blob: e959640694c25c67f97b2b79cb8065de3d68f714 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/* handling of writes to regular files and writing back to the server
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/backing-dev.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/netfs.h>
#include <trace/events/netfs.h>
#include "internal.h"
/*
* completion of write to server
*/
static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
{
_enter("{%llx:%llu},{%x @%llx}",
vnode->fid.vid, vnode->fid.vnode, len, start);
afs_prune_wb_keys(vnode);
_leave("");
}
/*
* Find a key to use for the writeback. We cached the keys used to author the
* writes on the vnode. wreq->netfs_priv2 will contain the last writeback key
* record used or NULL and we need to start from there if it's set.
* wreq->netfs_priv will be set to the key itself or NULL.
*/
static void afs_get_writeback_key(struct netfs_io_request *wreq)
{
struct afs_wb_key *wbk, *old = wreq->netfs_priv2;
struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
key_put(wreq->netfs_priv);
wreq->netfs_priv = NULL;
wreq->netfs_priv2 = NULL;
spin_lock(&vnode->wb_lock);
if (old)
wbk = list_next_entry(old, vnode_link);
else
wbk = list_first_entry(&vnode->wb_keys, struct afs_wb_key, vnode_link);
list_for_each_entry_from(wbk, &vnode->wb_keys, vnode_link) {
_debug("wbk %u", key_serial(wbk->key));
if (key_validate(wbk->key) == 0) {
refcount_inc(&wbk->usage);
wreq->netfs_priv = key_get(wbk->key);
wreq->netfs_priv2 = wbk;
_debug("USE WB KEY %u", key_serial(wbk->key));
break;
}
}
spin_unlock(&vnode->wb_lock);
afs_put_wb_key(old);
}
static void afs_store_data_success(struct afs_operation *op)
{
struct afs_vnode *vnode = op->file[0].vnode;
op->ctime = op->file[0].scb.status.mtime_client;
afs_vnode_commit_status(op, &op->file[0]);
if (!afs_op_error(op)) {
afs_pages_written_back(vnode, op->store.pos, op->store.size);
afs_stat_v(vnode, n_stores);
atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
}
}
static const struct afs_operation_ops afs_store_data_operation = {
.issue_afs_rpc = afs_fs_store_data,
.issue_yfs_rpc = yfs_fs_store_data,
.success = afs_store_data_success,
};
/*
* Prepare a subrequest to write to the server. This sets the max_len
* parameter.
*/
void afs_prepare_write(struct netfs_io_subrequest *subreq)
{
//if (test_bit(NETFS_SREQ_RETRYING, &subreq->flags))
// subreq->max_len = 512 * 1024;
//else
subreq->max_len = 256 * 1024 * 1024;
}
/*
* Issue a subrequest to write to the server.
*/
static void afs_issue_write_worker(struct work_struct *work)
{
struct netfs_io_subrequest *subreq = container_of(work, struct netfs_io_subrequest, work);
struct netfs_io_request *wreq = subreq->rreq;
struct afs_operation *op;
struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
unsigned long long pos = subreq->start + subreq->transferred;
size_t len = subreq->len - subreq->transferred;
int ret = -ENOKEY;
_enter("R=%x[%x],%s{%llx:%llu.%u},%llx,%zx",
wreq->debug_id, subreq->debug_index,
vnode->volume->name,
vnode->fid.vid,
vnode->fid.vnode,
vnode->fid.unique,
pos, len);
#if 0 // Error injection
if (subreq->debug_index == 3)
return netfs_write_subrequest_terminated(subreq, -ENOANO, false);
if (!test_bit(NETFS_SREQ_RETRYING, &subreq->flags)) {
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
return netfs_write_subrequest_terminated(subreq, -EAGAIN, false);
}
#endif
op = afs_alloc_operation(wreq->netfs_priv, vnode->volume);
if (IS_ERR(op))
return netfs_write_subrequest_terminated(subreq, -EAGAIN, false);
afs_op_set_vnode(op, 0, vnode);
op->file[0].dv_delta = 1;
op->file[0].modification = true;
op->store.pos = pos;
op->store.size = len;
op->flags |= AFS_OPERATION_UNINTR;
op->ops = &afs_store_data_operation;
afs_begin_vnode_operation(op);
op->store.write_iter = &subreq->io_iter;
op->store.i_size = umax(pos + len, vnode->netfs.remote_i_size);
op->mtime = inode_get_mtime(&vnode->netfs.inode);
afs_wait_for_operation(op);
ret = afs_put_operation(op);
switch (ret) {
case -EACCES:
case -EPERM:
case -ENOKEY:
case -EKEYEXPIRED:
case -EKEYREJECTED:
case -EKEYREVOKED:
/* If there are more keys we can try, use the retry algorithm
* to rotate the keys.
*/
if (wreq->netfs_priv2)
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
break;
}
netfs_write_subrequest_terminated(subreq, ret < 0 ? ret : subreq->len, false);
}
void afs_issue_write(struct netfs_io_subrequest *subreq)
{
subreq->work.func = afs_issue_write_worker;
if (!queue_work(system_unbound_wq, &subreq->work))
WARN_ON_ONCE(1);
}
/*
* Writeback calls this when it finds a folio that needs uploading. This isn't
* called if writeback only has copy-to-cache to deal with.
*/
void afs_begin_writeback(struct netfs_io_request *wreq)
{
afs_get_writeback_key(wreq);
wreq->io_streams[0].avail = true;
}
/*
* Prepare to retry the writes in request. Use this to try rotating the
* available writeback keys.
*/
void afs_retry_request(struct netfs_io_request *wreq, struct netfs_io_stream *stream)
{
struct netfs_io_subrequest *subreq =
list_first_entry(&stream->subrequests,
struct netfs_io_subrequest, rreq_link);
switch (subreq->error) {
case -EACCES:
case -EPERM:
case -ENOKEY:
case -EKEYEXPIRED:
case -EKEYREJECTED:
case -EKEYREVOKED:
afs_get_writeback_key(wreq);
if (!wreq->netfs_priv)
stream->failed = true;
break;
}
}
/*
* write some of the pending data back to the server
*/
int afs_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
int ret;
/* We have to be careful as we can end up racing with setattr()
* truncating the pagecache since the caller doesn't take a lock here
* to prevent it.
*/
if (wbc->sync_mode == WB_SYNC_ALL)
down_read(&vnode->validate_lock);
else if (!down_read_trylock(&vnode->validate_lock))
return 0;
ret = netfs_writepages(mapping, wbc);
up_read(&vnode->validate_lock);
return ret;
}
/*
* flush any dirty pages for this process, and check for write errors.
* - the return status from this call provides a reliable indication of
* whether any write errors occurred for this process.
*/
int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
struct afs_file *af = file->private_data;
int ret;
_enter("{%llx:%llu},{n=%pD},%d",
vnode->fid.vid, vnode->fid.vnode, file,
datasync);
ret = afs_validate(vnode, af->key);
if (ret < 0)
return ret;
return file_write_and_wait_range(file, start, end);
}
/*
* notification that a previously read-only page is about to become writable
* - if it returns an error, the caller will deliver a bus error signal
*/
vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
{
struct file *file = vmf->vma->vm_file;
if (afs_validate(AFS_FS_I(file_inode(file)), afs_file_key(file)) < 0)
return VM_FAULT_SIGBUS;
return netfs_page_mkwrite(vmf, NULL);
}
/*
* Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
*/
void afs_prune_wb_keys(struct afs_vnode *vnode)
{
LIST_HEAD(graveyard);
struct afs_wb_key *wbk, *tmp;
/* Discard unused keys */
spin_lock(&vnode->wb_lock);
if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
if (refcount_read(&wbk->usage) == 1)
list_move(&wbk->vnode_link, &graveyard);
}
}
spin_unlock(&vnode->wb_lock);
while (!list_empty(&graveyard)) {
wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
list_del(&wbk->vnode_link);
afs_put_wb_key(wbk);
}
}