blob: 11e150f4c0c1f753bf344224b433f26231efd782 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_exec_queue.h"
#include <linux/nospec.h>
#include <drm/drm_device.h>
#include <drm/drm_file.h>
#include <drm/xe_drm.h>
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_hw_engine_class_sysfs.h"
#include "xe_hw_fence.h"
#include "xe_lrc.h"
#include "xe_macros.h"
#include "xe_migrate.h"
#include "xe_pm.h"
#include "xe_ring_ops_types.h"
#include "xe_trace.h"
#include "xe_vm.h"
enum xe_exec_queue_sched_prop {
XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
XE_EXEC_QUEUE_TIMESLICE = 1,
XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
};
static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
u64 extensions, int ext_number, bool create);
static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
struct xe_vm *vm,
u32 logical_mask,
u16 width, struct xe_hw_engine *hwe,
u32 flags, u64 extensions)
{
struct xe_exec_queue *q;
struct xe_gt *gt = hwe->gt;
int err;
/* only kernel queues can be permanent */
XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
if (!q)
return ERR_PTR(-ENOMEM);
kref_init(&q->refcount);
q->flags = flags;
q->hwe = hwe;
q->gt = gt;
q->class = hwe->class;
q->width = width;
q->logical_mask = logical_mask;
q->fence_irq = &gt->fence_irq[hwe->class];
q->ring_ops = gt->ring_ops[hwe->class];
q->ops = gt->exec_queue_ops;
INIT_LIST_HEAD(&q->compute.link);
INIT_LIST_HEAD(&q->multi_gt_link);
q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
q->sched_props.preempt_timeout_us =
hwe->eclass->sched_props.preempt_timeout_us;
q->sched_props.job_timeout_ms =
hwe->eclass->sched_props.job_timeout_ms;
if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
else
q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
if (extensions) {
/*
* may set q->usm, must come before xe_lrc_init(),
* may overwrite q->sched_props, must come before q->ops->init()
*/
err = exec_queue_user_extensions(xe, q, extensions, 0, true);
if (err) {
kfree(q);
return ERR_PTR(err);
}
}
if (vm)
q->vm = xe_vm_get(vm);
if (xe_exec_queue_is_parallel(q)) {
q->parallel.composite_fence_ctx = dma_fence_context_alloc(1);
q->parallel.composite_fence_seqno = XE_FENCE_INITIAL_SEQNO;
}
return q;
}
static void __xe_exec_queue_free(struct xe_exec_queue *q)
{
if (q->vm)
xe_vm_put(q->vm);
kfree(q);
}
static int __xe_exec_queue_init(struct xe_exec_queue *q)
{
struct xe_device *xe = gt_to_xe(q->gt);
int i, err;
for (i = 0; i < q->width; ++i) {
err = xe_lrc_init(q->lrc + i, q->hwe, q, q->vm, SZ_16K);
if (err)
goto err_lrc;
}
err = q->ops->init(q);
if (err)
goto err_lrc;
/*
* Normally the user vm holds an rpm ref to keep the device
* awake, and the context holds a ref for the vm, however for
* some engines we use the kernels migrate vm underneath which offers no
* such rpm ref, or we lack a vm. Make sure we keep a ref here, so we
* can perform GuC CT actions when needed. Caller is expected to have
* already grabbed the rpm ref outside any sensitive locks.
*/
if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && (q->flags & EXEC_QUEUE_FLAG_VM || !q->vm))
drm_WARN_ON(&xe->drm, !xe_device_mem_access_get_if_ongoing(xe));
return 0;
err_lrc:
for (i = i - 1; i >= 0; --i)
xe_lrc_finish(q->lrc + i);
return err;
}
struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
u32 logical_mask, u16 width,
struct xe_hw_engine *hwe, u32 flags,
u64 extensions)
{
struct xe_exec_queue *q;
int err;
q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
extensions);
if (IS_ERR(q))
return q;
if (vm) {
err = xe_vm_lock(vm, true);
if (err)
goto err_post_alloc;
}
err = __xe_exec_queue_init(q);
if (vm)
xe_vm_unlock(vm);
if (err)
goto err_post_alloc;
return q;
err_post_alloc:
__xe_exec_queue_free(q);
return ERR_PTR(err);
}
struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
struct xe_vm *vm,
enum xe_engine_class class, u32 flags)
{
struct xe_hw_engine *hwe, *hwe0 = NULL;
enum xe_hw_engine_id id;
u32 logical_mask = 0;
for_each_hw_engine(hwe, gt, id) {
if (xe_hw_engine_is_reserved(hwe))
continue;
if (hwe->class == class) {
logical_mask |= BIT(hwe->logical_instance);
if (!hwe0)
hwe0 = hwe;
}
}
if (!logical_mask)
return ERR_PTR(-ENODEV);
return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, 0);
}
void xe_exec_queue_destroy(struct kref *ref)
{
struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
struct xe_exec_queue *eq, *next;
xe_exec_queue_last_fence_put_unlocked(q);
if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
list_for_each_entry_safe(eq, next, &q->multi_gt_list,
multi_gt_link)
xe_exec_queue_put(eq);
}
q->ops->fini(q);
}
void xe_exec_queue_fini(struct xe_exec_queue *q)
{
int i;
for (i = 0; i < q->width; ++i)
xe_lrc_finish(q->lrc + i);
if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && (q->flags & EXEC_QUEUE_FLAG_VM || !q->vm))
xe_device_mem_access_put(gt_to_xe(q->gt));
__xe_exec_queue_free(q);
}
void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
{
switch (q->class) {
case XE_ENGINE_CLASS_RENDER:
sprintf(q->name, "rcs%d", instance);
break;
case XE_ENGINE_CLASS_VIDEO_DECODE:
sprintf(q->name, "vcs%d", instance);
break;
case XE_ENGINE_CLASS_VIDEO_ENHANCE:
sprintf(q->name, "vecs%d", instance);
break;
case XE_ENGINE_CLASS_COPY:
sprintf(q->name, "bcs%d", instance);
break;
case XE_ENGINE_CLASS_COMPUTE:
sprintf(q->name, "ccs%d", instance);
break;
case XE_ENGINE_CLASS_OTHER:
sprintf(q->name, "gsccs%d", instance);
break;
default:
XE_WARN_ON(q->class);
}
}
struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
{
struct xe_exec_queue *q;
mutex_lock(&xef->exec_queue.lock);
q = xa_load(&xef->exec_queue.xa, id);
if (q)
xe_exec_queue_get(q);
mutex_unlock(&xef->exec_queue.lock);
return q;
}
enum xe_exec_queue_priority
xe_exec_queue_device_get_max_priority(struct xe_device *xe)
{
return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
XE_EXEC_QUEUE_PRIORITY_NORMAL;
}
static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
u64 value, bool create)
{
if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
return -EINVAL;
if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
return -EPERM;
if (!create)
return q->ops->set_priority(q, value);
q->sched_props.priority = value;
return 0;
}
static bool xe_exec_queue_enforce_schedule_limit(void)
{
#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
return true;
#else
return !capable(CAP_SYS_NICE);
#endif
}
static void
xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
enum xe_exec_queue_sched_prop prop,
u32 *min, u32 *max)
{
switch (prop) {
case XE_EXEC_QUEUE_JOB_TIMEOUT:
*min = eclass->sched_props.job_timeout_min;
*max = eclass->sched_props.job_timeout_max;
break;
case XE_EXEC_QUEUE_TIMESLICE:
*min = eclass->sched_props.timeslice_min;
*max = eclass->sched_props.timeslice_max;
break;
case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
*min = eclass->sched_props.preempt_timeout_min;
*max = eclass->sched_props.preempt_timeout_max;
break;
default:
break;
}
#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
if (capable(CAP_SYS_NICE)) {
switch (prop) {
case XE_EXEC_QUEUE_JOB_TIMEOUT:
*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
break;
case XE_EXEC_QUEUE_TIMESLICE:
*min = XE_HW_ENGINE_TIMESLICE_MIN;
*max = XE_HW_ENGINE_TIMESLICE_MAX;
break;
case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
break;
default:
break;
}
}
#endif
}
static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
u64 value, bool create)
{
u32 min = 0, max = 0;
xe_exec_queue_get_prop_minmax(q->hwe->eclass,
XE_EXEC_QUEUE_TIMESLICE, &min, &max);
if (xe_exec_queue_enforce_schedule_limit() &&
!xe_hw_engine_timeout_in_range(value, min, max))
return -EINVAL;
if (!create)
return q->ops->set_timeslice(q, value);
q->sched_props.timeslice_us = value;
return 0;
}
typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
struct xe_exec_queue *q,
u64 value, bool create);
static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
};
static int exec_queue_user_ext_set_property(struct xe_device *xe,
struct xe_exec_queue *q,
u64 extension,
bool create)
{
u64 __user *address = u64_to_user_ptr(extension);
struct drm_xe_ext_set_property ext;
int err;
u32 idx;
err = __copy_from_user(&ext, address, sizeof(ext));
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, ext.property >=
ARRAY_SIZE(exec_queue_set_property_funcs)) ||
XE_IOCTL_DBG(xe, ext.pad) ||
XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE))
return -EINVAL;
idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
if (!exec_queue_set_property_funcs[idx])
return -EINVAL;
return exec_queue_set_property_funcs[idx](xe, q, ext.value, create);
}
typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
struct xe_exec_queue *q,
u64 extension,
bool create);
static const xe_exec_queue_set_property_fn exec_queue_user_extension_funcs[] = {
[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
};
#define MAX_USER_EXTENSIONS 16
static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
u64 extensions, int ext_number, bool create)
{
u64 __user *address = u64_to_user_ptr(extensions);
struct drm_xe_user_extension ext;
int err;
u32 idx;
if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
return -E2BIG;
err = __copy_from_user(&ext, address, sizeof(ext));
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, ext.pad) ||
XE_IOCTL_DBG(xe, ext.name >=
ARRAY_SIZE(exec_queue_user_extension_funcs)))
return -EINVAL;
idx = array_index_nospec(ext.name,
ARRAY_SIZE(exec_queue_user_extension_funcs));
err = exec_queue_user_extension_funcs[idx](xe, q, extensions, create);
if (XE_IOCTL_DBG(xe, err))
return err;
if (ext.next_extension)
return exec_queue_user_extensions(xe, q, ext.next_extension,
++ext_number, create);
return 0;
}
static const enum xe_engine_class user_to_xe_engine_class[] = {
[DRM_XE_ENGINE_CLASS_RENDER] = XE_ENGINE_CLASS_RENDER,
[DRM_XE_ENGINE_CLASS_COPY] = XE_ENGINE_CLASS_COPY,
[DRM_XE_ENGINE_CLASS_VIDEO_DECODE] = XE_ENGINE_CLASS_VIDEO_DECODE,
[DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE] = XE_ENGINE_CLASS_VIDEO_ENHANCE,
[DRM_XE_ENGINE_CLASS_COMPUTE] = XE_ENGINE_CLASS_COMPUTE,
};
static struct xe_hw_engine *
find_hw_engine(struct xe_device *xe,
struct drm_xe_engine_class_instance eci)
{
u32 idx;
if (eci.engine_class > ARRAY_SIZE(user_to_xe_engine_class))
return NULL;
if (eci.gt_id >= xe->info.gt_count)
return NULL;
idx = array_index_nospec(eci.engine_class,
ARRAY_SIZE(user_to_xe_engine_class));
return xe_gt_hw_engine(xe_device_get_gt(xe, eci.gt_id),
user_to_xe_engine_class[idx],
eci.engine_instance, true);
}
static u32 bind_exec_queue_logical_mask(struct xe_device *xe, struct xe_gt *gt,
struct drm_xe_engine_class_instance *eci,
u16 width, u16 num_placements)
{
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
u32 logical_mask = 0;
if (XE_IOCTL_DBG(xe, width != 1))
return 0;
if (XE_IOCTL_DBG(xe, num_placements != 1))
return 0;
if (XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
return 0;
eci[0].engine_class = DRM_XE_ENGINE_CLASS_COPY;
for_each_hw_engine(hwe, gt, id) {
if (xe_hw_engine_is_reserved(hwe))
continue;
if (hwe->class ==
user_to_xe_engine_class[DRM_XE_ENGINE_CLASS_COPY])
logical_mask |= BIT(hwe->logical_instance);
}
return logical_mask;
}
static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt,
struct drm_xe_engine_class_instance *eci,
u16 width, u16 num_placements)
{
int len = width * num_placements;
int i, j, n;
u16 class;
u16 gt_id;
u32 return_mask = 0, prev_mask;
if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
len > 1))
return 0;
for (i = 0; i < width; ++i) {
u32 current_mask = 0;
for (j = 0; j < num_placements; ++j) {
struct xe_hw_engine *hwe;
n = j * width + i;
hwe = find_hw_engine(xe, eci[n]);
if (XE_IOCTL_DBG(xe, !hwe))
return 0;
if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
return 0;
if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
return 0;
class = eci[n].engine_class;
gt_id = eci[n].gt_id;
if (width == 1 || !i)
return_mask |= BIT(eci[n].engine_instance);
current_mask |= BIT(eci[n].engine_instance);
}
/* Parallel submissions must be logically contiguous */
if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
return 0;
prev_mask = current_mask;
}
return return_mask;
}
int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_create *args = data;
struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
struct drm_xe_engine_class_instance __user *user_eci =
u64_to_user_ptr(args->instances);
struct xe_hw_engine *hwe;
struct xe_vm *vm, *migrate_vm;
struct xe_gt *gt;
struct xe_exec_queue *q = NULL;
u32 logical_mask;
u32 id;
u32 len;
int err;
if (XE_IOCTL_DBG(xe, args->flags) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
len = args->width * args->num_placements;
if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
return -EINVAL;
err = __copy_from_user(eci, user_eci,
sizeof(struct drm_xe_engine_class_instance) *
len);
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count))
return -EINVAL;
if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
for_each_gt(gt, xe, id) {
struct xe_exec_queue *new;
u32 flags;
if (xe_gt_is_media_type(gt))
continue;
eci[0].gt_id = gt->info.id;
logical_mask = bind_exec_queue_logical_mask(xe, gt, eci,
args->width,
args->num_placements);
if (XE_IOCTL_DBG(xe, !logical_mask))
return -EINVAL;
hwe = find_hw_engine(xe, eci[0]);
if (XE_IOCTL_DBG(xe, !hwe))
return -EINVAL;
/* The migration vm doesn't hold rpm ref */
xe_device_mem_access_get(xe);
flags = EXEC_QUEUE_FLAG_VM | (id ? EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD : 0);
migrate_vm = xe_migrate_get_vm(gt_to_tile(gt)->migrate);
new = xe_exec_queue_create(xe, migrate_vm, logical_mask,
args->width, hwe, flags,
args->extensions);
xe_device_mem_access_put(xe); /* now held by engine */
xe_vm_put(migrate_vm);
if (IS_ERR(new)) {
err = PTR_ERR(new);
if (q)
goto put_exec_queue;
return err;
}
if (id == 0)
q = new;
else
list_add_tail(&new->multi_gt_list,
&q->multi_gt_link);
}
} else {
gt = xe_device_get_gt(xe, eci[0].gt_id);
logical_mask = calc_validate_logical_mask(xe, gt, eci,
args->width,
args->num_placements);
if (XE_IOCTL_DBG(xe, !logical_mask))
return -EINVAL;
hwe = find_hw_engine(xe, eci[0]);
if (XE_IOCTL_DBG(xe, !hwe))
return -EINVAL;
vm = xe_vm_lookup(xef, args->vm_id);
if (XE_IOCTL_DBG(xe, !vm))
return -ENOENT;
err = down_read_interruptible(&vm->lock);
if (err) {
xe_vm_put(vm);
return err;
}
if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
up_read(&vm->lock);
xe_vm_put(vm);
return -ENOENT;
}
q = xe_exec_queue_create(xe, vm, logical_mask,
args->width, hwe, 0,
args->extensions);
up_read(&vm->lock);
xe_vm_put(vm);
if (IS_ERR(q))
return PTR_ERR(q);
if (xe_vm_in_preempt_fence_mode(vm)) {
q->compute.context = dma_fence_context_alloc(1);
spin_lock_init(&q->compute.lock);
err = xe_vm_add_compute_exec_queue(vm, q);
if (XE_IOCTL_DBG(xe, err))
goto put_exec_queue;
}
}
mutex_lock(&xef->exec_queue.lock);
err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
mutex_unlock(&xef->exec_queue.lock);
if (err)
goto kill_exec_queue;
args->exec_queue_id = id;
return 0;
kill_exec_queue:
xe_exec_queue_kill(q);
put_exec_queue:
xe_exec_queue_put(q);
return err;
}
int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_get_property *args = data;
struct xe_exec_queue *q;
int ret;
if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
q = xe_exec_queue_lookup(xef, args->exec_queue_id);
if (XE_IOCTL_DBG(xe, !q))
return -ENOENT;
switch (args->property) {
case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
args->value = !!(q->flags & EXEC_QUEUE_FLAG_BANNED);
ret = 0;
break;
default:
ret = -EINVAL;
}
xe_exec_queue_put(q);
return ret;
}
/**
* xe_exec_queue_is_lr() - Whether an exec_queue is long-running
* @q: The exec_queue
*
* Return: True if the exec_queue is long-running, false otherwise.
*/
bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
{
return q->vm && xe_vm_in_lr_mode(q->vm) &&
!(q->flags & EXEC_QUEUE_FLAG_VM);
}
static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q)
{
return q->lrc->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc) - 1;
}
/**
* xe_exec_queue_ring_full() - Whether an exec_queue's ring is full
* @q: The exec_queue
*
* Return: True if the exec_queue's ring is full, false otherwise.
*/
bool xe_exec_queue_ring_full(struct xe_exec_queue *q)
{
struct xe_lrc *lrc = q->lrc;
s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES;
return xe_exec_queue_num_job_inflight(q) >= max_job;
}
/**
* xe_exec_queue_is_idle() - Whether an exec_queue is idle.
* @q: The exec_queue
*
* FIXME: Need to determine what to use as the short-lived
* timeline lock for the exec_queues, so that the return value
* of this function becomes more than just an advisory
* snapshot in time. The timeline lock must protect the
* seqno from racing submissions on the same exec_queue.
* Typically vm->resv, but user-created timeline locks use the migrate vm
* and never grabs the migrate vm->resv so we have a race there.
*
* Return: True if the exec_queue is idle, false otherwise.
*/
bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
{
if (xe_exec_queue_is_parallel(q)) {
int i;
for (i = 0; i < q->width; ++i) {
if (xe_lrc_seqno(&q->lrc[i]) !=
q->lrc[i].fence_ctx.next_seqno - 1)
return false;
}
return true;
}
return xe_lrc_seqno(&q->lrc[0]) ==
q->lrc[0].fence_ctx.next_seqno - 1;
}
void xe_exec_queue_kill(struct xe_exec_queue *q)
{
struct xe_exec_queue *eq = q, *next;
list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
multi_gt_link) {
q->ops->kill(eq);
xe_vm_remove_compute_exec_queue(q->vm, eq);
}
q->ops->kill(q);
xe_vm_remove_compute_exec_queue(q->vm, q);
}
int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_destroy *args = data;
struct xe_exec_queue *q;
if (XE_IOCTL_DBG(xe, args->pad) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
mutex_lock(&xef->exec_queue.lock);
q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
mutex_unlock(&xef->exec_queue.lock);
if (XE_IOCTL_DBG(xe, !q))
return -ENOENT;
xe_exec_queue_kill(q);
trace_xe_exec_queue_close(q);
xe_exec_queue_put(q);
return 0;
}
static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
struct xe_vm *vm)
{
if (q->flags & EXEC_QUEUE_FLAG_VM)
lockdep_assert_held(&vm->lock);
else
xe_vm_assert_held(vm);
}
/**
* xe_exec_queue_last_fence_put() - Drop ref to last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
*/
void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
{
xe_exec_queue_last_fence_lockdep_assert(q, vm);
if (q->last_fence) {
dma_fence_put(q->last_fence);
q->last_fence = NULL;
}
}
/**
* xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
* @q: The exec queue
*
* Only safe to be called from xe_exec_queue_destroy().
*/
void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
{
if (q->last_fence) {
dma_fence_put(q->last_fence);
q->last_fence = NULL;
}
}
/**
* xe_exec_queue_last_fence_get() - Get last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
*
* Get last fence, takes a ref
*
* Returns: last fence if not signaled, dma fence stub if signaled
*/
struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
struct xe_vm *vm)
{
struct dma_fence *fence;
xe_exec_queue_last_fence_lockdep_assert(q, vm);
if (q->last_fence &&
test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
xe_exec_queue_last_fence_put(q, vm);
fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
dma_fence_get(fence);
return fence;
}
/**
* xe_exec_queue_last_fence_set() - Set last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
* @fence: The fence
*
* Set the last fence for the engine. Increases reference count for fence, when
* closing engine xe_exec_queue_last_fence_put should be called.
*/
void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
struct dma_fence *fence)
{
xe_exec_queue_last_fence_lockdep_assert(q, vm);
xe_exec_queue_last_fence_put(q, vm);
q->last_fence = dma_fence_get(fence);
}