| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Cryptographic API. |
| * |
| * Driver for EIP97 AES acceleration. |
| * |
| * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com> |
| * |
| * Some ideas are from atmel-aes.c drivers. |
| */ |
| |
| #include <crypto/aes.h> |
| #include <crypto/gcm.h> |
| #include "mtk-platform.h" |
| |
| #define AES_QUEUE_SIZE 512 |
| #define AES_BUF_ORDER 2 |
| #define AES_BUF_SIZE ((PAGE_SIZE << AES_BUF_ORDER) \ |
| & ~(AES_BLOCK_SIZE - 1)) |
| #define AES_MAX_STATE_BUF_SIZE SIZE_IN_WORDS(AES_KEYSIZE_256 + \ |
| AES_BLOCK_SIZE * 2) |
| #define AES_MAX_CT_SIZE 6 |
| |
| #define AES_CT_CTRL_HDR cpu_to_le32(0x00220000) |
| |
| /* AES-CBC/ECB/CTR command token */ |
| #define AES_CMD0 cpu_to_le32(0x05000000) |
| #define AES_CMD1 cpu_to_le32(0x2d060000) |
| #define AES_CMD2 cpu_to_le32(0xe4a63806) |
| /* AES-GCM command token */ |
| #define AES_GCM_CMD0 cpu_to_le32(0x0b000000) |
| #define AES_GCM_CMD1 cpu_to_le32(0xa0800000) |
| #define AES_GCM_CMD2 cpu_to_le32(0x25000010) |
| #define AES_GCM_CMD3 cpu_to_le32(0x0f020000) |
| #define AES_GCM_CMD4 cpu_to_le32(0x21e60000) |
| #define AES_GCM_CMD5 cpu_to_le32(0x40e60000) |
| #define AES_GCM_CMD6 cpu_to_le32(0xd0070000) |
| |
| /* AES transform information word 0 fields */ |
| #define AES_TFM_BASIC_OUT cpu_to_le32(0x4 << 0) |
| #define AES_TFM_BASIC_IN cpu_to_le32(0x5 << 0) |
| #define AES_TFM_GCM_OUT cpu_to_le32(0x6 << 0) |
| #define AES_TFM_GCM_IN cpu_to_le32(0xf << 0) |
| #define AES_TFM_SIZE(x) cpu_to_le32((x) << 8) |
| #define AES_TFM_128BITS cpu_to_le32(0xb << 16) |
| #define AES_TFM_192BITS cpu_to_le32(0xd << 16) |
| #define AES_TFM_256BITS cpu_to_le32(0xf << 16) |
| #define AES_TFM_GHASH_DIGEST cpu_to_le32(0x2 << 21) |
| #define AES_TFM_GHASH cpu_to_le32(0x4 << 23) |
| /* AES transform information word 1 fields */ |
| #define AES_TFM_ECB cpu_to_le32(0x0 << 0) |
| #define AES_TFM_CBC cpu_to_le32(0x1 << 0) |
| #define AES_TFM_CTR_INIT cpu_to_le32(0x2 << 0) /* init counter to 1 */ |
| #define AES_TFM_CTR_LOAD cpu_to_le32(0x6 << 0) /* load/reuse counter */ |
| #define AES_TFM_3IV cpu_to_le32(0x7 << 5) /* using IV 0-2 */ |
| #define AES_TFM_FULL_IV cpu_to_le32(0xf << 5) /* using IV 0-3 */ |
| #define AES_TFM_IV_CTR_MODE cpu_to_le32(0x1 << 10) |
| #define AES_TFM_ENC_HASH cpu_to_le32(0x1 << 17) |
| |
| /* AES flags */ |
| #define AES_FLAGS_CIPHER_MSK GENMASK(2, 0) |
| #define AES_FLAGS_ECB BIT(0) |
| #define AES_FLAGS_CBC BIT(1) |
| #define AES_FLAGS_CTR BIT(2) |
| #define AES_FLAGS_GCM BIT(3) |
| #define AES_FLAGS_ENCRYPT BIT(4) |
| #define AES_FLAGS_BUSY BIT(5) |
| |
| #define AES_AUTH_TAG_ERR cpu_to_le32(BIT(26)) |
| |
| /** |
| * mtk_aes_info - hardware information of AES |
| * @cmd: command token, hardware instruction |
| * @tfm: transform state of cipher algorithm. |
| * @state: contains keys and initial vectors. |
| * |
| * Memory layout of GCM buffer: |
| * /-----------\ |
| * | AES KEY | 128/196/256 bits |
| * |-----------| |
| * | HASH KEY | a string 128 zero bits encrypted using the block cipher |
| * |-----------| |
| * | IVs | 4 * 4 bytes |
| * \-----------/ |
| * |
| * The engine requires all these info to do: |
| * - Commands decoding and control of the engine's data path. |
| * - Coordinating hardware data fetch and store operations. |
| * - Result token construction and output. |
| */ |
| struct mtk_aes_info { |
| __le32 cmd[AES_MAX_CT_SIZE]; |
| __le32 tfm[2]; |
| __le32 state[AES_MAX_STATE_BUF_SIZE]; |
| }; |
| |
| struct mtk_aes_reqctx { |
| u64 mode; |
| }; |
| |
| struct mtk_aes_base_ctx { |
| struct mtk_cryp *cryp; |
| u32 keylen; |
| __le32 keymode; |
| |
| mtk_aes_fn start; |
| |
| struct mtk_aes_info info; |
| dma_addr_t ct_dma; |
| dma_addr_t tfm_dma; |
| |
| __le32 ct_hdr; |
| u32 ct_size; |
| }; |
| |
| struct mtk_aes_ctx { |
| struct mtk_aes_base_ctx base; |
| }; |
| |
| struct mtk_aes_ctr_ctx { |
| struct mtk_aes_base_ctx base; |
| |
| u32 iv[AES_BLOCK_SIZE / sizeof(u32)]; |
| size_t offset; |
| struct scatterlist src[2]; |
| struct scatterlist dst[2]; |
| }; |
| |
| struct mtk_aes_gcm_ctx { |
| struct mtk_aes_base_ctx base; |
| |
| u32 authsize; |
| size_t textlen; |
| |
| struct crypto_skcipher *ctr; |
| }; |
| |
| struct mtk_aes_drv { |
| struct list_head dev_list; |
| /* Device list lock */ |
| spinlock_t lock; |
| }; |
| |
| static struct mtk_aes_drv mtk_aes = { |
| .dev_list = LIST_HEAD_INIT(mtk_aes.dev_list), |
| .lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock), |
| }; |
| |
| static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset) |
| { |
| return readl_relaxed(cryp->base + offset); |
| } |
| |
| static inline void mtk_aes_write(struct mtk_cryp *cryp, |
| u32 offset, u32 value) |
| { |
| writel_relaxed(value, cryp->base + offset); |
| } |
| |
| static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx) |
| { |
| struct mtk_cryp *cryp = NULL; |
| struct mtk_cryp *tmp; |
| |
| spin_lock_bh(&mtk_aes.lock); |
| if (!ctx->cryp) { |
| list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) { |
| cryp = tmp; |
| break; |
| } |
| ctx->cryp = cryp; |
| } else { |
| cryp = ctx->cryp; |
| } |
| spin_unlock_bh(&mtk_aes.lock); |
| |
| return cryp; |
| } |
| |
| static inline size_t mtk_aes_padlen(size_t len) |
| { |
| len &= AES_BLOCK_SIZE - 1; |
| return len ? AES_BLOCK_SIZE - len : 0; |
| } |
| |
| static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len, |
| struct mtk_aes_dma *dma) |
| { |
| int nents; |
| |
| if (!IS_ALIGNED(len, AES_BLOCK_SIZE)) |
| return false; |
| |
| for (nents = 0; sg; sg = sg_next(sg), ++nents) { |
| if (!IS_ALIGNED(sg->offset, sizeof(u32))) |
| return false; |
| |
| if (len <= sg->length) { |
| if (!IS_ALIGNED(len, AES_BLOCK_SIZE)) |
| return false; |
| |
| dma->nents = nents + 1; |
| dma->remainder = sg->length - len; |
| sg->length = len; |
| return true; |
| } |
| |
| if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) |
| return false; |
| |
| len -= sg->length; |
| } |
| |
| return false; |
| } |
| |
| static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes, |
| const struct mtk_aes_reqctx *rctx) |
| { |
| /* Clear all but persistent flags and set request flags. */ |
| aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode; |
| } |
| |
| static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma) |
| { |
| struct scatterlist *sg = dma->sg; |
| int nents = dma->nents; |
| |
| if (!dma->remainder) |
| return; |
| |
| while (--nents > 0 && sg) |
| sg = sg_next(sg); |
| |
| if (!sg) |
| return; |
| |
| sg->length += dma->remainder; |
| } |
| |
| static inline void mtk_aes_write_state_le(__le32 *dst, const u32 *src, u32 size) |
| { |
| int i; |
| |
| for (i = 0; i < SIZE_IN_WORDS(size); i++) |
| dst[i] = cpu_to_le32(src[i]); |
| } |
| |
| static inline void mtk_aes_write_state_be(__be32 *dst, const u32 *src, u32 size) |
| { |
| int i; |
| |
| for (i = 0; i < SIZE_IN_WORDS(size); i++) |
| dst[i] = cpu_to_be32(src[i]); |
| } |
| |
| static inline int mtk_aes_complete(struct mtk_cryp *cryp, |
| struct mtk_aes_rec *aes, |
| int err) |
| { |
| aes->flags &= ~AES_FLAGS_BUSY; |
| aes->areq->complete(aes->areq, err); |
| /* Handle new request */ |
| tasklet_schedule(&aes->queue_task); |
| return err; |
| } |
| |
| /* |
| * Write descriptors for processing. This will configure the engine, load |
| * the transform information and then start the packet processing. |
| */ |
| static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct mtk_ring *ring = cryp->ring[aes->id]; |
| struct mtk_desc *cmd = NULL, *res = NULL; |
| struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg; |
| u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len; |
| int nents; |
| |
| /* Write command descriptors */ |
| for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) { |
| cmd = ring->cmd_next; |
| cmd->hdr = MTK_DESC_BUF_LEN(ssg->length); |
| cmd->buf = cpu_to_le32(sg_dma_address(ssg)); |
| |
| if (nents == 0) { |
| cmd->hdr |= MTK_DESC_FIRST | |
| MTK_DESC_CT_LEN(aes->ctx->ct_size); |
| cmd->ct = cpu_to_le32(aes->ctx->ct_dma); |
| cmd->ct_hdr = aes->ctx->ct_hdr; |
| cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma); |
| } |
| |
| /* Shift ring buffer and check boundary */ |
| if (++ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) |
| ring->cmd_next = ring->cmd_base; |
| } |
| cmd->hdr |= MTK_DESC_LAST; |
| |
| /* Prepare result descriptors */ |
| for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) { |
| res = ring->res_next; |
| res->hdr = MTK_DESC_BUF_LEN(dsg->length); |
| res->buf = cpu_to_le32(sg_dma_address(dsg)); |
| |
| if (nents == 0) |
| res->hdr |= MTK_DESC_FIRST; |
| |
| /* Shift ring buffer and check boundary */ |
| if (++ring->res_next == ring->res_base + MTK_DESC_NUM) |
| ring->res_next = ring->res_base; |
| } |
| res->hdr |= MTK_DESC_LAST; |
| |
| /* Pointer to current result descriptor */ |
| ring->res_prev = res; |
| |
| /* Prepare enough space for authenticated tag */ |
| if (aes->flags & AES_FLAGS_GCM) |
| res->hdr += AES_BLOCK_SIZE; |
| |
| /* |
| * Make sure that all changes to the DMA ring are done before we |
| * start engine. |
| */ |
| wmb(); |
| /* Start DMA transfer */ |
| mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen)); |
| mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen)); |
| |
| return -EINPROGRESS; |
| } |
| |
| static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct mtk_aes_base_ctx *ctx = aes->ctx; |
| |
| dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info), |
| DMA_TO_DEVICE); |
| |
| if (aes->src.sg == aes->dst.sg) { |
| dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, |
| DMA_BIDIRECTIONAL); |
| |
| if (aes->src.sg != &aes->aligned_sg) |
| mtk_aes_restore_sg(&aes->src); |
| } else { |
| dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents, |
| DMA_FROM_DEVICE); |
| |
| if (aes->dst.sg != &aes->aligned_sg) |
| mtk_aes_restore_sg(&aes->dst); |
| |
| dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, |
| DMA_TO_DEVICE); |
| |
| if (aes->src.sg != &aes->aligned_sg) |
| mtk_aes_restore_sg(&aes->src); |
| } |
| |
| if (aes->dst.sg == &aes->aligned_sg) |
| sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst), |
| aes->buf, aes->total); |
| } |
| |
| static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct mtk_aes_base_ctx *ctx = aes->ctx; |
| struct mtk_aes_info *info = &ctx->info; |
| |
| ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info), |
| DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) |
| goto exit; |
| |
| ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd); |
| |
| if (aes->src.sg == aes->dst.sg) { |
| aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg, |
| aes->src.nents, |
| DMA_BIDIRECTIONAL); |
| aes->dst.sg_len = aes->src.sg_len; |
| if (unlikely(!aes->src.sg_len)) |
| goto sg_map_err; |
| } else { |
| aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg, |
| aes->src.nents, DMA_TO_DEVICE); |
| if (unlikely(!aes->src.sg_len)) |
| goto sg_map_err; |
| |
| aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg, |
| aes->dst.nents, DMA_FROM_DEVICE); |
| if (unlikely(!aes->dst.sg_len)) { |
| dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, |
| DMA_TO_DEVICE); |
| goto sg_map_err; |
| } |
| } |
| |
| return mtk_aes_xmit(cryp, aes); |
| |
| sg_map_err: |
| dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE); |
| exit: |
| return mtk_aes_complete(cryp, aes, -EINVAL); |
| } |
| |
| /* Initialize transform information of CBC/ECB/CTR mode */ |
| static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, |
| size_t len) |
| { |
| struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); |
| struct mtk_aes_base_ctx *ctx = aes->ctx; |
| struct mtk_aes_info *info = &ctx->info; |
| u32 cnt = 0; |
| |
| ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len); |
| info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len); |
| info->cmd[cnt++] = AES_CMD1; |
| |
| info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode; |
| if (aes->flags & AES_FLAGS_ENCRYPT) |
| info->tfm[0] |= AES_TFM_BASIC_OUT; |
| else |
| info->tfm[0] |= AES_TFM_BASIC_IN; |
| |
| switch (aes->flags & AES_FLAGS_CIPHER_MSK) { |
| case AES_FLAGS_CBC: |
| info->tfm[1] = AES_TFM_CBC; |
| break; |
| case AES_FLAGS_ECB: |
| info->tfm[1] = AES_TFM_ECB; |
| goto ecb; |
| case AES_FLAGS_CTR: |
| info->tfm[1] = AES_TFM_CTR_LOAD; |
| goto ctr; |
| |
| default: |
| /* Should not happen... */ |
| return; |
| } |
| |
| mtk_aes_write_state_le(info->state + ctx->keylen, req->info, |
| AES_BLOCK_SIZE); |
| ctr: |
| info->tfm[0] += AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE)); |
| info->tfm[1] |= AES_TFM_FULL_IV; |
| info->cmd[cnt++] = AES_CMD2; |
| ecb: |
| ctx->ct_size = cnt; |
| } |
| |
| static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, |
| struct scatterlist *src, struct scatterlist *dst, |
| size_t len) |
| { |
| size_t padlen = 0; |
| bool src_aligned, dst_aligned; |
| |
| aes->total = len; |
| aes->src.sg = src; |
| aes->dst.sg = dst; |
| aes->real_dst = dst; |
| |
| src_aligned = mtk_aes_check_aligned(src, len, &aes->src); |
| if (src == dst) |
| dst_aligned = src_aligned; |
| else |
| dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst); |
| |
| if (!src_aligned || !dst_aligned) { |
| padlen = mtk_aes_padlen(len); |
| |
| if (len + padlen > AES_BUF_SIZE) |
| return mtk_aes_complete(cryp, aes, -ENOMEM); |
| |
| if (!src_aligned) { |
| sg_copy_to_buffer(src, sg_nents(src), aes->buf, len); |
| aes->src.sg = &aes->aligned_sg; |
| aes->src.nents = 1; |
| aes->src.remainder = 0; |
| } |
| |
| if (!dst_aligned) { |
| aes->dst.sg = &aes->aligned_sg; |
| aes->dst.nents = 1; |
| aes->dst.remainder = 0; |
| } |
| |
| sg_init_table(&aes->aligned_sg, 1); |
| sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen); |
| } |
| |
| mtk_aes_info_init(cryp, aes, len + padlen); |
| |
| return mtk_aes_map(cryp, aes); |
| } |
| |
| static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id, |
| struct crypto_async_request *new_areq) |
| { |
| struct mtk_aes_rec *aes = cryp->aes[id]; |
| struct crypto_async_request *areq, *backlog; |
| struct mtk_aes_base_ctx *ctx; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&aes->lock, flags); |
| if (new_areq) |
| ret = crypto_enqueue_request(&aes->queue, new_areq); |
| if (aes->flags & AES_FLAGS_BUSY) { |
| spin_unlock_irqrestore(&aes->lock, flags); |
| return ret; |
| } |
| backlog = crypto_get_backlog(&aes->queue); |
| areq = crypto_dequeue_request(&aes->queue); |
| if (areq) |
| aes->flags |= AES_FLAGS_BUSY; |
| spin_unlock_irqrestore(&aes->lock, flags); |
| |
| if (!areq) |
| return ret; |
| |
| if (backlog) |
| backlog->complete(backlog, -EINPROGRESS); |
| |
| ctx = crypto_tfm_ctx(areq->tfm); |
| |
| aes->areq = areq; |
| aes->ctx = ctx; |
| |
| return ctx->start(cryp, aes); |
| } |
| |
| static int mtk_aes_transfer_complete(struct mtk_cryp *cryp, |
| struct mtk_aes_rec *aes) |
| { |
| return mtk_aes_complete(cryp, aes, 0); |
| } |
| |
| static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); |
| struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req); |
| |
| mtk_aes_set_mode(aes, rctx); |
| aes->resume = mtk_aes_transfer_complete; |
| |
| return mtk_aes_dma(cryp, aes, req->src, req->dst, req->nbytes); |
| } |
| |
| static inline struct mtk_aes_ctr_ctx * |
| mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx) |
| { |
| return container_of(ctx, struct mtk_aes_ctr_ctx, base); |
| } |
| |
| static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct mtk_aes_base_ctx *ctx = aes->ctx; |
| struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx); |
| struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); |
| struct scatterlist *src, *dst; |
| u32 start, end, ctr, blocks; |
| size_t datalen; |
| bool fragmented = false; |
| |
| /* Check for transfer completion. */ |
| cctx->offset += aes->total; |
| if (cctx->offset >= req->nbytes) |
| return mtk_aes_transfer_complete(cryp, aes); |
| |
| /* Compute data length. */ |
| datalen = req->nbytes - cctx->offset; |
| blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE); |
| ctr = be32_to_cpu(cctx->iv[3]); |
| |
| /* Check 32bit counter overflow. */ |
| start = ctr; |
| end = start + blocks - 1; |
| if (end < start) { |
| ctr |= 0xffffffff; |
| datalen = AES_BLOCK_SIZE * -start; |
| fragmented = true; |
| } |
| |
| /* Jump to offset. */ |
| src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset); |
| dst = ((req->src == req->dst) ? src : |
| scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset)); |
| |
| /* Write IVs into transform state buffer. */ |
| mtk_aes_write_state_le(ctx->info.state + ctx->keylen, cctx->iv, |
| AES_BLOCK_SIZE); |
| |
| if (unlikely(fragmented)) { |
| /* |
| * Increment the counter manually to cope with the hardware |
| * counter overflow. |
| */ |
| cctx->iv[3] = cpu_to_be32(ctr); |
| crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE); |
| } |
| |
| return mtk_aes_dma(cryp, aes, src, dst, datalen); |
| } |
| |
| static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx); |
| struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); |
| struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req); |
| |
| mtk_aes_set_mode(aes, rctx); |
| |
| memcpy(cctx->iv, req->info, AES_BLOCK_SIZE); |
| cctx->offset = 0; |
| aes->total = 0; |
| aes->resume = mtk_aes_ctr_transfer; |
| |
| return mtk_aes_ctr_transfer(cryp, aes); |
| } |
| |
| /* Check and set the AES key to transform state buffer */ |
| static int mtk_aes_setkey(struct crypto_ablkcipher *tfm, |
| const u8 *key, u32 keylen) |
| { |
| struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| |
| switch (keylen) { |
| case AES_KEYSIZE_128: |
| ctx->keymode = AES_TFM_128BITS; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->keymode = AES_TFM_192BITS; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->keymode = AES_TFM_256BITS; |
| break; |
| |
| default: |
| crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| ctx->keylen = SIZE_IN_WORDS(keylen); |
| mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen); |
| |
| return 0; |
| } |
| |
| static int mtk_aes_crypt(struct ablkcipher_request *req, u64 mode) |
| { |
| struct mtk_aes_base_ctx *ctx; |
| struct mtk_aes_reqctx *rctx; |
| |
| ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); |
| rctx = ablkcipher_request_ctx(req); |
| rctx->mode = mode; |
| |
| return mtk_aes_handle_queue(ctx->cryp, !(mode & AES_FLAGS_ENCRYPT), |
| &req->base); |
| } |
| |
| static int mtk_aes_ecb_encrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB); |
| } |
| |
| static int mtk_aes_ecb_decrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_ECB); |
| } |
| |
| static int mtk_aes_cbc_encrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC); |
| } |
| |
| static int mtk_aes_cbc_decrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_CBC); |
| } |
| |
| static int mtk_aes_ctr_encrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR); |
| } |
| |
| static int mtk_aes_ctr_decrypt(struct ablkcipher_request *req) |
| { |
| return mtk_aes_crypt(req, AES_FLAGS_CTR); |
| } |
| |
| static int mtk_aes_cra_init(struct crypto_tfm *tfm) |
| { |
| struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct mtk_cryp *cryp = NULL; |
| |
| cryp = mtk_aes_find_dev(&ctx->base); |
| if (!cryp) { |
| pr_err("can't find crypto device\n"); |
| return -ENODEV; |
| } |
| |
| tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx); |
| ctx->base.start = mtk_aes_start; |
| return 0; |
| } |
| |
| static int mtk_aes_ctr_cra_init(struct crypto_tfm *tfm) |
| { |
| struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm); |
| struct mtk_cryp *cryp = NULL; |
| |
| cryp = mtk_aes_find_dev(&ctx->base); |
| if (!cryp) { |
| pr_err("can't find crypto device\n"); |
| return -ENODEV; |
| } |
| |
| tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx); |
| ctx->base.start = mtk_aes_ctr_start; |
| return 0; |
| } |
| |
| static struct crypto_alg aes_algs[] = { |
| { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-mtk", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC, |
| .cra_init = mtk_aes_cra_init, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct mtk_aes_ctx), |
| .cra_alignmask = 0xf, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = mtk_aes_setkey, |
| .encrypt = mtk_aes_cbc_encrypt, |
| .decrypt = mtk_aes_cbc_decrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| } |
| }, |
| { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-mtk", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC, |
| .cra_init = mtk_aes_cra_init, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct mtk_aes_ctx), |
| .cra_alignmask = 0xf, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = mtk_aes_setkey, |
| .encrypt = mtk_aes_ecb_encrypt, |
| .decrypt = mtk_aes_ecb_decrypt, |
| } |
| }, |
| { |
| .cra_name = "ctr(aes)", |
| .cra_driver_name = "ctr-aes-mtk", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC, |
| .cra_init = mtk_aes_ctr_cra_init, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct mtk_aes_ctr_ctx), |
| .cra_alignmask = 0xf, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = mtk_aes_setkey, |
| .encrypt = mtk_aes_ctr_encrypt, |
| .decrypt = mtk_aes_ctr_decrypt, |
| } |
| }, |
| }; |
| |
| static inline struct mtk_aes_gcm_ctx * |
| mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx) |
| { |
| return container_of(ctx, struct mtk_aes_gcm_ctx, base); |
| } |
| |
| /* |
| * Engine will verify and compare tag automatically, so we just need |
| * to check returned status which stored in the result descriptor. |
| */ |
| static int mtk_aes_gcm_tag_verify(struct mtk_cryp *cryp, |
| struct mtk_aes_rec *aes) |
| { |
| u32 status = cryp->ring[aes->id]->res_prev->ct; |
| |
| return mtk_aes_complete(cryp, aes, (status & AES_AUTH_TAG_ERR) ? |
| -EBADMSG : 0); |
| } |
| |
| /* Initialize transform information of GCM mode */ |
| static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp, |
| struct mtk_aes_rec *aes, |
| size_t len) |
| { |
| struct aead_request *req = aead_request_cast(aes->areq); |
| struct mtk_aes_base_ctx *ctx = aes->ctx; |
| struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx); |
| struct mtk_aes_info *info = &ctx->info; |
| u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
| u32 cnt = 0; |
| |
| ctx->ct_hdr = AES_CT_CTRL_HDR | len; |
| |
| info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen); |
| info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen); |
| info->cmd[cnt++] = AES_GCM_CMD2; |
| info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen); |
| |
| if (aes->flags & AES_FLAGS_ENCRYPT) { |
| info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize); |
| info->tfm[0] = AES_TFM_GCM_OUT; |
| } else { |
| info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize); |
| info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize); |
| info->tfm[0] = AES_TFM_GCM_IN; |
| } |
| ctx->ct_size = cnt; |
| |
| info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE( |
| ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) | |
| ctx->keymode; |
| info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV | |
| AES_TFM_ENC_HASH; |
| |
| mtk_aes_write_state_le(info->state + ctx->keylen + SIZE_IN_WORDS( |
| AES_BLOCK_SIZE), (const u32 *)req->iv, ivsize); |
| } |
| |
| static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, |
| struct scatterlist *src, struct scatterlist *dst, |
| size_t len) |
| { |
| bool src_aligned, dst_aligned; |
| |
| aes->src.sg = src; |
| aes->dst.sg = dst; |
| aes->real_dst = dst; |
| |
| src_aligned = mtk_aes_check_aligned(src, len, &aes->src); |
| if (src == dst) |
| dst_aligned = src_aligned; |
| else |
| dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst); |
| |
| if (!src_aligned || !dst_aligned) { |
| if (aes->total > AES_BUF_SIZE) |
| return mtk_aes_complete(cryp, aes, -ENOMEM); |
| |
| if (!src_aligned) { |
| sg_copy_to_buffer(src, sg_nents(src), aes->buf, len); |
| aes->src.sg = &aes->aligned_sg; |
| aes->src.nents = 1; |
| aes->src.remainder = 0; |
| } |
| |
| if (!dst_aligned) { |
| aes->dst.sg = &aes->aligned_sg; |
| aes->dst.nents = 1; |
| aes->dst.remainder = 0; |
| } |
| |
| sg_init_table(&aes->aligned_sg, 1); |
| sg_set_buf(&aes->aligned_sg, aes->buf, aes->total); |
| } |
| |
| mtk_aes_gcm_info_init(cryp, aes, len); |
| |
| return mtk_aes_map(cryp, aes); |
| } |
| |
| /* Todo: GMAC */ |
| static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) |
| { |
| struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx); |
| struct aead_request *req = aead_request_cast(aes->areq); |
| struct mtk_aes_reqctx *rctx = aead_request_ctx(req); |
| u32 len = req->assoclen + req->cryptlen; |
| |
| mtk_aes_set_mode(aes, rctx); |
| |
| if (aes->flags & AES_FLAGS_ENCRYPT) { |
| u32 tag[4]; |
| |
| aes->resume = mtk_aes_transfer_complete; |
| /* Compute total process length. */ |
| aes->total = len + gctx->authsize; |
| /* Compute text length. */ |
| gctx->textlen = req->cryptlen; |
| /* Hardware will append authenticated tag to output buffer */ |
| scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1); |
| } else { |
| aes->resume = mtk_aes_gcm_tag_verify; |
| aes->total = len; |
| gctx->textlen = req->cryptlen - gctx->authsize; |
| } |
| |
| return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len); |
| } |
| |
| static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode) |
| { |
| struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); |
| struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx); |
| struct mtk_aes_reqctx *rctx = aead_request_ctx(req); |
| |
| /* Empty messages are not supported yet */ |
| if (!gctx->textlen && !req->assoclen) |
| return -EINVAL; |
| |
| rctx->mode = AES_FLAGS_GCM | mode; |
| |
| return mtk_aes_handle_queue(ctx->cryp, !!(mode & AES_FLAGS_ENCRYPT), |
| &req->base); |
| } |
| |
| /* |
| * Because of the hardware limitation, we need to pre-calculate key(H) |
| * for the GHASH operation. The result of the encryption operation |
| * need to be stored in the transform state buffer. |
| */ |
| static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key, |
| u32 keylen) |
| { |
| struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead); |
| struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx); |
| struct crypto_skcipher *ctr = gctx->ctr; |
| struct { |
| u32 hash[4]; |
| u8 iv[8]; |
| |
| struct crypto_wait wait; |
| |
| struct scatterlist sg[1]; |
| struct skcipher_request req; |
| } *data; |
| int err; |
| |
| switch (keylen) { |
| case AES_KEYSIZE_128: |
| ctx->keymode = AES_TFM_128BITS; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->keymode = AES_TFM_192BITS; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->keymode = AES_TFM_256BITS; |
| break; |
| |
| default: |
| crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| ctx->keylen = SIZE_IN_WORDS(keylen); |
| |
| /* Same as crypto_gcm_setkey() from crypto/gcm.c */ |
| crypto_skcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(ctr, crypto_aead_get_flags(aead) & |
| CRYPTO_TFM_REQ_MASK); |
| err = crypto_skcipher_setkey(ctr, key, keylen); |
| crypto_aead_set_flags(aead, crypto_skcipher_get_flags(ctr) & |
| CRYPTO_TFM_RES_MASK); |
| if (err) |
| return err; |
| |
| data = kzalloc(sizeof(*data) + crypto_skcipher_reqsize(ctr), |
| GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| crypto_init_wait(&data->wait); |
| sg_init_one(data->sg, &data->hash, AES_BLOCK_SIZE); |
| skcipher_request_set_tfm(&data->req, ctr); |
| skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &data->wait); |
| skcipher_request_set_crypt(&data->req, data->sg, data->sg, |
| AES_BLOCK_SIZE, data->iv); |
| |
| err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), |
| &data->wait); |
| if (err) |
| goto out; |
| |
| /* Write key into state buffer */ |
| mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen); |
| /* Write key(H) into state buffer */ |
| mtk_aes_write_state_be(ctx->info.state + ctx->keylen, data->hash, |
| AES_BLOCK_SIZE); |
| out: |
| kzfree(data); |
| return err; |
| } |
| |
| static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead, |
| u32 authsize) |
| { |
| struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead); |
| struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx); |
| |
| /* Same as crypto_gcm_authsize() from crypto/gcm.c */ |
| switch (authsize) { |
| case 8: |
| case 12: |
| case 16: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| gctx->authsize = authsize; |
| return 0; |
| } |
| |
| static int mtk_aes_gcm_encrypt(struct aead_request *req) |
| { |
| return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT); |
| } |
| |
| static int mtk_aes_gcm_decrypt(struct aead_request *req) |
| { |
| return mtk_aes_gcm_crypt(req, 0); |
| } |
| |
| static int mtk_aes_gcm_init(struct crypto_aead *aead) |
| { |
| struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead); |
| struct mtk_cryp *cryp = NULL; |
| |
| cryp = mtk_aes_find_dev(&ctx->base); |
| if (!cryp) { |
| pr_err("can't find crypto device\n"); |
| return -ENODEV; |
| } |
| |
| ctx->ctr = crypto_alloc_skcipher("ctr(aes)", 0, |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(ctx->ctr)) { |
| pr_err("Error allocating ctr(aes)\n"); |
| return PTR_ERR(ctx->ctr); |
| } |
| |
| crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx)); |
| ctx->base.start = mtk_aes_gcm_start; |
| return 0; |
| } |
| |
| static void mtk_aes_gcm_exit(struct crypto_aead *aead) |
| { |
| struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead); |
| |
| crypto_free_skcipher(ctx->ctr); |
| } |
| |
| static struct aead_alg aes_gcm_alg = { |
| .setkey = mtk_aes_gcm_setkey, |
| .setauthsize = mtk_aes_gcm_setauthsize, |
| .encrypt = mtk_aes_gcm_encrypt, |
| .decrypt = mtk_aes_gcm_decrypt, |
| .init = mtk_aes_gcm_init, |
| .exit = mtk_aes_gcm_exit, |
| .ivsize = GCM_AES_IV_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| |
| .base = { |
| .cra_name = "gcm(aes)", |
| .cra_driver_name = "gcm-aes-mtk", |
| .cra_priority = 400, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct mtk_aes_gcm_ctx), |
| .cra_alignmask = 0xf, |
| .cra_module = THIS_MODULE, |
| }, |
| }; |
| |
| static void mtk_aes_queue_task(unsigned long data) |
| { |
| struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data; |
| |
| mtk_aes_handle_queue(aes->cryp, aes->id, NULL); |
| } |
| |
| static void mtk_aes_done_task(unsigned long data) |
| { |
| struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data; |
| struct mtk_cryp *cryp = aes->cryp; |
| |
| mtk_aes_unmap(cryp, aes); |
| aes->resume(cryp, aes); |
| } |
| |
| static irqreturn_t mtk_aes_irq(int irq, void *dev_id) |
| { |
| struct mtk_aes_rec *aes = (struct mtk_aes_rec *)dev_id; |
| struct mtk_cryp *cryp = aes->cryp; |
| u32 val = mtk_aes_read(cryp, RDR_STAT(aes->id)); |
| |
| mtk_aes_write(cryp, RDR_STAT(aes->id), val); |
| |
| if (likely(AES_FLAGS_BUSY & aes->flags)) { |
| mtk_aes_write(cryp, RDR_PROC_COUNT(aes->id), MTK_CNT_RST); |
| mtk_aes_write(cryp, RDR_THRESH(aes->id), |
| MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE); |
| |
| tasklet_schedule(&aes->done_task); |
| } else { |
| dev_warn(cryp->dev, "AES interrupt when no active requests.\n"); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * The purpose of creating encryption and decryption records is |
| * to process outbound/inbound data in parallel, it can improve |
| * performance in most use cases, such as IPSec VPN, especially |
| * under heavy network traffic. |
| */ |
| static int mtk_aes_record_init(struct mtk_cryp *cryp) |
| { |
| struct mtk_aes_rec **aes = cryp->aes; |
| int i, err = -ENOMEM; |
| |
| for (i = 0; i < MTK_REC_NUM; i++) { |
| aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL); |
| if (!aes[i]) |
| goto err_cleanup; |
| |
| aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL, |
| AES_BUF_ORDER); |
| if (!aes[i]->buf) |
| goto err_cleanup; |
| |
| aes[i]->cryp = cryp; |
| |
| spin_lock_init(&aes[i]->lock); |
| crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE); |
| |
| tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task, |
| (unsigned long)aes[i]); |
| tasklet_init(&aes[i]->done_task, mtk_aes_done_task, |
| (unsigned long)aes[i]); |
| } |
| |
| /* Link to ring0 and ring1 respectively */ |
| aes[0]->id = MTK_RING0; |
| aes[1]->id = MTK_RING1; |
| |
| return 0; |
| |
| err_cleanup: |
| for (; i--; ) { |
| free_page((unsigned long)aes[i]->buf); |
| kfree(aes[i]); |
| } |
| |
| return err; |
| } |
| |
| static void mtk_aes_record_free(struct mtk_cryp *cryp) |
| { |
| int i; |
| |
| for (i = 0; i < MTK_REC_NUM; i++) { |
| tasklet_kill(&cryp->aes[i]->done_task); |
| tasklet_kill(&cryp->aes[i]->queue_task); |
| |
| free_page((unsigned long)cryp->aes[i]->buf); |
| kfree(cryp->aes[i]); |
| } |
| } |
| |
| static void mtk_aes_unregister_algs(void) |
| { |
| int i; |
| |
| crypto_unregister_aead(&aes_gcm_alg); |
| |
| for (i = 0; i < ARRAY_SIZE(aes_algs); i++) |
| crypto_unregister_alg(&aes_algs[i]); |
| } |
| |
| static int mtk_aes_register_algs(void) |
| { |
| int err, i; |
| |
| for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { |
| err = crypto_register_alg(&aes_algs[i]); |
| if (err) |
| goto err_aes_algs; |
| } |
| |
| err = crypto_register_aead(&aes_gcm_alg); |
| if (err) |
| goto err_aes_algs; |
| |
| return 0; |
| |
| err_aes_algs: |
| for (; i--; ) |
| crypto_unregister_alg(&aes_algs[i]); |
| |
| return err; |
| } |
| |
| int mtk_cipher_alg_register(struct mtk_cryp *cryp) |
| { |
| int ret; |
| |
| INIT_LIST_HEAD(&cryp->aes_list); |
| |
| /* Initialize two cipher records */ |
| ret = mtk_aes_record_init(cryp); |
| if (ret) |
| goto err_record; |
| |
| ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING0], mtk_aes_irq, |
| 0, "mtk-aes", cryp->aes[0]); |
| if (ret) { |
| dev_err(cryp->dev, "unable to request AES irq.\n"); |
| goto err_res; |
| } |
| |
| ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING1], mtk_aes_irq, |
| 0, "mtk-aes", cryp->aes[1]); |
| if (ret) { |
| dev_err(cryp->dev, "unable to request AES irq.\n"); |
| goto err_res; |
| } |
| |
| /* Enable ring0 and ring1 interrupt */ |
| mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING0), MTK_IRQ_RDR0); |
| mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING1), MTK_IRQ_RDR1); |
| |
| spin_lock(&mtk_aes.lock); |
| list_add_tail(&cryp->aes_list, &mtk_aes.dev_list); |
| spin_unlock(&mtk_aes.lock); |
| |
| ret = mtk_aes_register_algs(); |
| if (ret) |
| goto err_algs; |
| |
| return 0; |
| |
| err_algs: |
| spin_lock(&mtk_aes.lock); |
| list_del(&cryp->aes_list); |
| spin_unlock(&mtk_aes.lock); |
| err_res: |
| mtk_aes_record_free(cryp); |
| err_record: |
| |
| dev_err(cryp->dev, "mtk-aes initialization failed.\n"); |
| return ret; |
| } |
| |
| void mtk_cipher_alg_release(struct mtk_cryp *cryp) |
| { |
| spin_lock(&mtk_aes.lock); |
| list_del(&cryp->aes_list); |
| spin_unlock(&mtk_aes.lock); |
| |
| mtk_aes_unregister_algs(); |
| mtk_aes_record_free(cryp); |
| } |