->magic == XFS_DIR2_LEAFN_MAGIC || |
| blk->magic == XFS_DIR3_LEAFN_MAGIC) { |
| blk->magic = XFS_DIR2_LEAFN_MAGIC; |
| blk->hashval = xfs_dir2_leafn_lasthash(args->dp, |
| blk->bp, NULL); |
| break; |
| } |
| |
| blk->magic = XFS_DA_NODE_MAGIC; |
| |
| |
| /* |
| * Search an intermediate node for a match. |
| */ |
| node = blk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| btree = dp->d_ops->node_tree_p(node); |
| |
| max = nodehdr.count; |
| blk->hashval = be32_to_cpu(btree[max - 1].hashval); |
| |
| /* |
| * Binary search. (note: small blocks will skip loop) |
| */ |
| probe = span = max / 2; |
| hashval = args->hashval; |
| while (span > 4) { |
| span /= 2; |
| btreehashval = be32_to_cpu(btree[probe].hashval); |
| if (btreehashval < hashval) |
| probe += span; |
| else if (btreehashval > hashval) |
| probe -= span; |
| else |
| break; |
| } |
| ASSERT((probe >= 0) && (probe < max)); |
| ASSERT((span <= 4) || |
| (be32_to_cpu(btree[probe].hashval) == hashval)); |
| |
| /* |
| * Since we may have duplicate hashval's, find the first |
| * matching hashval in the node. |
| */ |
| while (probe > 0 && |
| be32_to_cpu(btree[probe].hashval) >= hashval) { |
| probe--; |
| } |
| while (probe < max && |
| be32_to_cpu(btree[probe].hashval) < hashval) { |
| probe++; |
| } |
| |
| /* |
| * Pick the right block to descend on. |
| */ |
| if (probe == max) { |
| blk->index = max - 1; |
| blkno = be32_to_cpu(btree[max - 1].before); |
| } else { |
| blk->index = probe; |
| blkno = be32_to_cpu(btree[probe].before); |
| } |
| } |
| |
| /* |
| * A leaf block that ends in the hashval that we are interested in |
| * (final hashval == search hashval) means that the next block may |
| * contain more entries with the same hashval, shift upward to the |
| * next leaf and keep searching. |
| */ |
| for (;;) { |
| if (blk->magic == XFS_DIR2_LEAFN_MAGIC) { |
| retval = xfs_dir2_leafn_lookup_int(blk->bp, args, |
| &blk->index, state); |
| } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { |
| retval = xfs_attr3_leaf_lookup_int(blk->bp, args); |
| blk->index = args->index; |
| args->blkno = blk->blkno; |
| } else { |
| ASSERT(0); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| if (((retval == ENOENT) || (retval == ENOATTR)) && |
| (blk->hashval == args->hashval)) { |
| error = xfs_da3_path_shift(state, &state->path, 1, 1, |
| &retval); |
| if (error) |
| return(error); |
| if (retval == 0) { |
| continue; |
| } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) { |
| /* path_shift() gives ENOENT */ |
| retval = XFS_ERROR(ENOATTR); |
| } |
| } |
| break; |
| } |
| *result = retval; |
| return(0); |
| } |
| |
| /*======================================================================== |
| * Utility routines. |
| *========================================================================*/ |
| |
| /* |
| * Compare two intermediate nodes for "order". |
| */ |
| STATIC int |
| xfs_da3_node_order( |
| struct xfs_inode *dp, |
| struct xfs_buf *node1_bp, |
| struct xfs_buf *node2_bp) |
| { |
| struct xfs_da_intnode *node1; |
| struct xfs_da_intnode *node2; |
| struct xfs_da_node_entry *btree1; |
| struct xfs_da_node_entry *btree2; |
| struct xfs_da3_icnode_hdr node1hdr; |
| struct xfs_da3_icnode_hdr node2hdr; |
| |
| node1 = node1_bp->b_addr; |
| node2 = node2_bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&node1hdr, node1); |
| dp->d_ops->node_hdr_from_disk(&node2hdr, node2); |
| btree1 = dp->d_ops->node_tree_p(node1); |
| btree2 = dp->d_ops->node_tree_p(node2); |
| |
| if (node1hdr.count > 0 && node2hdr.count > 0 && |
| ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) || |
| (be32_to_cpu(btree2[node2hdr.count - 1].hashval) < |
| be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Link a new block into a doubly linked list of blocks (of whatever type). |
| */ |
| int /* error */ |
| xfs_da3_blk_link( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *old_blk, |
| struct xfs_da_state_blk *new_blk) |
| { |
| struct xfs_da_blkinfo *old_info; |
| struct xfs_da_blkinfo *new_info; |
| struct xfs_da_blkinfo *tmp_info; |
| struct xfs_da_args *args; |
| struct xfs_buf *bp; |
| int before = 0; |
| int error; |
| struct xfs_inode *dp = state->args->dp; |
| |
| /* |
| * Set up environment. |
| */ |
| args = state->args; |
| ASSERT(args != NULL); |
| old_info = old_blk->bp->b_addr; |
| new_info = new_blk->bp->b_addr; |
| ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC || |
| old_blk->magic == XFS_DIR2_LEAFN_MAGIC || |
| old_blk->magic == XFS_ATTR_LEAF_MAGIC); |
| |
| switch (old_blk->magic) { |
| case XFS_ATTR_LEAF_MAGIC: |
| before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp); |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| before = xfs_dir2_leafn_order(dp, old_blk->bp, new_blk->bp); |
| break; |
| case XFS_DA_NODE_MAGIC: |
| before = xfs_da3_node_order(dp, old_blk->bp, new_blk->bp); |
| break; |
| } |
| |
| /* |
| * Link blocks in appropriate order. |
| */ |
| if (before) { |
| /* |
| * Link new block in before existing block. |
| */ |
| trace_xfs_da_link_before(args); |
| new_info->forw = cpu_to_be32(old_blk->blkno); |
| new_info->back = old_info->back; |
| if (old_info->back) { |
| error = xfs_da3_node_read(args->trans, dp, |
| be32_to_cpu(old_info->back), |
| -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| tmp_info = bp->b_addr; |
| ASSERT(tmp_info->magic == old_info->magic); |
| ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno); |
| tmp_info->forw = cpu_to_be32(new_blk->blkno); |
| xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); |
| } |
| old_info->back = cpu_to_be32(new_blk->blkno); |
| } else { |
| /* |
| * Link new block in after existing block. |
| */ |
| trace_xfs_da_link_after(args); |
| new_info->forw = old_info->forw; |
| new_info->back = cpu_to_be32(old_blk->blkno); |
| if (old_info->forw) { |
| error = xfs_da3_node_read(args->trans, dp, |
| be32_to_cpu(old_info->forw), |
| -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| tmp_info = bp->b_addr; |
| ASSERT(tmp_info->magic == old_info->magic); |
| ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno); |
| tmp_info->back = cpu_to_be32(new_blk->blkno); |
| xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1); |
| } |
| old_info->forw = cpu_to_be32(new_blk->blkno); |
| } |
| |
| xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1); |
| xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1); |
| return(0); |
| } |
| |
| /* |
| * Unlink a block from a doubly linked list of blocks. |
| */ |
| STATIC int /* error */ |
| xfs_da3_blk_unlink( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *drop_blk, |
| struct xfs_da_state_blk *save_blk) |
| { |
| struct xfs_da_blkinfo *drop_info; |
| struct xfs_da_blkinfo *save_info; |
| struct xfs_da_blkinfo *tmp_info; |
| struct xfs_da_args *args; |
| struct xfs_buf *bp; |
| int error; |
| |
| /* |
| * Set up environment. |
| */ |
| args = state->args; |
| ASSERT(args != NULL); |
| save_info = save_blk->bp->b_addr; |
| drop_info = drop_blk->bp->b_addr; |
| ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC || |
| save_blk->magic == XFS_DIR2_LEAFN_MAGIC || |
| save_blk->magic == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(save_blk->magic == drop_blk->magic); |
| ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) || |
| (be32_to_cpu(save_info->back) == drop_blk->blkno)); |
| ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) || |
| (be32_to_cpu(drop_info->back) == save_blk->blkno)); |
| |
| /* |
| * Unlink the leaf block from the doubly linked chain of leaves. |
| */ |
| if (be32_to_cpu(save_info->back) == drop_blk->blkno) { |
| trace_xfs_da_unlink_back(args); |
| save_info->back = drop_info->back; |
| if (drop_info->back) { |
| error = xfs_da3_node_read(args->trans, args->dp, |
| be32_to_cpu(drop_info->back), |
| -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| tmp_info = bp->b_addr; |
| ASSERT(tmp_info->magic == save_info->magic); |
| ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno); |
| tmp_info->forw = cpu_to_be32(save_blk->blkno); |
| xfs_trans_log_buf(args->trans, bp, 0, |
| sizeof(*tmp_info) - 1); |
| } |
| } else { |
| trace_xfs_da_unlink_forward(args); |
| save_info->forw = drop_info->forw; |
| if (drop_info->forw) { |
| error = xfs_da3_node_read(args->trans, args->dp, |
| be32_to_cpu(drop_info->forw), |
| -1, &bp, args->whichfork); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| tmp_info = bp->b_addr; |
| ASSERT(tmp_info->magic == save_info->magic); |
| ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno); |
| tmp_info->back = cpu_to_be32(save_blk->blkno); |
| xfs_trans_log_buf(args->trans, bp, 0, |
| sizeof(*tmp_info) - 1); |
| } |
| } |
| |
| xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1); |
| return(0); |
| } |
| |
| /* |
| * Move a path "forward" or "!forward" one block at the current level. |
| * |
| * This routine will adjust a "path" to point to the next block |
| * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the |
| * Btree, including updating pointers to the intermediate nodes between |
| * the new bottom and the root. |
| */ |
| int /* error */ |
| xfs_da3_path_shift( |
| struct xfs_da_state *state, |
| struct xfs_da_state_path *path, |
| int forward, |
| int release, |
| int *result) |
| { |
| struct xfs_da_state_blk *blk; |
| struct xfs_da_blkinfo *info; |
| struct xfs_da_intnode *node; |
| struct xfs_da_args *args; |
| struct xfs_da_node_entry *btree; |
| struct xfs_da3_icnode_hdr nodehdr; |
| xfs_dablk_t blkno = 0; |
| int level; |
| int error; |
| struct xfs_inode *dp = state->args->dp; |
| |
| trace_xfs_da_path_shift(state->args); |
| |
| /* |
| * Roll up the Btree looking for the first block where our |
| * current index is not at the edge of the block. Note that |
| * we skip the bottom layer because we want the sibling block. |
| */ |
| args = state->args; |
| ASSERT(args != NULL); |
| ASSERT(path != NULL); |
| ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH)); |
| level = (path->active-1) - 1; /* skip bottom layer in path */ |
| for (blk = &path->blk[level]; level >= 0; blk--, level--) { |
| node = blk->bp->b_addr; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| btree = dp->d_ops->node_tree_p(node); |
| |
| if (forward && (blk->index < nodehdr.count - 1)) { |
| blk->index++; |
| blkno = be32_to_cpu(btree[blk->index].before); |
| break; |
| } else if (!forward && (blk->index > 0)) { |
| blk->index--; |
| blkno = be32_to_cpu(btree[blk->index].before); |
| break; |
| } |
| } |
| if (level < 0) { |
| *result = XFS_ERROR(ENOENT); /* we're out of our tree */ |
| ASSERT(args->op_flags & XFS_DA_OP_OKNOENT); |
| return(0); |
| } |
| |
| /* |
| * Roll down the edge of the subtree until we reach the |
| * same depth we were at originally. |
| */ |
| for (blk++, level++; level < path->active; blk++, level++) { |
| /* |
| * Release the old block. |
| * (if it's dirty, trans won't actually let go) |
| */ |
| if (release) |
| xfs_trans_brelse(args->trans, blk->bp); |
| |
| /* |
| * Read the next child block. |
| */ |
| blk->blkno = blkno; |
| error = xfs_da3_node_read(args->trans, dp, blkno, -1, |
| &blk->bp, args->whichfork); |
| if (error) |
| return(error); |
| info = blk->bp->b_addr; |
| ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) || |
| info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) || |
| info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || |
| info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) || |
| info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || |
| info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); |
| |
| |
| /* |
| * Note: we flatten the magic number to a single type so we |
| * don't have to compare against crc/non-crc types elsewhere. |
| */ |
| switch (be16_to_cpu(info->magic)) { |
| case XFS_DA_NODE_MAGIC: |
| case XFS_DA3_NODE_MAGIC: |
| blk->magic = XFS_DA_NODE_MAGIC; |
| node = (xfs_da_intnode_t *)info; |
| dp->d_ops->node_hdr_from_disk(&nodehdr, node); |
| btree = dp->d_ops->node_tree_p(node); |
| blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval); |
| if (forward) |
| blk->index = 0; |
| else |
| blk->index = nodehdr.count - 1; |
| blkno = be32_to_cpu(btree[blk->index].before); |
| break; |
| case XFS_ATTR_LEAF_MAGIC: |
| case XFS_ATTR3_LEAF_MAGIC: |
| blk->magic = XFS_ATTR_LEAF_MAGIC; |
| ASSERT(level == path->active-1); |
| blk->index = 0; |
| blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL); |
| break; |
| case XFS_DIR2_LEAFN_MAGIC: |
| case XFS_DIR3_LEAFN_MAGIC: |
| blk->magic = XFS_DIR2_LEAFN_MAGIC; |
| ASSERT(level == path->active-1); |
| blk->index = 0; |
| blk->hashval = xfs_dir2_leafn_lasthash(args->dp, |
| blk->bp, NULL); |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| *result = 0; |
| return 0; |
| } |
| |
| |
| /*======================================================================== |
| * Utility routines. |
| *========================================================================*/ |
| |
| /* |
| * Implement a simple hash on a character string. |
| * Rotate the hash value by 7 bits, then XOR each character in. |
| * This is implemented with some source-level loop unrolling. |
| */ |
| xfs_dahash_t |
| xfs_da_hashname(const __uint8_t *name, int namelen) |
| { |
| xfs_dahash_t hash; |
| |
| /* |
| * Do four characters at a time as long as we can. |
| */ |
| for (hash = 0; namelen >= 4; namelen -= 4, name += 4) |
| hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^ |
| (name[3] << 0) ^ rol32(hash, 7 * 4); |
| |
| /* |
| * Now do the rest of the characters. |
| */ |
| switch (namelen) { |
| case 3: |
| return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^ |
| rol32(hash, 7 * 3); |
| case 2: |
| return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2); |
| case 1: |
| return (name[0] << 0) ^ rol32(hash, 7 * 1); |
| default: /* case 0: */ |
| return hash; |
| } |
| } |
| |
| enum xfs_dacmp |
| xfs_da_compname( |
| struct xfs_da_args *args, |
| const unsigned char *name, |
| int len) |
| { |
| return (args->namelen == len && memcmp(args->name, name, len) == 0) ? |
| XFS_CMP_EXACT : XFS_CMP_DIFFERENT; |
| } |
| |
| static xfs_dahash_t |
| xfs_default_hashname( |
| struct xfs_name *name) |
| { |
| return xfs_da_hashname(name->name, name->len); |
| } |
| |
| const struct xfs_nameops xfs_default_nameops = { |
| .hashname = xfs_default_hashname, |
| .compname = xfs_da_compname |
| }; |
| |
| int |
| xfs_da_grow_inode_int( |
| struct xfs_da_args *args, |
| xfs_fileoff_t *bno, |
| int count) |
| { |
| struct xfs_trans *tp = args->trans; |
| struct xfs_inode *dp = args->dp; |
| int w = args->whichfork; |
| xfs_drfsbno_t nblks = dp->i_d.di_nblocks; |
| struct xfs_bmbt_irec map, *mapp; |
| int nmap, error, got, i, mapi; |
| |
| /* |
| * Find a spot in the file space to put the new block. |
| */ |
| error = xfs_bmap_first_unused(tp, dp, count, bno, w); |
| if (error) |
| return error; |
| |
| /* |
| * Try mapping it in one filesystem block. |
| */ |
| nmap = 1; |
| ASSERT(args->firstblock != NULL); |
| error = xfs_bmapi_write(tp, dp, *bno, count, |
| xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG, |
| args->firstblock, args->total, &map, &nmap, |
| args->flist); |
| if (error) |
| return error; |
| |
| ASSERT(nmap <= 1); |
| if (nmap == 1) { |
| mapp = ↦ |
| mapi = 1; |
| } else if (nmap == 0 && count > 1) { |
| xfs_fileoff_t b; |
| int c; |
| |
| /* |
| * If we didn't get it and the block might work if fragmented, |
| * try without the CONTIG flag. Loop until we get it all. |
| */ |
| mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP); |
| for (b = *bno, mapi = 0; b < *bno + count; ) { |
| nmap = MIN(XFS_BMAP_MAX_NMAP, count); |
| c = (int)(*bno + count - b); |
| error = xfs_bmapi_write(tp, dp, b, c, |
| xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA, |
| args->firstblock, args->total, |
| &mapp[mapi], &nmap, args->flist); |
| if (error) |
| goto out_free_map; |
| if (nmap < 1) |
| break; |
| mapi += nmap; |
| b = mapp[mapi - 1].br_startoff + |
| mapp[mapi - 1].br_blockcount; |
| } |
| } else { |
| mapi = 0; |
| mapp = NULL; |
| } |
| |
| /* |
| * Count the blocks we got, make sure it matches the total. |
| */ |
| for (i = 0, got = 0; i < mapi; i++) |
| got += mapp[i].br_blockcount; |
| if (got != count || mapp[0].br_startoff != *bno || |
| mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount != |
| *bno + count) { |
| error = XFS_ERROR(ENOSPC); |
| goto out_free_map; |
| } |
| |
| /* account for newly allocated blocks in reserved blocks total */ |
| args->total -= dp->i_d.di_nblocks - nblks; |
| |
| out_free_map: |
| if (mapp != &map) |
| kmem_free(mapp); |
| return error; |
| } |
| |
| /* |
| * Add a block to the btree ahead of the file. |
| * Return the new block number to the caller. |
| */ |
| int |
| xfs_da_grow_inode( |
| struct xfs_da_args *args, |
| xfs_dablk_t *new_blkno) |
| { |
| xfs_fileoff_t bno; |
| int count; |
| int error; |
| |
| trace_xfs_da_grow_inode(args); |
| |
| if (args->whichfork == XFS_DATA_FORK) { |
| bno = args->dp->i_mount->m_dirleafblk; |
| count = args->dp->i_mount->m_dirblkfsbs; |
| } else { |
| bno = 0; |
| count = 1; |
| } |
| |
| error = xfs_da_grow_inode_int(args, &bno, count); |
| if (!error) |
| *new_blkno = (xfs_dablk_t)bno; |
| return error; |
| } |
| |
| /* |
| * Ick. We need to always be able to remove a btree block, even |
| * if there's no space reservation because the filesystem is full. |
| * This is called if xfs_bunmapi on a btree block fails due to ENOSPC. |
| * It swaps the target block with the last block in the file. The |
| * last block in the file can always be removed since it can't cause |
| * a bmap btree split to do that. |
| */ |
| STATIC int |
| xfs_da3_swap_lastblock( |
| struct xfs_da_args *args, |
| xfs_dablk_t *dead_blknop, |
| struct xfs_buf **dead_bufp) |
| { |
| struct xfs_da_blkinfo *dead_info; |
| struct xfs_da_blkinfo *sib_info; |
| struct xfs_da_intnode *par_node; |
| struct xfs_da_intnode *dead_node; |
| struct xfs_dir2_leaf *dead_leaf2; |
| struct xfs_da_node_entry *btree; |
| struct xfs_da3_icnode_hdr par_hdr; |
| struct xfs_inode *dp; |
| struct xfs_trans *tp; |
| struct xfs_mount *mp; |
| struct xfs_buf *dead_buf; |
| struct xfs_buf *last_buf; |
| struct xfs_buf *sib_buf; |
| struct xfs_buf *par_buf; |
| xfs_dahash_t dead_hash; |
| xfs_fileoff_t lastoff; |
| xfs_dablk_t dead_blkno; |
| xfs_dablk_t last_blkno; |
| xfs_dablk_t sib_blkno; |
| xfs_dablk_t par_blkno; |
| int error; |
| int w; |
| int entno; |
| int level; |
| int dead_level; |
| |
| trace_xfs_da_swap_lastblock(args); |
| |
| dead_buf = *dead_bufp; |
| dead_blkno = *dead_blknop; |
| tp = args->trans; |
| dp = args->dp; |
| w = args->whichfork; |
| ASSERT(w == XFS_DATA_FORK); |
| mp = dp->i_mount; |
| lastoff = mp->m_dirfreeblk; |
| error = xfs_bmap_last_before(tp, dp, &lastoff, w); |
| if (error) |
| return error; |
| if (unlikely(lastoff == 0)) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW, |
| mp); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| /* |
| * Read the last block in the btree space. |
| */ |
| last_blkno = (xfs_dablk_t)lastoff - mp->m_dirblkfsbs; |
| error = xfs_da3_node_read(tp, dp, last_blkno, -1, &last_buf, w); |
| if (error) |
| return error; |
| /* |
| * Copy the last block into the dead buffer and log it. |
| */ |
| memcpy(dead_buf->b_addr, last_buf->b_addr, mp->m_dirblksize); |
| xfs_trans_log_buf(tp, dead_buf, 0, mp->m_dirblksize - 1); |
| dead_info = dead_buf->b_addr; |
| /* |
| * Get values from the moved block. |
| */ |
| if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) || |
| dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) { |
| struct xfs_dir3_icleaf_hdr leafhdr; |
| struct xfs_dir2_leaf_entry *ents; |
| |
| dead_leaf2 = (xfs_dir2_leaf_t *)dead_info; |
| dp->d_ops->leaf_hdr_from_disk(&leafhdr, dead_leaf2); |
| ents = dp->d_ops->leaf_ents_p(dead_leaf2); |
| dead_level = 0; |
| dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval); |
| } else { |
| struct xfs_da3_icnode_hdr deadhdr; |
| |
| dead_node = (xfs_da_intnode_t *)dead_info; |
| dp->d_ops->node_hdr_from_disk(&deadhdr, dead_node); |
| btree = dp->d_ops->node_tree_p(dead_node); |
| dead_level = deadhdr.level; |
| dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval); |
| } |
| sib_buf = par_buf = NULL; |
| /* |
| * If the moved block has a left sibling, fix up the pointers. |
| */ |
| if ((sib_blkno = be32_to_cpu(dead_info->back))) { |
| error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); |
| if (error) |
| goto done; |
| sib_info = sib_buf->b_addr; |
| if (unlikely( |
| be32_to_cpu(sib_info->forw) != last_blkno || |
| sib_info->magic != dead_info->magic)) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| sib_info->forw = cpu_to_be32(dead_blkno); |
| xfs_trans_log_buf(tp, sib_buf, |
| XFS_DA_LOGRANGE(sib_info, &sib_info->forw, |
| sizeof(sib_info->forw))); |
| sib_buf = NULL; |
| } |
| /* |
| * If the moved block has a right sibling, fix up the pointers. |
| */ |
| if ((sib_blkno = be32_to_cpu(dead_info->forw))) { |
| error = xfs_da3_node_read(tp, dp, sib_blkno, -1, &sib_buf, w); |
| if (error) |
| goto done; |
| sib_info = sib_buf->b_addr; |
| if (unlikely( |
| be32_to_cpu(sib_info->back) != last_blkno || |
| sib_info->magic != dead_info->magic)) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| sib_info->back = cpu_to_be32(dead_blkno); |
| xfs_trans_log_buf(tp, sib_buf, |
| XFS_DA_LOGRANGE(sib_info, &sib_info->back, |
| sizeof(sib_info->back))); |
| sib_buf = NULL; |
| } |
| par_blkno = mp->m_dirleafblk; |
| level = -1; |
| /* |
| * Walk down the tree looking for the parent of the moved block. |
| */ |
| for (;;) { |
| error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); |
| if (error) |
| goto done; |
| par_node = par_buf->b_addr; |
| dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); |
| if (level >= 0 && level != par_hdr.level + 1) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| level = par_hdr.level; |
| btree = dp->d_ops->node_tree_p(par_node); |
| for (entno = 0; |
| entno < par_hdr.count && |
| be32_to_cpu(btree[entno].hashval) < dead_hash; |
| entno++) |
| continue; |
| if (entno == par_hdr.count) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| par_blkno = be32_to_cpu(btree[entno].before); |
| if (level == dead_level + 1) |
| break; |
| xfs_trans_brelse(tp, par_buf); |
| par_buf = NULL; |
| } |
| /* |
| * We're in the right parent block. |
| * Look for the right entry. |
| */ |
| for (;;) { |
| for (; |
| entno < par_hdr.count && |
| be32_to_cpu(btree[entno].before) != last_blkno; |
| entno++) |
| continue; |
| if (entno < par_hdr.count) |
| break; |
| par_blkno = par_hdr.forw; |
| xfs_trans_brelse(tp, par_buf); |
| par_buf = NULL; |
| if (unlikely(par_blkno == 0)) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| error = xfs_da3_node_read(tp, dp, par_blkno, -1, &par_buf, w); |
| if (error) |
| goto done; |
| par_node = par_buf->b_addr; |
| dp->d_ops->node_hdr_from_disk(&par_hdr, par_node); |
| if (par_hdr.level != level) { |
| XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)", |
| XFS_ERRLEVEL_LOW, mp); |
| error = XFS_ERROR(EFSCORRUPTED); |
| goto done; |
| } |
| btree = dp->d_ops->node_tree_p(par_node); |
| entno = 0; |
| } |
| /* |
| * Update the parent entry pointing to the moved block. |
| */ |
| btree[entno].before = cpu_to_be32(dead_blkno); |
| xfs_trans_log_buf(tp, par_buf, |
| XFS_DA_LOGRANGE(par_node, &btree[entno].before, |
| sizeof(btree[entno].before))); |
| *dead_blknop = last_blkno; |
| *dead_bufp = last_buf; |
| return 0; |
| done: |
| if (par_buf) |
| xfs_trans_brelse(tp, par_buf); |
| if (sib_buf) |
| xfs_trans_brelse(tp, sib_buf); |
| xfs_trans_brelse(tp, last_buf); |
| return error; |
| } |
| |
| /* |
| * Remove a btree block from a directory or attribute. |
| */ |
| int |
| xfs_da_shrink_inode( |
| xfs_da_args_t *args, |
| xfs_dablk_t dead_blkno, |
| struct xfs_buf *dead_buf) |
| { |
| xfs_inode_t *dp; |
| int done, error, w, count; |
| xfs_trans_t *tp; |
| xfs_mount_t *mp; |
| |
| trace_xfs_da_shrink_inode(args); |
| |
| dp = args->dp; |
| w = args->whichfork; |
| tp = args->trans; |
| mp = dp->i_mount; |
| if (w == XFS_DATA_FORK) |
| count = mp->m_dirblkfsbs; |
| else |
| count = 1; |
| for (;;) { |
| /* |
| * Remove extents. If we get ENOSPC for a dir we have to move |
| * the last block to the place we want to kill. |
| */ |
| error = xfs_bunmapi(tp, dp, dead_blkno, count, |
| xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA, |
| 0, args->firstblock, args->flist, &done); |
| if (error == ENOSPC) { |
| if (w != XFS_DATA_FORK) |
| break; |
| error = xfs_da3_swap_lastblock(args, &dead_blkno, |
| &dead_buf); |
| if (error) |
| break; |
| } else { |
| break; |
| } |
| } |
| xfs_trans_binval(tp, dead_buf); |
| return error; |
| } |
| |
| /* |
| * See if the mapping(s) for this btree block are valid, i.e. |
| * don't contain holes, are logically contiguous, and cover the whole range. |
| */ |
| STATIC int |
| xfs_da_map_covers_blocks( |
| int nmap, |
| xfs_bmbt_irec_t *mapp, |
| xfs_dablk_t bno, |
| int count) |
| { |
| int i; |
| xfs_fileoff_t off; |
| |
| for (i = 0, off = bno; i < nmap; i++) { |
| if (mapp[i].br_startblock == HOLESTARTBLOCK || |
| mapp[i].br_startblock == DELAYSTARTBLOCK) { |
| return 0; |
| } |
| if (off != mapp[i].br_startoff) { |
| return 0; |
| } |
| off += mapp[i].br_blockcount; |
| } |
| return off == bno + count; |
| } |
| |
| /* |
| * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map. |
| * |
| * For the single map case, it is assumed that the caller has provided a pointer |
| * to a valid xfs_buf_map. For the multiple map case, this function will |
| * allocate the xfs_buf_map to hold all the maps and replace the caller's single |
| * map pointer with the allocated map. |
| */ |
| static int |
| xfs_buf_map_from_irec( |
| struct xfs_mount *mp, |
| struct xfs_buf_map **mapp, |
| int *nmaps, |
| struct xfs_bmbt_irec *irecs, |
| int nirecs) |
| { |
| struct xfs_buf_map *map; |
| int i; |
| |
| ASSERT(*nmaps == 1); |
| ASSERT(nirecs >= 1); |
| |
| if (nirecs > 1) { |
| map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map), |
| KM_SLEEP | KM_NOFS); |
| if (!map) |
| return ENOMEM; |
| *mapp = map; |
| } |
| |
| *nmaps = nirecs; |
| map = *mapp; |
| for (i = 0; i < *nmaps; i++) { |
| ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK && |
| irecs[i].br_startblock != HOLESTARTBLOCK); |
| map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock); |
| map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount); |
| } |
| return 0; |
| } |
| |
| /* |
| * Map the block we are given ready for reading. There are three possible return |
| * values: |
| * -1 - will be returned if we land in a hole and mappedbno == -2 so the |
| * caller knows not to execute a subsequent read. |
| * 0 - if we mapped the block successfully |
| * >0 - positive error number if there was an error. |
| */ |
| static int |
| xfs_dabuf_map( |
| struct xfs_trans *trans, |
| struct xfs_inode *dp, |
| xfs_dablk_t bno, |
| xfs_daddr_t mappedbno, |
| int whichfork, |
| struct xfs_buf_map **map, |
| int *nmaps) |
| { |
| struct xfs_mount *mp = dp->i_mount; |
| int nfsb; |
| int error = 0; |
| struct xfs_bmbt_irec irec; |
| struct xfs_bmbt_irec *irecs = &irec; |
| int nirecs; |
| |
| ASSERT(map && *map); |
| ASSERT(*nmaps == 1); |
| |
| nfsb = (whichfork == XFS_DATA_FORK) ? mp->m_dirblkfsbs : 1; |
| |
| /* |
| * Caller doesn't have a mapping. -2 means don't complain |
| * if we land in a hole. |
| */ |
| if (mappedbno == -1 || mappedbno == -2) { |
| /* |
| * Optimize the one-block case. |
| */ |
| if (nfsb != 1) |
| irecs = kmem_zalloc(sizeof(irec) * nfsb, |
| KM_SLEEP | KM_NOFS); |
| |
| nirecs = nfsb; |
| error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs, |
| &nirecs, xfs_bmapi_aflag(whichfork)); |
| if (error) |
| goto out; |
| } else { |
| irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno); |
| irecs->br_startoff = (xfs_fileoff_t)bno; |
| irecs->br_blockcount = nfsb; |
| irecs->br_state = 0; |
| nirecs = 1; |
| } |
| |
| if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) { |
| error = mappedbno == -2 ? -1 : XFS_ERROR(EFSCORRUPTED); |
| if (unlikely(error == EFSCORRUPTED)) { |
| if (xfs_error_level >= XFS_ERRLEVEL_LOW) { |
| int i; |
| xfs_alert(mp, "%s: bno %lld dir: inode %lld", |
| __func__, (long long)bno, |
| (long long)dp->i_ino); |
| for (i = 0; i < *nmaps; i++) { |
| xfs_alert(mp, |
| "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d", |
| i, |
| (long long)irecs[i].br_startoff, |
| (long long)irecs[i].br_startblock, |
| (long long)irecs[i].br_blockcount, |
| irecs[i].br_state); |
| } |
| } |
| XFS_ERROR_REPORT("xfs_da_do_buf(1)", |
| XFS_ERRLEVEL_LOW, mp); |
| } |
| goto out; |
| } |
| error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs); |
| out: |
| if (irecs != &irec) |
| kmem_free(irecs); |
| return error; |
| } |
| |
| /* |
| * Get a buffer for the dir/attr block. |
| */ |
| int |
| xfs_da_get_buf( |
| struct xfs_trans *trans, |
| struct xfs_inode *dp, |
| xfs_dablk_t bno, |
| xfs_daddr_t mappedbno, |
| struct xfs_buf **bpp, |
| int whichfork) |
| { |
| struct xfs_buf *bp; |
| struct xfs_buf_map map; |
| struct xfs_buf_map *mapp; |
| int nmap; |
| int error; |
| |
| *bpp = NULL; |
| mapp = ↦ |
| nmap = 1; |
| error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork, |
| &mapp, &nmap); |
| if (error) { |
| /* mapping a hole is not an error, but we don't continue */ |
| if (error == -1) |
| error = 0; |
| goto out_free; |
| } |
| |
| bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp, |
| mapp, nmap, 0); |
| error = bp ? bp->b_error : XFS_ERROR(EIO); |
| if (error) { |
| xfs_trans_brelse(trans, bp); |
| goto out_free; |
| } |
| |
| *bpp = bp; |
| |
| out_free: |
| if (mapp != &map) |
| kmem_free(mapp); |
| |
| return error; |
| } |
| |
| /* |
| * Get a buffer for the dir/attr block, fill in the contents. |
| */ |
| int |
| xfs_da_read_buf( |
| struct xfs_trans *trans, |
| struct xfs_inode *dp, |
| xfs_dablk_t bno, |
| xfs_daddr_t mappedbno, |
| struct xfs_buf **bpp, |
| int whichfork, |
| const struct xfs_buf_ops *ops) |
| { |
| struct xfs_buf *bp; |
| struct xfs_buf_map map; |
| struct xfs_buf_map *mapp; |
| int nmap; |
| int error; |
| |
| *bpp = NULL; |
| mapp = ↦ |
| nmap = 1; |
| error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork, |
| &mapp, &nmap); |
| if (error) { |
| /* mapping a hole is not an error, but we don't continue */ |
| if (error == -1) |
| error = 0; |
| goto out_free; |
| } |
| |
| error = xfs_trans_read_buf_map(dp->i_mount, trans, |
| dp->i_mount->m_ddev_targp, |
| mapp, nmap, 0, &bp, ops); |
| if (error) |
| goto out_free; |
| |
| if (whichfork == XFS_ATTR_FORK) |
| xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF); |
| else |
| xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF); |
| *bpp = bp; |
| out_free: |
| if (mapp != &map) |
| kmem_free(mapp); |
| |
| return error; |
| } |
| |
| /* |
| * Readahead the dir/attr block. |
| */ |
| xfs_daddr_t |
| xfs_da_reada_buf( |
| struct xfs_trans *trans, |
| struct xfs_inode *dp, |
| xfs_dablk_t bno, |
| xfs_daddr_t mappedbno, |
| int whichfork, |
| const struct xfs_buf_ops *ops) |
| { |
| struct xfs_buf_map map; |
| struct xfs_buf_map *mapp; |
| int nmap; |
| int error; |
| |
| mapp = ↦ |
| nmap = 1; |
| error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork, |
| &mapp, &nmap); |
| if (error) { |
| /* mapping a hole is not an error, but we don't continue */ |
| if (error == -1) |
| error = 0; |
| goto out_free; |
| } |
| |
| mappedbno = mapp[0].bm_bn; |
| xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops); |
| |
| out_free: |
| if (mapp != &map) |
| kmem_free(mapp); |
| |
| if (error) |
| return -1; |
| return mappedbno; |
| } |