| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Data Access Monitor |
| * |
| * Author: SeongJae Park <sjpark@amazon.de> |
| */ |
| |
| #define pr_fmt(fmt) "damon: " fmt |
| |
| #include <linux/damon.h> |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/damon.h> |
| |
| #ifdef CONFIG_DAMON_KUNIT_TEST |
| #undef DAMON_MIN_REGION |
| #define DAMON_MIN_REGION 1 |
| #endif |
| |
| /* Get a random number in [l, r) */ |
| #define damon_rand(l, r) (l + prandom_u32_max(r - l)) |
| |
| static DEFINE_MUTEX(damon_lock); |
| static int nr_running_ctxs; |
| |
| /* |
| * Construct a damon_region struct |
| * |
| * Returns the pointer to the new struct if success, or NULL otherwise |
| */ |
| struct damon_region *damon_new_region(unsigned long start, unsigned long end) |
| { |
| struct damon_region *region; |
| |
| region = kmalloc(sizeof(*region), GFP_KERNEL); |
| if (!region) |
| return NULL; |
| |
| region->ar.start = start; |
| region->ar.end = end; |
| region->nr_accesses = 0; |
| INIT_LIST_HEAD(®ion->list); |
| |
| return region; |
| } |
| |
| /* |
| * Add a region between two other regions |
| */ |
| inline void damon_insert_region(struct damon_region *r, |
| struct damon_region *prev, struct damon_region *next, |
| struct damon_target *t) |
| { |
| __list_add(&r->list, &prev->list, &next->list); |
| t->nr_regions++; |
| } |
| |
| void damon_add_region(struct damon_region *r, struct damon_target *t) |
| { |
| list_add_tail(&r->list, &t->regions_list); |
| t->nr_regions++; |
| } |
| |
| static void damon_del_region(struct damon_region *r, struct damon_target *t) |
| { |
| list_del(&r->list); |
| t->nr_regions--; |
| } |
| |
| static void damon_free_region(struct damon_region *r) |
| { |
| kfree(r); |
| } |
| |
| void damon_destroy_region(struct damon_region *r, struct damon_target *t) |
| { |
| damon_del_region(r, t); |
| damon_free_region(r); |
| } |
| |
| /* |
| * Construct a damon_target struct |
| * |
| * Returns the pointer to the new struct if success, or NULL otherwise |
| */ |
| struct damon_target *damon_new_target(unsigned long id) |
| { |
| struct damon_target *t; |
| |
| t = kmalloc(sizeof(*t), GFP_KERNEL); |
| if (!t) |
| return NULL; |
| |
| t->id = id; |
| t->nr_regions = 0; |
| INIT_LIST_HEAD(&t->regions_list); |
| |
| return t; |
| } |
| |
| void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) |
| { |
| list_add_tail(&t->list, &ctx->adaptive_targets); |
| } |
| |
| static void damon_del_target(struct damon_target *t) |
| { |
| list_del(&t->list); |
| } |
| |
| void damon_free_target(struct damon_target *t) |
| { |
| struct damon_region *r, *next; |
| |
| damon_for_each_region_safe(r, next, t) |
| damon_free_region(r); |
| kfree(t); |
| } |
| |
| void damon_destroy_target(struct damon_target *t) |
| { |
| damon_del_target(t); |
| damon_free_target(t); |
| } |
| |
| unsigned int damon_nr_regions(struct damon_target *t) |
| { |
| return t->nr_regions; |
| } |
| |
| struct damon_ctx *damon_new_ctx(void) |
| { |
| struct damon_ctx *ctx; |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return NULL; |
| |
| ctx->sample_interval = 5 * 1000; |
| ctx->aggr_interval = 100 * 1000; |
| ctx->primitive_update_interval = 60 * 1000 * 1000; |
| |
| ktime_get_coarse_ts64(&ctx->last_aggregation); |
| ctx->last_primitive_update = ctx->last_aggregation; |
| |
| mutex_init(&ctx->kdamond_lock); |
| |
| ctx->min_nr_regions = 10; |
| ctx->max_nr_regions = 1000; |
| |
| INIT_LIST_HEAD(&ctx->adaptive_targets); |
| |
| return ctx; |
| } |
| |
| static void damon_destroy_targets(struct damon_ctx *ctx) |
| { |
| struct damon_target *t, *next_t; |
| |
| if (ctx->primitive.cleanup) { |
| ctx->primitive.cleanup(ctx); |
| return; |
| } |
| |
| damon_for_each_target_safe(t, next_t, ctx) |
| damon_destroy_target(t); |
| } |
| |
| void damon_destroy_ctx(struct damon_ctx *ctx) |
| { |
| damon_destroy_targets(ctx); |
| kfree(ctx); |
| } |
| |
| /** |
| * damon_set_targets() - Set monitoring targets. |
| * @ctx: monitoring context |
| * @ids: array of target ids |
| * @nr_ids: number of entries in @ids |
| * |
| * This function should not be called while the kdamond is running. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_set_targets(struct damon_ctx *ctx, |
| unsigned long *ids, ssize_t nr_ids) |
| { |
| ssize_t i; |
| struct damon_target *t, *next; |
| |
| damon_destroy_targets(ctx); |
| |
| for (i = 0; i < nr_ids; i++) { |
| t = damon_new_target(ids[i]); |
| if (!t) { |
| pr_err("Failed to alloc damon_target\n"); |
| /* The caller should do cleanup of the ids itself */ |
| damon_for_each_target_safe(t, next, ctx) |
| damon_destroy_target(t); |
| return -ENOMEM; |
| } |
| damon_add_target(ctx, t); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * damon_set_attrs() - Set attributes for the monitoring. |
| * @ctx: monitoring context |
| * @sample_int: time interval between samplings |
| * @aggr_int: time interval between aggregations |
| * @primitive_upd_int: time interval between monitoring primitive updates |
| * @min_nr_reg: minimal number of regions |
| * @max_nr_reg: maximum number of regions |
| * |
| * This function should not be called while the kdamond is running. |
| * Every time interval is in micro-seconds. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, |
| unsigned long aggr_int, unsigned long primitive_upd_int, |
| unsigned long min_nr_reg, unsigned long max_nr_reg) |
| { |
| if (min_nr_reg < 3) { |
| pr_err("min_nr_regions (%lu) must be at least 3\n", |
| min_nr_reg); |
| return -EINVAL; |
| } |
| if (min_nr_reg > max_nr_reg) { |
| pr_err("invalid nr_regions. min (%lu) > max (%lu)\n", |
| min_nr_reg, max_nr_reg); |
| return -EINVAL; |
| } |
| |
| ctx->sample_interval = sample_int; |
| ctx->aggr_interval = aggr_int; |
| ctx->primitive_update_interval = primitive_upd_int; |
| ctx->min_nr_regions = min_nr_reg; |
| ctx->max_nr_regions = max_nr_reg; |
| |
| return 0; |
| } |
| |
| /** |
| * damon_nr_running_ctxs() - Return number of currently running contexts. |
| */ |
| int damon_nr_running_ctxs(void) |
| { |
| int nr_ctxs; |
| |
| mutex_lock(&damon_lock); |
| nr_ctxs = nr_running_ctxs; |
| mutex_unlock(&damon_lock); |
| |
| return nr_ctxs; |
| } |
| |
| /* Returns the size upper limit for each monitoring region */ |
| static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) |
| { |
| struct damon_target *t; |
| struct damon_region *r; |
| unsigned long sz = 0; |
| |
| damon_for_each_target(t, ctx) { |
| damon_for_each_region(r, t) |
| sz += r->ar.end - r->ar.start; |
| } |
| |
| if (ctx->min_nr_regions) |
| sz /= ctx->min_nr_regions; |
| if (sz < DAMON_MIN_REGION) |
| sz = DAMON_MIN_REGION; |
| |
| return sz; |
| } |
| |
| static bool damon_kdamond_running(struct damon_ctx *ctx) |
| { |
| bool running; |
| |
| mutex_lock(&ctx->kdamond_lock); |
| running = ctx->kdamond != NULL; |
| mutex_unlock(&ctx->kdamond_lock); |
| |
| return running; |
| } |
| |
| static int kdamond_fn(void *data); |
| |
| /* |
| * __damon_start() - Starts monitoring with given context. |
| * @ctx: monitoring context |
| * |
| * This function should be called while damon_lock is hold. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| static int __damon_start(struct damon_ctx *ctx) |
| { |
| int err = -EBUSY; |
| |
| mutex_lock(&ctx->kdamond_lock); |
| if (!ctx->kdamond) { |
| err = 0; |
| ctx->kdamond_stop = false; |
| ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", |
| nr_running_ctxs); |
| if (IS_ERR(ctx->kdamond)) { |
| err = PTR_ERR(ctx->kdamond); |
| ctx->kdamond = 0; |
| } |
| } |
| mutex_unlock(&ctx->kdamond_lock); |
| |
| return err; |
| } |
| |
| /** |
| * damon_start() - Starts the monitorings for a given group of contexts. |
| * @ctxs: an array of the pointers for contexts to start monitoring |
| * @nr_ctxs: size of @ctxs |
| * |
| * This function starts a group of monitoring threads for a group of monitoring |
| * contexts. One thread per each context is created and run in parallel. The |
| * caller should handle synchronization between the threads by itself. If a |
| * group of threads that created by other 'damon_start()' call is currently |
| * running, this function does nothing but returns -EBUSY. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_start(struct damon_ctx **ctxs, int nr_ctxs) |
| { |
| int i; |
| int err = 0; |
| |
| mutex_lock(&damon_lock); |
| if (nr_running_ctxs) { |
| mutex_unlock(&damon_lock); |
| return -EBUSY; |
| } |
| |
| for (i = 0; i < nr_ctxs; i++) { |
| err = __damon_start(ctxs[i]); |
| if (err) |
| break; |
| nr_running_ctxs++; |
| } |
| mutex_unlock(&damon_lock); |
| |
| return err; |
| } |
| |
| /* |
| * __damon_stop() - Stops monitoring of given context. |
| * @ctx: monitoring context |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| static int __damon_stop(struct damon_ctx *ctx) |
| { |
| mutex_lock(&ctx->kdamond_lock); |
| if (ctx->kdamond) { |
| ctx->kdamond_stop = true; |
| mutex_unlock(&ctx->kdamond_lock); |
| while (damon_kdamond_running(ctx)) |
| usleep_range(ctx->sample_interval, |
| ctx->sample_interval * 2); |
| return 0; |
| } |
| mutex_unlock(&ctx->kdamond_lock); |
| |
| return -EPERM; |
| } |
| |
| /** |
| * damon_stop() - Stops the monitorings for a given group of contexts. |
| * @ctxs: an array of the pointers for contexts to stop monitoring |
| * @nr_ctxs: size of @ctxs |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < nr_ctxs; i++) { |
| /* nr_running_ctxs is decremented in kdamond_fn */ |
| err = __damon_stop(ctxs[i]); |
| if (err) |
| return err; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * damon_check_reset_time_interval() - Check if a time interval is elapsed. |
| * @baseline: the time to check whether the interval has elapsed since |
| * @interval: the time interval (microseconds) |
| * |
| * See whether the given time interval has passed since the given baseline |
| * time. If so, it also updates the baseline to current time for next check. |
| * |
| * Return: true if the time interval has passed, or false otherwise. |
| */ |
| static bool damon_check_reset_time_interval(struct timespec64 *baseline, |
| unsigned long interval) |
| { |
| struct timespec64 now; |
| |
| ktime_get_coarse_ts64(&now); |
| if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) < |
| interval * 1000) |
| return false; |
| *baseline = now; |
| return true; |
| } |
| |
| /* |
| * Check whether it is time to flush the aggregated information |
| */ |
| static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx) |
| { |
| return damon_check_reset_time_interval(&ctx->last_aggregation, |
| ctx->aggr_interval); |
| } |
| |
| /* |
| * Reset the aggregated monitoring results ('nr_accesses' of each region). |
| */ |
| static void kdamond_reset_aggregated(struct damon_ctx *c) |
| { |
| struct damon_target *t; |
| |
| damon_for_each_target(t, c) { |
| struct damon_region *r; |
| |
| damon_for_each_region(r, t) { |
| trace_damon_aggregated(t, r, damon_nr_regions(t)); |
| r->nr_accesses = 0; |
| } |
| } |
| } |
| |
| #define sz_damon_region(r) (r->ar.end - r->ar.start) |
| |
| /* |
| * Merge two adjacent regions into one region |
| */ |
| static void damon_merge_two_regions(struct damon_target *t, |
| struct damon_region *l, struct damon_region *r) |
| { |
| unsigned long sz_l = sz_damon_region(l), sz_r = sz_damon_region(r); |
| |
| l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / |
| (sz_l + sz_r); |
| l->ar.end = r->ar.end; |
| damon_destroy_region(r, t); |
| } |
| |
| #define diff_of(a, b) (a > b ? a - b : b - a) |
| |
| /* |
| * Merge adjacent regions having similar access frequencies |
| * |
| * t target affected by this merge operation |
| * thres '->nr_accesses' diff threshold for the merge |
| * sz_limit size upper limit of each region |
| */ |
| static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, |
| unsigned long sz_limit) |
| { |
| struct damon_region *r, *prev = NULL, *next; |
| |
| damon_for_each_region_safe(r, next, t) { |
| if (prev && prev->ar.end == r->ar.start && |
| diff_of(prev->nr_accesses, r->nr_accesses) <= thres && |
| sz_damon_region(prev) + sz_damon_region(r) <= sz_limit) |
| damon_merge_two_regions(t, prev, r); |
| else |
| prev = r; |
| } |
| } |
| |
| /* |
| * Merge adjacent regions having similar access frequencies |
| * |
| * threshold '->nr_accesses' diff threshold for the merge |
| * sz_limit size upper limit of each region |
| * |
| * This function merges monitoring target regions which are adjacent and their |
| * access frequencies are similar. This is for minimizing the monitoring |
| * overhead under the dynamically changeable access pattern. If a merge was |
| * unnecessarily made, later 'kdamond_split_regions()' will revert it. |
| */ |
| static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, |
| unsigned long sz_limit) |
| { |
| struct damon_target *t; |
| |
| damon_for_each_target(t, c) |
| damon_merge_regions_of(t, threshold, sz_limit); |
| } |
| |
| /* |
| * Split a region in two |
| * |
| * r the region to be split |
| * sz_r size of the first sub-region that will be made |
| */ |
| static void damon_split_region_at(struct damon_ctx *ctx, |
| struct damon_target *t, struct damon_region *r, |
| unsigned long sz_r) |
| { |
| struct damon_region *new; |
| |
| new = damon_new_region(r->ar.start + sz_r, r->ar.end); |
| if (!new) |
| return; |
| |
| r->ar.end = new->ar.start; |
| |
| damon_insert_region(new, r, damon_next_region(r), t); |
| } |
| |
| /* Split every region in the given target into 'nr_subs' regions */ |
| static void damon_split_regions_of(struct damon_ctx *ctx, |
| struct damon_target *t, int nr_subs) |
| { |
| struct damon_region *r, *next; |
| unsigned long sz_region, sz_sub = 0; |
| int i; |
| |
| damon_for_each_region_safe(r, next, t) { |
| sz_region = r->ar.end - r->ar.start; |
| |
| for (i = 0; i < nr_subs - 1 && |
| sz_region > 2 * DAMON_MIN_REGION; i++) { |
| /* |
| * Randomly select size of left sub-region to be at |
| * least 10 percent and at most 90% of original region |
| */ |
| sz_sub = ALIGN_DOWN(damon_rand(1, 10) * |
| sz_region / 10, DAMON_MIN_REGION); |
| /* Do not allow blank region */ |
| if (sz_sub == 0 || sz_sub >= sz_region) |
| continue; |
| |
| damon_split_region_at(ctx, t, r, sz_sub); |
| sz_region = sz_sub; |
| } |
| } |
| } |
| |
| /* |
| * Split every target region into randomly-sized small regions |
| * |
| * This function splits every target region into random-sized small regions if |
| * current total number of the regions is equal or smaller than half of the |
| * user-specified maximum number of regions. This is for maximizing the |
| * monitoring accuracy under the dynamically changeable access patterns. If a |
| * split was unnecessarily made, later 'kdamond_merge_regions()' will revert |
| * it. |
| */ |
| static void kdamond_split_regions(struct damon_ctx *ctx) |
| { |
| struct damon_target *t; |
| unsigned int nr_regions = 0; |
| static unsigned int last_nr_regions; |
| int nr_subregions = 2; |
| |
| damon_for_each_target(t, ctx) |
| nr_regions += damon_nr_regions(t); |
| |
| if (nr_regions > ctx->max_nr_regions / 2) |
| return; |
| |
| /* Maybe the middle of the region has different access frequency */ |
| if (last_nr_regions == nr_regions && |
| nr_regions < ctx->max_nr_regions / 3) |
| nr_subregions = 3; |
| |
| damon_for_each_target(t, ctx) |
| damon_split_regions_of(ctx, t, nr_subregions); |
| |
| last_nr_regions = nr_regions; |
| } |
| |
| /* |
| * Check whether it is time to check and apply the target monitoring regions |
| * |
| * Returns true if it is. |
| */ |
| static bool kdamond_need_update_primitive(struct damon_ctx *ctx) |
| { |
| return damon_check_reset_time_interval(&ctx->last_primitive_update, |
| ctx->primitive_update_interval); |
| } |
| |
| /* |
| * Check whether current monitoring should be stopped |
| * |
| * The monitoring is stopped when either the user requested to stop, or all |
| * monitoring targets are invalid. |
| * |
| * Returns true if need to stop current monitoring. |
| */ |
| static bool kdamond_need_stop(struct damon_ctx *ctx) |
| { |
| struct damon_target *t; |
| bool stop; |
| |
| mutex_lock(&ctx->kdamond_lock); |
| stop = ctx->kdamond_stop; |
| mutex_unlock(&ctx->kdamond_lock); |
| if (stop) |
| return true; |
| |
| if (!ctx->primitive.target_valid) |
| return false; |
| |
| damon_for_each_target(t, ctx) { |
| if (ctx->primitive.target_valid(t)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void set_kdamond_stop(struct damon_ctx *ctx) |
| { |
| mutex_lock(&ctx->kdamond_lock); |
| ctx->kdamond_stop = true; |
| mutex_unlock(&ctx->kdamond_lock); |
| } |
| |
| /* |
| * The monitoring daemon that runs as a kernel thread |
| */ |
| static int kdamond_fn(void *data) |
| { |
| struct damon_ctx *ctx = (struct damon_ctx *)data; |
| struct damon_target *t; |
| struct damon_region *r, *next; |
| unsigned int max_nr_accesses = 0; |
| unsigned long sz_limit = 0; |
| |
| mutex_lock(&ctx->kdamond_lock); |
| pr_info("kdamond (%d) starts\n", ctx->kdamond->pid); |
| mutex_unlock(&ctx->kdamond_lock); |
| |
| if (ctx->primitive.init) |
| ctx->primitive.init(ctx); |
| if (ctx->callback.before_start && ctx->callback.before_start(ctx)) |
| set_kdamond_stop(ctx); |
| |
| sz_limit = damon_region_sz_limit(ctx); |
| |
| while (!kdamond_need_stop(ctx)) { |
| if (ctx->primitive.prepare_access_checks) |
| ctx->primitive.prepare_access_checks(ctx); |
| if (ctx->callback.after_sampling && |
| ctx->callback.after_sampling(ctx)) |
| set_kdamond_stop(ctx); |
| |
| usleep_range(ctx->sample_interval, ctx->sample_interval + 1); |
| |
| if (ctx->primitive.check_accesses) |
| max_nr_accesses = ctx->primitive.check_accesses(ctx); |
| |
| if (kdamond_aggregate_interval_passed(ctx)) { |
| kdamond_merge_regions(ctx, |
| max_nr_accesses / 10, |
| sz_limit); |
| if (ctx->callback.after_aggregation && |
| ctx->callback.after_aggregation(ctx)) |
| set_kdamond_stop(ctx); |
| kdamond_reset_aggregated(ctx); |
| kdamond_split_regions(ctx); |
| if (ctx->primitive.reset_aggregated) |
| ctx->primitive.reset_aggregated(ctx); |
| } |
| |
| if (kdamond_need_update_primitive(ctx)) { |
| if (ctx->primitive.update) |
| ctx->primitive.update(ctx); |
| sz_limit = damon_region_sz_limit(ctx); |
| } |
| } |
| damon_for_each_target(t, ctx) { |
| damon_for_each_region_safe(r, next, t) |
| damon_destroy_region(r, t); |
| } |
| |
| if (ctx->callback.before_terminate && |
| ctx->callback.before_terminate(ctx)) |
| set_kdamond_stop(ctx); |
| if (ctx->primitive.cleanup) |
| ctx->primitive.cleanup(ctx); |
| |
| pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid); |
| mutex_lock(&ctx->kdamond_lock); |
| ctx->kdamond = NULL; |
| mutex_unlock(&ctx->kdamond_lock); |
| |
| mutex_lock(&damon_lock); |
| nr_running_ctxs--; |
| mutex_unlock(&damon_lock); |
| |
| do_exit(0); |
| } |
| |
| #include "core-test.h" |