| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * amd-pstate.c - AMD Processor P-state Frequency Driver |
| * |
| * Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved. |
| * |
| * Author: Huang Rui <ray.huang@amd.com> |
| * |
| * AMD P-State introduces a new CPU performance scaling design for AMD |
| * processors using the ACPI Collaborative Performance and Power Control (CPPC) |
| * feature which works with the AMD SMU firmware providing a finer grained |
| * frequency control range. It is to replace the legacy ACPI P-States control, |
| * allows a flexible, low-latency interface for the Linux kernel to directly |
| * communicate the performance hints to hardware. |
| * |
| * AMD P-State is supported on recent AMD Zen base CPU series include some of |
| * Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD |
| * P-State supported system. And there are two types of hardware implementations |
| * for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution. |
| * X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/sched.h> |
| #include <linux/cpufreq.h> |
| #include <linux/compiler.h> |
| #include <linux/dmi.h> |
| #include <linux/slab.h> |
| #include <linux/acpi.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/uaccess.h> |
| #include <linux/static_call.h> |
| #include <linux/amd-pstate.h> |
| |
| #include <acpi/processor.h> |
| #include <acpi/cppc_acpi.h> |
| |
| #include <asm/msr.h> |
| #include <asm/processor.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cpu_device_id.h> |
| #include "amd-pstate-trace.h" |
| |
| #define AMD_PSTATE_TRANSITION_LATENCY 20000 |
| #define AMD_PSTATE_TRANSITION_DELAY 1000 |
| |
| /* |
| * TODO: We need more time to fine tune processors with shared memory solution |
| * with community together. |
| * |
| * There are some performance drops on the CPU benchmarks which reports from |
| * Suse. We are co-working with them to fine tune the shared memory solution. So |
| * we disable it by default to go acpi-cpufreq on these processors and add a |
| * module parameter to be able to enable it manually for debugging. |
| */ |
| static struct cpufreq_driver amd_pstate_driver; |
| static int cppc_load __initdata; |
| |
| static inline int pstate_enable(bool enable) |
| { |
| return wrmsrl_safe(MSR_AMD_CPPC_ENABLE, enable); |
| } |
| |
| static int cppc_enable(bool enable) |
| { |
| int cpu, ret = 0; |
| |
| for_each_present_cpu(cpu) { |
| ret = cppc_set_enable(cpu, enable); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable); |
| |
| static inline int amd_pstate_enable(bool enable) |
| { |
| return static_call(amd_pstate_enable)(enable); |
| } |
| |
| static int pstate_init_perf(struct amd_cpudata *cpudata) |
| { |
| u64 cap1; |
| u32 highest_perf; |
| |
| int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1, |
| &cap1); |
| if (ret) |
| return ret; |
| |
| /* |
| * TODO: Introduce AMD specific power feature. |
| * |
| * CPPC entry doesn't indicate the highest performance in some ASICs. |
| */ |
| highest_perf = amd_get_highest_perf(); |
| if (highest_perf > AMD_CPPC_HIGHEST_PERF(cap1)) |
| highest_perf = AMD_CPPC_HIGHEST_PERF(cap1); |
| |
| WRITE_ONCE(cpudata->highest_perf, highest_perf); |
| |
| WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1)); |
| WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1)); |
| WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1)); |
| |
| return 0; |
| } |
| |
| static int cppc_init_perf(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| u32 highest_perf; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| highest_perf = amd_get_highest_perf(); |
| if (highest_perf > cppc_perf.highest_perf) |
| highest_perf = cppc_perf.highest_perf; |
| |
| WRITE_ONCE(cpudata->highest_perf, highest_perf); |
| |
| WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf); |
| WRITE_ONCE(cpudata->lowest_nonlinear_perf, |
| cppc_perf.lowest_nonlinear_perf); |
| WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf); |
| |
| return 0; |
| } |
| |
| DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf); |
| |
| static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata) |
| { |
| return static_call(amd_pstate_init_perf)(cpudata); |
| } |
| |
| static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf, |
| u32 des_perf, u32 max_perf, bool fast_switch) |
| { |
| if (fast_switch) |
| wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached)); |
| else |
| wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, |
| READ_ONCE(cpudata->cppc_req_cached)); |
| } |
| |
| static void cppc_update_perf(struct amd_cpudata *cpudata, |
| u32 min_perf, u32 des_perf, |
| u32 max_perf, bool fast_switch) |
| { |
| struct cppc_perf_ctrls perf_ctrls; |
| |
| perf_ctrls.max_perf = max_perf; |
| perf_ctrls.min_perf = min_perf; |
| perf_ctrls.desired_perf = des_perf; |
| |
| cppc_set_perf(cpudata->cpu, &perf_ctrls); |
| } |
| |
| DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf); |
| |
| static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata, |
| u32 min_perf, u32 des_perf, |
| u32 max_perf, bool fast_switch) |
| { |
| static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf, |
| max_perf, fast_switch); |
| } |
| |
| static inline bool amd_pstate_sample(struct amd_cpudata *cpudata) |
| { |
| u64 aperf, mperf, tsc; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| rdmsrl(MSR_IA32_APERF, aperf); |
| rdmsrl(MSR_IA32_MPERF, mperf); |
| tsc = rdtsc(); |
| |
| if (cpudata->prev.mperf == mperf || cpudata->prev.tsc == tsc) { |
| local_irq_restore(flags); |
| return false; |
| } |
| |
| local_irq_restore(flags); |
| |
| cpudata->cur.aperf = aperf; |
| cpudata->cur.mperf = mperf; |
| cpudata->cur.tsc = tsc; |
| cpudata->cur.aperf -= cpudata->prev.aperf; |
| cpudata->cur.mperf -= cpudata->prev.mperf; |
| cpudata->cur.tsc -= cpudata->prev.tsc; |
| |
| cpudata->prev.aperf = aperf; |
| cpudata->prev.mperf = mperf; |
| cpudata->prev.tsc = tsc; |
| |
| cpudata->freq = div64_u64((cpudata->cur.aperf * cpu_khz), cpudata->cur.mperf); |
| |
| return true; |
| } |
| |
| static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf, |
| u32 des_perf, u32 max_perf, bool fast_switch) |
| { |
| u64 prev = READ_ONCE(cpudata->cppc_req_cached); |
| u64 value = prev; |
| |
| des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf); |
| value &= ~AMD_CPPC_MIN_PERF(~0L); |
| value |= AMD_CPPC_MIN_PERF(min_perf); |
| |
| value &= ~AMD_CPPC_DES_PERF(~0L); |
| value |= AMD_CPPC_DES_PERF(des_perf); |
| |
| value &= ~AMD_CPPC_MAX_PERF(~0L); |
| value |= AMD_CPPC_MAX_PERF(max_perf); |
| |
| if (trace_amd_pstate_perf_enabled() && amd_pstate_sample(cpudata)) { |
| trace_amd_pstate_perf(min_perf, des_perf, max_perf, cpudata->freq, |
| cpudata->cur.mperf, cpudata->cur.aperf, cpudata->cur.tsc, |
| cpudata->cpu, (value != prev), fast_switch); |
| } |
| |
| if (value == prev) |
| return; |
| |
| WRITE_ONCE(cpudata->cppc_req_cached, value); |
| |
| amd_pstate_update_perf(cpudata, min_perf, des_perf, |
| max_perf, fast_switch); |
| } |
| |
| static int amd_pstate_verify(struct cpufreq_policy_data *policy) |
| { |
| cpufreq_verify_within_cpu_limits(policy); |
| |
| return 0; |
| } |
| |
| static int amd_pstate_target(struct cpufreq_policy *policy, |
| unsigned int target_freq, |
| unsigned int relation) |
| { |
| struct cpufreq_freqs freqs; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| unsigned long max_perf, min_perf, des_perf, cap_perf; |
| |
| if (!cpudata->max_freq) |
| return -ENODEV; |
| |
| cap_perf = READ_ONCE(cpudata->highest_perf); |
| min_perf = READ_ONCE(cpudata->lowest_perf); |
| max_perf = cap_perf; |
| |
| freqs.old = policy->cur; |
| freqs.new = target_freq; |
| |
| des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf, |
| cpudata->max_freq); |
| |
| cpufreq_freq_transition_begin(policy, &freqs); |
| amd_pstate_update(cpudata, min_perf, des_perf, |
| max_perf, false); |
| cpufreq_freq_transition_end(policy, &freqs, false); |
| |
| return 0; |
| } |
| |
| static void amd_pstate_adjust_perf(unsigned int cpu, |
| unsigned long _min_perf, |
| unsigned long target_perf, |
| unsigned long capacity) |
| { |
| unsigned long max_perf, min_perf, des_perf, |
| cap_perf, lowest_nonlinear_perf; |
| struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| cap_perf = READ_ONCE(cpudata->highest_perf); |
| lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf); |
| |
| des_perf = cap_perf; |
| if (target_perf < capacity) |
| des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity); |
| |
| min_perf = READ_ONCE(cpudata->highest_perf); |
| if (_min_perf < capacity) |
| min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity); |
| |
| if (min_perf < lowest_nonlinear_perf) |
| min_perf = lowest_nonlinear_perf; |
| |
| max_perf = cap_perf; |
| if (max_perf < min_perf) |
| max_perf = min_perf; |
| |
| amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true); |
| } |
| |
| static int amd_get_min_freq(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| /* Switch to khz */ |
| return cppc_perf.lowest_freq * 1000; |
| } |
| |
| static int amd_get_max_freq(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| u32 max_perf, max_freq, nominal_freq, nominal_perf; |
| u64 boost_ratio; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| nominal_freq = cppc_perf.nominal_freq; |
| nominal_perf = READ_ONCE(cpudata->nominal_perf); |
| max_perf = READ_ONCE(cpudata->highest_perf); |
| |
| boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT, |
| nominal_perf); |
| |
| max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT; |
| |
| /* Switch to khz */ |
| return max_freq * 1000; |
| } |
| |
| static int amd_get_nominal_freq(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| /* Switch to khz */ |
| return cppc_perf.nominal_freq * 1000; |
| } |
| |
| static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata) |
| { |
| struct cppc_perf_caps cppc_perf; |
| u32 lowest_nonlinear_freq, lowest_nonlinear_perf, |
| nominal_freq, nominal_perf; |
| u64 lowest_nonlinear_ratio; |
| |
| int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf); |
| if (ret) |
| return ret; |
| |
| nominal_freq = cppc_perf.nominal_freq; |
| nominal_perf = READ_ONCE(cpudata->nominal_perf); |
| |
| lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf; |
| |
| lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT, |
| nominal_perf); |
| |
| lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT; |
| |
| /* Switch to khz */ |
| return lowest_nonlinear_freq * 1000; |
| } |
| |
| static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| int ret; |
| |
| if (!cpudata->boost_supported) { |
| pr_err("Boost mode is not supported by this processor or SBIOS\n"); |
| return -EINVAL; |
| } |
| |
| if (state) |
| policy->cpuinfo.max_freq = cpudata->max_freq; |
| else |
| policy->cpuinfo.max_freq = cpudata->nominal_freq; |
| |
| policy->max = policy->cpuinfo.max_freq; |
| |
| ret = freq_qos_update_request(&cpudata->req[1], |
| policy->cpuinfo.max_freq); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void amd_pstate_boost_init(struct amd_cpudata *cpudata) |
| { |
| u32 highest_perf, nominal_perf; |
| |
| highest_perf = READ_ONCE(cpudata->highest_perf); |
| nominal_perf = READ_ONCE(cpudata->nominal_perf); |
| |
| if (highest_perf <= nominal_perf) |
| return; |
| |
| cpudata->boost_supported = true; |
| amd_pstate_driver.boost_enabled = true; |
| } |
| |
| static void amd_perf_ctl_reset(unsigned int cpu) |
| { |
| wrmsrl_on_cpu(cpu, MSR_AMD_PERF_CTL, 0); |
| } |
| |
| static int amd_pstate_cpu_init(struct cpufreq_policy *policy) |
| { |
| int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret; |
| struct device *dev; |
| struct amd_cpudata *cpudata; |
| |
| /* |
| * Resetting PERF_CTL_MSR will put the CPU in P0 frequency, |
| * which is ideal for initialization process. |
| */ |
| amd_perf_ctl_reset(policy->cpu); |
| dev = get_cpu_device(policy->cpu); |
| if (!dev) |
| return -ENODEV; |
| |
| cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL); |
| if (!cpudata) |
| return -ENOMEM; |
| |
| cpudata->cpu = policy->cpu; |
| |
| ret = amd_pstate_init_perf(cpudata); |
| if (ret) |
| goto free_cpudata1; |
| |
| min_freq = amd_get_min_freq(cpudata); |
| max_freq = amd_get_max_freq(cpudata); |
| nominal_freq = amd_get_nominal_freq(cpudata); |
| lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata); |
| |
| if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) { |
| dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n", |
| min_freq, max_freq); |
| ret = -EINVAL; |
| goto free_cpudata1; |
| } |
| |
| policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY; |
| policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY; |
| |
| policy->min = min_freq; |
| policy->max = max_freq; |
| |
| policy->cpuinfo.min_freq = min_freq; |
| policy->cpuinfo.max_freq = max_freq; |
| |
| /* It will be updated by governor */ |
| policy->cur = policy->cpuinfo.min_freq; |
| |
| if (boot_cpu_has(X86_FEATURE_CPPC)) |
| policy->fast_switch_possible = true; |
| |
| ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0], |
| FREQ_QOS_MIN, policy->cpuinfo.min_freq); |
| if (ret < 0) { |
| dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); |
| goto free_cpudata1; |
| } |
| |
| ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1], |
| FREQ_QOS_MAX, policy->cpuinfo.max_freq); |
| if (ret < 0) { |
| dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); |
| goto free_cpudata2; |
| } |
| |
| /* Initial processor data capability frequencies */ |
| cpudata->max_freq = max_freq; |
| cpudata->min_freq = min_freq; |
| cpudata->nominal_freq = nominal_freq; |
| cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq; |
| |
| policy->driver_data = cpudata; |
| |
| amd_pstate_boost_init(cpudata); |
| |
| return 0; |
| |
| free_cpudata2: |
| freq_qos_remove_request(&cpudata->req[0]); |
| free_cpudata1: |
| kfree(cpudata); |
| return ret; |
| } |
| |
| static int amd_pstate_cpu_exit(struct cpufreq_policy *policy) |
| { |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| freq_qos_remove_request(&cpudata->req[1]); |
| freq_qos_remove_request(&cpudata->req[0]); |
| kfree(cpudata); |
| |
| return 0; |
| } |
| |
| static int amd_pstate_cpu_resume(struct cpufreq_policy *policy) |
| { |
| int ret; |
| |
| ret = amd_pstate_enable(true); |
| if (ret) |
| pr_err("failed to enable amd-pstate during resume, return %d\n", ret); |
| |
| return ret; |
| } |
| |
| static int amd_pstate_cpu_suspend(struct cpufreq_policy *policy) |
| { |
| int ret; |
| |
| ret = amd_pstate_enable(false); |
| if (ret) |
| pr_err("failed to disable amd-pstate during suspend, return %d\n", ret); |
| |
| return ret; |
| } |
| |
| /* Sysfs attributes */ |
| |
| /* |
| * This frequency is to indicate the maximum hardware frequency. |
| * If boost is not active but supported, the frequency will be larger than the |
| * one in cpuinfo. |
| */ |
| static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy, |
| char *buf) |
| { |
| int max_freq; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| max_freq = amd_get_max_freq(cpudata); |
| if (max_freq < 0) |
| return max_freq; |
| |
| return sprintf(&buf[0], "%u\n", max_freq); |
| } |
| |
| static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy, |
| char *buf) |
| { |
| int freq; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| freq = amd_get_lowest_nonlinear_freq(cpudata); |
| if (freq < 0) |
| return freq; |
| |
| return sprintf(&buf[0], "%u\n", freq); |
| } |
| |
| /* |
| * In some of ASICs, the highest_perf is not the one in the _CPC table, so we |
| * need to expose it to sysfs. |
| */ |
| static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy, |
| char *buf) |
| { |
| u32 perf; |
| struct amd_cpudata *cpudata = policy->driver_data; |
| |
| perf = READ_ONCE(cpudata->highest_perf); |
| |
| return sprintf(&buf[0], "%u\n", perf); |
| } |
| |
| cpufreq_freq_attr_ro(amd_pstate_max_freq); |
| cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq); |
| |
| cpufreq_freq_attr_ro(amd_pstate_highest_perf); |
| |
| static struct freq_attr *amd_pstate_attr[] = { |
| &amd_pstate_max_freq, |
| &amd_pstate_lowest_nonlinear_freq, |
| &amd_pstate_highest_perf, |
| NULL, |
| }; |
| |
| static struct cpufreq_driver amd_pstate_driver = { |
| .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS, |
| .verify = amd_pstate_verify, |
| .target = amd_pstate_target, |
| .init = amd_pstate_cpu_init, |
| .exit = amd_pstate_cpu_exit, |
| .suspend = amd_pstate_cpu_suspend, |
| .resume = amd_pstate_cpu_resume, |
| .set_boost = amd_pstate_set_boost, |
| .name = "amd-pstate", |
| .attr = amd_pstate_attr, |
| }; |
| |
| static int __init amd_pstate_init(void) |
| { |
| int ret; |
| |
| if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) |
| return -ENODEV; |
| /* |
| * by default the pstate driver is disabled to load |
| * enable the amd_pstate passive mode driver explicitly |
| * with amd_pstate=passive in kernel command line |
| */ |
| if (!cppc_load) { |
| pr_debug("driver load is disabled, boot with amd_pstate=passive to enable this\n"); |
| return -ENODEV; |
| } |
| |
| if (!acpi_cpc_valid()) { |
| pr_warn_once("the _CPC object is not present in SBIOS or ACPI disabled\n"); |
| return -ENODEV; |
| } |
| |
| /* don't keep reloading if cpufreq_driver exists */ |
| if (cpufreq_get_current_driver()) |
| return -EEXIST; |
| |
| /* capability check */ |
| if (boot_cpu_has(X86_FEATURE_CPPC)) { |
| pr_debug("AMD CPPC MSR based functionality is supported\n"); |
| amd_pstate_driver.adjust_perf = amd_pstate_adjust_perf; |
| } else { |
| pr_debug("AMD CPPC shared memory based functionality is supported\n"); |
| static_call_update(amd_pstate_enable, cppc_enable); |
| static_call_update(amd_pstate_init_perf, cppc_init_perf); |
| static_call_update(amd_pstate_update_perf, cppc_update_perf); |
| } |
| |
| /* enable amd pstate feature */ |
| ret = amd_pstate_enable(true); |
| if (ret) { |
| pr_err("failed to enable amd-pstate with return %d\n", ret); |
| return ret; |
| } |
| |
| ret = cpufreq_register_driver(&amd_pstate_driver); |
| if (ret) |
| pr_err("failed to register amd_pstate_driver with return %d\n", |
| ret); |
| |
| return ret; |
| } |
| device_initcall(amd_pstate_init); |
| |
| static int __init amd_pstate_param(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "disable")) { |
| cppc_load = 0; |
| pr_info("driver is explicitly disabled\n"); |
| } else if (!strcmp(str, "passive")) |
| cppc_load = 1; |
| |
| return 0; |
| } |
| early_param("amd_pstate", amd_pstate_param); |
| |
| MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>"); |
| MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver"); |
| MODULE_LICENSE("GPL"); |