blob: ab77a9f439ef9a51e6095fc371a39fd3437a2b7c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <linux/acpi.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/hwmon.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/mdio/mdio-i2c.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "sfp.h"
#include "swphy.h"
enum {
GPIO_MODDEF0,
GPIO_LOS,
GPIO_TX_FAULT,
GPIO_TX_DISABLE,
GPIO_RATE_SELECT,
GPIO_MAX,
SFP_F_PRESENT = BIT(GPIO_MODDEF0),
SFP_F_LOS = BIT(GPIO_LOS),
SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
SFP_E_INSERT = 0,
SFP_E_REMOVE,
SFP_E_DEV_ATTACH,
SFP_E_DEV_DETACH,
SFP_E_DEV_DOWN,
SFP_E_DEV_UP,
SFP_E_TX_FAULT,
SFP_E_TX_CLEAR,
SFP_E_LOS_HIGH,
SFP_E_LOS_LOW,
SFP_E_TIMEOUT,
SFP_MOD_EMPTY = 0,
SFP_MOD_ERROR,
SFP_MOD_PROBE,
SFP_MOD_WAITDEV,
SFP_MOD_HPOWER,
SFP_MOD_WAITPWR,
SFP_MOD_PRESENT,
SFP_DEV_DETACHED = 0,
SFP_DEV_DOWN,
SFP_DEV_UP,
SFP_S_DOWN = 0,
SFP_S_FAIL,
SFP_S_WAIT,
SFP_S_INIT,
SFP_S_INIT_PHY,
SFP_S_INIT_TX_FAULT,
SFP_S_WAIT_LOS,
SFP_S_LINK_UP,
SFP_S_TX_FAULT,
SFP_S_REINIT,
SFP_S_TX_DISABLE,
};
static const char * const mod_state_strings[] = {
[SFP_MOD_EMPTY] = "empty",
[SFP_MOD_ERROR] = "error",
[SFP_MOD_PROBE] = "probe",
[SFP_MOD_WAITDEV] = "waitdev",
[SFP_MOD_HPOWER] = "hpower",
[SFP_MOD_WAITPWR] = "waitpwr",
[SFP_MOD_PRESENT] = "present",
};
static const char *mod_state_to_str(unsigned short mod_state)
{
if (mod_state >= ARRAY_SIZE(mod_state_strings))
return "Unknown module state";
return mod_state_strings[mod_state];
}
static const char * const dev_state_strings[] = {
[SFP_DEV_DETACHED] = "detached",
[SFP_DEV_DOWN] = "down",
[SFP_DEV_UP] = "up",
};
static const char *dev_state_to_str(unsigned short dev_state)
{
if (dev_state >= ARRAY_SIZE(dev_state_strings))
return "Unknown device state";
return dev_state_strings[dev_state];
}
static const char * const event_strings[] = {
[SFP_E_INSERT] = "insert",
[SFP_E_REMOVE] = "remove",
[SFP_E_DEV_ATTACH] = "dev_attach",
[SFP_E_DEV_DETACH] = "dev_detach",
[SFP_E_DEV_DOWN] = "dev_down",
[SFP_E_DEV_UP] = "dev_up",
[SFP_E_TX_FAULT] = "tx_fault",
[SFP_E_TX_CLEAR] = "tx_clear",
[SFP_E_LOS_HIGH] = "los_high",
[SFP_E_LOS_LOW] = "los_low",
[SFP_E_TIMEOUT] = "timeout",
};
static const char *event_to_str(unsigned short event)
{
if (event >= ARRAY_SIZE(event_strings))
return "Unknown event";
return event_strings[event];
}
static const char * const sm_state_strings[] = {
[SFP_S_DOWN] = "down",
[SFP_S_FAIL] = "fail",
[SFP_S_WAIT] = "wait",
[SFP_S_INIT] = "init",
[SFP_S_INIT_PHY] = "init_phy",
[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
[SFP_S_WAIT_LOS] = "wait_los",
[SFP_S_LINK_UP] = "link_up",
[SFP_S_TX_FAULT] = "tx_fault",
[SFP_S_REINIT] = "reinit",
[SFP_S_TX_DISABLE] = "tx_disable",
};
static const char *sm_state_to_str(unsigned short sm_state)
{
if (sm_state >= ARRAY_SIZE(sm_state_strings))
return "Unknown state";
return sm_state_strings[sm_state];
}
static const char *gpio_of_names[] = {
"mod-def0",
"los",
"tx-fault",
"tx-disable",
"rate-select0",
};
static const enum gpiod_flags gpio_flags[] = {
GPIOD_IN,
GPIOD_IN,
GPIOD_IN,
GPIOD_ASIS,
GPIOD_ASIS,
};
/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
* non-cooled module to initialise its laser safety circuitry. We wait
* an initial T_WAIT period before we check the tx fault to give any PHY
* on board (for a copper SFP) time to initialise.
*/
#define T_WAIT msecs_to_jiffies(50)
#define T_START_UP msecs_to_jiffies(300)
#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
/* t_reset is the time required to assert the TX_DISABLE signal to reset
* an indicated TX_FAULT.
*/
#define T_RESET_US 10
#define T_FAULT_RECOVER msecs_to_jiffies(1000)
/* N_FAULT_INIT is the number of recovery attempts at module initialisation
* time. If the TX_FAULT signal is not deasserted after this number of
* attempts at clearing it, we decide that the module is faulty.
* N_FAULT is the same but after the module has initialised.
*/
#define N_FAULT_INIT 5
#define N_FAULT 5
/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
* R_PHY_RETRY is the number of attempts.
*/
#define T_PHY_RETRY msecs_to_jiffies(50)
#define R_PHY_RETRY 12
/* SFP module presence detection is poor: the three MOD DEF signals are
* the same length on the PCB, which means it's possible for MOD DEF 0 to
* connect before the I2C bus on MOD DEF 1/2.
*
* The SFF-8472 specifies t_serial ("Time from power on until module is
* ready for data transmission over the two wire serial bus.") as 300ms.
*/
#define T_SERIAL msecs_to_jiffies(300)
#define T_HPOWER_LEVEL msecs_to_jiffies(300)
#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
#define R_PROBE_RETRY_INIT 10
#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
#define R_PROBE_RETRY_SLOW 12
/* SFP modules appear to always have their PHY configured for bus address
* 0x56 (which with mdio-i2c, translates to a PHY address of 22).
*/
#define SFP_PHY_ADDR 22
struct sff_data {
unsigned int gpios;
bool (*module_supported)(const struct sfp_eeprom_id *id);
};
struct sfp {
struct device *dev;
struct i2c_adapter *i2c;
struct mii_bus *i2c_mii;
struct sfp_bus *sfp_bus;
struct phy_device *mod_phy;
const struct sff_data *type;
size_t i2c_block_size;
u32 max_power_mW;
unsigned int (*get_state)(struct sfp *);
void (*set_state)(struct sfp *, unsigned int);
int (*read)(struct sfp *, bool, u8, void *, size_t);
int (*write)(struct sfp *, bool, u8, void *, size_t);
struct gpio_desc *gpio[GPIO_MAX];
int gpio_irq[GPIO_MAX];
bool need_poll;
struct mutex st_mutex; /* Protects state */
unsigned int state_soft_mask;
unsigned int state;
struct delayed_work poll;
struct delayed_work timeout;
struct mutex sm_mutex; /* Protects state machine */
unsigned char sm_mod_state;
unsigned char sm_mod_tries_init;
unsigned char sm_mod_tries;
unsigned char sm_dev_state;
unsigned short sm_state;
unsigned char sm_fault_retries;
unsigned char sm_phy_retries;
struct sfp_eeprom_id id;
unsigned int module_power_mW;
unsigned int module_t_start_up;
#if IS_ENABLED(CONFIG_HWMON)
struct sfp_diag diag;
struct delayed_work hwmon_probe;
unsigned int hwmon_tries;
struct device *hwmon_dev;
char *hwmon_name;
#endif
#if IS_ENABLED(CONFIG_DEBUG_FS)
struct dentry *debugfs_dir;
#endif
};
static bool sff_module_supported(const struct sfp_eeprom_id *id)
{
return id->base.phys_id == SFF8024_ID_SFF_8472 &&
id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
}
static const struct sff_data sff_data = {
.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
.module_supported = sff_module_supported,
};
static bool sfp_module_supported(const struct sfp_eeprom_id *id)
{
if (id->base.phys_id == SFF8024_ID_SFP &&
id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
return true;
/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
* phys id SFF instead of SFP. Therefore mark this module explicitly
* as supported based on vendor name and pn match.
*/
if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
!memcmp(id->base.vendor_name, "UBNT ", 16) &&
!memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
return true;
return false;
}
static const struct sff_data sfp_data = {
.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
.module_supported = sfp_module_supported,
};
static const struct of_device_id sfp_of_match[] = {
{ .compatible = "sff,sff", .data = &sff_data, },
{ .compatible = "sff,sfp", .data = &sfp_data, },
{ },
};
MODULE_DEVICE_TABLE(of, sfp_of_match);
static unsigned long poll_jiffies;
static unsigned int sfp_gpio_get_state(struct sfp *sfp)
{
unsigned int i, state, v;
for (i = state = 0; i < GPIO_MAX; i++) {
if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
continue;
v = gpiod_get_value_cansleep(sfp->gpio[i]);
if (v)
state |= BIT(i);
}
return state;
}
static unsigned int sff_gpio_get_state(struct sfp *sfp)
{
return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
}
static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
{
if (state & SFP_F_PRESENT) {
/* If the module is present, drive the signals */
if (sfp->gpio[GPIO_TX_DISABLE])
gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
state & SFP_F_TX_DISABLE);
if (state & SFP_F_RATE_SELECT)
gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
state & SFP_F_RATE_SELECT);
} else {
/* Otherwise, let them float to the pull-ups */
if (sfp->gpio[GPIO_TX_DISABLE])
gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
if (state & SFP_F_RATE_SELECT)
gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
}
}
static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
size_t len)
{
struct i2c_msg msgs[2];
u8 bus_addr = a2 ? 0x51 : 0x50;
size_t block_size = sfp->i2c_block_size;
size_t this_len;
int ret;
msgs[0].addr = bus_addr;
msgs[0].flags = 0;
msgs[0].len = 1;
msgs[0].buf = &dev_addr;
msgs[1].addr = bus_addr;
msgs[1].flags = I2C_M_RD;
msgs[1].len = len;
msgs[1].buf = buf;
while (len) {
this_len = len;
if (this_len > block_size)
this_len = block_size;
msgs[1].len = this_len;
ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
if (ret < 0)
return ret;
if (ret != ARRAY_SIZE(msgs))
break;
msgs[1].buf += this_len;
dev_addr += this_len;
len -= this_len;
}
return msgs[1].buf - (u8 *)buf;
}
static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
size_t len)
{
struct i2c_msg msgs[1];
u8 bus_addr = a2 ? 0x51 : 0x50;
int ret;
msgs[0].addr = bus_addr;
msgs[0].flags = 0;
msgs[0].len = 1 + len;
msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
if (!msgs[0].buf)
return -ENOMEM;
msgs[0].buf[0] = dev_addr;
memcpy(&msgs[0].buf[1], buf, len);
ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
kfree(msgs[0].buf);
if (ret < 0)
return ret;
return ret == ARRAY_SIZE(msgs) ? len : 0;
}
static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
{
struct mii_bus *i2c_mii;
int ret;
if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
return -EINVAL;
sfp->i2c = i2c;
sfp->read = sfp_i2c_read;
sfp->write = sfp_i2c_write;
i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
if (IS_ERR(i2c_mii))
return PTR_ERR(i2c_mii);
i2c_mii->name = "SFP I2C Bus";
i2c_mii->phy_mask = ~0;
ret = mdiobus_register(i2c_mii);
if (ret < 0) {
mdiobus_free(i2c_mii);
return ret;
}
sfp->i2c_mii = i2c_mii;
return 0;
}
/* Interface */
static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
{
return sfp->read(sfp, a2, addr, buf, len);
}
static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
{
return sfp->write(sfp, a2, addr, buf, len);
}
static unsigned int sfp_soft_get_state(struct sfp *sfp)
{
unsigned int state = 0;
u8 status;
int ret;
ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
if (ret == sizeof(status)) {
if (status & SFP_STATUS_RX_LOS)
state |= SFP_F_LOS;
if (status & SFP_STATUS_TX_FAULT)
state |= SFP_F_TX_FAULT;
} else {
dev_err_ratelimited(sfp->dev,
"failed to read SFP soft status: %d\n",
ret);
/* Preserve the current state */
state = sfp->state;
}
return state & sfp->state_soft_mask;
}
static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
{
u8 status;
if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
sizeof(status)) {
if (state & SFP_F_TX_DISABLE)
status |= SFP_STATUS_TX_DISABLE_FORCE;
else
status &= ~SFP_STATUS_TX_DISABLE_FORCE;
sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
}
}
static void sfp_soft_start_poll(struct sfp *sfp)
{
const struct sfp_eeprom_id *id = &sfp->id;
sfp->state_soft_mask = 0;
if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
!sfp->gpio[GPIO_TX_DISABLE])
sfp->state_soft_mask |= SFP_F_TX_DISABLE;
if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
!sfp->gpio[GPIO_TX_FAULT])
sfp->state_soft_mask |= SFP_F_TX_FAULT;
if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
!sfp->gpio[GPIO_LOS])
sfp->state_soft_mask |= SFP_F_LOS;
if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
!sfp->need_poll)
mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
}
static void sfp_soft_stop_poll(struct sfp *sfp)
{
sfp->state_soft_mask = 0;
}
static unsigned int sfp_get_state(struct sfp *sfp)
{
unsigned int state = sfp->get_state(sfp);
if (state & SFP_F_PRESENT &&
sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
state |= sfp_soft_get_state(sfp);
return state;
}
static void sfp_set_state(struct sfp *sfp, unsigned int state)
{
sfp->set_state(sfp, state);
if (state & SFP_F_PRESENT &&
sfp->state_soft_mask & SFP_F_TX_DISABLE)
sfp_soft_set_state(sfp, state);
}
static unsigned int sfp_check(void *buf, size_t len)
{
u8 *p, check;
for (p = buf, check = 0; len; p++, len--)
check += *p;
return check;
}
/* hwmon */
#if IS_ENABLED(CONFIG_HWMON)
static umode_t sfp_hwmon_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct sfp *sfp = data;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_min_alarm:
case hwmon_temp_max_alarm:
case hwmon_temp_lcrit_alarm:
case hwmon_temp_crit_alarm:
case hwmon_temp_min:
case hwmon_temp_max:
case hwmon_temp_lcrit:
case hwmon_temp_crit:
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
return 0;
fallthrough;
case hwmon_temp_input:
case hwmon_temp_label:
return 0444;
default:
return 0;
}
case hwmon_in:
switch (attr) {
case hwmon_in_min_alarm:
case hwmon_in_max_alarm:
case hwmon_in_lcrit_alarm:
case hwmon_in_crit_alarm:
case hwmon_in_min:
case hwmon_in_max:
case hwmon_in_lcrit:
case hwmon_in_crit:
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
return 0;
fallthrough;
case hwmon_in_input:
case hwmon_in_label:
return 0444;
default:
return 0;
}
case hwmon_curr:
switch (attr) {
case hwmon_curr_min_alarm:
case hwmon_curr_max_alarm:
case hwmon_curr_lcrit_alarm:
case hwmon_curr_crit_alarm:
case hwmon_curr_min:
case hwmon_curr_max:
case hwmon_curr_lcrit:
case hwmon_curr_crit:
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
return 0;
fallthrough;
case hwmon_curr_input:
case hwmon_curr_label:
return 0444;
default:
return 0;
}
case hwmon_power:
/* External calibration of receive power requires
* floating point arithmetic. Doing that in the kernel
* is not easy, so just skip it. If the module does
* not require external calibration, we can however
* show receiver power, since FP is then not needed.
*/
if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
channel == 1)
return 0;
switch (attr) {
case hwmon_power_min_alarm:
case hwmon_power_max_alarm:
case hwmon_power_lcrit_alarm:
case hwmon_power_crit_alarm:
case hwmon_power_min:
case hwmon_power_max:
case hwmon_power_lcrit:
case hwmon_power_crit:
if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
return 0;
fallthrough;
case hwmon_power_input:
case hwmon_power_label:
return 0444;
default:
return 0;
}
default:
return 0;
}
}
static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
{
__be16 val;
int err;
err = sfp_read(sfp, true, reg, &val, sizeof(val));
if (err < 0)
return err;
*value = be16_to_cpu(val);
return 0;
}
static void sfp_hwmon_to_rx_power(long *value)
{
*value = DIV_ROUND_CLOSEST(*value, 10);
}
static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
long *value)
{
if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
}
static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
{
sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
be16_to_cpu(sfp->diag.cal_t_offset), value);
if (*value >= 0x8000)
*value -= 0x10000;
*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
}
static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
{
sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
be16_to_cpu(sfp->diag.cal_v_offset), value);
*value = DIV_ROUND_CLOSEST(*value, 10);
}
static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
{
sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
be16_to_cpu(sfp->diag.cal_txi_offset), value);
*value = DIV_ROUND_CLOSEST(*value, 500);
}
static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
{
sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
*value = DIV_ROUND_CLOSEST(*value, 10);
}
static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
{
int err;
err = sfp_hwmon_read_sensor(sfp, reg, value);
if (err < 0)
return err;
sfp_hwmon_calibrate_temp(sfp, value);
return 0;
}
static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
{
int err;
err = sfp_hwmon_read_sensor(sfp, reg, value);
if (err < 0)
return err;
sfp_hwmon_calibrate_vcc(sfp, value);
return 0;
}
static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
{
int err;
err = sfp_hwmon_read_sensor(sfp, reg, value);
if (err < 0)
return err;
sfp_hwmon_calibrate_bias(sfp, value);
return 0;
}
static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
{
int err;
err = sfp_hwmon_read_sensor(sfp, reg, value);
if (err < 0)
return err;
sfp_hwmon_calibrate_tx_power(sfp, value);
return 0;
}
static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
{
int err;
err = sfp_hwmon_read_sensor(sfp, reg, value);
if (err < 0)
return err;
sfp_hwmon_to_rx_power(value);
return 0;
}
static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
{
u8 status;
int err;
switch (attr) {
case hwmon_temp_input:
return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
case hwmon_temp_lcrit:
*value = be16_to_cpu(sfp->diag.temp_low_alarm);
sfp_hwmon_calibrate_temp(sfp, value);
return 0;
case hwmon_temp_min:
*value = be16_to_cpu(sfp->diag.temp_low_warn);
sfp_hwmon_calibrate_temp(sfp, value);
return 0;
case hwmon_temp_max:
*value = be16_to_cpu(sfp->diag.temp_high_warn);
sfp_hwmon_calibrate_temp(sfp, value);
return 0;
case hwmon_temp_crit:
*value = be16_to_cpu(sfp->diag.temp_high_alarm);
sfp_hwmon_calibrate_temp(sfp, value);
return 0;
case hwmon_temp_lcrit_alarm:
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM0_TEMP_LOW);
return 0;
case hwmon_temp_min_alarm:
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN0_TEMP_LOW);
return 0;
case hwmon_temp_max_alarm:
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN0_TEMP_HIGH);
return 0;
case hwmon_temp_crit_alarm:
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM0_TEMP_HIGH);
return 0;
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
{
u8 status;
int err;
switch (attr) {
case hwmon_in_input:
return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
case hwmon_in_lcrit:
*value = be16_to_cpu(sfp->diag.volt_low_alarm);
sfp_hwmon_calibrate_vcc(sfp, value);
return 0;
case hwmon_in_min:
*value = be16_to_cpu(sfp->diag.volt_low_warn);
sfp_hwmon_calibrate_vcc(sfp, value);
return 0;
case hwmon_in_max:
*value = be16_to_cpu(sfp->diag.volt_high_warn);
sfp_hwmon_calibrate_vcc(sfp, value);
return 0;
case hwmon_in_crit:
*value = be16_to_cpu(sfp->diag.volt_high_alarm);
sfp_hwmon_calibrate_vcc(sfp, value);
return 0;
case hwmon_in_lcrit_alarm:
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM0_VCC_LOW);
return 0;
case hwmon_in_min_alarm:
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN0_VCC_LOW);
return 0;
case hwmon_in_max_alarm:
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN0_VCC_HIGH);
return 0;
case hwmon_in_crit_alarm:
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM0_VCC_HIGH);
return 0;
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
{
u8 status;
int err;
switch (attr) {
case hwmon_curr_input:
return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
case hwmon_curr_lcrit:
*value = be16_to_cpu(sfp->diag.bias_low_alarm);
sfp_hwmon_calibrate_bias(sfp, value);
return 0;
case hwmon_curr_min:
*value = be16_to_cpu(sfp->diag.bias_low_warn);
sfp_hwmon_calibrate_bias(sfp, value);
return 0;
case hwmon_curr_max:
*value = be16_to_cpu(sfp->diag.bias_high_warn);
sfp_hwmon_calibrate_bias(sfp, value);
return 0;
case hwmon_curr_crit:
*value = be16_to_cpu(sfp->diag.bias_high_alarm);
sfp_hwmon_calibrate_bias(sfp, value);
return 0;
case hwmon_curr_lcrit_alarm:
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
return 0;
case hwmon_curr_min_alarm:
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
return 0;
case hwmon_curr_max_alarm:
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
return 0;
case hwmon_curr_crit_alarm:
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
return 0;
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
{
u8 status;
int err;
switch (attr) {
case hwmon_power_input:
return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
case hwmon_power_lcrit:
*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
sfp_hwmon_calibrate_tx_power(sfp, value);
return 0;
case hwmon_power_min:
*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
sfp_hwmon_calibrate_tx_power(sfp, value);
return 0;
case hwmon_power_max:
*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
sfp_hwmon_calibrate_tx_power(sfp, value);
return 0;
case hwmon_power_crit:
*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
sfp_hwmon_calibrate_tx_power(sfp, value);
return 0;
case hwmon_power_lcrit_alarm:
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM0_TXPWR_LOW);
return 0;
case hwmon_power_min_alarm:
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN0_TXPWR_LOW);
return 0;
case hwmon_power_max_alarm:
err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN0_TXPWR_HIGH);
return 0;
case hwmon_power_crit_alarm:
err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
return 0;
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
{
u8 status;
int err;
switch (attr) {
case hwmon_power_input:
return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
case hwmon_power_lcrit:
*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
sfp_hwmon_to_rx_power(value);
return 0;
case hwmon_power_min:
*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
sfp_hwmon_to_rx_power(value);
return 0;
case hwmon_power_max:
*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
sfp_hwmon_to_rx_power(value);
return 0;
case hwmon_power_crit:
*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
sfp_hwmon_to_rx_power(value);
return 0;
case hwmon_power_lcrit_alarm:
err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM1_RXPWR_LOW);
return 0;
case hwmon_power_min_alarm:
err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN1_RXPWR_LOW);
return 0;
case hwmon_power_max_alarm:
err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_WARN1_RXPWR_HIGH);
return 0;
case hwmon_power_crit_alarm:
err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
if (err < 0)
return err;
*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
return 0;
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *value)
{
struct sfp *sfp = dev_get_drvdata(dev);
switch (type) {
case hwmon_temp:
return sfp_hwmon_temp(sfp, attr, value);
case hwmon_in:
return sfp_hwmon_vcc(sfp, attr, value);
case hwmon_curr:
return sfp_hwmon_bias(sfp, attr, value);
case hwmon_power:
switch (channel) {
case 0:
return sfp_hwmon_tx_power(sfp, attr, value);
case 1:
return sfp_hwmon_rx_power(sfp, attr, value);
default:
return -EOPNOTSUPP;
}
default:
return -EOPNOTSUPP;
}
}
static const char *const sfp_hwmon_power_labels[] = {
"TX_power",
"RX_power",
};
static int sfp_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_curr:
switch (attr) {
case hwmon_curr_label:
*str = "bias";
return 0;
default:
return -EOPNOTSUPP;
}
break;
case hwmon_temp:
switch (attr) {
case hwmon_temp_label:
*str = "temperature";
return 0;
default:
return -EOPNOTSUPP;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_label:
*str = "VCC";
return 0;
default:
return -EOPNOTSUPP;
}
break;
case hwmon_power:
switch (attr) {
case hwmon_power_label:
*str = sfp_hwmon_power_labels[channel];
return 0;
default:
return -EOPNOTSUPP;
}
break;
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static const struct hwmon_ops sfp_hwmon_ops = {
.is_visible = sfp_hwmon_is_visible,
.read = sfp_hwmon_read,
.read_string = sfp_hwmon_read_string,
};
static u32 sfp_hwmon_chip_config[] = {
HWMON_C_REGISTER_TZ,
0,
};
static const struct hwmon_channel_info sfp_hwmon_chip = {
.type = hwmon_chip,
.config = sfp_hwmon_chip_config,
};
static u32 sfp_hwmon_temp_config[] = {
HWMON_T_INPUT |
HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
HWMON_T_CRIT | HWMON_T_LCRIT |
HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
HWMON_T_LABEL,
0,
};
static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
.type = hwmon_temp,
.config = sfp_hwmon_temp_config,
};
static u32 sfp_hwmon_vcc_config[] = {
HWMON_I_INPUT |
HWMON_I_MAX | HWMON_I_MIN |
HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
HWMON_I_CRIT | HWMON_I_LCRIT |
HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
HWMON_I_LABEL,
0,
};
static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
.type = hwmon_in,
.config = sfp_hwmon_vcc_config,
};
static u32 sfp_hwmon_bias_config[] = {
HWMON_C_INPUT |
HWMON_C_MAX | HWMON_C_MIN |
HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
HWMON_C_CRIT | HWMON_C_LCRIT |
HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
HWMON_C_LABEL,
0,
};
static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
.type = hwmon_curr,
.config = sfp_hwmon_bias_config,
};
static u32 sfp_hwmon_power_config[] = {
/* Transmit power */
HWMON_P_INPUT |
HWMON_P_MAX | HWMON_P_MIN |
HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
HWMON_P_CRIT | HWMON_P_LCRIT |
HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
HWMON_P_LABEL,
/* Receive power */
HWMON_P_INPUT |
HWMON_P_MAX | HWMON_P_MIN |
HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
HWMON_P_CRIT | HWMON_P_LCRIT |
HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
HWMON_P_LABEL,
0,
};
static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
.type = hwmon_power,
.config = sfp_hwmon_power_config,
};
static const struct hwmon_channel_info *sfp_hwmon_info[] = {
&sfp_hwmon_chip,
&sfp_hwmon_vcc_channel_info,
&sfp_hwmon_temp_channel_info,
&sfp_hwmon_bias_channel_info,
&sfp_hwmon_power_channel_info,
NULL,
};
static const struct hwmon_chip_info sfp_hwmon_chip_info = {
.ops = &sfp_hwmon_ops,
.info = sfp_hwmon_info,
};
static void sfp_hwmon_probe(struct work_struct *work)
{
struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
int err, i;
/* hwmon interface needs to access 16bit registers in atomic way to
* guarantee coherency of the diagnostic monitoring data. If it is not
* possible to guarantee coherency because EEPROM is broken in such way
* that does not support atomic 16bit read operation then we have to
* skip registration of hwmon device.
*/
if (sfp->i2c_block_size < 2) {
dev_info(sfp->dev,
"skipping hwmon device registration due to broken EEPROM\n");
dev_info(sfp->dev,
"diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
return;
}
err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
if (err < 0) {
if (sfp->hwmon_tries--) {
mod_delayed_work(system_wq, &sfp->hwmon_probe,
T_PROBE_RETRY_SLOW);
} else {
dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
}
return;
}
sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
if (!sfp->hwmon_name) {
dev_err(sfp->dev, "out of memory for hwmon name\n");
return;
}
for (i = 0; sfp->hwmon_name[i]; i++)
if (hwmon_is_bad_char(sfp->hwmon_name[i]))
sfp->hwmon_name[i] = '_';
sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
sfp->hwmon_name, sfp,
&sfp_hwmon_chip_info,
NULL);
if (IS_ERR(sfp->hwmon_dev))
dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
PTR_ERR(sfp->hwmon_dev));
}
static int sfp_hwmon_insert(struct sfp *sfp)
{
if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
return 0;
if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
return 0;
if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
/* This driver in general does not support address
* change.
*/
return 0;
mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
return 0;
}
static void sfp_hwmon_remove(struct sfp *sfp)
{
cancel_delayed_work_sync(&sfp->hwmon_probe);
if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
hwmon_device_unregister(sfp->hwmon_dev);
sfp->hwmon_dev = NULL;
kfree(sfp->hwmon_name);
}
}
static int sfp_hwmon_init(struct sfp *sfp)
{
INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
return 0;
}
static void sfp_hwmon_exit(struct sfp *sfp)
{
cancel_delayed_work_sync(&sfp->hwmon_probe);
}
#else
static int sfp_hwmon_insert(struct sfp *sfp)
{
return 0;
}
static void sfp_hwmon_remove(struct sfp *sfp)
{
}
static int sfp_hwmon_init(struct sfp *sfp)
{
return 0;
}
static void sfp_hwmon_exit(struct sfp *sfp)
{
}
#endif
/* Helpers */
static void sfp_module_tx_disable(struct sfp *sfp)
{
dev_dbg(sfp->dev, "tx disable %u -> %u\n",
sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
sfp->state |= SFP_F_TX_DISABLE;
sfp_set_state(sfp, sfp->state);
}
static void sfp_module_tx_enable(struct sfp *sfp)
{
dev_dbg(sfp->dev, "tx disable %u -> %u\n",
sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
sfp->state &= ~SFP_F_TX_DISABLE;
sfp_set_state(sfp, sfp->state);
}
#if IS_ENABLED(CONFIG_DEBUG_FS)
static int sfp_debug_state_show(struct seq_file *s, void *data)
{
struct sfp *sfp = s->private;
seq_printf(s, "Module state: %s\n",
mod_state_to_str(sfp->sm_mod_state));
seq_printf(s, "Module probe attempts: %d %d\n",
R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
seq_printf(s, "Device state: %s\n",
dev_state_to_str(sfp->sm_dev_state));
seq_printf(s, "Main state: %s\n",
sm_state_to_str(sfp->sm_state));
seq_printf(s, "Fault recovery remaining retries: %d\n",
sfp->sm_fault_retries);
seq_printf(s, "PHY probe remaining retries: %d\n",
sfp->sm_phy_retries);
seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
return 0;
}
DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
static void sfp_debugfs_init(struct sfp *sfp)
{
sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
&sfp_debug_state_fops);
}
static void sfp_debugfs_exit(struct sfp *sfp)
{
debugfs_remove_recursive(sfp->debugfs_dir);
}
#else
static void sfp_debugfs_init(struct sfp *sfp)
{
}
static void sfp_debugfs_exit(struct sfp *sfp)
{
}
#endif
static void sfp_module_tx_fault_reset(struct sfp *sfp)
{
unsigned int state = sfp->state;
if (state & SFP_F_TX_DISABLE)
return;
sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
udelay(T_RESET_US);
sfp_set_state(sfp, state);
}
/* SFP state machine */
static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
{
if (timeout)
mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
timeout);
else
cancel_delayed_work(&sfp->timeout);
}
static void sfp_sm_next(struct sfp *sfp, unsigned int state,
unsigned int timeout)
{
sfp->sm_state = state;
sfp_sm_set_timer(sfp, timeout);
}
static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
unsigned int timeout)
{
sfp->sm_mod_state = state;
sfp_sm_set_timer(sfp, timeout);
}
static void sfp_sm_phy_detach(struct sfp *sfp)
{
sfp_remove_phy(sfp->sfp_bus);
phy_device_remove(sfp->mod_phy);
phy_device_free(sfp->mod_phy);
sfp->mod_phy = NULL;
}
static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
{
struct phy_device *phy;
int err;
phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
if (phy == ERR_PTR(-ENODEV))
return PTR_ERR(phy);
if (IS_ERR(phy)) {
dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
return PTR_ERR(phy);
}
err = phy_device_register(phy);
if (err) {
phy_device_free(phy);
dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
return err;
}
err = sfp_add_phy(sfp->sfp_bus, phy);
if (err) {
phy_device_remove(phy);
phy_device_free(phy);
dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
return err;
}
sfp->mod_phy = phy;
return 0;
}
static void sfp_sm_link_up(struct sfp *sfp)
{
sfp_link_up(sfp->sfp_bus);
sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
}
static void sfp_sm_link_down(struct sfp *sfp)
{
sfp_link_down(sfp->sfp_bus);
}
static void sfp_sm_link_check_los(struct sfp *sfp)
{
const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
bool los = false;
/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
* are set, we assume that no LOS signal is available. If both are
* set, we assume LOS is not implemented (and is meaningless.)
*/
if (los_options == los_inverted)
los = !(sfp->state & SFP_F_LOS);
else if (los_options == los_normal)
los = !!(sfp->state & SFP_F_LOS);
if (los)
sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
else
sfp_sm_link_up(sfp);
}
static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
{
const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
(los_options == los_normal && event == SFP_E_LOS_HIGH);
}
static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
{
const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
(los_options == los_normal && event == SFP_E_LOS_LOW);
}
static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
{
if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
dev_err(sfp->dev,
"module persistently indicates fault, disabling\n");
sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
} else {
if (warn)
dev_err(sfp->dev, "module transmit fault indicated\n");
sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
}
}
/* Probe a SFP for a PHY device if the module supports copper - the PHY
* normally sits at I2C bus address 0x56, and may either be a clause 22
* or clause 45 PHY.
*
* Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
* negotiation enabled, but some may be in 1000base-X - which is for the
* PHY driver to determine.
*
* Clause 45 copper SFP+ modules (10G) appear to switch their interface
* mode according to the negotiated line speed.
*/
static int sfp_sm_probe_for_phy(struct sfp *sfp)
{
int err = 0;
switch (sfp->id.base.extended_cc) {
case SFF8024_ECC_10GBASE_T_SFI:
case SFF8024_ECC_10GBASE_T_SR:
case SFF8024_ECC_5GBASE_T:
case SFF8024_ECC_2_5GBASE_T:
err = sfp_sm_probe_phy(sfp, true);
break;
default:
if (sfp->id.base.e1000_base_t)
err = sfp_sm_probe_phy(sfp, false);
break;
}
return err;
}
static int sfp_module_parse_power(struct sfp *sfp)
{
u32 power_mW = 1000;
if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
power_mW = 1500;
if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
power_mW = 2000;
if (power_mW > sfp->max_power_mW) {
/* Module power specification exceeds the allowed maximum. */
if (sfp->id.ext.sff8472_compliance ==
SFP_SFF8472_COMPLIANCE_NONE &&
!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
/* The module appears not to implement bus address
* 0xa2, so assume that the module powers up in the
* indicated mode.
*/
dev_err(sfp->dev,
"Host does not support %u.%uW modules\n",
power_mW / 1000, (power_mW / 100) % 10);
return -EINVAL;
} else {
dev_warn(sfp->dev,
"Host does not support %u.%uW modules, module left in power mode 1\n",
power_mW / 1000, (power_mW / 100) % 10);
return 0;
}
}
/* If the module requires a higher power mode, but also requires
* an address change sequence, warn the user that the module may
* not be functional.
*/
if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
dev_warn(sfp->dev,
"Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
power_mW / 1000, (power_mW / 100) % 10);
return 0;
}
sfp->module_power_mW = power_mW;
return 0;
}
static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
{
u8 val;
int err;
err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
if (err != sizeof(val)) {
dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
return -EAGAIN;
}
/* DM7052 reports as a high power module, responds to reads (with
* all bytes 0xff) at 0x51 but does not accept writes. In any case,
* if the bit is already set, we're already in high power mode.
*/
if (!!(val & BIT(0)) == enable)
return 0;
if (enable)
val |= BIT(0);
else
val &= ~BIT(0);
err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
if (err != sizeof(val)) {
dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
return -EAGAIN;
}
if (enable)
dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
sfp->module_power_mW / 1000,
(sfp->module_power_mW / 100) % 10);
return 0;
}
/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
* V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
* not support multibyte reads from the EEPROM. Each multi-byte read
* operation returns just one byte of EEPROM followed by zeros. There is
* no way to identify which modules are using Realtek RTL8672 and RTL9601C
* chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
* name and vendor id into EEPROM, so there is even no way to detect if
* module is V-SOL V2801F. Therefore check for those zeros in the read
* data and then based on check switch to reading EEPROM to one byte
* at a time.
*/
static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
{
size_t i, block_size = sfp->i2c_block_size;
/* Already using byte IO */
if (block_size == 1)
return false;
for (i = 1; i < len; i += block_size) {
if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
return false;
}
return true;
}
static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
{
u8 check;
int err;
if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
id->base.connector != SFF8024_CONNECTOR_LC) {
dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
id->base.phys_id = SFF8024_ID_SFF_8472;
id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
id->base.connector = SFF8024_CONNECTOR_LC;
err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
if (err != 3) {
dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
return err;
}
/* Cotsworks modules have been found to require a delay between write operations. */
mdelay(50);
/* Update base structure checksum */
check = sfp_check(&id->base, sizeof(id->base) - 1);
err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
if (err != 1) {
dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
return err;
}
}
return 0;
}
static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
{
/* SFP module inserted - read I2C data */
struct sfp_eeprom_id id;
bool cotsworks_sfbg;
bool cotsworks;
u8 check;
int ret;
/* Some SFP modules and also some Linux I2C drivers do not like reads
* longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
* a time.
*/
sfp->i2c_block_size = 16;
ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
if (ret < 0) {
if (report)
dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
return -EAGAIN;
}
if (ret != sizeof(id.base)) {
dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
return -EAGAIN;
}
/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
* address 0x51 is just one byte at a time. Also SFF-8472 requires
* that EEPROM supports atomic 16bit read operation for diagnostic
* fields, so do not switch to one byte reading at a time unless it
* is really required and we have no other option.
*/
if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
dev_info(sfp->dev,
"Detected broken RTL8672/RTL9601C emulated EEPROM\n");
dev_info(sfp->dev,
"Switching to reading EEPROM to one byte at a time\n");
sfp->i2c_block_size = 1;
ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
if (ret < 0) {
if (report)
dev_err(sfp->dev, "failed to read EEPROM: %d\n",
ret);
return -EAGAIN;
}
if (ret != sizeof(id.base)) {
dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
return -EAGAIN;
}
}
/* Cotsworks do not seem to update the checksums when they
* do the final programming with the final module part number,
* serial number and date code.
*/
cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
/* Cotsworks SFF module EEPROM do not always have valid phys_id,
* phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
* Cotsworks PN matches and bytes are not correct.
*/
if (cotsworks && cotsworks_sfbg) {
ret = sfp_cotsworks_fixup_check(sfp, &id);
if (ret < 0)
return ret;
}
/* Validate the checksum over the base structure */
check = sfp_check(&id.base, sizeof(id.base) - 1);
if (check != id.base.cc_base) {
if (cotsworks) {
dev_warn(sfp->dev,
"EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
check, id.base.cc_base);
} else {
dev_err(sfp->dev,
"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
check, id.base.cc_base);
print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
16, 1, &id, sizeof(id), true);
return -EINVAL;
}
}
ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
if (ret < 0) {
if (report)
dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
return -EAGAIN;
}
if (ret != sizeof(id.ext)) {
dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
return -EAGAIN;
}
check = sfp_check(&id.ext, sizeof(id.ext) - 1);
if (check != id.ext.cc_ext) {
if (cotsworks) {
dev_warn(sfp->dev,
"EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
check, id.ext.cc_ext);
} else {
dev_err(sfp->dev,
"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
check, id.ext.cc_ext);
print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
16, 1, &id, sizeof(id), true);
memset(&id.ext, 0, sizeof(id.ext));
}
}
sfp->id = id;
dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
(int)sizeof(id.base.vendor_name), id.base.vendor_name,
(int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
(int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
(int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
(int)sizeof(id.ext.datecode), id.ext.datecode);
/* Check whether we support this module */
if (!sfp->type->module_supported(&id)) {
dev_err(sfp->dev,
"module is not supported - phys id 0x%02x 0x%02x\n",
sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
return -EINVAL;
}
/* If the module requires address swap mode, warn about it */
if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
dev_warn(sfp->dev,
"module address swap to access page 0xA2 is not supported.\n");
/* Parse the module power requirement */
ret = sfp_module_parse_power(sfp);
if (ret < 0)
return ret;
if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
!memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
sfp->module_t_start_up = T_START_UP_BAD_GPON;
else
sfp->module_t_start_up = T_START_UP;
return 0;
}
static void sfp_sm_mod_remove(struct sfp *sfp)
{
if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
sfp_module_remove(sfp->sfp_bus);
sfp_hwmon_remove(sfp);
memset(&sfp->id, 0, sizeof(sfp->id));
sfp->module_power_mW = 0;
dev_info(sfp->dev, "module removed\n");
}
/* This state machine tracks the upstream's state */
static void sfp_sm_device(struct sfp *sfp, unsigned int event)
{
switch (sfp->sm_dev_state) {
default:
if (event == SFP_E_DEV_ATTACH)
sfp->sm_dev_state = SFP_DEV_DOWN;
break;
case SFP_DEV_DOWN:
if (event == SFP_E_DEV_DETACH)
sfp->sm_dev_state = SFP_DEV_DETACHED;
else if (event == SFP_E_DEV_UP)
sfp->sm_dev_state = SFP_DEV_UP;
break;
case SFP_DEV_UP:
if (event == SFP_E_DEV_DETACH)
sfp->sm_dev_state = SFP_DEV_DETACHED;
else if (event == SFP_E_DEV_DOWN)
sfp->sm_dev_state = SFP_DEV_DOWN;
break;
}
}
/* This state machine tracks the insert/remove state of the module, probes
* the on-board EEPROM, and sets up the power level.
*/
static void sfp_sm_module(struct sfp *sfp, unsigned int event)
{
int err;
/* Handle remove event globally, it resets this state machine */
if (event == SFP_E_REMOVE) {
if (sfp->sm_mod_state > SFP_MOD_PROBE)
sfp_sm_mod_remove(sfp);
sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
return;
}
/* Handle device detach globally */
if (sfp->sm_dev_state < SFP_DEV_DOWN &&
sfp->sm_mod_state > SFP_MOD_WAITDEV) {
if (sfp->module_power_mW > 1000 &&
sfp->sm_mod_state > SFP_MOD_HPOWER)
sfp_sm_mod_hpower(sfp, false);
sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
return;
}
switch (sfp->sm_mod_state) {
default:
if (event == SFP_E_INSERT) {
sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
}
break;
case SFP_MOD_PROBE:
/* Wait for T_PROBE_INIT to time out */
if (event != SFP_E_TIMEOUT)
break;
err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
if (err == -EAGAIN) {
if (sfp->sm_mod_tries_init &&
--sfp->sm_mod_tries_init) {
sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
break;
} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
dev_warn(sfp->dev,
"please wait, module slow to respond\n");
sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
break;
}
}
if (err < 0) {
sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
break;
}
err = sfp_hwmon_insert(sfp);
if (err)
dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
fallthrough;
case SFP_MOD_WAITDEV:
/* Ensure that the device is attached before proceeding */
if (sfp->sm_dev_state < SFP_DEV_DOWN)
break;
/* Report the module insertion to the upstream device */
err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
if (err < 0) {
sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
break;
}
/* If this is a power level 1 module, we are done */
if (sfp->module_power_mW <= 1000)
goto insert;
sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
fallthrough;
case SFP_MOD_HPOWER:
/* Enable high power mode */
err = sfp_sm_mod_hpower(sfp, true);
if (err < 0) {
if (err != -EAGAIN) {
sfp_module_remove(sfp->sfp_bus);
sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
} else {
sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
}
break;
}
sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
break;
case SFP_MOD_WAITPWR:
/* Wait for T_HPOWER_LEVEL to time out */
if (event != SFP_E_TIMEOUT)
break;
insert:
sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
break;
case SFP_MOD_PRESENT:
case SFP_MOD_ERROR:
break;
}
}
static void sfp_sm_main(struct sfp *sfp, unsigned int event)
{
unsigned long timeout;
int ret;
/* Some events are global */
if (sfp->sm_state != SFP_S_DOWN &&
(sfp->sm_mod_state != SFP_MOD_PRESENT ||
sfp->sm_dev_state != SFP_DEV_UP)) {
if (sfp->sm_state == SFP_S_LINK_UP &&
sfp->sm_dev_state == SFP_DEV_UP)
sfp_sm_link_down(sfp);
if (sfp->sm_state > SFP_S_INIT)
sfp_module_stop(sfp->sfp_bus);
if (sfp->mod_phy)
sfp_sm_phy_detach(sfp);
sfp_module_tx_disable(sfp);
sfp_soft_stop_poll(sfp);
sfp_sm_next(sfp, SFP_S_DOWN, 0);
return;
}
/* The main state machine */
switch (sfp->sm_state) {
case SFP_S_DOWN:
if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
sfp->sm_dev_state != SFP_DEV_UP)
break;
if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
sfp_soft_start_poll(sfp);
sfp_module_tx_enable(sfp);
/* Initialise the fault clearance retries */
sfp->sm_fault_retries = N_FAULT_INIT;
/* We need to check the TX_FAULT state, which is not defined
* while TX_DISABLE is asserted. The earliest we want to do
* anything (such as probe for a PHY) is 50ms.
*/
sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
break;
case SFP_S_WAIT:
if (event != SFP_E_TIMEOUT)
break;
if (sfp->state & SFP_F_TX_FAULT) {
/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
* from the TX_DISABLE deassertion for the module to
* initialise, which is indicated by TX_FAULT
* deasserting.
*/
timeout = sfp->module_t_start_up;
if (timeout > T_WAIT)
timeout -= T_WAIT;
else
timeout = 1;
sfp_sm_next(sfp, SFP_S_INIT, timeout);
} else {
/* TX_FAULT is not asserted, assume the module has
* finished initialising.
*/
goto init_done;
}
break;
case SFP_S_INIT:
if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
/* TX_FAULT is still asserted after t_init
* or t_start_up, so assume there is a fault.
*/
sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
sfp->sm_fault_retries == N_FAULT_INIT);
} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
init_done:
sfp->sm_phy_retries = R_PHY_RETRY;
goto phy_probe;
}
break;
case SFP_S_INIT_PHY:
if (event != SFP_E_TIMEOUT)
break;
phy_probe:
/* TX_FAULT deasserted or we timed out with TX_FAULT
* clear. Probe for the PHY and check the LOS state.
*/
ret = sfp_sm_probe_for_phy(sfp);
if (ret == -ENODEV) {
if (--sfp->sm_phy_retries) {
sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
break;
} else {
dev_info(sfp->dev, "no PHY detected\n");
}
} else if (ret) {
sfp_sm_next(sfp, SFP_S_FAIL, 0);
break;
}
if (sfp_module_start(sfp->sfp_bus)) {
sfp_sm_next(sfp, SFP_S_FAIL, 0);
break;
}
sfp_sm_link_check_los(sfp);
/* Reset the fault retry count */
sfp->sm_fault_retries = N_FAULT;
break;
case SFP_S_INIT_TX_FAULT:
if (event == SFP_E_TIMEOUT) {
sfp_module_tx_fault_reset(sfp);
sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
}
break;
case SFP_S_WAIT_LOS:
if (event == SFP_E_TX_FAULT)
sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
else if (sfp_los_event_inactive(sfp, event))
sfp_sm_link_up(sfp);
break;
case SFP_S_LINK_UP:
if (event == SFP_E_TX_FAULT) {
sfp_sm_link_down(sfp);
sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
} else if (sfp_los_event_active(sfp, event)) {
sfp_sm_link_down(sfp);
sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
}
break;
case SFP_S_TX_FAULT:
if (event == SFP_E_TIMEOUT) {
sfp_module_tx_fault_reset(sfp);
sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
}
break;
case SFP_S_REINIT:
if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
dev_info(sfp->dev, "module transmit fault recovered\n");
sfp_sm_link_check_los(sfp);
}
break;
case SFP_S_TX_DISABLE:
break;
}
}
static void sfp_sm_event(struct sfp *sfp, unsigned int event)
{
mutex_lock(&sfp->sm_mutex);
dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
mod_state_to_str(sfp->sm_mod_state),
dev_state_to_str(sfp->sm_dev_state),
sm_state_to_str(sfp->sm_state),
event_to_str(event));
sfp_sm_device(sfp, event);
sfp_sm_module(sfp, event);
sfp_sm_main(sfp, event);
dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
mod_state_to_str(sfp->sm_mod_state),
dev_state_to_str(sfp->sm_dev_state),
sm_state_to_str(sfp->sm_state));
mutex_unlock(&sfp->sm_mutex);
}
static void sfp_attach(struct sfp *sfp)
{
sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
}
static void sfp_detach(struct sfp *sfp)
{
sfp_sm_event(sfp, SFP_E_DEV_DETACH);
}
static void sfp_start(struct sfp *sfp)
{
sfp_sm_event(sfp, SFP_E_DEV_UP);
}
static void sfp_stop(struct sfp *sfp)
{
sfp_sm_event(sfp, SFP_E_DEV_DOWN);
}
static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
{
/* locking... and check module is present */
if (sfp->id.ext.sff8472_compliance &&
!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
modinfo->type = ETH_MODULE_SFF_8472;
modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
} else {
modinfo->type = ETH_MODULE_SFF_8079;
modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
}
return 0;
}
static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
u8 *data)
{
unsigned int first, last, len;
int ret;
if (ee->len == 0)
return -EINVAL;
first = ee->offset;
last = ee->offset + ee->len;
if (first < ETH_MODULE_SFF_8079_LEN) {
len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
len -= first;
ret = sfp_read(sfp, false, first, data, len);
if (ret < 0)
return ret;
first += len;
data += len;
}
if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
len -= first;
first -= ETH_MODULE_SFF_8079_LEN;
ret = sfp_read(sfp, true, first, data, len);
if (ret < 0)
return ret;
}
return 0;
}
static int sfp_module_eeprom_by_page(struct sfp *sfp,
const struct ethtool_module_eeprom *page,
struct netlink_ext_ack *extack)
{
if (page->bank) {
NL_SET_ERR_MSG(extack, "Banks not supported");
return -EOPNOTSUPP;
}
if (page->page) {
NL_SET_ERR_MSG(extack, "Only page 0 supported");
return -EOPNOTSUPP;
}
if (page->i2c_address != 0x50 &&
page->i2c_address != 0x51) {
NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
return -EOPNOTSUPP;
}
return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
page->data, page->length);
};
static const struct sfp_socket_ops sfp_module_ops = {
.attach = sfp_attach,
.detach = sfp_detach,
.start = sfp_start,
.stop = sfp_stop,
.module_info = sfp_module_info,
.module_eeprom = sfp_module_eeprom,
.module_eeprom_by_page = sfp_module_eeprom_by_page,
};
static void sfp_timeout(struct work_struct *work)
{
struct sfp *sfp = container_of(work, struct sfp, timeout.work);
rtnl_lock();
sfp_sm_event(sfp, SFP_E_TIMEOUT);
rtnl_unlock();
}
static void sfp_check_state(struct sfp *sfp)
{
unsigned int state, i, changed;
mutex_lock(&sfp->st_mutex);
state = sfp_get_state(sfp);
changed = state ^ sfp->state;
changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
for (i = 0; i < GPIO_MAX; i++)
if (changed & BIT(i))
dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
!!(sfp->state & BIT(i)), !!(state & BIT(i)));
state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
sfp->state = state;
rtnl_lock();
if (changed & SFP_F_PRESENT)
sfp_sm_event(sfp, state & SFP_F_PRESENT ?
SFP_E_INSERT : SFP_E_REMOVE);
if (changed & SFP_F_TX_FAULT)
sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
if (changed & SFP_F_LOS)
sfp_sm_event(sfp, state & SFP_F_LOS ?
SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
rtnl_unlock();
mutex_unlock(&sfp->st_mutex);
}
static irqreturn_t sfp_irq(int irq, void *data)
{
struct sfp *sfp = data;
sfp_check_state(sfp);
return IRQ_HANDLED;
}
static void sfp_poll(struct work_struct *work)
{
struct sfp *sfp = container_of(work, struct sfp, poll.work);
sfp_check_state(sfp);
if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
sfp->need_poll)
mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
}
static struct sfp *sfp_alloc(struct device *dev)
{
struct sfp *sfp;
sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
if (!sfp)
return ERR_PTR(-ENOMEM);
sfp->dev = dev;
mutex_init(&sfp->sm_mutex);
mutex_init(&sfp->st_mutex);
INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
sfp_hwmon_init(sfp);
return sfp;
}
static void sfp_cleanup(void *data)
{
struct sfp *sfp = data;
sfp_hwmon_exit(sfp);
cancel_delayed_work_sync(&sfp->poll);
cancel_delayed_work_sync(&sfp->timeout);
if (sfp->i2c_mii) {
mdiobus_unregister(sfp->i2c_mii);
mdiobus_free(sfp->i2c_mii);
}
if (sfp->i2c)
i2c_put_adapter(sfp->i2c);
kfree(sfp);
}
static int sfp_probe(struct platform_device *pdev)
{
const struct sff_data *sff;
struct i2c_adapter *i2c;
char *sfp_irq_name;
struct sfp *sfp;
int err, i;
sfp = sfp_alloc(&pdev->dev);
if (IS_ERR(sfp))
return PTR_ERR(sfp);
platform_set_drvdata(pdev, sfp);
err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
if (err < 0)
return err;
sff = sfp->type = &sfp_data;
if (pdev->dev.of_node) {
struct device_node *node = pdev->dev.of_node;
const struct of_device_id *id;
struct device_node *np;
id = of_match_node(sfp_of_match, node);
if (WARN_ON(!id))
return -EINVAL;
sff = sfp->type = id->data;
np = of_parse_phandle(node, "i2c-bus", 0);
if (!np) {
dev_err(sfp->dev, "missing 'i2c-bus' property\n");
return -ENODEV;
}
i2c = of_find_i2c_adapter_by_node(np);
of_node_put(np);
} else if (has_acpi_companion(&pdev->dev)) {
struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
struct fwnode_handle *fw = acpi_fwnode_handle(adev);
struct fwnode_reference_args args;
struct acpi_handle *acpi_handle;
int ret;
ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
if (ret || !is_acpi_device_node(args.fwnode)) {
dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
return -ENODEV;
}
acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
} else {
return -EINVAL;
}
if (!i2c)
return -EPROBE_DEFER;
err = sfp_i2c_configure(sfp, i2c);
if (err < 0) {
i2c_put_adapter(i2c);
return err;
}
for (i = 0; i < GPIO_MAX; i++)
if (sff->gpios & BIT(i)) {
sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
gpio_of_names[i], gpio_flags[i]);
if (IS_ERR(sfp->gpio[i]))
return PTR_ERR(sfp->gpio[i]);
}
sfp->get_state = sfp_gpio_get_state;
sfp->set_state = sfp_gpio_set_state;
/* Modules that have no detect signal are always present */
if (!(sfp->gpio[GPIO_MODDEF0]))
sfp->get_state = sff_gpio_get_state;
device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
&sfp->max_power_mW);
if (!sfp->max_power_mW)
sfp->max_power_mW = 1000;
dev_info(sfp->dev, "Host maximum power %u.%uW\n",
sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
/* Get the initial state, and always signal TX disable,
* since the network interface will not be up.
*/
sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
if (sfp->gpio[GPIO_RATE_SELECT] &&
gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
sfp->state |= SFP_F_RATE_SELECT;
sfp_set_state(sfp, sfp->state);
sfp_module_tx_disable(sfp);
if (sfp->state & SFP_F_PRESENT) {
rtnl_lock();
sfp_sm_event(sfp, SFP_E_INSERT);
rtnl_unlock();
}
for (i = 0; i < GPIO_MAX; i++) {
if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
continue;
sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
if (sfp->gpio_irq[i] < 0) {
sfp->gpio_irq[i] = 0;
sfp->need_poll = true;
continue;
}
sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
"%s-%s", dev_name(sfp->dev),
gpio_of_names[i]);
if (!sfp_irq_name)
return -ENOMEM;
err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
NULL, sfp_irq,
IRQF_ONESHOT |
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
sfp_irq_name, sfp);
if (err) {
sfp->gpio_irq[i] = 0;
sfp->need_poll = true;
}
}
if (sfp->need_poll)
mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
/* We could have an issue in cases no Tx disable pin is available or
* wired as modules using a laser as their light source will continue to
* be active when the fiber is removed. This could be a safety issue and
* we should at least warn the user about that.
*/
if (!sfp->gpio[GPIO_TX_DISABLE])
dev_warn(sfp->dev,
"No tx_disable pin: SFP modules will always be emitting.\n");
sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
if (!sfp->sfp_bus)
return -ENOMEM;
sfp_debugfs_init(sfp);
return 0;
}
static int sfp_remove(struct platform_device *pdev)
{
struct sfp *sfp = platform_get_drvdata(pdev);
sfp_debugfs_exit(sfp);
sfp_unregister_socket(sfp->sfp_bus);
rtnl_lock();
sfp_sm_event(sfp, SFP_E_REMOVE);
rtnl_unlock();
return 0;
}
static void sfp_shutdown(struct platform_device *pdev)
{
struct sfp *sfp = platform_get_drvdata(pdev);
int i;
for (i = 0; i < GPIO_MAX; i++) {
if (!sfp->gpio_irq[i])
continue;
devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
}
cancel_delayed_work_sync(&sfp->poll);
cancel_delayed_work_sync(&sfp->timeout);
}
static struct platform_driver sfp_driver = {
.probe = sfp_probe,
.remove = sfp_remove,
.shutdown = sfp_shutdown,
.driver = {
.name = "sfp",
.of_match_table = sfp_of_match,
},
};
static int sfp_init(void)
{
poll_jiffies = msecs_to_jiffies(100);
return platform_driver_register(&sfp_driver);
}
module_init(sfp_init);
static void sfp_exit(void)
{
platform_driver_unregister(&sfp_driver);
}
module_exit(sfp_exit);
MODULE_ALIAS("platform:sfp");
MODULE_AUTHOR("Russell King");
MODULE_LICENSE("GPL v2");