blob: 302d0540295d7c5467ddf1e9e8cc00472be8eec8 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#define NUM_STEPS 5
#define H2G_DELAY 50000
#define delay_for_h2g() usleep_range(H2G_DELAY, H2G_DELAY + 10000)
#define FREQUENCY_REQ_UNIT DIV_ROUND_CLOSEST(GT_FREQUENCY_MULTIPLIER, \
GEN9_FREQ_SCALER)
enum test_type {
VARY_MIN,
VARY_MAX,
MAX_GRANTED,
SLPC_POWER,
TILE_INTERACTION,
};
struct slpc_thread {
struct kthread_worker *worker;
struct kthread_work work;
struct intel_gt *gt;
int result;
};
static int slpc_set_min_freq(struct intel_guc_slpc *slpc, u32 freq)
{
int ret;
ret = intel_guc_slpc_set_min_freq(slpc, freq);
if (ret)
pr_err("Could not set min frequency to [%u]\n", freq);
else /* Delay to ensure h2g completes */
delay_for_h2g();
return ret;
}
static int slpc_set_max_freq(struct intel_guc_slpc *slpc, u32 freq)
{
int ret;
ret = intel_guc_slpc_set_max_freq(slpc, freq);
if (ret)
pr_err("Could not set maximum frequency [%u]\n",
freq);
else /* Delay to ensure h2g completes */
delay_for_h2g();
return ret;
}
static int slpc_set_freq(struct intel_gt *gt, u32 freq)
{
int err;
struct intel_guc_slpc *slpc = &gt->uc.guc.slpc;
err = slpc_set_max_freq(slpc, freq);
if (err) {
pr_err("Unable to update max freq");
return err;
}
err = slpc_set_min_freq(slpc, freq);
if (err) {
pr_err("Unable to update min freq");
return err;
}
return err;
}
static int slpc_restore_freq(struct intel_guc_slpc *slpc, u32 min, u32 max)
{
int err;
err = slpc_set_max_freq(slpc, max);
if (err) {
pr_err("Unable to restore max freq");
return err;
}
err = slpc_set_min_freq(slpc, min);
if (err) {
pr_err("Unable to restore min freq");
return err;
}
err = intel_guc_slpc_set_ignore_eff_freq(slpc, false);
if (err) {
pr_err("Unable to restore efficient freq");
return err;
}
return 0;
}
static u64 measure_power_at_freq(struct intel_gt *gt, int *freq, u64 *power)
{
int err = 0;
err = slpc_set_freq(gt, *freq);
if (err)
return err;
*freq = intel_rps_read_actual_frequency(&gt->rps);
*power = measure_power(&gt->rps, freq);
return err;
}
static int vary_max_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps,
u32 *max_act_freq)
{
u32 step, max_freq, req_freq;
u32 act_freq;
int err = 0;
/* Go from max to min in 5 steps */
step = (slpc->rp0_freq - slpc->min_freq) / NUM_STEPS;
*max_act_freq = slpc->min_freq;
for (max_freq = slpc->rp0_freq; max_freq > slpc->min_freq;
max_freq -= step) {
err = slpc_set_max_freq(slpc, max_freq);
if (err)
break;
req_freq = intel_rps_read_punit_req_frequency(rps);
/* GuC requests freq in multiples of 50/3 MHz */
if (req_freq > (max_freq + FREQUENCY_REQ_UNIT)) {
pr_err("SWReq is %d, should be at most %d\n", req_freq,
max_freq + FREQUENCY_REQ_UNIT);
err = -EINVAL;
}
act_freq = intel_rps_read_actual_frequency(rps);
if (act_freq > *max_act_freq)
*max_act_freq = act_freq;
if (err)
break;
}
return err;
}
static int vary_min_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps,
u32 *max_act_freq)
{
u32 step, min_freq, req_freq;
u32 act_freq;
int err = 0;
/* Go from min to max in 5 steps */
step = (slpc->rp0_freq - slpc->min_freq) / NUM_STEPS;
*max_act_freq = slpc->min_freq;
for (min_freq = slpc->min_freq; min_freq < slpc->rp0_freq;
min_freq += step) {
err = slpc_set_min_freq(slpc, min_freq);
if (err)
break;
req_freq = intel_rps_read_punit_req_frequency(rps);
/* GuC requests freq in multiples of 50/3 MHz */
if (req_freq < (min_freq - FREQUENCY_REQ_UNIT)) {
pr_err("SWReq is %d, should be at least %d\n", req_freq,
min_freq - FREQUENCY_REQ_UNIT);
err = -EINVAL;
}
act_freq = intel_rps_read_actual_frequency(rps);
if (act_freq > *max_act_freq)
*max_act_freq = act_freq;
if (err)
break;
}
return err;
}
static int slpc_power(struct intel_gt *gt, struct intel_engine_cs *engine)
{
struct intel_guc_slpc *slpc = &gt->uc.guc.slpc;
struct {
u64 power;
int freq;
} min, max;
int err = 0;
/*
* Our fundamental assumption is that running at lower frequency
* actually saves power. Let's see if our RAPL measurement supports
* that theory.
*/
if (!librapl_supported(gt->i915))
return 0;
min.freq = slpc->min_freq;
err = measure_power_at_freq(gt, &min.freq, &min.power);
if (err)
return err;
max.freq = slpc->rp0_freq;
err = measure_power_at_freq(gt, &max.freq, &max.power);
if (err)
return err;
pr_info("%s: min:%llumW @ %uMHz, max:%llumW @ %uMHz\n",
engine->name,
min.power, min.freq,
max.power, max.freq);
if (10 * min.freq >= 9 * max.freq) {
pr_notice("Could not control frequency, ran at [%uMHz, %uMhz]\n",
min.freq, max.freq);
}
if (11 * min.power > 10 * max.power) {
pr_err("%s: did not conserve power when setting lower frequency!\n",
engine->name);
err = -EINVAL;
}
/* Restore min/max frequencies */
slpc_set_max_freq(slpc, slpc->rp0_freq);
slpc_set_min_freq(slpc, slpc->min_freq);
return err;
}
static int max_granted_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps, u32 *max_act_freq)
{
struct intel_gt *gt = rps_to_gt(rps);
u32 perf_limit_reasons;
int err = 0;
err = slpc_set_min_freq(slpc, slpc->rp0_freq);
if (err)
return err;
*max_act_freq = intel_rps_read_actual_frequency(rps);
if (*max_act_freq != slpc->rp0_freq) {
/* Check if there was some throttling by pcode */
perf_limit_reasons = intel_uncore_read(gt->uncore,
intel_gt_perf_limit_reasons_reg(gt));
/* If not, this is an error */
if (!(perf_limit_reasons & GT0_PERF_LIMIT_REASONS_MASK)) {
pr_err("Pcode did not grant max freq\n");
err = -EINVAL;
} else {
pr_info("Pcode throttled frequency 0x%x\n", perf_limit_reasons);
}
}
return err;
}
static int run_test(struct intel_gt *gt, int test_type)
{
struct intel_guc_slpc *slpc = &gt->uc.guc.slpc;
struct intel_rps *rps = &gt->rps;
struct intel_engine_cs *engine;
enum intel_engine_id id;
intel_wakeref_t wakeref;
struct igt_spinner spin;
u32 slpc_min_freq, slpc_max_freq;
int err = 0;
if (!intel_uc_uses_guc_slpc(&gt->uc))
return 0;
if (slpc->min_freq == slpc->rp0_freq) {
pr_err("Min/Max are fused to the same value\n");
return -EINVAL;
}
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
if (intel_guc_slpc_get_max_freq(slpc, &slpc_max_freq)) {
pr_err("Could not get SLPC max freq\n");
return -EIO;
}
if (intel_guc_slpc_get_min_freq(slpc, &slpc_min_freq)) {
pr_err("Could not get SLPC min freq\n");
return -EIO;
}
/*
* Set min frequency to RPn so that we can test the whole
* range of RPn-RP0.
*/
err = slpc_set_min_freq(slpc, slpc->min_freq);
if (err) {
pr_err("Unable to update min freq!");
return err;
}
/*
* Turn off efficient frequency so RPn/RP0 ranges are obeyed.
*/
err = intel_guc_slpc_set_ignore_eff_freq(slpc, true);
if (err) {
pr_err("Unable to turn off efficient freq!");
return err;
}
intel_gt_pm_wait_for_idle(gt);
wakeref = intel_gt_pm_get(gt);
for_each_engine(engine, gt, id) {
struct i915_request *rq;
u32 max_act_freq;
if (!intel_engine_can_store_dword(engine))
continue;
st_engine_heartbeat_disable(engine);
rq = igt_spinner_create_request(&spin,
engine->kernel_context,
MI_NOOP);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
st_engine_heartbeat_enable(engine);
break;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
pr_err("%s: Spinner did not start\n",
engine->name);
igt_spinner_end(&spin);
st_engine_heartbeat_enable(engine);
intel_gt_set_wedged(engine->gt);
err = -EIO;
break;
}
switch (test_type) {
case VARY_MIN:
err = vary_min_freq(slpc, rps, &max_act_freq);
break;
case VARY_MAX:
err = vary_max_freq(slpc, rps, &max_act_freq);
break;
case MAX_GRANTED:
case TILE_INTERACTION:
/* Media engines have a different RP0 */
if (gt->type != GT_MEDIA && (engine->class == VIDEO_DECODE_CLASS ||
engine->class == VIDEO_ENHANCEMENT_CLASS)) {
igt_spinner_end(&spin);
st_engine_heartbeat_enable(engine);
err = 0;
continue;
}
err = max_granted_freq(slpc, rps, &max_act_freq);
break;
case SLPC_POWER:
err = slpc_power(gt, engine);
break;
}
if (test_type != SLPC_POWER) {
pr_info("Max actual frequency for %s was %d\n",
engine->name, max_act_freq);
/* Actual frequency should rise above min */
if (max_act_freq <= slpc->min_freq) {
pr_err("Actual freq did not rise above min\n");
pr_err("Perf Limit Reasons: 0x%x\n",
intel_uncore_read(gt->uncore,
intel_gt_perf_limit_reasons_reg(gt)));
err = -EINVAL;
}
}
igt_spinner_end(&spin);
st_engine_heartbeat_enable(engine);
if (err)
break;
}
/* Restore min/max/efficient frequencies */
err = slpc_restore_freq(slpc, slpc_min_freq, slpc_max_freq);
if (igt_flush_test(gt->i915))
err = -EIO;
intel_gt_pm_put(gt, wakeref);
igt_spinner_fini(&spin);
intel_gt_pm_wait_for_idle(gt);
return err;
}
static int live_slpc_vary_min(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
unsigned int i;
int ret;
for_each_gt(gt, i915, i) {
ret = run_test(gt, VARY_MIN);
if (ret)
return ret;
}
return ret;
}
static int live_slpc_vary_max(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
unsigned int i;
int ret;
for_each_gt(gt, i915, i) {
ret = run_test(gt, VARY_MAX);
if (ret)
return ret;
}
return ret;
}
/* check if pcode can grant RP0 */
static int live_slpc_max_granted(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
unsigned int i;
int ret;
for_each_gt(gt, i915, i) {
ret = run_test(gt, MAX_GRANTED);
if (ret)
return ret;
}
return ret;
}
static int live_slpc_power(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
unsigned int i;
int ret;
for_each_gt(gt, i915, i) {
ret = run_test(gt, SLPC_POWER);
if (ret)
return ret;
}
return ret;
}
static void slpc_spinner_thread(struct kthread_work *work)
{
struct slpc_thread *thread = container_of(work, typeof(*thread), work);
thread->result = run_test(thread->gt, TILE_INTERACTION);
}
static int live_slpc_tile_interaction(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
struct slpc_thread *threads;
int i = 0, ret = 0;
threads = kcalloc(I915_MAX_GT, sizeof(*threads), GFP_KERNEL);
if (!threads)
return -ENOMEM;
for_each_gt(gt, i915, i) {
threads[i].worker = kthread_create_worker(0, "igt/slpc_parallel:%d", gt->info.id);
if (IS_ERR(threads[i].worker)) {
ret = PTR_ERR(threads[i].worker);
break;
}
threads[i].gt = gt;
kthread_init_work(&threads[i].work, slpc_spinner_thread);
kthread_queue_work(threads[i].worker, &threads[i].work);
}
for_each_gt(gt, i915, i) {
int status;
if (IS_ERR_OR_NULL(threads[i].worker))
continue;
kthread_flush_work(&threads[i].work);
status = READ_ONCE(threads[i].result);
if (status && !ret) {
pr_err("%s GT %d failed ", __func__, gt->info.id);
ret = status;
}
kthread_destroy_worker(threads[i].worker);
}
kfree(threads);
return ret;
}
int intel_slpc_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_slpc_vary_max),
SUBTEST(live_slpc_vary_min),
SUBTEST(live_slpc_max_granted),
SUBTEST(live_slpc_power),
SUBTEST(live_slpc_tile_interaction),
};
struct intel_gt *gt;
unsigned int i;
for_each_gt(gt, i915, i) {
if (intel_gt_is_wedged(gt))
return 0;
}
return i915_live_subtests(tests, i915);
}