blob: e253750a51c56830d9ea690ce4b2f5127bcd74bb [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "i915_drv.h"
#include "intel_gt.h"
#include "intel_gt_mcr.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
/**
* DOC: GT Multicast/Replicated (MCR) Register Support
*
* Some GT registers are designed as "multicast" or "replicated" registers:
* multiple instances of the same register share a single MMIO offset. MCR
* registers are generally used when the hardware needs to potentially track
* independent values of a register per hardware unit (e.g., per-subslice,
* per-L3bank, etc.). The specific types of replication that exist vary
* per-platform.
*
* MMIO accesses to MCR registers are controlled according to the settings
* programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR
* registers can be done in either a (i.e., a single write updates all
* instances of the register to the same value) or unicast (a write updates only
* one specific instance). Reads of MCR registers always operate in a unicast
* manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
* Selection of a specific MCR instance for unicast operations is referred to
* as "steering."
*
* If MCR register operations are steered toward a hardware unit that is
* fused off or currently powered down due to power gating, the MMIO operation
* is "terminated" by the hardware. Terminated read operations will return a
* value of zero and terminated unicast write operations will be silently
* ignored.
*/
#define HAS_MSLICE_STEERING(i915) (INTEL_INFO(i915)->has_mslice_steering)
static const char * const intel_steering_types[] = {
"L3BANK",
"MSLICE",
"LNCF",
"GAM",
"DSS",
"OADDRM",
"INSTANCE 0",
};
static const struct intel_mmio_range icl_l3bank_steering_table[] = {
{ 0x00B100, 0x00B3FF },
{},
};
/*
* Although the bspec lists more "MSLICE" ranges than shown here, some of those
* are of a "GAM" subclass that has special rules. Thus we use a separate
* GAM table farther down for those.
*/
static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
{ 0x00DD00, 0x00DDFF },
{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
{},
};
static const struct intel_mmio_range xehpsdv_gam_steering_table[] = {
{ 0x004000, 0x004AFF },
{ 0x00C800, 0x00CFFF },
{},
};
static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
{ 0x00B000, 0x00B0FF },
{ 0x00D800, 0x00D8FF },
{},
};
static const struct intel_mmio_range dg2_lncf_steering_table[] = {
{ 0x00B000, 0x00B0FF },
{ 0x00D880, 0x00D8FF },
{},
};
/*
* We have several types of MCR registers on PVC where steering to (0,0)
* will always provide us with a non-terminated value. We'll stick them
* all in the same table for simplicity.
*/
static const struct intel_mmio_range pvc_instance0_steering_table[] = {
{ 0x004000, 0x004AFF }, /* HALF-BSLICE */
{ 0x008800, 0x00887F }, /* CC */
{ 0x008A80, 0x008AFF }, /* TILEPSMI */
{ 0x00B000, 0x00B0FF }, /* HALF-BSLICE */
{ 0x00B100, 0x00B3FF }, /* L3BANK */
{ 0x00C800, 0x00CFFF }, /* HALF-BSLICE */
{ 0x00D800, 0x00D8FF }, /* HALF-BSLICE */
{ 0x00DD00, 0x00DDFF }, /* BSLICE */
{ 0x00E900, 0x00E9FF }, /* HALF-BSLICE */
{ 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */
{ 0x00F000, 0x00FFFF }, /* HALF-BSLICE */
{ 0x024180, 0x0241FF }, /* HALF-BSLICE */
{},
};
static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
{ 0x000B00, 0x000BFF }, /* SQIDI */
{ 0x001000, 0x001FFF }, /* SQIDI */
{ 0x004000, 0x0048FF }, /* GAM */
{ 0x008700, 0x0087FF }, /* SQIDI */
{ 0x00B000, 0x00B0FF }, /* NODE */
{ 0x00C800, 0x00CFFF }, /* GAM */
{ 0x00D880, 0x00D8FF }, /* NODE */
{ 0x00DD00, 0x00DDFF }, /* OAAL2 */
{},
};
static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
{ 0x00B100, 0x00B3FF },
{},
};
/* DSS steering is used for SLICE ranges as well */
static const struct intel_mmio_range xelpg_dss_steering_table[] = {
{ 0x005200, 0x0052FF }, /* SLICE */
{ 0x005500, 0x007FFF }, /* SLICE */
{ 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
{ 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
{ 0x009680, 0x0096FF }, /* DSS */
{ 0x00D800, 0x00D87F }, /* SLICE */
{ 0x00DC00, 0x00DCFF }, /* SLICE */
{ 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
{},
};
static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
{ 0x393200, 0x39323F },
{ 0x393400, 0x3934FF },
{},
};
void intel_gt_mcr_init(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
unsigned long fuse;
int i;
spin_lock_init(&gt->mcr_lock);
/*
* An mslice is unavailable only if both the meml3 for the slice is
* disabled *and* all of the DSS in the slice (quadrant) are disabled.
*/
if (HAS_MSLICE_STEERING(i915)) {
gt->info.mslice_mask =
intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
GEN_DSS_PER_MSLICE);
gt->info.mslice_mask |=
(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
GEN12_MEML3_EN_MASK);
if (!gt->info.mslice_mask) /* should be impossible! */
gt_warn(gt, "mslice mask all zero!\n");
}
if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
/* Wa_14016747170 */
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK,
intel_uncore_read(gt->uncore,
MTL_GT_ACTIVITY_FACTOR));
else
fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
intel_uncore_read(gt->uncore, XEHP_FUSE4));
/*
* Despite the register field being named "exclude mask" the
* bits actually represent enabled banks (two banks per bit).
*/
for_each_set_bit(i, &fuse, 3)
gt->info.l3bank_mask |= 0x3 << 2 * i;
gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
gt->steering_table[DSS] = xelpg_dss_steering_table;
} else if (IS_PONTEVECCHIO(i915)) {
gt->steering_table[INSTANCE0] = pvc_instance0_steering_table;
} else if (IS_DG2(i915)) {
gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
gt->steering_table[LNCF] = dg2_lncf_steering_table;
/*
* No need to hook up the GAM table since it has a dedicated
* steering control register on DG2 and can use implicit
* steering.
*/
} else if (IS_XEHPSDV(i915)) {
gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
gt->steering_table[GAM] = xehpsdv_gam_steering_table;
} else if (GRAPHICS_VER(i915) >= 11 &&
GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
gt->steering_table[L3BANK] = icl_l3bank_steering_table;
gt->info.l3bank_mask =
~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
GEN10_L3BANK_MASK;
if (!gt->info.l3bank_mask) /* should be impossible! */
gt_warn(gt, "L3 bank mask is all zero!\n");
} else if (GRAPHICS_VER(i915) >= 11) {
/*
* We expect all modern platforms to have at least some
* type of steering that needs to be initialized.
*/
MISSING_CASE(INTEL_INFO(i915)->platform);
}
}
/*
* Although the rest of the driver should use MCR-specific functions to
* read/write MCR registers, we still use the regular intel_uncore_* functions
* internally to implement those, so we need a way for the functions in this
* file to "cast" an i915_mcr_reg_t into an i915_reg_t.
*/
static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
{
i915_reg_t r = { .reg = mcr.reg };
return r;
}
/*
* rw_with_mcr_steering_fw - Access a register with specific MCR steering
* @gt: GT to read register from
* @reg: register being accessed
* @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
* @group: group number (documented as "sliceid" on older platforms)
* @instance: instance number (documented as "subsliceid" on older platforms)
* @value: register value to be written (ignored for read)
*
* Context: The caller must hold the MCR lock
* Return: 0 for write access. register value for read access.
*
* Caller needs to make sure the relevant forcewake wells are up.
*/
static u32 rw_with_mcr_steering_fw(struct intel_gt *gt,
i915_mcr_reg_t reg, u8 rw_flag,
int group, int instance, u32 value)
{
struct intel_uncore *uncore = gt->uncore;
u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
lockdep_assert_held(&gt->mcr_lock);
if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
/*
* Always leave the hardware in multicast mode when doing reads
* (see comment about Wa_22013088509 below) and only change it
* to unicast mode when doing writes of a specific instance.
*
* No need to save old steering reg value.
*/
intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
(rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
} else if (GRAPHICS_VER(uncore->i915) >= 11) {
mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
/*
* Wa_22013088509
*
* The setting of the multicast/unicast bit usually wouldn't
* matter for read operations (which always return the value
* from a single register instance regardless of how that bit
* is set), but some platforms have a workaround requiring us
* to remain in multicast mode for reads. There's no real
* downside to this, so we'll just go ahead and do so on all
* platforms; we'll only clear the multicast bit from the mask
* when exlicitly doing a write operation.
*/
if (rw_flag == FW_REG_WRITE)
mcr_mask |= GEN11_MCR_MULTICAST;
mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
old_mcr = mcr;
mcr &= ~mcr_mask;
mcr |= mcr_ss;
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
} else {
mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
old_mcr = mcr;
mcr &= ~mcr_mask;
mcr |= mcr_ss;
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
}
if (rw_flag == FW_REG_READ)
val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
else
intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
/*
* For pre-MTL platforms, we need to restore the old value of the
* steering control register to ensure that implicit steering continues
* to behave as expected. For MTL and beyond, we need only reinstate
* the 'multicast' bit (and only if we did a write that cleared it).
*/
if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
return val;
}
static u32 rw_with_mcr_steering(struct intel_gt *gt,
i915_mcr_reg_t reg, u8 rw_flag,
int group, int instance,
u32 value)
{
struct intel_uncore *uncore = gt->uncore;
enum forcewake_domains fw_domains;
unsigned long flags;
u32 val;
fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
rw_flag);
fw_domains |= intel_uncore_forcewake_for_reg(uncore,
GEN8_MCR_SELECTOR,
FW_REG_READ | FW_REG_WRITE);
intel_gt_mcr_lock(gt, &flags);
spin_lock(&uncore->lock);
intel_uncore_forcewake_get__locked(uncore, fw_domains);
val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value);
intel_uncore_forcewake_put__locked(uncore, fw_domains);
spin_unlock(&uncore->lock);
intel_gt_mcr_unlock(gt, flags);
return val;
}
/**
* intel_gt_mcr_lock - Acquire MCR steering lock
* @gt: GT structure
* @flags: storage to save IRQ flags to
*
* Performs locking to protect the steering for the duration of an MCR
* operation. On MTL and beyond, a hardware lock will also be taken to
* serialize access not only for the driver, but also for external hardware and
* firmware agents.
*
* Context: Takes gt->mcr_lock. uncore->lock should *not* be held when this
* function is called, although it may be acquired after this
* function call.
*/
void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags)
__acquires(&gt->mcr_lock)
{
unsigned long __flags;
int err = 0;
lockdep_assert_not_held(&gt->uncore->lock);
/*
* Starting with MTL, we need to coordinate not only with other
* driver threads, but also with hardware/firmware agents. A dedicated
* locking register is used.
*/
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
/*
* The steering control and semaphore registers are inside an
* "always on" power domain with respect to RC6. However there
* are some issues if higher-level platform sleep states are
* entering/exiting at the same time these registers are
* accessed. Grabbing GT forcewake and holding it over the
* entire lock/steer/unlock cycle ensures that those sleep
* states have been fully exited before we access these
* registers. This wakeref will be released in the unlock
* routine.
*
* Wa_22018931422
*/
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT);
err = wait_for(intel_uncore_read_fw(gt->uncore,
MTL_STEER_SEMAPHORE) == 0x1, 100);
}
/*
* Even on platforms with a hardware lock, we'll continue to grab
* a software spinlock too for lockdep purposes. If the hardware lock
* was already acquired, there should never be contention on the
* software lock.
*/
spin_lock_irqsave(&gt->mcr_lock, __flags);
*flags = __flags;
/*
* In theory we should never fail to acquire the HW semaphore; this
* would indicate some hardware/firmware is misbehaving and not
* releasing it properly.
*/
if (err == -ETIMEDOUT) {
gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out");
add_taint_for_CI(gt->i915, TAINT_WARN); /* CI is now unreliable */
}
}
/**
* intel_gt_mcr_unlock - Release MCR steering lock
* @gt: GT structure
* @flags: IRQ flags to restore
*
* Releases the lock acquired by intel_gt_mcr_lock().
*
* Context: Releases gt->mcr_lock
*/
void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags)
__releases(&gt->mcr_lock)
{
spin_unlock_irqrestore(&gt->mcr_lock, flags);
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT);
}
}
/**
* intel_gt_mcr_lock_sanitize - Sanitize MCR steering lock
* @gt: GT structure
*
* This will be used to sanitize the initial status of the hardware lock
* during driver load and resume since there won't be any concurrent access
* from other agents at those times, but it's possible that boot firmware
* may have left the lock in a bad state.
*
*/
void intel_gt_mcr_lock_sanitize(struct intel_gt *gt)
{
/*
* This gets called at load/resume time, so we shouldn't be
* racing with other driver threads grabbing the mcr lock.
*/
lockdep_assert_not_held(&gt->mcr_lock);
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
}
/**
* intel_gt_mcr_read - read a specific instance of an MCR register
* @gt: GT structure
* @reg: the MCR register to read
* @group: the MCR group
* @instance: the MCR instance
*
* Context: Takes and releases gt->mcr_lock
*
* Returns the value read from an MCR register after steering toward a specific
* group/instance.
*/
u32 intel_gt_mcr_read(struct intel_gt *gt,
i915_mcr_reg_t reg,
int group, int instance)
{
return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0);
}
/**
* intel_gt_mcr_unicast_write - write a specific instance of an MCR register
* @gt: GT structure
* @reg: the MCR register to write
* @value: value to write
* @group: the MCR group
* @instance: the MCR instance
*
* Write an MCR register in unicast mode after steering toward a specific
* group/instance.
*
* Context: Calls a function that takes and releases gt->mcr_lock
*/
void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
int group, int instance)
{
rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value);
}
/**
* intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
* @gt: GT structure
* @reg: the MCR register to write
* @value: value to write
*
* Write an MCR register in multicast mode to update all instances.
*
* Context: Takes and releases gt->mcr_lock
*/
void intel_gt_mcr_multicast_write(struct intel_gt *gt,
i915_mcr_reg_t reg, u32 value)
{
unsigned long flags;
intel_gt_mcr_lock(gt, &flags);
/*
* Ensure we have multicast behavior, just in case some non-i915 agent
* left the hardware in unicast mode.
*/
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
intel_gt_mcr_unlock(gt, flags);
}
/**
* intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
* @gt: GT structure
* @reg: the MCR register to write
* @value: value to write
*
* Write an MCR register in multicast mode to update all instances. This
* function assumes the caller is already holding any necessary forcewake
* domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
* be obtained automatically.
*
* Context: The caller must hold gt->mcr_lock.
*/
void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
{
lockdep_assert_held(&gt->mcr_lock);
/*
* Ensure we have multicast behavior, just in case some non-i915 agent
* left the hardware in unicast mode.
*/
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
}
/**
* intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
* @gt: GT structure
* @reg: the MCR register to read and write
* @clear: bits to clear during RMW
* @set: bits to set during RMW
*
* Performs a read-modify-write on an MCR register in a multicast manner.
* This operation only makes sense on MCR registers where all instances are
* expected to have the same value. The read will target any non-terminated
* instance and the write will be applied to all instances.
*
* This function assumes the caller is already holding any necessary forcewake
* domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
* be obtained automatically.
*
* Context: Calls functions that take and release gt->mcr_lock
*
* Returns the old (unmodified) value read.
*/
u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
u32 clear, u32 set)
{
u32 val = intel_gt_mcr_read_any(gt, reg);
intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
return val;
}
/*
* reg_needs_read_steering - determine whether a register read requires
* explicit steering
* @gt: GT structure
* @reg: the register to check steering requirements for
* @type: type of multicast steering to check
*
* Determines whether @reg needs explicit steering of a specific type for
* reads.
*
* Returns false if @reg does not belong to a register range of the given
* steering type, or if the default (subslice-based) steering IDs are suitable
* for @type steering too.
*/
static bool reg_needs_read_steering(struct intel_gt *gt,
i915_mcr_reg_t reg,
enum intel_steering_type type)
{
u32 offset = i915_mmio_reg_offset(reg);
const struct intel_mmio_range *entry;
if (likely(!gt->steering_table[type]))
return false;
if (IS_GSI_REG(offset))
offset += gt->uncore->gsi_offset;
for (entry = gt->steering_table[type]; entry->end; entry++) {
if (offset >= entry->start && offset <= entry->end)
return true;
}
return false;
}
/*
* get_nonterminated_steering - determines valid IDs for a class of MCR steering
* @gt: GT structure
* @type: multicast register type
* @group: Group ID returned
* @instance: Instance ID returned
*
* Determines group and instance values that will steer reads of the specified
* MCR class to a non-terminated instance.
*/
static void get_nonterminated_steering(struct intel_gt *gt,
enum intel_steering_type type,
u8 *group, u8 *instance)
{
u32 dss;
switch (type) {
case L3BANK:
*group = 0; /* unused */
*instance = __ffs(gt->info.l3bank_mask);
break;
case MSLICE:
GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
*group = __ffs(gt->info.mslice_mask);
*instance = 0; /* unused */
break;
case LNCF:
/*
* An LNCF is always present if its mslice is present, so we
* can safely just steer to LNCF 0 in all cases.
*/
GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
*group = __ffs(gt->info.mslice_mask) << 1;
*instance = 0; /* unused */
break;
case GAM:
*group = IS_DG2(gt->i915) ? 1 : 0;
*instance = 0;
break;
case DSS:
dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
*group = dss / GEN_DSS_PER_GSLICE;
*instance = dss % GEN_DSS_PER_GSLICE;
break;
case INSTANCE0:
/*
* There are a lot of MCR types for which instance (0, 0)
* will always provide a non-terminated value.
*/
*group = 0;
*instance = 0;
break;
case OADDRM:
if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
*group = 0;
else
*group = 1;
*instance = 0;
break;
default:
MISSING_CASE(type);
*group = 0;
*instance = 0;
}
}
/**
* intel_gt_mcr_get_nonterminated_steering - find group/instance values that
* will steer a register to a non-terminated instance
* @gt: GT structure
* @reg: register for which the steering is required
* @group: return variable for group steering
* @instance: return variable for instance steering
*
* This function returns a group/instance pair that is guaranteed to work for
* read steering of the given register. Note that a value will be returned even
* if the register is not replicated and therefore does not actually require
* steering.
*/
void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
i915_mcr_reg_t reg,
u8 *group, u8 *instance)
{
int type;
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (reg_needs_read_steering(gt, reg, type)) {
get_nonterminated_steering(gt, type, group, instance);
return;
}
}
*group = gt->default_steering.groupid;
*instance = gt->default_steering.instanceid;
}
/**
* intel_gt_mcr_read_any_fw - reads one instance of an MCR register
* @gt: GT structure
* @reg: register to read
*
* Reads a GT MCR register. The read will be steered to a non-terminated
* instance (i.e., one that isn't fused off or powered down by power gating).
* This function assumes the caller is already holding any necessary forcewake
* domains; use intel_gt_mcr_read_any() in cases where forcewake should be
* obtained automatically.
*
* Context: The caller must hold gt->mcr_lock.
*
* Returns the value from a non-terminated instance of @reg.
*/
u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
{
int type;
u8 group, instance;
lockdep_assert_held(&gt->mcr_lock);
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (reg_needs_read_steering(gt, reg, type)) {
get_nonterminated_steering(gt, type, &group, &instance);
return rw_with_mcr_steering_fw(gt, reg,
FW_REG_READ,
group, instance, 0);
}
}
return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
}
/**
* intel_gt_mcr_read_any - reads one instance of an MCR register
* @gt: GT structure
* @reg: register to read
*
* Reads a GT MCR register. The read will be steered to a non-terminated
* instance (i.e., one that isn't fused off or powered down by power gating).
*
* Context: Calls a function that takes and releases gt->mcr_lock.
*
* Returns the value from a non-terminated instance of @reg.
*/
u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
{
int type;
u8 group, instance;
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (reg_needs_read_steering(gt, reg, type)) {
get_nonterminated_steering(gt, type, &group, &instance);
return rw_with_mcr_steering(gt, reg,
FW_REG_READ,
group, instance, 0);
}
}
return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
}
static void report_steering_type(struct drm_printer *p,
struct intel_gt *gt,
enum intel_steering_type type,
bool dump_table)
{
const struct intel_mmio_range *entry;
u8 group, instance;
BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
if (!gt->steering_table[type]) {
drm_printf(p, "%s steering: uses default steering\n",
intel_steering_types[type]);
return;
}
get_nonterminated_steering(gt, type, &group, &instance);
drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
intel_steering_types[type], group, instance);
if (!dump_table)
return;
for (entry = gt->steering_table[type]; entry->end; entry++)
drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
}
void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
bool dump_table)
{
/*
* Starting with MTL we no longer have default steering;
* all ranges are explicitly steered.
*/
if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
gt->default_steering.groupid,
gt->default_steering.instanceid);
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
for (int i = 0; i < NUM_STEERING_TYPES; i++)
if (gt->steering_table[i])
report_steering_type(p, gt, i, dump_table);
} else if (IS_PONTEVECCHIO(gt->i915)) {
report_steering_type(p, gt, INSTANCE0, dump_table);
} else if (HAS_MSLICE_STEERING(gt->i915)) {
report_steering_type(p, gt, MSLICE, dump_table);
report_steering_type(p, gt, LNCF, dump_table);
}
}
/**
* intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
* @gt: GT structure
* @dss: DSS ID to obtain steering for
* @group: pointer to storage for steering group ID
* @instance: pointer to storage for steering instance ID
*
* Returns the steering IDs (via the @group and @instance parameters) that
* correspond to a specific subslice/DSS ID.
*/
void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
unsigned int *group, unsigned int *instance)
{
if (IS_PONTEVECCHIO(gt->i915)) {
*group = dss / GEN_DSS_PER_CSLICE;
*instance = dss % GEN_DSS_PER_CSLICE;
} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) {
*group = dss / GEN_DSS_PER_GSLICE;
*instance = dss % GEN_DSS_PER_GSLICE;
} else {
*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
return;
}
}
/**
* intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
* @gt: GT structure
* @reg: the register to read
* @mask: mask to apply to register value
* @value: value to wait for
* @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
* @slow_timeout_ms: slow timeout in millisecond
*
* This routine waits until the target register @reg contains the expected
* @value after applying the @mask, i.e. it waits until ::
*
* (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
*
* Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
* For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
* must be not larger than 20,0000 microseconds.
*
* This function is basically an MCR-friendly version of
* __intel_wait_for_register_fw(). Generally this function will only be used
* on GAM registers which are a bit special --- although they're MCR registers,
* reads (e.g., waiting for status updates) are always directed to the primary
* instance.
*
* Note that this routine assumes the caller holds forcewake asserted, it is
* not suitable for very long waits.
*
* Context: Calls a function that takes and releases gt->mcr_lock
* Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
*/
int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
i915_mcr_reg_t reg,
u32 mask,
u32 value,
unsigned int fast_timeout_us,
unsigned int slow_timeout_ms)
{
int ret;
lockdep_assert_not_held(&gt->mcr_lock);
#define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
/* Catch any overuse of this function */
might_sleep_if(slow_timeout_ms);
GEM_BUG_ON(fast_timeout_us > 20000);
GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
ret = -ETIMEDOUT;
if (fast_timeout_us && fast_timeout_us <= 20000)
ret = _wait_for_atomic(done, fast_timeout_us, 0);
if (ret && slow_timeout_ms)
ret = wait_for(done, slow_timeout_ms);
return ret;
#undef done
}