blob: fda66b2dbb017b80bee78a793f0150dda7724534 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* USB Audio Driver for ALSA
*
* Quirks and vendor-specific extensions for mixer interfaces
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
* Audio Advantage Micro II support added by:
* Przemek Rudy (prudy1@o2.pl)
*/
#include <linux/hid.h>
#include <linux/init.h>
#include <linux/math64.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/audio.h>
#include <sound/asoundef.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/hwdep.h>
#include <sound/info.h>
#include <sound/tlv.h>
#include "usbaudio.h"
#include "mixer.h"
#include "mixer_quirks.h"
#include "mixer_scarlett.h"
#include "mixer_scarlett_gen2.h"
#include "mixer_us16x08.h"
#include "mixer_s1810c.h"
#include "helper.h"
struct std_mono_table {
unsigned int unitid, control, cmask;
int val_type;
const char *name;
snd_kcontrol_tlv_rw_t *tlv_callback;
};
/* This function allows for the creation of standard UAC controls.
* See the quirks for M-Audio FTUs or Ebox-44.
* If you don't want to set a TLV callback pass NULL.
*
* Since there doesn't seem to be a devices that needs a multichannel
* version, we keep it mono for simplicity.
*/
static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer,
unsigned int unitid,
unsigned int control,
unsigned int cmask,
int val_type,
unsigned int idx_off,
const char *name,
snd_kcontrol_tlv_rw_t *tlv_callback)
{
struct usb_mixer_elem_info *cval;
struct snd_kcontrol *kctl;
cval = kzalloc(sizeof(*cval), GFP_KERNEL);
if (!cval)
return -ENOMEM;
snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
cval->val_type = val_type;
cval->channels = 1;
cval->control = control;
cval->cmask = cmask;
cval->idx_off = idx_off;
/* get_min_max() is called only for integer volumes later,
* so provide a short-cut for booleans */
cval->min = 0;
cval->max = 1;
cval->res = 0;
cval->dBmin = 0;
cval->dBmax = 0;
/* Create control */
kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval);
if (!kctl) {
kfree(cval);
return -ENOMEM;
}
/* Set name */
snprintf(kctl->id.name, sizeof(kctl->id.name), name);
kctl->private_free = snd_usb_mixer_elem_free;
/* set TLV */
if (tlv_callback) {
kctl->tlv.c = tlv_callback;
kctl->vd[0].access |=
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
}
/* Add control to mixer */
return snd_usb_mixer_add_control(&cval->head, kctl);
}
static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer,
unsigned int unitid,
unsigned int control,
unsigned int cmask,
int val_type,
const char *name,
snd_kcontrol_tlv_rw_t *tlv_callback)
{
return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask,
val_type, 0 /* Offset */, name, tlv_callback);
}
/*
* Create a set of standard UAC controls from a table
*/
static int snd_create_std_mono_table(struct usb_mixer_interface *mixer,
const struct std_mono_table *t)
{
int err;
while (t->name != NULL) {
err = snd_create_std_mono_ctl(mixer, t->unitid, t->control,
t->cmask, t->val_type, t->name, t->tlv_callback);
if (err < 0)
return err;
t++;
}
return 0;
}
static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer,
int id,
usb_mixer_elem_resume_func_t resume,
const struct snd_kcontrol_new *knew,
struct usb_mixer_elem_list **listp)
{
struct usb_mixer_elem_list *list;
struct snd_kcontrol *kctl;
list = kzalloc(sizeof(*list), GFP_KERNEL);
if (!list)
return -ENOMEM;
if (listp)
*listp = list;
list->mixer = mixer;
list->id = id;
list->reset_resume = resume;
kctl = snd_ctl_new1(knew, list);
if (!kctl) {
kfree(list);
return -ENOMEM;
}
kctl->private_free = snd_usb_mixer_elem_free;
/* don't use snd_usb_mixer_add_control() here, this is a special list element */
return snd_usb_mixer_add_list(list, kctl, false);
}
/*
* Sound Blaster remote control configuration
*
* format of remote control data:
* Extigy: xx 00
* Audigy 2 NX: 06 80 xx 00 00 00
* Live! 24-bit: 06 80 xx yy 22 83
*/
static const struct rc_config {
u32 usb_id;
u8 offset;
u8 length;
u8 packet_length;
u8 min_packet_length; /* minimum accepted length of the URB result */
u8 mute_mixer_id;
u32 mute_code;
} rc_configs[] = {
{ USB_ID(0x041e, 0x3000), 0, 1, 2, 1, 18, 0x0013 }, /* Extigy */
{ USB_ID(0x041e, 0x3020), 2, 1, 6, 6, 18, 0x0013 }, /* Audigy 2 NX */
{ USB_ID(0x041e, 0x3040), 2, 2, 6, 6, 2, 0x6e91 }, /* Live! 24-bit */
{ USB_ID(0x041e, 0x3042), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 */
{ USB_ID(0x041e, 0x30df), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
{ USB_ID(0x041e, 0x3237), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
{ USB_ID(0x041e, 0x3263), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
{ USB_ID(0x041e, 0x3048), 2, 2, 6, 6, 2, 0x6e91 }, /* Toshiba SB0500 */
};
static void snd_usb_soundblaster_remote_complete(struct urb *urb)
{
struct usb_mixer_interface *mixer = urb->context;
const struct rc_config *rc = mixer->rc_cfg;
u32 code;
if (urb->status < 0 || urb->actual_length < rc->min_packet_length)
return;
code = mixer->rc_buffer[rc->offset];
if (rc->length == 2)
code |= mixer->rc_buffer[rc->offset + 1] << 8;
/* the Mute button actually changes the mixer control */
if (code == rc->mute_code)
snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id);
mixer->rc_code = code;
wmb();
wake_up(&mixer->rc_waitq);
}
static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf,
long count, loff_t *offset)
{
struct usb_mixer_interface *mixer = hw->private_data;
int err;
u32 rc_code;
if (count != 1 && count != 4)
return -EINVAL;
err = wait_event_interruptible(mixer->rc_waitq,
(rc_code = xchg(&mixer->rc_code, 0)) != 0);
if (err == 0) {
if (count == 1)
err = put_user(rc_code, buf);
else
err = put_user(rc_code, (u32 __user *)buf);
}
return err < 0 ? err : count;
}
static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file,
poll_table *wait)
{
struct usb_mixer_interface *mixer = hw->private_data;
poll_wait(file, &mixer->rc_waitq, wait);
return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0;
}
static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer)
{
struct snd_hwdep *hwdep;
int err, len, i;
for (i = 0; i < ARRAY_SIZE(rc_configs); ++i)
if (rc_configs[i].usb_id == mixer->chip->usb_id)
break;
if (i >= ARRAY_SIZE(rc_configs))
return 0;
mixer->rc_cfg = &rc_configs[i];
len = mixer->rc_cfg->packet_length;
init_waitqueue_head(&mixer->rc_waitq);
err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep);
if (err < 0)
return err;
snprintf(hwdep->name, sizeof(hwdep->name),
"%s remote control", mixer->chip->card->shortname);
hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC;
hwdep->private_data = mixer;
hwdep->ops.read = snd_usb_sbrc_hwdep_read;
hwdep->ops.poll = snd_usb_sbrc_hwdep_poll;
hwdep->exclusive = 1;
mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!mixer->rc_urb)
return -ENOMEM;
mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL);
if (!mixer->rc_setup_packet) {
usb_free_urb(mixer->rc_urb);
mixer->rc_urb = NULL;
return -ENOMEM;
}
mixer->rc_setup_packet->bRequestType =
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
mixer->rc_setup_packet->bRequest = UAC_GET_MEM;
mixer->rc_setup_packet->wValue = cpu_to_le16(0);
mixer->rc_setup_packet->wIndex = cpu_to_le16(0);
mixer->rc_setup_packet->wLength = cpu_to_le16(len);
usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev,
usb_rcvctrlpipe(mixer->chip->dev, 0),
(u8*)mixer->rc_setup_packet, mixer->rc_buffer, len,
snd_usb_soundblaster_remote_complete, mixer);
return 0;
}
#define snd_audigy2nx_led_info snd_ctl_boolean_mono_info
static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.integer.value[0] = kcontrol->private_value >> 8;
return 0;
}
static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer,
int value, int index)
{
struct snd_usb_audio *chip = mixer->chip;
int err;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
if (chip->usb_id == USB_ID(0x041e, 0x3042))
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), 0x24,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
!value, 0, NULL, 0);
/* USB X-Fi S51 Pro */
if (chip->usb_id == USB_ID(0x041e, 0x30df))
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), 0x24,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
!value, 0, NULL, 0);
else
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), 0x24,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
value, index + 2, NULL, 0);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
struct usb_mixer_interface *mixer = list->mixer;
int index = kcontrol->private_value & 0xff;
unsigned int value = ucontrol->value.integer.value[0];
int old_value = kcontrol->private_value >> 8;
int err;
if (value > 1)
return -EINVAL;
if (value == old_value)
return 0;
kcontrol->private_value = (value << 8) | index;
err = snd_audigy2nx_led_update(mixer, value, index);
return err < 0 ? err : 1;
}
static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list)
{
int priv_value = list->kctl->private_value;
return snd_audigy2nx_led_update(list->mixer, priv_value >> 8,
priv_value & 0xff);
}
/* name and private_value are set dynamically */
static const struct snd_kcontrol_new snd_audigy2nx_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.info = snd_audigy2nx_led_info,
.get = snd_audigy2nx_led_get,
.put = snd_audigy2nx_led_put,
};
static const char * const snd_audigy2nx_led_names[] = {
"CMSS LED Switch",
"Power LED Switch",
"Dolby Digital LED Switch",
};
static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer)
{
int i, err;
for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) {
struct snd_kcontrol_new knew;
/* USB X-Fi S51 doesn't have a CMSS LED */
if ((mixer->chip->usb_id == USB_ID(0x041e, 0x3042)) && i == 0)
continue;
/* USB X-Fi S51 Pro doesn't have one either */
if ((mixer->chip->usb_id == USB_ID(0x041e, 0x30df)) && i == 0)
continue;
if (i > 1 && /* Live24ext has 2 LEDs only */
(mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
mixer->chip->usb_id == USB_ID(0x041e, 0x3042) ||
mixer->chip->usb_id == USB_ID(0x041e, 0x30df) ||
mixer->chip->usb_id == USB_ID(0x041e, 0x3048)))
break;
knew = snd_audigy2nx_control;
knew.name = snd_audigy2nx_led_names[i];
knew.private_value = (1 << 8) | i; /* LED on as default */
err = add_single_ctl_with_resume(mixer, 0,
snd_audigy2nx_led_resume,
&knew, NULL);
if (err < 0)
return err;
}
return 0;
}
static void snd_audigy2nx_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
static const struct sb_jack {
int unitid;
const char *name;
} jacks_audigy2nx[] = {
{4, "dig in "},
{7, "line in"},
{19, "spk out"},
{20, "hph out"},
{-1, NULL}
}, jacks_live24ext[] = {
{4, "line in"}, /* &1=Line, &2=Mic*/
{3, "hph out"}, /* headphones */
{0, "RC "}, /* last command, 6 bytes see rc_config above */
{-1, NULL}
};
const struct sb_jack *jacks;
struct usb_mixer_interface *mixer = entry->private_data;
int i, err;
u8 buf[3];
snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname);
if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020))
jacks = jacks_audigy2nx;
else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
jacks = jacks_live24ext;
else
return;
for (i = 0; jacks[i].name; ++i) {
snd_iprintf(buffer, "%s: ", jacks[i].name);
err = snd_usb_lock_shutdown(mixer->chip);
if (err < 0)
return;
err = snd_usb_ctl_msg(mixer->chip->dev,
usb_rcvctrlpipe(mixer->chip->dev, 0),
UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS |
USB_RECIP_INTERFACE, 0,
jacks[i].unitid << 8, buf, 3);
snd_usb_unlock_shutdown(mixer->chip);
if (err == 3 && (buf[0] == 3 || buf[0] == 6))
snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]);
else
snd_iprintf(buffer, "?\n");
}
}
/* EMU0204 */
static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[2] = {"1/2", "3/4"};
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
}
static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.enumerated.item[0] = kcontrol->private_value;
return 0;
}
static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer,
int value)
{
struct snd_usb_audio *chip = mixer->chip;
int err;
unsigned char buf[2];
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
buf[0] = 0x01;
buf[1] = value ? 0x02 : 0x01;
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
0x0400, 0x0e00, buf, 2);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
struct usb_mixer_interface *mixer = list->mixer;
unsigned int value = ucontrol->value.enumerated.item[0];
int err;
if (value > 1)
return -EINVAL;
if (value == kcontrol->private_value)
return 0;
kcontrol->private_value = value;
err = snd_emu0204_ch_switch_update(mixer, value);
return err < 0 ? err : 1;
}
static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list)
{
return snd_emu0204_ch_switch_update(list->mixer,
list->kctl->private_value);
}
static const struct snd_kcontrol_new snd_emu0204_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Front Jack Channels",
.info = snd_emu0204_ch_switch_info,
.get = snd_emu0204_ch_switch_get,
.put = snd_emu0204_ch_switch_put,
.private_value = 0,
};
static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer)
{
return add_single_ctl_with_resume(mixer, 0,
snd_emu0204_ch_switch_resume,
&snd_emu0204_control, NULL);
}
/* ASUS Xonar U1 / U3 controls */
static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02);
return 0;
}
static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer,
unsigned char status)
{
struct snd_usb_audio *chip = mixer->chip;
int err;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), 0x08,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
50, 0, &status, 1);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
u8 old_status, new_status;
int err;
old_status = kcontrol->private_value;
if (ucontrol->value.integer.value[0])
new_status = old_status | 0x02;
else
new_status = old_status & ~0x02;
if (new_status == old_status)
return 0;
kcontrol->private_value = new_status;
err = snd_xonar_u1_switch_update(list->mixer, new_status);
return err < 0 ? err : 1;
}
static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list)
{
return snd_xonar_u1_switch_update(list->mixer,
list->kctl->private_value);
}
static const struct snd_kcontrol_new snd_xonar_u1_output_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Digital Playback Switch",
.info = snd_ctl_boolean_mono_info,
.get = snd_xonar_u1_switch_get,
.put = snd_xonar_u1_switch_put,
.private_value = 0x05,
};
static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer)
{
return add_single_ctl_with_resume(mixer, 0,
snd_xonar_u1_switch_resume,
&snd_xonar_u1_output_switch, NULL);
}
/* Digidesign Mbox 1 clock source switch (internal/spdif) */
static int snd_mbox1_switch_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.enumerated.item[0] = kctl->private_value;
return 0;
}
static int snd_mbox1_switch_update(struct usb_mixer_interface *mixer, int val)
{
struct snd_usb_audio *chip = mixer->chip;
int err;
unsigned char buff[3];
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
/* Prepare for magic command to toggle clock source */
err = snd_usb_ctl_msg(chip->dev,
usb_rcvctrlpipe(chip->dev, 0), 0x81,
USB_DIR_IN |
USB_TYPE_CLASS |
USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1);
if (err < 0)
goto err;
err = snd_usb_ctl_msg(chip->dev,
usb_rcvctrlpipe(chip->dev, 0), 0x81,
USB_DIR_IN |
USB_TYPE_CLASS |
USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
if (err < 0)
goto err;
/* 2 possibilities: Internal -> send sample rate
* S/PDIF sync -> send zeroes
* NB: Sample rate locked to 48kHz on purpose to
* prevent user from resetting the sample rate
* while S/PDIF sync is enabled and confusing
* this configuration.
*/
if (val == 0) {
buff[0] = 0x80;
buff[1] = 0xbb;
buff[2] = 0x00;
} else {
buff[0] = buff[1] = buff[2] = 0x00;
}
/* Send the magic command to toggle the clock source */
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), 0x1,
USB_TYPE_CLASS |
USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
if (err < 0)
goto err;
err = snd_usb_ctl_msg(chip->dev,
usb_rcvctrlpipe(chip->dev, 0), 0x81,
USB_DIR_IN |
USB_TYPE_CLASS |
USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
if (err < 0)
goto err;
err = snd_usb_ctl_msg(chip->dev,
usb_rcvctrlpipe(chip->dev, 0), 0x81,
USB_DIR_IN |
USB_TYPE_CLASS |
USB_RECIP_ENDPOINT, 0x100, 0x2, buff, 3);
if (err < 0)
goto err;
err:
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_mbox1_switch_put(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
struct usb_mixer_interface *mixer = list->mixer;
int err;
bool cur_val, new_val;
cur_val = kctl->private_value;
new_val = ucontrol->value.enumerated.item[0];
if (cur_val == new_val)
return 0;
kctl->private_value = new_val;
err = snd_mbox1_switch_update(mixer, new_val);
return err < 0 ? err : 1;
}
static int snd_mbox1_switch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *const texts[2] = {
"Internal",
"S/PDIF"
};
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
}
static int snd_mbox1_switch_resume(struct usb_mixer_elem_list *list)
{
return snd_mbox1_switch_update(list->mixer, list->kctl->private_value);
}
static const struct snd_kcontrol_new snd_mbox1_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Clock Source",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = snd_mbox1_switch_info,
.get = snd_mbox1_switch_get,
.put = snd_mbox1_switch_put,
.private_value = 0
};
static int snd_mbox1_create_sync_switch(struct usb_mixer_interface *mixer)
{
return add_single_ctl_with_resume(mixer, 0,
snd_mbox1_switch_resume,
&snd_mbox1_switch, NULL);
}
/* Native Instruments device quirks */
#define _MAKE_NI_CONTROL(bRequest,wIndex) ((bRequest) << 16 | (wIndex))
static int snd_ni_control_init_val(struct usb_mixer_interface *mixer,
struct snd_kcontrol *kctl)
{
struct usb_device *dev = mixer->chip->dev;
unsigned int pval = kctl->private_value;
u8 value;
int err;
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
(pval >> 16) & 0xff,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0, pval & 0xffff, &value, 1);
if (err < 0) {
dev_err(&dev->dev,
"unable to issue vendor read request (ret = %d)", err);
return err;
}
kctl->private_value |= ((unsigned int)value << 24);
return 0;
}
static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.integer.value[0] = kcontrol->private_value >> 24;
return 0;
}
static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list)
{
struct snd_usb_audio *chip = list->mixer->chip;
unsigned int pval = list->kctl->private_value;
int err;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
err = usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0),
(pval >> 16) & 0xff,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
pval >> 24, pval & 0xffff, NULL, 0, 1000);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
u8 oldval = (kcontrol->private_value >> 24) & 0xff;
u8 newval = ucontrol->value.integer.value[0];
int err;
if (oldval == newval)
return 0;
kcontrol->private_value &= ~(0xff << 24);
kcontrol->private_value |= (unsigned int)newval << 24;
err = snd_ni_update_cur_val(list);
return err < 0 ? err : 1;
}
static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = {
{
.name = "Direct Thru Channel A",
.private_value = _MAKE_NI_CONTROL(0x01, 0x03),
},
{
.name = "Direct Thru Channel B",
.private_value = _MAKE_NI_CONTROL(0x01, 0x05),
},
{
.name = "Phono Input Channel A",
.private_value = _MAKE_NI_CONTROL(0x02, 0x03),
},
{
.name = "Phono Input Channel B",
.private_value = _MAKE_NI_CONTROL(0x02, 0x05),
},
};
static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = {
{
.name = "Direct Thru Channel A",
.private_value = _MAKE_NI_CONTROL(0x01, 0x03),
},
{
.name = "Direct Thru Channel B",
.private_value = _MAKE_NI_CONTROL(0x01, 0x05),
},
{
.name = "Direct Thru Channel C",
.private_value = _MAKE_NI_CONTROL(0x01, 0x07),
},
{
.name = "Direct Thru Channel D",
.private_value = _MAKE_NI_CONTROL(0x01, 0x09),
},
{
.name = "Phono Input Channel A",
.private_value = _MAKE_NI_CONTROL(0x02, 0x03),
},
{
.name = "Phono Input Channel B",
.private_value = _MAKE_NI_CONTROL(0x02, 0x05),
},
{
.name = "Phono Input Channel C",
.private_value = _MAKE_NI_CONTROL(0x02, 0x07),
},
{
.name = "Phono Input Channel D",
.private_value = _MAKE_NI_CONTROL(0x02, 0x09),
},
};
static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer,
const struct snd_kcontrol_new *kc,
unsigned int count)
{
int i, err = 0;
struct snd_kcontrol_new template = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.get = snd_nativeinstruments_control_get,
.put = snd_nativeinstruments_control_put,
.info = snd_ctl_boolean_mono_info,
};
for (i = 0; i < count; i++) {
struct usb_mixer_elem_list *list;
template.name = kc[i].name;
template.private_value = kc[i].private_value;
err = add_single_ctl_with_resume(mixer, 0,
snd_ni_update_cur_val,
&template, &list);
if (err < 0)
break;
snd_ni_control_init_val(mixer, list->kctl);
}
return err;
}
/* M-Audio FastTrack Ultra quirks */
/* FTU Effect switch (also used by C400/C600) */
static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *const texts[8] = {
"Room 1", "Room 2", "Room 3", "Hall 1",
"Hall 2", "Plate", "Delay", "Echo"
};
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
}
static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer,
struct snd_kcontrol *kctl)
{
struct usb_device *dev = mixer->chip->dev;
unsigned int pval = kctl->private_value;
int err;
unsigned char value[2];
value[0] = 0x00;
value[1] = 0x00;
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
pval & 0xff00,
snd_usb_ctrl_intf(mixer->chip) | ((pval & 0xff) << 8),
value, 2);
if (err < 0)
return err;
kctl->private_value |= (unsigned int)value[0] << 24;
return 0;
}
static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.enumerated.item[0] = kctl->private_value >> 24;
return 0;
}
static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list)
{
struct snd_usb_audio *chip = list->mixer->chip;
unsigned int pval = list->kctl->private_value;
unsigned char value[2];
int err;
value[0] = pval >> 24;
value[1] = 0;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0),
UAC_SET_CUR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
pval & 0xff00,
snd_usb_ctrl_intf(chip) | ((pval & 0xff) << 8),
value, 2);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
unsigned int pval = list->kctl->private_value;
int cur_val, err, new_val;
cur_val = pval >> 24;
new_val = ucontrol->value.enumerated.item[0];
if (cur_val == new_val)
return 0;
kctl->private_value &= ~(0xff << 24);
kctl->private_value |= new_val << 24;
err = snd_ftu_eff_switch_update(list);
return err < 0 ? err : 1;
}
static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer,
int validx, int bUnitID)
{
static struct snd_kcontrol_new template = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Effect Program Switch",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = snd_ftu_eff_switch_info,
.get = snd_ftu_eff_switch_get,
.put = snd_ftu_eff_switch_put
};
struct usb_mixer_elem_list *list;
int err;
err = add_single_ctl_with_resume(mixer, bUnitID,
snd_ftu_eff_switch_update,
&template, &list);
if (err < 0)
return err;
list->kctl->private_value = (validx << 8) | bUnitID;
snd_ftu_eff_switch_init(mixer, list->kctl);
return 0;
}
/* Create volume controls for FTU devices*/
static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer)
{
char name[64];
unsigned int control, cmask;
int in, out, err;
const unsigned int id = 5;
const int val_type = USB_MIXER_S16;
for (out = 0; out < 8; out++) {
control = out + 1;
for (in = 0; in < 8; in++) {
cmask = 1 << in;
snprintf(name, sizeof(name),
"AIn%d - Out%d Capture Volume",
in + 1, out + 1);
err = snd_create_std_mono_ctl(mixer, id, control,
cmask, val_type, name,
&snd_usb_mixer_vol_tlv);
if (err < 0)
return err;
}
for (in = 8; in < 16; in++) {
cmask = 1 << in;
snprintf(name, sizeof(name),
"DIn%d - Out%d Playback Volume",
in - 7, out + 1);
err = snd_create_std_mono_ctl(mixer, id, control,
cmask, val_type, name,
&snd_usb_mixer_vol_tlv);
if (err < 0)
return err;
}
}
return 0;
}
/* This control needs a volume quirk, see mixer.c */
static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
{
static const char name[] = "Effect Volume";
const unsigned int id = 6;
const int val_type = USB_MIXER_U8;
const unsigned int control = 2;
const unsigned int cmask = 0;
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
name, snd_usb_mixer_vol_tlv);
}
/* This control needs a volume quirk, see mixer.c */
static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
{
static const char name[] = "Effect Duration";
const unsigned int id = 6;
const int val_type = USB_MIXER_S16;
const unsigned int control = 3;
const unsigned int cmask = 0;
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
name, snd_usb_mixer_vol_tlv);
}
/* This control needs a volume quirk, see mixer.c */
static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
{
static const char name[] = "Effect Feedback Volume";
const unsigned int id = 6;
const int val_type = USB_MIXER_U8;
const unsigned int control = 4;
const unsigned int cmask = 0;
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
name, NULL);
}
static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer)
{
unsigned int cmask;
int err, ch;
char name[48];
const unsigned int id = 7;
const int val_type = USB_MIXER_S16;
const unsigned int control = 7;
for (ch = 0; ch < 4; ++ch) {
cmask = 1 << ch;
snprintf(name, sizeof(name),
"Effect Return %d Volume", ch + 1);
err = snd_create_std_mono_ctl(mixer, id, control,
cmask, val_type, name,
snd_usb_mixer_vol_tlv);
if (err < 0)
return err;
}
return 0;
}
static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer)
{
unsigned int cmask;
int err, ch;
char name[48];
const unsigned int id = 5;
const int val_type = USB_MIXER_S16;
const unsigned int control = 9;
for (ch = 0; ch < 8; ++ch) {
cmask = 1 << ch;
snprintf(name, sizeof(name),
"Effect Send AIn%d Volume", ch + 1);
err = snd_create_std_mono_ctl(mixer, id, control, cmask,
val_type, name,
snd_usb_mixer_vol_tlv);
if (err < 0)
return err;
}
for (ch = 8; ch < 16; ++ch) {
cmask = 1 << ch;
snprintf(name, sizeof(name),
"Effect Send DIn%d Volume", ch - 7);
err = snd_create_std_mono_ctl(mixer, id, control, cmask,
val_type, name,
snd_usb_mixer_vol_tlv);
if (err < 0)
return err;
}
return 0;
}
static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer)
{
int err;
err = snd_ftu_create_volume_ctls(mixer);
if (err < 0)
return err;
err = snd_ftu_create_effect_switch(mixer, 1, 6);
if (err < 0)
return err;
err = snd_ftu_create_effect_volume_ctl(mixer);
if (err < 0)
return err;
err = snd_ftu_create_effect_duration_ctl(mixer);
if (err < 0)
return err;
err = snd_ftu_create_effect_feedback_ctl(mixer);
if (err < 0)
return err;
err = snd_ftu_create_effect_return_ctls(mixer);
if (err < 0)
return err;
err = snd_ftu_create_effect_send_ctls(mixer);
if (err < 0)
return err;
return 0;
}
void snd_emuusb_set_samplerate(struct snd_usb_audio *chip,
unsigned char samplerate_id)
{
struct usb_mixer_interface *mixer;
struct usb_mixer_elem_info *cval;
int unitid = 12; /* SampleRate ExtensionUnit ID */
list_for_each_entry(mixer, &chip->mixer_list, list) {
if (mixer->id_elems[unitid]) {
cval = mixer_elem_list_to_info(mixer->id_elems[unitid]);
snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR,
cval->control << 8,
samplerate_id);
snd_usb_mixer_notify_id(mixer, unitid);
break;
}
}
}
/* M-Audio Fast Track C400/C600 */
/* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */
static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer)
{
char name[64];
unsigned int cmask, offset;
int out, chan, err;
int num_outs = 0;
int num_ins = 0;
const unsigned int id = 0x40;
const int val_type = USB_MIXER_S16;
const int control = 1;
switch (mixer->chip->usb_id) {
case USB_ID(0x0763, 0x2030):
num_outs = 6;
num_ins = 4;
break;
case USB_ID(0x0763, 0x2031):
num_outs = 8;
num_ins = 6;
break;
}
for (chan = 0; chan < num_outs + num_ins; chan++) {
for (out = 0; out < num_outs; out++) {
if (chan < num_outs) {
snprintf(name, sizeof(name),
"PCM%d-Out%d Playback Volume",
chan + 1, out + 1);
} else {
snprintf(name, sizeof(name),
"In%d-Out%d Playback Volume",
chan - num_outs + 1, out + 1);
}
cmask = (out == 0) ? 0 : 1 << (out - 1);
offset = chan * num_outs;
err = snd_create_std_mono_ctl_offset(mixer, id, control,
cmask, val_type, offset, name,
&snd_usb_mixer_vol_tlv);
if (err < 0)
return err;
}
}
return 0;
}
/* This control needs a volume quirk, see mixer.c */
static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
{
static const char name[] = "Effect Volume";
const unsigned int id = 0x43;
const int val_type = USB_MIXER_U8;
const unsigned int control = 3;
const unsigned int cmask = 0;
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
name, snd_usb_mixer_vol_tlv);
}
/* This control needs a volume quirk, see mixer.c */
static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
{
static const char name[] = "Effect Duration";
const unsigned int id = 0x43;
const int val_type = USB_MIXER_S16;
const unsigned int control = 4;
const unsigned int cmask = 0;
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
name, snd_usb_mixer_vol_tlv);
}
/* This control needs a volume quirk, see mixer.c */
static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
{
static const char name[] = "Effect Feedback Volume";
const unsigned int id = 0x43;
const int val_type = USB_MIXER_U8;
const unsigned int control = 5;
const unsigned int cmask = 0;
return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
name, NULL);
}
static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer)
{
char name[64];
unsigned int cmask;
int chan, err;
int num_outs = 0;
int num_ins = 0;
const unsigned int id = 0x42;
const int val_type = USB_MIXER_S16;
const int control = 1;
switch (mixer->chip->usb_id) {
case USB_ID(0x0763, 0x2030):
num_outs = 6;
num_ins = 4;
break;
case USB_ID(0x0763, 0x2031):
num_outs = 8;
num_ins = 6;
break;
}
for (chan = 0; chan < num_outs + num_ins; chan++) {
if (chan < num_outs) {
snprintf(name, sizeof(name),
"Effect Send DOut%d",
chan + 1);
} else {
snprintf(name, sizeof(name),
"Effect Send AIn%d",
chan - num_outs + 1);
}
cmask = (chan == 0) ? 0 : 1 << (chan - 1);
err = snd_create_std_mono_ctl(mixer, id, control,
cmask, val_type, name,
&snd_usb_mixer_vol_tlv);
if (err < 0)
return err;
}
return 0;
}
static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer)
{
char name[64];
unsigned int cmask;
int chan, err;
int num_outs = 0;
int offset = 0;
const unsigned int id = 0x40;
const int val_type = USB_MIXER_S16;
const int control = 1;
switch (mixer->chip->usb_id) {
case USB_ID(0x0763, 0x2030):
num_outs = 6;
offset = 0x3c;
/* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */
break;
case USB_ID(0x0763, 0x2031):
num_outs = 8;
offset = 0x70;
/* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */
break;
}
for (chan = 0; chan < num_outs; chan++) {
snprintf(name, sizeof(name),
"Effect Return %d",
chan + 1);
cmask = (chan == 0) ? 0 :
1 << (chan + (chan % 2) * num_outs - 1);
err = snd_create_std_mono_ctl_offset(mixer, id, control,
cmask, val_type, offset, name,
&snd_usb_mixer_vol_tlv);
if (err < 0)
return err;
}
return 0;
}
static int snd_c400_create_mixer(struct usb_mixer_interface *mixer)
{
int err;
err = snd_c400_create_vol_ctls(mixer);
if (err < 0)
return err;
err = snd_c400_create_effect_vol_ctls(mixer);
if (err < 0)
return err;
err = snd_c400_create_effect_ret_vol_ctls(mixer);
if (err < 0)
return err;
err = snd_ftu_create_effect_switch(mixer, 2, 0x43);
if (err < 0)
return err;
err = snd_c400_create_effect_volume_ctl(mixer);
if (err < 0)
return err;
err = snd_c400_create_effect_duration_ctl(mixer);
if (err < 0)
return err;
err = snd_c400_create_effect_feedback_ctl(mixer);
if (err < 0)
return err;
return 0;
}
/*
* The mixer units for Ebox-44 are corrupt, and even where they
* are valid they presents mono controls as L and R channels of
* stereo. So we provide a good mixer here.
*/
static const struct std_mono_table ebox44_table[] = {
{
.unitid = 4,
.control = 1,
.cmask = 0x0,
.val_type = USB_MIXER_INV_BOOLEAN,
.name = "Headphone Playback Switch"
},
{
.unitid = 4,
.control = 2,
.cmask = 0x1,
.val_type = USB_MIXER_S16,
.name = "Headphone A Mix Playback Volume"
},
{
.unitid = 4,
.control = 2,
.cmask = 0x2,
.val_type = USB_MIXER_S16,
.name = "Headphone B Mix Playback Volume"
},
{
.unitid = 7,
.control = 1,
.cmask = 0x0,
.val_type = USB_MIXER_INV_BOOLEAN,
.name = "Output Playback Switch"
},
{
.unitid = 7,
.control = 2,
.cmask = 0x1,
.val_type = USB_MIXER_S16,
.name = "Output A Playback Volume"
},
{
.unitid = 7,
.control = 2,
.cmask = 0x2,
.val_type = USB_MIXER_S16,
.name = "Output B Playback Volume"
},
{
.unitid = 10,
.control = 1,
.cmask = 0x0,
.val_type = USB_MIXER_INV_BOOLEAN,
.name = "Input Capture Switch"
},
{
.unitid = 10,
.control = 2,
.cmask = 0x1,
.val_type = USB_MIXER_S16,
.name = "Input A Capture Volume"
},
{
.unitid = 10,
.control = 2,
.cmask = 0x2,
.val_type = USB_MIXER_S16,
.name = "Input B Capture Volume"
},
{}
};
/* Audio Advantage Micro II findings:
*
* Mapping spdif AES bits to vendor register.bit:
* AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00
* AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01
* AES2: [0 0 0 0 0 0 0 0]
* AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request
* (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices
*
* power on values:
* r2: 0x10
* r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set
* just after it to 0xa0, presumably it disables/mutes some analog
* parts when there is no audio.)
* r9: 0x28
*
* Optical transmitter on/off:
* vendor register.bit: 9.1
* 0 - on (0x28 register value)
* 1 - off (0x2a register value)
*
*/
static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
struct snd_usb_audio *chip = list->mixer->chip;
int err;
struct usb_interface *iface;
struct usb_host_interface *alts;
unsigned int ep;
unsigned char data[3];
int rate;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff;
ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff;
ucontrol->value.iec958.status[2] = 0x00;
/* use known values for that card: interface#1 altsetting#1 */
iface = usb_ifnum_to_if(chip->dev, 1);
if (!iface || iface->num_altsetting < 2) {
err = -EINVAL;
goto end;
}
alts = &iface->altsetting[1];
if (get_iface_desc(alts)->bNumEndpoints < 1) {
err = -EINVAL;
goto end;
}
ep = get_endpoint(alts, 0)->bEndpointAddress;
err = snd_usb_ctl_msg(chip->dev,
usb_rcvctrlpipe(chip->dev, 0),
UAC_GET_CUR,
USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN,
UAC_EP_CS_ATTR_SAMPLE_RATE << 8,
ep,
data,
sizeof(data));
if (err < 0)
goto end;
rate = data[0] | (data[1] << 8) | (data[2] << 16);
ucontrol->value.iec958.status[3] = (rate == 48000) ?
IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100;
err = 0;
end:
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list)
{
struct snd_usb_audio *chip = list->mixer->chip;
unsigned int pval = list->kctl->private_value;
u8 reg;
int err;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
reg = ((pval >> 4) & 0xf0) | (pval & 0x0f);
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0),
UAC_SET_CUR,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
reg,
2,
NULL,
0);
if (err < 0)
goto end;
reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20;
reg |= (pval >> 12) & 0x0f;
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0),
UAC_SET_CUR,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
reg,
3,
NULL,
0);
if (err < 0)
goto end;
end:
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
unsigned int pval, pval_old;
int err;
pval = pval_old = kcontrol->private_value;
pval &= 0xfffff0f0;
pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8;
pval |= (ucontrol->value.iec958.status[0] & 0x0f);
pval &= 0xffff0fff;
pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8;
/* The frequency bits in AES3 cannot be set via register access. */
/* Silently ignore any bits from the request that cannot be set. */
if (pval == pval_old)
return 0;
kcontrol->private_value = pval;
err = snd_microii_spdif_default_update(list);
return err < 0 ? err : 1;
}
static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0x0f;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0x00;
ucontrol->value.iec958.status[3] = 0x00;
return 0;
}
static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02);
return 0;
}
static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list)
{
struct snd_usb_audio *chip = list->mixer->chip;
u8 reg = list->kctl->private_value;
int err;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0),
UAC_SET_CUR,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
reg,
9,
NULL,
0);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
u8 reg;
int err;
reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a;
if (reg != list->kctl->private_value)
return 0;
kcontrol->private_value = reg;
err = snd_microii_spdif_switch_update(list);
return err < 0 ? err : 1;
}
static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = snd_microii_spdif_info,
.get = snd_microii_spdif_default_get,
.put = snd_microii_spdif_default_put,
.private_value = 0x00000100UL,/* reset value */
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
.info = snd_microii_spdif_info,
.get = snd_microii_spdif_mask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
.info = snd_ctl_boolean_mono_info,
.get = snd_microii_spdif_switch_get,
.put = snd_microii_spdif_switch_put,
.private_value = 0x00000028UL,/* reset value */
}
};
static int snd_microii_controls_create(struct usb_mixer_interface *mixer)
{
int err, i;
static const usb_mixer_elem_resume_func_t resume_funcs[] = {
snd_microii_spdif_default_update,
NULL,
snd_microii_spdif_switch_update
};
for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) {
err = add_single_ctl_with_resume(mixer, 0,
resume_funcs[i],
&snd_microii_mixer_spdif[i],
NULL);
if (err < 0)
return err;
}
return 0;
}
/* Creative Sound Blaster E1 */
static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.integer.value[0] = kcontrol->private_value;
return 0;
}
static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer,
unsigned char state)
{
struct snd_usb_audio *chip = mixer->chip;
int err;
unsigned char buff[2];
buff[0] = 0x02;
buff[1] = state ? 0x02 : 0x00;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT,
USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT,
0x0202, 3, buff, 2);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
unsigned char value = !!ucontrol->value.integer.value[0];
int err;
if (kcontrol->private_value == value)
return 0;
kcontrol->private_value = value;
err = snd_soundblaster_e1_switch_update(list->mixer, value);
return err < 0 ? err : 1;
}
static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list)
{
return snd_soundblaster_e1_switch_update(list->mixer,
list->kctl->private_value);
}
static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *const texts[2] = {
"Mic", "Aux"
};
return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
}
static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Input Source",
.info = snd_soundblaster_e1_switch_info,
.get = snd_soundblaster_e1_switch_get,
.put = snd_soundblaster_e1_switch_put,
.private_value = 0,
};
static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer)
{
return add_single_ctl_with_resume(mixer, 0,
snd_soundblaster_e1_switch_resume,
&snd_soundblaster_e1_input_switch,
NULL);
}
static void dell_dock_init_vol(struct snd_usb_audio *chip, int ch, int id)
{
u16 buf = 0;
snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
ch, snd_usb_ctrl_intf(chip) | (id << 8),
&buf, 2);
}
static int dell_dock_mixer_init(struct usb_mixer_interface *mixer)
{
/* fix to 0dB playback volumes */
dell_dock_init_vol(mixer->chip, 1, 16);
dell_dock_init_vol(mixer->chip, 2, 16);
dell_dock_init_vol(mixer->chip, 1, 19);
dell_dock_init_vol(mixer->chip, 2, 19);
return 0;
}
/* RME Class Compliant device quirks */
#define SND_RME_GET_STATUS1 23
#define SND_RME_GET_CURRENT_FREQ 17
#define SND_RME_CLK_SYSTEM_SHIFT 16
#define SND_RME_CLK_SYSTEM_MASK 0x1f
#define SND_RME_CLK_AES_SHIFT 8
#define SND_RME_CLK_SPDIF_SHIFT 12
#define SND_RME_CLK_AES_SPDIF_MASK 0xf
#define SND_RME_CLK_SYNC_SHIFT 6
#define SND_RME_CLK_SYNC_MASK 0x3
#define SND_RME_CLK_FREQMUL_SHIFT 18
#define SND_RME_CLK_FREQMUL_MASK 0x7
#define SND_RME_CLK_SYSTEM(x) \
((x >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK)
#define SND_RME_CLK_AES(x) \
((x >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
#define SND_RME_CLK_SPDIF(x) \
((x >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
#define SND_RME_CLK_SYNC(x) \
((x >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK)
#define SND_RME_CLK_FREQMUL(x) \
((x >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK)
#define SND_RME_CLK_AES_LOCK 0x1
#define SND_RME_CLK_AES_SYNC 0x4
#define SND_RME_CLK_SPDIF_LOCK 0x2
#define SND_RME_CLK_SPDIF_SYNC 0x8
#define SND_RME_SPDIF_IF_SHIFT 4
#define SND_RME_SPDIF_FORMAT_SHIFT 5
#define SND_RME_BINARY_MASK 0x1
#define SND_RME_SPDIF_IF(x) \
((x >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK)
#define SND_RME_SPDIF_FORMAT(x) \
((x >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK)
static const u32 snd_rme_rate_table[] = {
32000, 44100, 48000, 50000,
64000, 88200, 96000, 100000,
128000, 176400, 192000, 200000,
256000, 352800, 384000, 400000,
512000, 705600, 768000, 800000
};
/* maximum number of items for AES and S/PDIF rates for above table */
#define SND_RME_RATE_IDX_AES_SPDIF_NUM 12
enum snd_rme_domain {
SND_RME_DOMAIN_SYSTEM,
SND_RME_DOMAIN_AES,
SND_RME_DOMAIN_SPDIF
};
enum snd_rme_clock_status {
SND_RME_CLOCK_NOLOCK,
SND_RME_CLOCK_LOCK,
SND_RME_CLOCK_SYNC
};
static int snd_rme_read_value(struct snd_usb_audio *chip,
unsigned int item,
u32 *value)
{
struct usb_device *dev = chip->dev;
int err;
err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
item,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, 0,
value, sizeof(*value));
if (err < 0)
dev_err(&dev->dev,
"unable to issue vendor read request %d (ret = %d)",
item, err);
return err;
}
static int snd_rme_get_status1(struct snd_kcontrol *kcontrol,
u32 *status1)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
struct snd_usb_audio *chip = list->mixer->chip;
int err;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_rme_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 status1;
u32 rate = 0;
int idx;
int err;
err = snd_rme_get_status1(kcontrol, &status1);
if (err < 0)
return err;
switch (kcontrol->private_value) {
case SND_RME_DOMAIN_SYSTEM:
idx = SND_RME_CLK_SYSTEM(status1);
if (idx < ARRAY_SIZE(snd_rme_rate_table))
rate = snd_rme_rate_table[idx];
break;
case SND_RME_DOMAIN_AES:
idx = SND_RME_CLK_AES(status1);
if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
rate = snd_rme_rate_table[idx];
break;
case SND_RME_DOMAIN_SPDIF:
idx = SND_RME_CLK_SPDIF(status1);
if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
rate = snd_rme_rate_table[idx];
break;
default:
return -EINVAL;
}
ucontrol->value.integer.value[0] = rate;
return 0;
}
static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 status1;
int idx = SND_RME_CLOCK_NOLOCK;
int err;
err = snd_rme_get_status1(kcontrol, &status1);
if (err < 0)
return err;
switch (kcontrol->private_value) {
case SND_RME_DOMAIN_AES: /* AES */
if (status1 & SND_RME_CLK_AES_SYNC)
idx = SND_RME_CLOCK_SYNC;
else if (status1 & SND_RME_CLK_AES_LOCK)
idx = SND_RME_CLOCK_LOCK;
break;
case SND_RME_DOMAIN_SPDIF: /* SPDIF */
if (status1 & SND_RME_CLK_SPDIF_SYNC)
idx = SND_RME_CLOCK_SYNC;
else if (status1 & SND_RME_CLK_SPDIF_LOCK)
idx = SND_RME_CLOCK_LOCK;
break;
default:
return -EINVAL;
}
ucontrol->value.enumerated.item[0] = idx;
return 0;
}
static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 status1;
int err;
err = snd_rme_get_status1(kcontrol, &status1);
if (err < 0)
return err;
ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1);
return 0;
}
static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 status1;
int err;
err = snd_rme_get_status1(kcontrol, &status1);
if (err < 0)
return err;
ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1);
return 0;
}
static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u32 status1;
int err;
err = snd_rme_get_status1(kcontrol, &status1);
if (err < 0)
return err;
ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1);
return 0;
}
static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
struct snd_usb_audio *chip = list->mixer->chip;
u32 status1;
const u64 num = 104857600000000ULL;
u32 den;
unsigned int freq;
int err;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1);
if (err < 0)
goto end;
err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den);
if (err < 0)
goto end;
freq = (den == 0) ? 0 : div64_u64(num, den);
freq <<= SND_RME_CLK_FREQMUL(status1);
ucontrol->value.integer.value[0] = freq;
end:
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_rme_rate_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
switch (kcontrol->private_value) {
case SND_RME_DOMAIN_SYSTEM:
uinfo->value.integer.min = 32000;
uinfo->value.integer.max = 800000;
break;
case SND_RME_DOMAIN_AES:
case SND_RME_DOMAIN_SPDIF:
default:
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 200000;
}
uinfo->value.integer.step = 0;
return 0;
}
static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *const sync_states[] = {
"No Lock", "Lock", "Sync"
};
return snd_ctl_enum_info(uinfo, 1,
ARRAY_SIZE(sync_states), sync_states);
}
static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *const spdif_if[] = {
"Coaxial", "Optical"
};
return snd_ctl_enum_info(uinfo, 1,
ARRAY_SIZE(spdif_if), spdif_if);
}
static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *const optical_type[] = {
"Consumer", "Professional"
};
return snd_ctl_enum_info(uinfo, 1,
ARRAY_SIZE(optical_type), optical_type);
}
static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *const sync_sources[] = {
"Internal", "AES", "SPDIF", "Internal"
};
return snd_ctl_enum_info(uinfo, 1,
ARRAY_SIZE(sync_sources), sync_sources);
}
static const struct snd_kcontrol_new snd_rme_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "AES Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_rate_info,
.get = snd_rme_rate_get,
.private_value = SND_RME_DOMAIN_AES
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "AES Sync",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_sync_state_info,
.get = snd_rme_sync_state_get,
.private_value = SND_RME_DOMAIN_AES
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "SPDIF Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_rate_info,
.get = snd_rme_rate_get,
.private_value = SND_RME_DOMAIN_SPDIF
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "SPDIF Sync",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_sync_state_info,
.get = snd_rme_sync_state_get,
.private_value = SND_RME_DOMAIN_SPDIF
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "SPDIF Interface",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_spdif_if_info,
.get = snd_rme_spdif_if_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "SPDIF Format",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_spdif_format_info,
.get = snd_rme_spdif_format_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Sync Source",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_sync_source_info,
.get = snd_rme_sync_source_get
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "System Rate",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_rate_info,
.get = snd_rme_rate_get,
.private_value = SND_RME_DOMAIN_SYSTEM
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Current Frequency",
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = snd_rme_rate_info,
.get = snd_rme_current_freq_get
}
};
static int snd_rme_controls_create(struct usb_mixer_interface *mixer)
{
int err, i;
for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) {
err = add_single_ctl_with_resume(mixer, 0,
NULL,
&snd_rme_controls[i],
NULL);
if (err < 0)
return err;
}
return 0;
}
/*
* RME Babyface Pro (FS)
*
* These devices exposes a couple of DSP functions via request to EP0.
* Switches are available via control registers, while routing is controlled
* by controlling the volume on each possible crossing point.
* Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with
* 0dB being at dec. 32768.
*/
enum {
SND_BBFPRO_CTL_REG1 = 0,
SND_BBFPRO_CTL_REG2
};
#define SND_BBFPRO_CTL_REG_MASK 1
#define SND_BBFPRO_CTL_IDX_MASK 0xff
#define SND_BBFPRO_CTL_IDX_SHIFT 1
#define SND_BBFPRO_CTL_VAL_MASK 1
#define SND_BBFPRO_CTL_VAL_SHIFT 9
#define SND_BBFPRO_CTL_REG1_CLK_MASTER 0
#define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1
#define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7
#define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8
#define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10
#define SND_BBFPRO_CTL_REG2_48V_AN1 0
#define SND_BBFPRO_CTL_REG2_48V_AN2 1
#define SND_BBFPRO_CTL_REG2_SENS_IN3 2
#define SND_BBFPRO_CTL_REG2_SENS_IN4 3
#define SND_BBFPRO_CTL_REG2_PAD_AN1 4
#define SND_BBFPRO_CTL_REG2_PAD_AN2 5
#define SND_BBFPRO_MIXER_IDX_MASK 0x1ff
#define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff
#define SND_BBFPRO_MIXER_VAL_SHIFT 9
#define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf
#define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB
#define SND_BBFPRO_USBREQ_CTL_REG1 0x10
#define SND_BBFPRO_USBREQ_CTL_REG2 0x17
#define SND_BBFPRO_USBREQ_MIXER 0x12
static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg,
u8 index, u8 value)
{
int err;
u16 usb_req, usb_idx, usb_val;
struct snd_usb_audio *chip = mixer->chip;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
if (reg == SND_BBFPRO_CTL_REG1) {
usb_req = SND_BBFPRO_USBREQ_CTL_REG1;
if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
usb_idx = 3;
usb_val = value ? 3 : 0;
} else {
usb_idx = 1 << index;
usb_val = value ? usb_idx : 0;
}
} else {
usb_req = SND_BBFPRO_USBREQ_CTL_REG2;
usb_idx = 1 << index;
usb_val = value ? usb_idx : 0;
}
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0), usb_req,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
usb_val, usb_idx, NULL, 0);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 reg, idx, val;
int pv;
pv = kcontrol->private_value;
reg = pv & SND_BBFPRO_CTL_REG_MASK;
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT;
if ((reg == SND_BBFPRO_CTL_REG1 &&
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
(reg == SND_BBFPRO_CTL_REG2 &&
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
ucontrol->value.enumerated.item[0] = val;
} else {
ucontrol->value.integer.value[0] = val;
}
return 0;
}
static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
u8 reg, idx;
int pv;
pv = kcontrol->private_value;
reg = pv & SND_BBFPRO_CTL_REG_MASK;
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
if (reg == SND_BBFPRO_CTL_REG1 &&
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
static const char * const texts[2] = {
"AutoSync",
"Internal"
};
return snd_ctl_enum_info(uinfo, 1, 2, texts);
} else if (reg == SND_BBFPRO_CTL_REG2 &&
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) {
static const char * const texts[2] = {
"-10dBV",
"+4dBu"
};
return snd_ctl_enum_info(uinfo, 1, 2, texts);
}
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
return 0;
}
static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int err;
u8 reg, idx;
int old_value, pv, val;
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
struct usb_mixer_interface *mixer = list->mixer;
pv = kcontrol->private_value;
reg = pv & SND_BBFPRO_CTL_REG_MASK;
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
if ((reg == SND_BBFPRO_CTL_REG1 &&
idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
(reg == SND_BBFPRO_CTL_REG2 &&
(idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
val = ucontrol->value.enumerated.item[0];
} else {
val = ucontrol->value.integer.value[0];
}
if (val > 1)
return -EINVAL;
if (val == old_value)
return 0;
kcontrol->private_value = reg
| ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT)
| ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT);
err = snd_bbfpro_ctl_update(mixer, reg, idx, val);
return err < 0 ? err : 1;
}
static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list)
{
u8 reg, idx;
int value, pv;
pv = list->kctl->private_value;
reg = pv & SND_BBFPRO_CTL_REG_MASK;
idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
return snd_bbfpro_ctl_update(list->mixer, reg, idx, value);
}
static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index,
u32 value)
{
struct snd_usb_audio *chip = mixer->chip;
int err;
u16 idx;
u16 usb_idx, usb_val;
u32 v;
err = snd_usb_lock_shutdown(chip);
if (err < 0)
return err;
idx = index & SND_BBFPRO_MIXER_IDX_MASK;
// 18 bit linear volume, split so 2 bits end up in index.
v = value & SND_BBFPRO_MIXER_VAL_MASK;
usb_idx = idx | (v & 0x3) << 14;
usb_val = (v >> 2) & 0xffff;
err = snd_usb_ctl_msg(chip->dev,
usb_sndctrlpipe(chip->dev, 0),
SND_BBFPRO_USBREQ_MIXER,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_DEVICE,
usb_val, usb_idx, NULL, 0);
snd_usb_unlock_shutdown(chip);
return err;
}
static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.integer.value[0] =
kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
return 0;
}
static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN;
uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX;
return 0;
}
static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int err;
u16 idx;
u32 new_val, old_value, uvalue;
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
struct usb_mixer_interface *mixer = list->mixer;
uvalue = ucontrol->value.integer.value[0];
idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK;
old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
if (uvalue > SND_BBFPRO_MIXER_VAL_MAX)
return -EINVAL;
if (uvalue == old_value)
return 0;
new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK;
kcontrol->private_value = idx
| (new_val << SND_BBFPRO_MIXER_VAL_SHIFT);
err = snd_bbfpro_vol_update(mixer, idx, new_val);
return err < 0 ? err : 1;
}
static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list)
{
int pv = list->kctl->private_value;
u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK;
u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT)
& SND_BBFPRO_MIXER_VAL_MASK;
return snd_bbfpro_vol_update(list->mixer, idx, val);
}
// Predfine elements
static const struct snd_kcontrol_new snd_bbfpro_ctl_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.index = 0,
.info = snd_bbfpro_ctl_info,
.get = snd_bbfpro_ctl_get,
.put = snd_bbfpro_ctl_put
};
static const struct snd_kcontrol_new snd_bbfpro_vol_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.index = 0,
.info = snd_bbfpro_vol_info,
.get = snd_bbfpro_vol_get,
.put = snd_bbfpro_vol_put
};
static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg,
u8 index, char *name)
{
struct snd_kcontrol_new knew = snd_bbfpro_ctl_control;
knew.name = name;
knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK)
| ((index & SND_BBFPRO_CTL_IDX_MASK)
<< SND_BBFPRO_CTL_IDX_SHIFT);
return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume,
&knew, NULL);
}
static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index,
char *name)
{
struct snd_kcontrol_new knew = snd_bbfpro_vol_control;
knew.name = name;
knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK;
return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume,
&knew, NULL);
}
static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer)
{
int err, i, o;
char name[48];
static const char * const input[] = {
"AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3",
"ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
static const char * const output[] = {
"AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4",
"ADAT5", "ADAT6", "ADAT7", "ADAT8"};
for (o = 0 ; o < 12 ; ++o) {
for (i = 0 ; i < 12 ; ++i) {
// Line routing
snprintf(name, sizeof(name),
"%s-%s-%s Playback Volume",
(i < 2 ? "Mic" : "Line"),
input[i], output[o]);
err = snd_bbfpro_vol_add(mixer, (26 * o + i), name);
if (err < 0)
return err;
// PCM routing... yes, it is output remapping
snprintf(name, sizeof(name),
"PCM-%s-%s Playback Volume",
output[i], output[o]);
err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i),
name);
if (err < 0)
return err;
}
}
// Control Reg 1
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
SND_BBFPRO_CTL_REG1_CLK_OPTICAL,
"Sample Clock Source");
if (err < 0)
return err;
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
SND_BBFPRO_CTL_REG1_SPDIF_PRO,
"IEC958 Pro Mask");
if (err < 0)
return err;
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
SND_BBFPRO_CTL_REG1_SPDIF_EMPH,
"IEC958 Emphasis");
if (err < 0)
return err;
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL,
"IEC958 Switch");
if (err < 0)
return err;
// Control Reg 2
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
SND_BBFPRO_CTL_REG2_48V_AN1,
"Mic-AN1 48V");
if (err < 0)
return err;
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
SND_BBFPRO_CTL_REG2_48V_AN2,
"Mic-AN2 48V");
if (err < 0)
return err;
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
SND_BBFPRO_CTL_REG2_SENS_IN3,
"Line-IN3 Sens.");
if (err < 0)
return err;
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
SND_BBFPRO_CTL_REG2_SENS_IN4,
"Line-IN4 Sens.");
if (err < 0)
return err;
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
SND_BBFPRO_CTL_REG2_PAD_AN1,
"Mic-AN1 PAD");
if (err < 0)
return err;
err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
SND_BBFPRO_CTL_REG2_PAD_AN2,
"Mic-AN2 PAD");
if (err < 0)
return err;
return 0;
}
/*
* Pioneer DJ DJM Mixers
*
* These devices generally have options for soft-switching the playback and
* capture sources in addition to the recording level. Although different
* devices have different configurations, there seems to be canonical values
* for specific capture/playback types: See the definitions of these below.
*
* The wValue is masked with the stereo channel number. e.g. Setting Ch2 to
* capture phono would be 0x0203. Capture, playback and capture level have
* different wIndexes.
*/
// Capture types
#define SND_DJM_CAP_LINE 0x00
#define SND_DJM_CAP_CDLINE 0x01
#define SND_DJM_CAP_DIGITAL 0x02
#define SND_DJM_CAP_PHONO 0x03
#define SND_DJM_CAP_PFADER 0x06
#define SND_DJM_CAP_XFADERA 0x07
#define SND_DJM_CAP_XFADERB 0x08
#define SND_DJM_CAP_MIC 0x09
#define SND_DJM_CAP_AUX 0x0d
#define SND_DJM_CAP_RECOUT 0x0a
#define SND_DJM_CAP_NONE 0x0f
#define SND_DJM_CAP_CH1PFADER 0x11
#define SND_DJM_CAP_CH2PFADER 0x12
#define SND_DJM_CAP_CH3PFADER 0x13
#define SND_DJM_CAP_CH4PFADER 0x14
// Playback types
#define SND_DJM_PB_CH1 0x00
#define SND_DJM_PB_CH2 0x01
#define SND_DJM_PB_AUX 0x04
#define SND_DJM_WINDEX_CAP 0x8002
#define SND_DJM_WINDEX_CAPLVL 0x8003
#define SND_DJM_WINDEX_PB 0x8016
// kcontrol->private_value layout
#define SND_DJM_VALUE_MASK 0x0000ffff
#define SND_DJM_GROUP_MASK 0x00ff0000
#define SND_DJM_DEVICE_MASK 0xff000000
#define SND_DJM_GROUP_SHIFT 16
#define SND_DJM_DEVICE_SHIFT 24
// device table index
// used for the snd_djm_devices table, so please update accordingly
#define SND_DJM_250MK2_IDX 0x0
#define SND_DJM_750_IDX 0x1
#define SND_DJM_850_IDX 0x2
#define SND_DJM_900NXS2_IDX 0x3
#define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \
.name = _name, \
.options = snd_djm_opts_##suffix, \
.noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \
.default_value = _default_value, \
.wIndex = _windex }
#define SND_DJM_DEVICE(suffix) { \
.controls = snd_djm_ctls_##suffix, \
.ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) }
struct snd_djm_device {
const char *name;
const struct snd_djm_ctl *controls;
size_t ncontrols;
};
struct snd_djm_ctl {
const char *name;
const u16 *options;
size_t noptions;
u16 default_value;
u16 wIndex;
};
static const char *snd_djm_get_label_caplevel(u16 wvalue)
{
switch (wvalue) {
case 0x0000: return "-19dB";
case 0x0100: return "-15dB";
case 0x0200: return "-10dB";
case 0x0300: return "-5dB";
default: return NULL;
}
};
static const char *snd_djm_get_label_cap_common(u16 wvalue)
{
switch (wvalue & 0x00ff) {
case SND_DJM_CAP_LINE: return "Control Tone LINE";
case SND_DJM_CAP_CDLINE: return "Control Tone CD/LINE";
case SND_DJM_CAP_DIGITAL: return "Control Tone DIGITAL";
case SND_DJM_CAP_PHONO: return "Control Tone PHONO";
case SND_DJM_CAP_PFADER: return "Post Fader";
case SND_DJM_CAP_XFADERA: return "Cross Fader A";
case SND_DJM_CAP_XFADERB: return "Cross Fader B";
case SND_DJM_CAP_MIC: return "Mic";
case SND_DJM_CAP_RECOUT: return "Rec Out";
case SND_DJM_CAP_AUX: return "Aux";
case SND_DJM_CAP_NONE: return "None";
case SND_DJM_CAP_CH1PFADER: return "Post Fader Ch1";
case SND_DJM_CAP_CH2PFADER: return "Post Fader Ch2";
case SND_DJM_CAP_CH3PFADER: return "Post Fader Ch3";
case SND_DJM_CAP_CH4PFADER: return "Post Fader Ch4";
default: return NULL;
}
};
// The DJM-850 has different values for CD/LINE and LINE capture
// control options than the other DJM declared in this file.
static const char *snd_djm_get_label_cap_850(u16 wvalue)
{
switch (wvalue & 0x00ff) {
case 0x00: return "Control Tone CD/LINE";
case 0x01: return "Control Tone LINE";
default: return snd_djm_get_label_cap_common(wvalue);
}
};
static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue)
{
switch (device_idx) {
case SND_DJM_850_IDX: return snd_djm_get_label_cap_850(wvalue);
default: return snd_djm_get_label_cap_common(wvalue);
}
};
static const char *snd_djm_get_label_pb(u16 wvalue)
{
switch (wvalue & 0x00ff) {
case SND_DJM_PB_CH1: return "Ch1";
case SND_DJM_PB_CH2: return "Ch2";
case SND_DJM_PB_AUX: return "Aux";
default: return NULL;
}
};
static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex)
{
switch (windex) {
case SND_DJM_WINDEX_CAPLVL: return snd_djm_get_label_caplevel(wvalue);
case SND_DJM_WINDEX_CAP: return snd_djm_get_label_cap(device_idx, wvalue);
case SND_DJM_WINDEX_PB: return snd_djm_get_label_pb(wvalue);
default: return NULL;
}
};
// common DJM capture level option values
static const u16 snd_djm_opts_cap_level[] = {
0x0000, 0x0100, 0x0200, 0x0300 };
// DJM-250MK2
static const u16 snd_djm_opts_250mk2_cap1[] = {
0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
static const u16 snd_djm_opts_250mk2_cap2[] = {
0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
static const u16 snd_djm_opts_250mk2_cap3[] = {
0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = {
SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
SND_DJM_CTL("Ch1 Input", 250mk2_cap1, 2, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch2 Input", 250mk2_cap2, 2, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch3 Input", 250mk2_cap3, 0, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch1 Output", 250mk2_pb1, 0, SND_DJM_WINDEX_PB),
SND_DJM_CTL("Ch2 Output", 250mk2_pb2, 1, SND_DJM_WINDEX_PB),
SND_DJM_CTL("Ch3 Output", 250mk2_pb3, 2, SND_DJM_WINDEX_PB)
};
// DJM-750
static const u16 snd_djm_opts_750_cap1[] = {
0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
static const u16 snd_djm_opts_750_cap2[] = {
0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
static const u16 snd_djm_opts_750_cap3[] = {
0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
static const u16 snd_djm_opts_750_cap4[] = {
0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
static const struct snd_djm_ctl snd_djm_ctls_750[] = {
SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
SND_DJM_CTL("Ch1 Input", 750_cap1, 2, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch2 Input", 750_cap2, 2, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch3 Input", 750_cap3, 0, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch4 Input", 750_cap4, 0, SND_DJM_WINDEX_CAP)
};
// DJM-850
static const u16 snd_djm_opts_850_cap1[] = {
0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
static const u16 snd_djm_opts_850_cap2[] = {
0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
static const u16 snd_djm_opts_850_cap3[] = {
0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
static const u16 snd_djm_opts_850_cap4[] = {
0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
static const struct snd_djm_ctl snd_djm_ctls_850[] = {
SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
SND_DJM_CTL("Ch1 Input", 850_cap1, 1, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch2 Input", 850_cap2, 0, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch3 Input", 850_cap3, 0, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch4 Input", 850_cap4, 1, SND_DJM_WINDEX_CAP)
};
// DJM-900NXS2
static const u16 snd_djm_opts_900nxs2_cap1[] = {
0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
static const u16 snd_djm_opts_900nxs2_cap2[] = {
0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
static const u16 snd_djm_opts_900nxs2_cap3[] = {
0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
static const u16 snd_djm_opts_900nxs2_cap4[] = {
0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
static const u16 snd_djm_opts_900nxs2_cap5[] = {
0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = {
SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
SND_DJM_CTL("Ch1 Input", 900nxs2_cap1, 2, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch2 Input", 900nxs2_cap2, 2, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch3 Input", 900nxs2_cap3, 2, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch4 Input", 900nxs2_cap4, 2, SND_DJM_WINDEX_CAP),
SND_DJM_CTL("Ch5 Input", 900nxs2_cap5, 3, SND_DJM_WINDEX_CAP)
};
static const struct snd_djm_device snd_djm_devices[] = {
SND_DJM_DEVICE(250mk2),
SND_DJM_DEVICE(750),
SND_DJM_DEVICE(850),
SND_DJM_DEVICE(900nxs2)
};
static int snd_djm_controls_info(struct snd_kcontrol *kctl,
struct snd_ctl_elem_info *info)
{
unsigned long private_value = kctl->private_value;
u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
const char *name;
const struct snd_djm_ctl *ctl;
size_t noptions;
if (ctl_idx >= device->ncontrols)
return -EINVAL;
ctl = &device->controls[ctl_idx];
noptions = ctl->noptions;
if (info->value.enumerated.item >= noptions)
info->value.enumerated.item = noptions - 1;
name = snd_djm_get_label(device_idx,
ctl->options[info->value.enumerated.item],
ctl->wIndex);
if (!name)
return -EINVAL;
strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name));
info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
info->count = 1;
info->value.enumerated.items = noptions;
return 0;
}
static int snd_djm_controls_update(struct usb_mixer_interface *mixer,
u8 device_idx, u8 group, u16 value)
{
int err;
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
if ((group >= device->ncontrols) || value >= device->controls[group].noptions)
return -EINVAL;
err = snd_usb_lock_shutdown(mixer->chip);
if (err)
return err;
err = snd_usb_ctl_msg(
mixer->chip->dev, usb_sndctrlpipe(mixer->chip->dev, 0),
USB_REQ_SET_FEATURE,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
device->controls[group].options[value],
device->controls[group].wIndex,
NULL, 0);
snd_usb_unlock_shutdown(mixer->chip);
return err;
}
static int snd_djm_controls_get(struct snd_kcontrol *kctl,
struct snd_ctl_elem_value *elem)
{
elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK;
return 0;
}
static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem)
{
struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
struct usb_mixer_interface *mixer = list->mixer;
unsigned long private_value = kctl->private_value;
u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
u16 value = elem->value.enumerated.item[0];
kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) |
(group << SND_DJM_GROUP_SHIFT) |
value);
return snd_djm_controls_update(mixer, device, group, value);
}
static int snd_djm_controls_resume(struct usb_mixer_elem_list *list)
{
unsigned long private_value = list->kctl->private_value;
u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
u16 value = (private_value & SND_DJM_VALUE_MASK);
return snd_djm_controls_update(list->mixer, device, group, value);
}
static int snd_djm_controls_create(struct usb_mixer_interface *mixer,
const u8 device_idx)
{
int err, i;
u16 value;
const struct snd_djm_device *device = &snd_djm_devices[device_idx];
struct snd_kcontrol_new knew = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.index = 0,
.info = snd_djm_controls_info,
.get = snd_djm_controls_get,
.put = snd_djm_controls_put
};
for (i = 0; i < device->ncontrols; i++) {
value = device->controls[i].default_value;
knew.name = device->controls[i].name;
knew.private_value = (
((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) |
(i << SND_DJM_GROUP_SHIFT) |
value);
err = snd_djm_controls_update(mixer, device_idx, i, value);
if (err)
return err;
err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume,
&knew, NULL);
if (err)
return err;
}
return 0;
}
int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer)
{
int err = 0;
err = snd_usb_soundblaster_remote_init(mixer);
if (err < 0)
return err;
switch (mixer->chip->usb_id) {
/* Tascam US-16x08 */
case USB_ID(0x0644, 0x8047):
err = snd_us16x08_controls_create(mixer);
break;
case USB_ID(0x041e, 0x3020):
case USB_ID(0x041e, 0x3040):
case USB_ID(0x041e, 0x3042):
case USB_ID(0x041e, 0x30df):
case USB_ID(0x041e, 0x3048):
err = snd_audigy2nx_controls_create(mixer);
if (err < 0)
break;
snd_card_ro_proc_new(mixer->chip->card, "audigy2nx",
mixer, snd_audigy2nx_proc_read);
break;
/* EMU0204 */
case USB_ID(0x041e, 0x3f19):
err = snd_emu0204_controls_create(mixer);
break;
case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */
err = snd_c400_create_mixer(mixer);
break;
case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
err = snd_ftu_create_mixer(mixer);
break;
case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */
case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */
case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */
err = snd_xonar_u1_controls_create(mixer);
break;
case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */
err = snd_microii_controls_create(mixer);
break;
case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */
err = snd_mbox1_create_sync_switch(mixer);
break;
case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */
err = snd_nativeinstruments_create_mixer(mixer,
snd_nativeinstruments_ta6_mixers,
ARRAY_SIZE(snd_nativeinstruments_ta6_mixers));
break;
case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */
err = snd_nativeinstruments_create_mixer(mixer,
snd_nativeinstruments_ta10_mixers,
ARRAY_SIZE(snd_nativeinstruments_ta10_mixers));
break;
case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */
/* detection is disabled in mixer_maps.c */
err = snd_create_std_mono_table(mixer, ebox44_table);
break;
case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */
case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */
case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */
case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */
case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */
err = snd_scarlett_controls_create(mixer);
break;
case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */
case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */
case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */
err = snd_scarlett_gen2_controls_create(mixer);
break;
case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */
err = snd_soundblaster_e1_switch_create(mixer);
break;
case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
err = dell_dock_mixer_init(mixer);
break;
case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */
case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */
case USB_ID(0x2a39, 0x3fd4): /* RME */
err = snd_rme_controls_create(mixer);
break;
case USB_ID(0x0194f, 0x010c): /* Presonus Studio 1810c */
err = snd_sc1810_init_mixer(mixer);
break;
case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */
err = snd_bbfpro_controls_create(mixer);
break;
case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */
err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX);
break;
case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */
err = snd_djm_controls_create(mixer, SND_DJM_750_IDX);
break;
case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */
err = snd_djm_controls_create(mixer, SND_DJM_850_IDX);
break;
case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */
err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX);
break;
}
return err;
}
#ifdef CONFIG_PM
void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer)
{
switch (mixer->chip->usb_id) {
case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
dell_dock_mixer_init(mixer);
break;
}
}
#endif
void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer,
int unitid)
{
if (!mixer->rc_cfg)
return;
/* unit ids specific to Extigy/Audigy 2 NX: */
switch (unitid) {
case 0: /* remote control */
mixer->rc_urb->dev = mixer->chip->dev;
usb_submit_urb(mixer->rc_urb, GFP_ATOMIC);
break;
case 4: /* digital in jack */
case 7: /* line in jacks */
case 19: /* speaker out jacks */
case 20: /* headphones out jack */
break;
/* live24ext: 4 = line-in jack */
case 3: /* hp-out jack (may actuate Mute) */
if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id);
break;
default:
usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid);
break;
}
}
static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer,
struct usb_mixer_elem_info *cval,
struct snd_kcontrol *kctl)
{
/* Approximation using 10 ranges based on output measurement on hw v1.2.
* This seems close to the cubic mapping e.g. alsamixer uses. */
static const DECLARE_TLV_DB_RANGE(scale,
0, 1, TLV_DB_MINMAX_ITEM(-5300, -4970),
2, 5, TLV_DB_MINMAX_ITEM(-4710, -4160),
6, 7, TLV_DB_MINMAX_ITEM(-3884, -3710),
8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560),
15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324),
17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031),
20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393),
27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032),
32, 40, TLV_DB_MINMAX_ITEM(-968, -490),
41, 50, TLV_DB_MINMAX_ITEM(-441, 0),
);
if (cval->min == 0 && cval->max == 50) {
usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n");
kctl->tlv.p = scale;
kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
} else if (cval->min == 0 && cval->max <= 1000) {
/* Some other clearly broken DragonFly variant.
* At least a 0..53 variant (hw v1.0) exists.
*/
usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device");
kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
}
}
void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer,
struct usb_mixer_elem_info *cval, int unitid,
struct snd_kcontrol *kctl)
{
switch (mixer->chip->usb_id) {
case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */
if (unitid == 7 && cval->control == UAC_FU_VOLUME)
snd_dragonfly_quirk_db_scale(mixer, cval, kctl);
break;
/* lowest playback value is muted on C-Media devices */
case USB_ID(0x0d8c, 0x000c):
case USB_ID(0x0d8c, 0x0014):
if (strstr(kctl->id.name, "Playback"))
cval->min_mute = 1;
break;
}
}