| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * decompress_common.h - Code shared by the XPRESS and LZX decompressors |
| * |
| * Copyright (C) 2015 Eric Biggers |
| */ |
| |
| #ifndef _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H |
| #define _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H |
| |
| #include <linux/string.h> |
| #include <linux/compiler.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <asm/unaligned.h> |
| |
| |
| /* "Force inline" macro (not required, but helpful for performance) */ |
| #define forceinline __always_inline |
| |
| /* Enable whole-word match copying on selected architectures */ |
| #if defined(__i386__) || defined(__x86_64__) || defined(__ARM_FEATURE_UNALIGNED) |
| # define FAST_UNALIGNED_ACCESS |
| #endif |
| |
| /* Size of a machine word */ |
| #define WORDBYTES (sizeof(size_t)) |
| |
| static forceinline void |
| copy_unaligned_word(const void *src, void *dst) |
| { |
| put_unaligned(get_unaligned((const size_t *)src), (size_t *)dst); |
| } |
| |
| |
| /* Generate a "word" with platform-dependent size whose bytes all contain the |
| * value 'b'. |
| */ |
| static forceinline size_t repeat_byte(u8 b) |
| { |
| size_t v; |
| |
| v = b; |
| v |= v << 8; |
| v |= v << 16; |
| v |= v << ((WORDBYTES == 8) ? 32 : 0); |
| return v; |
| } |
| |
| /* Structure that encapsulates a block of in-memory data being interpreted as a |
| * stream of bits, optionally with interwoven literal bytes. Bits are assumed |
| * to be stored in little endian 16-bit coding units, with the bits ordered high |
| * to low. |
| */ |
| struct input_bitstream { |
| |
| /* Bits that have been read from the input buffer. The bits are |
| * left-justified; the next bit is always bit 31. |
| */ |
| u32 bitbuf; |
| |
| /* Number of bits currently held in @bitbuf. */ |
| u32 bitsleft; |
| |
| /* Pointer to the next byte to be retrieved from the input buffer. */ |
| const u8 *next; |
| |
| /* Pointer to just past the end of the input buffer. */ |
| const u8 *end; |
| }; |
| |
| /* Initialize a bitstream to read from the specified input buffer. */ |
| static forceinline void init_input_bitstream(struct input_bitstream *is, |
| const void *buffer, u32 size) |
| { |
| is->bitbuf = 0; |
| is->bitsleft = 0; |
| is->next = buffer; |
| is->end = is->next + size; |
| } |
| |
| /* Ensure the bit buffer variable for the bitstream contains at least @num_bits |
| * bits. Following this, bitstream_peek_bits() and/or bitstream_remove_bits() |
| * may be called on the bitstream to peek or remove up to @num_bits bits. Note |
| * that @num_bits must be <= 16. |
| */ |
| static forceinline void bitstream_ensure_bits(struct input_bitstream *is, |
| u32 num_bits) |
| { |
| if (is->bitsleft < num_bits) { |
| if (is->end - is->next >= 2) { |
| is->bitbuf |= (u32)get_unaligned_le16(is->next) |
| << (16 - is->bitsleft); |
| is->next += 2; |
| } |
| is->bitsleft += 16; |
| } |
| } |
| |
| /* Return the next @num_bits bits from the bitstream, without removing them. |
| * There must be at least @num_bits remaining in the buffer variable, from a |
| * previous call to bitstream_ensure_bits(). |
| */ |
| static forceinline u32 |
| bitstream_peek_bits(const struct input_bitstream *is, const u32 num_bits) |
| { |
| return (is->bitbuf >> 1) >> (sizeof(is->bitbuf) * 8 - num_bits - 1); |
| } |
| |
| /* Remove @num_bits from the bitstream. There must be at least @num_bits |
| * remaining in the buffer variable, from a previous call to |
| * bitstream_ensure_bits(). |
| */ |
| static forceinline void |
| bitstream_remove_bits(struct input_bitstream *is, u32 num_bits) |
| { |
| is->bitbuf <<= num_bits; |
| is->bitsleft -= num_bits; |
| } |
| |
| /* Remove and return @num_bits bits from the bitstream. There must be at least |
| * @num_bits remaining in the buffer variable, from a previous call to |
| * bitstream_ensure_bits(). |
| */ |
| static forceinline u32 |
| bitstream_pop_bits(struct input_bitstream *is, u32 num_bits) |
| { |
| u32 bits = bitstream_peek_bits(is, num_bits); |
| |
| bitstream_remove_bits(is, num_bits); |
| return bits; |
| } |
| |
| /* Read and return the next @num_bits bits from the bitstream. */ |
| static forceinline u32 |
| bitstream_read_bits(struct input_bitstream *is, u32 num_bits) |
| { |
| bitstream_ensure_bits(is, num_bits); |
| return bitstream_pop_bits(is, num_bits); |
| } |
| |
| /* Read and return the next literal byte embedded in the bitstream. */ |
| static forceinline u8 |
| bitstream_read_byte(struct input_bitstream *is) |
| { |
| if (unlikely(is->end == is->next)) |
| return 0; |
| return *is->next++; |
| } |
| |
| /* Read and return the next 16-bit integer embedded in the bitstream. */ |
| static forceinline u16 |
| bitstream_read_u16(struct input_bitstream *is) |
| { |
| u16 v; |
| |
| if (unlikely(is->end - is->next < 2)) |
| return 0; |
| v = get_unaligned_le16(is->next); |
| is->next += 2; |
| return v; |
| } |
| |
| /* Read and return the next 32-bit integer embedded in the bitstream. */ |
| static forceinline u32 |
| bitstream_read_u32(struct input_bitstream *is) |
| { |
| u32 v; |
| |
| if (unlikely(is->end - is->next < 4)) |
| return 0; |
| v = get_unaligned_le32(is->next); |
| is->next += 4; |
| return v; |
| } |
| |
| /* Read into @dst_buffer an array of literal bytes embedded in the bitstream. |
| * Return either a pointer to the byte past the last written, or NULL if the |
| * read overflows the input buffer. |
| */ |
| static forceinline void *bitstream_read_bytes(struct input_bitstream *is, |
| void *dst_buffer, size_t count) |
| { |
| if ((size_t)(is->end - is->next) < count) |
| return NULL; |
| memcpy(dst_buffer, is->next, count); |
| is->next += count; |
| return (u8 *)dst_buffer + count; |
| } |
| |
| /* Align the input bitstream on a coding-unit boundary. */ |
| static forceinline void bitstream_align(struct input_bitstream *is) |
| { |
| is->bitsleft = 0; |
| is->bitbuf = 0; |
| } |
| |
| extern int make_huffman_decode_table(u16 decode_table[], const u32 num_syms, |
| const u32 num_bits, const u8 lens[], |
| const u32 max_codeword_len, |
| u16 working_space[]); |
| |
| |
| /* Reads and returns the next Huffman-encoded symbol from a bitstream. If the |
| * input data is exhausted, the Huffman symbol is decoded as if the missing bits |
| * are all zeroes. |
| */ |
| static forceinline u32 read_huffsym(struct input_bitstream *istream, |
| const u16 decode_table[], |
| u32 table_bits, |
| u32 max_codeword_len) |
| { |
| u32 entry; |
| u32 key_bits; |
| |
| bitstream_ensure_bits(istream, max_codeword_len); |
| |
| /* Index the decode table by the next table_bits bits of the input. */ |
| key_bits = bitstream_peek_bits(istream, table_bits); |
| entry = decode_table[key_bits]; |
| if (entry < 0xC000) { |
| /* Fast case: The decode table directly provided the |
| * symbol and codeword length. The low 11 bits are the |
| * symbol, and the high 5 bits are the codeword length. |
| */ |
| bitstream_remove_bits(istream, entry >> 11); |
| return entry & 0x7FF; |
| } |
| /* Slow case: The codeword for the symbol is longer than |
| * table_bits, so the symbol does not have an entry |
| * directly in the first (1 << table_bits) entries of the |
| * decode table. Traverse the appropriate binary tree |
| * bit-by-bit to decode the symbol. |
| */ |
| bitstream_remove_bits(istream, table_bits); |
| do { |
| key_bits = (entry & 0x3FFF) + bitstream_pop_bits(istream, 1); |
| } while ((entry = decode_table[key_bits]) >= 0xC000); |
| return entry; |
| } |
| |
| /* |
| * Copy an LZ77 match at (dst - offset) to dst. |
| * |
| * The length and offset must be already validated --- that is, (dst - offset) |
| * can't underrun the output buffer, and (dst + length) can't overrun the output |
| * buffer. Also, the length cannot be 0. |
| * |
| * @bufend points to the byte past the end of the output buffer. This function |
| * won't write any data beyond this position. |
| * |
| * Returns dst + length. |
| */ |
| static forceinline u8 *lz_copy(u8 *dst, u32 length, u32 offset, const u8 *bufend, |
| u32 min_length) |
| { |
| const u8 *src = dst - offset; |
| |
| /* |
| * Try to copy one machine word at a time. On i386 and x86_64 this is |
| * faster than copying one byte at a time, unless the data is |
| * near-random and all the matches have very short lengths. Note that |
| * since this requires unaligned memory accesses, it won't necessarily |
| * be faster on every architecture. |
| * |
| * Also note that we might copy more than the length of the match. For |
| * example, if a word is 8 bytes and the match is of length 5, then |
| * we'll simply copy 8 bytes. This is okay as long as we don't write |
| * beyond the end of the output buffer, hence the check for (bufend - |
| * end >= WORDBYTES - 1). |
| */ |
| #ifdef FAST_UNALIGNED_ACCESS |
| u8 * const end = dst + length; |
| |
| if (bufend - end >= (ptrdiff_t)(WORDBYTES - 1)) { |
| |
| if (offset >= WORDBYTES) { |
| /* The source and destination words don't overlap. */ |
| |
| /* To improve branch prediction, one iteration of this |
| * loop is unrolled. Most matches are short and will |
| * fail the first check. But if that check passes, then |
| * it becomes increasing likely that the match is long |
| * and we'll need to continue copying. |
| */ |
| |
| copy_unaligned_word(src, dst); |
| src += WORDBYTES; |
| dst += WORDBYTES; |
| |
| if (dst < end) { |
| do { |
| copy_unaligned_word(src, dst); |
| src += WORDBYTES; |
| dst += WORDBYTES; |
| } while (dst < end); |
| } |
| return end; |
| } else if (offset == 1) { |
| |
| /* Offset 1 matches are equivalent to run-length |
| * encoding of the previous byte. This case is common |
| * if the data contains many repeated bytes. |
| */ |
| size_t v = repeat_byte(*(dst - 1)); |
| |
| do { |
| put_unaligned(v, (size_t *)dst); |
| src += WORDBYTES; |
| dst += WORDBYTES; |
| } while (dst < end); |
| return end; |
| } |
| /* |
| * We don't bother with special cases for other 'offset < |
| * WORDBYTES', which are usually rarer than 'offset == 1'. Extra |
| * checks will just slow things down. Actually, it's possible |
| * to handle all the 'offset < WORDBYTES' cases using the same |
| * code, but it still becomes more complicated doesn't seem any |
| * faster overall; it definitely slows down the more common |
| * 'offset == 1' case. |
| */ |
| } |
| #endif /* FAST_UNALIGNED_ACCESS */ |
| |
| /* Fall back to a bytewise copy. */ |
| |
| if (min_length >= 2) { |
| *dst++ = *src++; |
| length--; |
| } |
| if (min_length >= 3) { |
| *dst++ = *src++; |
| length--; |
| } |
| do { |
| *dst++ = *src++; |
| } while (--length); |
| |
| return dst; |
| } |
| |
| #endif /* _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H */ |