|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/proc_ns.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/net_namespace.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/netlink.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <net/netns/generic.h> | 
|  |  | 
|  | /* | 
|  | *	Our network namespace constructor/destructor lists | 
|  | */ | 
|  |  | 
|  | static LIST_HEAD(pernet_list); | 
|  | static struct list_head *first_device = &pernet_list; | 
|  | DEFINE_MUTEX(net_mutex); | 
|  |  | 
|  | LIST_HEAD(net_namespace_list); | 
|  | EXPORT_SYMBOL_GPL(net_namespace_list); | 
|  |  | 
|  | struct net init_net = { | 
|  | .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), | 
|  | }; | 
|  | EXPORT_SYMBOL(init_net); | 
|  |  | 
|  | static bool init_net_initialized; | 
|  |  | 
|  | #define MIN_PERNET_OPS_ID	\ | 
|  | ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) | 
|  |  | 
|  | #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */ | 
|  |  | 
|  | static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; | 
|  |  | 
|  | static struct net_generic *net_alloc_generic(void) | 
|  | { | 
|  | struct net_generic *ng; | 
|  | unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); | 
|  |  | 
|  | ng = kzalloc(generic_size, GFP_KERNEL); | 
|  | if (ng) | 
|  | ng->s.len = max_gen_ptrs; | 
|  |  | 
|  | return ng; | 
|  | } | 
|  |  | 
|  | static int net_assign_generic(struct net *net, unsigned int id, void *data) | 
|  | { | 
|  | struct net_generic *ng, *old_ng; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&net_mutex)); | 
|  | BUG_ON(id < MIN_PERNET_OPS_ID); | 
|  |  | 
|  | old_ng = rcu_dereference_protected(net->gen, | 
|  | lockdep_is_held(&net_mutex)); | 
|  | if (old_ng->s.len > id) { | 
|  | old_ng->ptr[id] = data; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ng = net_alloc_generic(); | 
|  | if (ng == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Some synchronisation notes: | 
|  | * | 
|  | * The net_generic explores the net->gen array inside rcu | 
|  | * read section. Besides once set the net->gen->ptr[x] | 
|  | * pointer never changes (see rules in netns/generic.h). | 
|  | * | 
|  | * That said, we simply duplicate this array and schedule | 
|  | * the old copy for kfree after a grace period. | 
|  | */ | 
|  |  | 
|  | memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], | 
|  | (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); | 
|  | ng->ptr[id] = data; | 
|  |  | 
|  | rcu_assign_pointer(net->gen, ng); | 
|  | kfree_rcu(old_ng, s.rcu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ops_init(const struct pernet_operations *ops, struct net *net) | 
|  | { | 
|  | int err = -ENOMEM; | 
|  | void *data = NULL; | 
|  |  | 
|  | if (ops->id && ops->size) { | 
|  | data = kzalloc(ops->size, GFP_KERNEL); | 
|  | if (!data) | 
|  | goto out; | 
|  |  | 
|  | err = net_assign_generic(net, *ops->id, data); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | } | 
|  | err = 0; | 
|  | if (ops->init) | 
|  | err = ops->init(net); | 
|  | if (!err) | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | kfree(data); | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void ops_free(const struct pernet_operations *ops, struct net *net) | 
|  | { | 
|  | if (ops->id && ops->size) { | 
|  | kfree(net_generic(net, *ops->id)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ops_exit_list(const struct pernet_operations *ops, | 
|  | struct list_head *net_exit_list) | 
|  | { | 
|  | struct net *net; | 
|  | if (ops->exit) { | 
|  | list_for_each_entry(net, net_exit_list, exit_list) | 
|  | ops->exit(net); | 
|  | } | 
|  | if (ops->exit_batch) | 
|  | ops->exit_batch(net_exit_list); | 
|  | } | 
|  |  | 
|  | static void ops_free_list(const struct pernet_operations *ops, | 
|  | struct list_head *net_exit_list) | 
|  | { | 
|  | struct net *net; | 
|  | if (ops->size && ops->id) { | 
|  | list_for_each_entry(net, net_exit_list, exit_list) | 
|  | ops_free(ops, net); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* should be called with nsid_lock held */ | 
|  | static int alloc_netid(struct net *net, struct net *peer, int reqid) | 
|  | { | 
|  | int min = 0, max = 0; | 
|  |  | 
|  | if (reqid >= 0) { | 
|  | min = reqid; | 
|  | max = reqid + 1; | 
|  | } | 
|  |  | 
|  | return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /* This function is used by idr_for_each(). If net is equal to peer, the | 
|  | * function returns the id so that idr_for_each() stops. Because we cannot | 
|  | * returns the id 0 (idr_for_each() will not stop), we return the magic value | 
|  | * NET_ID_ZERO (-1) for it. | 
|  | */ | 
|  | #define NET_ID_ZERO -1 | 
|  | static int net_eq_idr(int id, void *net, void *peer) | 
|  | { | 
|  | if (net_eq(net, peer)) | 
|  | return id ? : NET_ID_ZERO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc | 
|  | * is set to true, thus the caller knows that the new id must be notified via | 
|  | * rtnl. | 
|  | */ | 
|  | static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) | 
|  | { | 
|  | int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); | 
|  | bool alloc_it = *alloc; | 
|  |  | 
|  | *alloc = false; | 
|  |  | 
|  | /* Magic value for id 0. */ | 
|  | if (id == NET_ID_ZERO) | 
|  | return 0; | 
|  | if (id > 0) | 
|  | return id; | 
|  |  | 
|  | if (alloc_it) { | 
|  | id = alloc_netid(net, peer, -1); | 
|  | *alloc = true; | 
|  | return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; | 
|  | } | 
|  |  | 
|  | return NETNSA_NSID_NOT_ASSIGNED; | 
|  | } | 
|  |  | 
|  | /* should be called with nsid_lock held */ | 
|  | static int __peernet2id(struct net *net, struct net *peer) | 
|  | { | 
|  | bool no = false; | 
|  |  | 
|  | return __peernet2id_alloc(net, peer, &no); | 
|  | } | 
|  |  | 
|  | static void rtnl_net_notifyid(struct net *net, int cmd, int id); | 
|  | /* This function returns the id of a peer netns. If no id is assigned, one will | 
|  | * be allocated and returned. | 
|  | */ | 
|  | int peernet2id_alloc(struct net *net, struct net *peer) | 
|  | { | 
|  | bool alloc; | 
|  | int id; | 
|  |  | 
|  | if (atomic_read(&net->count) == 0) | 
|  | return NETNSA_NSID_NOT_ASSIGNED; | 
|  | spin_lock_bh(&net->nsid_lock); | 
|  | alloc = atomic_read(&peer->count) == 0 ? false : true; | 
|  | id = __peernet2id_alloc(net, peer, &alloc); | 
|  | spin_unlock_bh(&net->nsid_lock); | 
|  | if (alloc && id >= 0) | 
|  | rtnl_net_notifyid(net, RTM_NEWNSID, id); | 
|  | return id; | 
|  | } | 
|  |  | 
|  | /* This function returns, if assigned, the id of a peer netns. */ | 
|  | int peernet2id(struct net *net, struct net *peer) | 
|  | { | 
|  | int id; | 
|  |  | 
|  | spin_lock_bh(&net->nsid_lock); | 
|  | id = __peernet2id(net, peer); | 
|  | spin_unlock_bh(&net->nsid_lock); | 
|  | return id; | 
|  | } | 
|  | EXPORT_SYMBOL(peernet2id); | 
|  |  | 
|  | /* This function returns true is the peer netns has an id assigned into the | 
|  | * current netns. | 
|  | */ | 
|  | bool peernet_has_id(struct net *net, struct net *peer) | 
|  | { | 
|  | return peernet2id(net, peer) >= 0; | 
|  | } | 
|  |  | 
|  | struct net *get_net_ns_by_id(struct net *net, int id) | 
|  | { | 
|  | struct net *peer; | 
|  |  | 
|  | if (id < 0) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | spin_lock_bh(&net->nsid_lock); | 
|  | peer = idr_find(&net->netns_ids, id); | 
|  | if (peer) | 
|  | get_net(peer); | 
|  | spin_unlock_bh(&net->nsid_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return peer; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup_net runs the initializers for the network namespace object. | 
|  | */ | 
|  | static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) | 
|  | { | 
|  | /* Must be called with net_mutex held */ | 
|  | const struct pernet_operations *ops, *saved_ops; | 
|  | int error = 0; | 
|  | LIST_HEAD(net_exit_list); | 
|  |  | 
|  | atomic_set(&net->count, 1); | 
|  | atomic_set(&net->passive, 1); | 
|  | net->dev_base_seq = 1; | 
|  | net->user_ns = user_ns; | 
|  | idr_init(&net->netns_ids); | 
|  | spin_lock_init(&net->nsid_lock); | 
|  |  | 
|  | list_for_each_entry(ops, &pernet_list, list) { | 
|  | error = ops_init(ops, net); | 
|  | if (error < 0) | 
|  | goto out_undo; | 
|  | } | 
|  | out: | 
|  | return error; | 
|  |  | 
|  | out_undo: | 
|  | /* Walk through the list backwards calling the exit functions | 
|  | * for the pernet modules whose init functions did not fail. | 
|  | */ | 
|  | list_add(&net->exit_list, &net_exit_list); | 
|  | saved_ops = ops; | 
|  | list_for_each_entry_continue_reverse(ops, &pernet_list, list) | 
|  | ops_exit_list(ops, &net_exit_list); | 
|  |  | 
|  | ops = saved_ops; | 
|  | list_for_each_entry_continue_reverse(ops, &pernet_list, list) | 
|  | ops_free_list(ops, &net_exit_list); | 
|  |  | 
|  | rcu_barrier(); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_NET_NS | 
|  | static struct ucounts *inc_net_namespaces(struct user_namespace *ns) | 
|  | { | 
|  | return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); | 
|  | } | 
|  |  | 
|  | static void dec_net_namespaces(struct ucounts *ucounts) | 
|  | { | 
|  | dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *net_cachep; | 
|  | static struct workqueue_struct *netns_wq; | 
|  |  | 
|  | static struct net *net_alloc(void) | 
|  | { | 
|  | struct net *net = NULL; | 
|  | struct net_generic *ng; | 
|  |  | 
|  | ng = net_alloc_generic(); | 
|  | if (!ng) | 
|  | goto out; | 
|  |  | 
|  | net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); | 
|  | if (!net) | 
|  | goto out_free; | 
|  |  | 
|  | rcu_assign_pointer(net->gen, ng); | 
|  | out: | 
|  | return net; | 
|  |  | 
|  | out_free: | 
|  | kfree(ng); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static void net_free(struct net *net) | 
|  | { | 
|  | kfree(rcu_access_pointer(net->gen)); | 
|  | kmem_cache_free(net_cachep, net); | 
|  | } | 
|  |  | 
|  | void net_drop_ns(void *p) | 
|  | { | 
|  | struct net *ns = p; | 
|  | if (ns && atomic_dec_and_test(&ns->passive)) | 
|  | net_free(ns); | 
|  | } | 
|  |  | 
|  | struct net *copy_net_ns(unsigned long flags, | 
|  | struct user_namespace *user_ns, struct net *old_net) | 
|  | { | 
|  | struct ucounts *ucounts; | 
|  | struct net *net; | 
|  | int rv; | 
|  |  | 
|  | if (!(flags & CLONE_NEWNET)) | 
|  | return get_net(old_net); | 
|  |  | 
|  | ucounts = inc_net_namespaces(user_ns); | 
|  | if (!ucounts) | 
|  | return ERR_PTR(-ENOSPC); | 
|  |  | 
|  | net = net_alloc(); | 
|  | if (!net) { | 
|  | dec_net_namespaces(ucounts); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | get_user_ns(user_ns); | 
|  |  | 
|  | rv = mutex_lock_killable(&net_mutex); | 
|  | if (rv < 0) { | 
|  | net_free(net); | 
|  | dec_net_namespaces(ucounts); | 
|  | put_user_ns(user_ns); | 
|  | return ERR_PTR(rv); | 
|  | } | 
|  |  | 
|  | net->ucounts = ucounts; | 
|  | rv = setup_net(net, user_ns); | 
|  | if (rv == 0) { | 
|  | rtnl_lock(); | 
|  | list_add_tail_rcu(&net->list, &net_namespace_list); | 
|  | rtnl_unlock(); | 
|  | } | 
|  | mutex_unlock(&net_mutex); | 
|  | if (rv < 0) { | 
|  | dec_net_namespaces(ucounts); | 
|  | put_user_ns(user_ns); | 
|  | net_drop_ns(net); | 
|  | return ERR_PTR(rv); | 
|  | } | 
|  | return net; | 
|  | } | 
|  |  | 
|  | static DEFINE_SPINLOCK(cleanup_list_lock); | 
|  | static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */ | 
|  |  | 
|  | static void cleanup_net(struct work_struct *work) | 
|  | { | 
|  | const struct pernet_operations *ops; | 
|  | struct net *net, *tmp; | 
|  | struct list_head net_kill_list; | 
|  | LIST_HEAD(net_exit_list); | 
|  |  | 
|  | /* Atomically snapshot the list of namespaces to cleanup */ | 
|  | spin_lock_irq(&cleanup_list_lock); | 
|  | list_replace_init(&cleanup_list, &net_kill_list); | 
|  | spin_unlock_irq(&cleanup_list_lock); | 
|  |  | 
|  | mutex_lock(&net_mutex); | 
|  |  | 
|  | /* Don't let anyone else find us. */ | 
|  | rtnl_lock(); | 
|  | list_for_each_entry(net, &net_kill_list, cleanup_list) { | 
|  | list_del_rcu(&net->list); | 
|  | list_add_tail(&net->exit_list, &net_exit_list); | 
|  | for_each_net(tmp) { | 
|  | int id; | 
|  |  | 
|  | spin_lock_bh(&tmp->nsid_lock); | 
|  | id = __peernet2id(tmp, net); | 
|  | if (id >= 0) | 
|  | idr_remove(&tmp->netns_ids, id); | 
|  | spin_unlock_bh(&tmp->nsid_lock); | 
|  | if (id >= 0) | 
|  | rtnl_net_notifyid(tmp, RTM_DELNSID, id); | 
|  | } | 
|  | spin_lock_bh(&net->nsid_lock); | 
|  | idr_destroy(&net->netns_ids); | 
|  | spin_unlock_bh(&net->nsid_lock); | 
|  |  | 
|  | } | 
|  | rtnl_unlock(); | 
|  |  | 
|  | /* | 
|  | * Another CPU might be rcu-iterating the list, wait for it. | 
|  | * This needs to be before calling the exit() notifiers, so | 
|  | * the rcu_barrier() below isn't sufficient alone. | 
|  | */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | /* Run all of the network namespace exit methods */ | 
|  | list_for_each_entry_reverse(ops, &pernet_list, list) | 
|  | ops_exit_list(ops, &net_exit_list); | 
|  |  | 
|  | /* Free the net generic variables */ | 
|  | list_for_each_entry_reverse(ops, &pernet_list, list) | 
|  | ops_free_list(ops, &net_exit_list); | 
|  |  | 
|  | mutex_unlock(&net_mutex); | 
|  |  | 
|  | /* Ensure there are no outstanding rcu callbacks using this | 
|  | * network namespace. | 
|  | */ | 
|  | rcu_barrier(); | 
|  |  | 
|  | /* Finally it is safe to free my network namespace structure */ | 
|  | list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { | 
|  | list_del_init(&net->exit_list); | 
|  | dec_net_namespaces(net->ucounts); | 
|  | put_user_ns(net->user_ns); | 
|  | net_drop_ns(net); | 
|  | } | 
|  | } | 
|  | static DECLARE_WORK(net_cleanup_work, cleanup_net); | 
|  |  | 
|  | void __put_net(struct net *net) | 
|  | { | 
|  | /* Cleanup the network namespace in process context */ | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&cleanup_list_lock, flags); | 
|  | list_add(&net->cleanup_list, &cleanup_list); | 
|  | spin_unlock_irqrestore(&cleanup_list_lock, flags); | 
|  |  | 
|  | queue_work(netns_wq, &net_cleanup_work); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__put_net); | 
|  |  | 
|  | struct net *get_net_ns_by_fd(int fd) | 
|  | { | 
|  | struct file *file; | 
|  | struct ns_common *ns; | 
|  | struct net *net; | 
|  |  | 
|  | file = proc_ns_fget(fd); | 
|  | if (IS_ERR(file)) | 
|  | return ERR_CAST(file); | 
|  |  | 
|  | ns = get_proc_ns(file_inode(file)); | 
|  | if (ns->ops == &netns_operations) | 
|  | net = get_net(container_of(ns, struct net, ns)); | 
|  | else | 
|  | net = ERR_PTR(-EINVAL); | 
|  |  | 
|  | fput(file); | 
|  | return net; | 
|  | } | 
|  |  | 
|  | #else | 
|  | struct net *get_net_ns_by_fd(int fd) | 
|  | { | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | #endif | 
|  | EXPORT_SYMBOL_GPL(get_net_ns_by_fd); | 
|  |  | 
|  | struct net *get_net_ns_by_pid(pid_t pid) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct net *net; | 
|  |  | 
|  | /* Lookup the network namespace */ | 
|  | net = ERR_PTR(-ESRCH); | 
|  | rcu_read_lock(); | 
|  | tsk = find_task_by_vpid(pid); | 
|  | if (tsk) { | 
|  | struct nsproxy *nsproxy; | 
|  | task_lock(tsk); | 
|  | nsproxy = tsk->nsproxy; | 
|  | if (nsproxy) | 
|  | net = get_net(nsproxy->net_ns); | 
|  | task_unlock(tsk); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return net; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_net_ns_by_pid); | 
|  |  | 
|  | static __net_init int net_ns_net_init(struct net *net) | 
|  | { | 
|  | #ifdef CONFIG_NET_NS | 
|  | net->ns.ops = &netns_operations; | 
|  | #endif | 
|  | return ns_alloc_inum(&net->ns); | 
|  | } | 
|  |  | 
|  | static __net_exit void net_ns_net_exit(struct net *net) | 
|  | { | 
|  | ns_free_inum(&net->ns); | 
|  | } | 
|  |  | 
|  | static struct pernet_operations __net_initdata net_ns_ops = { | 
|  | .init = net_ns_net_init, | 
|  | .exit = net_ns_net_exit, | 
|  | }; | 
|  |  | 
|  | static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { | 
|  | [NETNSA_NONE]		= { .type = NLA_UNSPEC }, | 
|  | [NETNSA_NSID]		= { .type = NLA_S32 }, | 
|  | [NETNSA_PID]		= { .type = NLA_U32 }, | 
|  | [NETNSA_FD]		= { .type = NLA_U32 }, | 
|  | }; | 
|  |  | 
|  | static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh) | 
|  | { | 
|  | struct net *net = sock_net(skb->sk); | 
|  | struct nlattr *tb[NETNSA_MAX + 1]; | 
|  | struct net *peer; | 
|  | int nsid, err; | 
|  |  | 
|  | err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, | 
|  | rtnl_net_policy); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (!tb[NETNSA_NSID]) | 
|  | return -EINVAL; | 
|  | nsid = nla_get_s32(tb[NETNSA_NSID]); | 
|  |  | 
|  | if (tb[NETNSA_PID]) | 
|  | peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); | 
|  | else if (tb[NETNSA_FD]) | 
|  | peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); | 
|  | else | 
|  | return -EINVAL; | 
|  | if (IS_ERR(peer)) | 
|  | return PTR_ERR(peer); | 
|  |  | 
|  | spin_lock_bh(&net->nsid_lock); | 
|  | if (__peernet2id(net, peer) >= 0) { | 
|  | spin_unlock_bh(&net->nsid_lock); | 
|  | err = -EEXIST; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = alloc_netid(net, peer, nsid); | 
|  | spin_unlock_bh(&net->nsid_lock); | 
|  | if (err >= 0) { | 
|  | rtnl_net_notifyid(net, RTM_NEWNSID, err); | 
|  | err = 0; | 
|  | } | 
|  | out: | 
|  | put_net(peer); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int rtnl_net_get_size(void) | 
|  | { | 
|  | return NLMSG_ALIGN(sizeof(struct rtgenmsg)) | 
|  | + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ | 
|  | ; | 
|  | } | 
|  |  | 
|  | static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags, | 
|  | int cmd, struct net *net, int nsid) | 
|  | { | 
|  | struct nlmsghdr *nlh; | 
|  | struct rtgenmsg *rth; | 
|  |  | 
|  | nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags); | 
|  | if (!nlh) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | rth = nlmsg_data(nlh); | 
|  | rth->rtgen_family = AF_UNSPEC; | 
|  |  | 
|  | if (nla_put_s32(skb, NETNSA_NSID, nsid)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | nlmsg_end(skb, nlh); | 
|  | return 0; | 
|  |  | 
|  | nla_put_failure: | 
|  | nlmsg_cancel(skb, nlh); | 
|  | return -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh) | 
|  | { | 
|  | struct net *net = sock_net(skb->sk); | 
|  | struct nlattr *tb[NETNSA_MAX + 1]; | 
|  | struct sk_buff *msg; | 
|  | struct net *peer; | 
|  | int err, id; | 
|  |  | 
|  | err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, | 
|  | rtnl_net_policy); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (tb[NETNSA_PID]) | 
|  | peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); | 
|  | else if (tb[NETNSA_FD]) | 
|  | peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | if (IS_ERR(peer)) | 
|  | return PTR_ERR(peer); | 
|  |  | 
|  | msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); | 
|  | if (!msg) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | id = peernet2id(net, peer); | 
|  | err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0, | 
|  | RTM_NEWNSID, net, id); | 
|  | if (err < 0) | 
|  | goto err_out; | 
|  |  | 
|  | err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); | 
|  | goto out; | 
|  |  | 
|  | err_out: | 
|  | nlmsg_free(msg); | 
|  | out: | 
|  | put_net(peer); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | struct rtnl_net_dump_cb { | 
|  | struct net *net; | 
|  | struct sk_buff *skb; | 
|  | struct netlink_callback *cb; | 
|  | int idx; | 
|  | int s_idx; | 
|  | }; | 
|  |  | 
|  | static int rtnl_net_dumpid_one(int id, void *peer, void *data) | 
|  | { | 
|  | struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; | 
|  | int ret; | 
|  |  | 
|  | if (net_cb->idx < net_cb->s_idx) | 
|  | goto cont; | 
|  |  | 
|  | ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid, | 
|  | net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI, | 
|  | RTM_NEWNSID, net_cb->net, id); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | cont: | 
|  | net_cb->idx++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) | 
|  | { | 
|  | struct net *net = sock_net(skb->sk); | 
|  | struct rtnl_net_dump_cb net_cb = { | 
|  | .net = net, | 
|  | .skb = skb, | 
|  | .cb = cb, | 
|  | .idx = 0, | 
|  | .s_idx = cb->args[0], | 
|  | }; | 
|  |  | 
|  | spin_lock_bh(&net->nsid_lock); | 
|  | idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb); | 
|  | spin_unlock_bh(&net->nsid_lock); | 
|  |  | 
|  | cb->args[0] = net_cb.idx; | 
|  | return skb->len; | 
|  | } | 
|  |  | 
|  | static void rtnl_net_notifyid(struct net *net, int cmd, int id) | 
|  | { | 
|  | struct sk_buff *msg; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); | 
|  | if (!msg) | 
|  | goto out; | 
|  |  | 
|  | err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id); | 
|  | if (err < 0) | 
|  | goto err_out; | 
|  |  | 
|  | rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); | 
|  | return; | 
|  |  | 
|  | err_out: | 
|  | nlmsg_free(msg); | 
|  | out: | 
|  | rtnl_set_sk_err(net, RTNLGRP_NSID, err); | 
|  | } | 
|  |  | 
|  | static int __init net_ns_init(void) | 
|  | { | 
|  | struct net_generic *ng; | 
|  |  | 
|  | #ifdef CONFIG_NET_NS | 
|  | net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), | 
|  | SMP_CACHE_BYTES, | 
|  | SLAB_PANIC, NULL); | 
|  |  | 
|  | /* Create workqueue for cleanup */ | 
|  | netns_wq = create_singlethread_workqueue("netns"); | 
|  | if (!netns_wq) | 
|  | panic("Could not create netns workq"); | 
|  | #endif | 
|  |  | 
|  | ng = net_alloc_generic(); | 
|  | if (!ng) | 
|  | panic("Could not allocate generic netns"); | 
|  |  | 
|  | rcu_assign_pointer(init_net.gen, ng); | 
|  |  | 
|  | mutex_lock(&net_mutex); | 
|  | if (setup_net(&init_net, &init_user_ns)) | 
|  | panic("Could not setup the initial network namespace"); | 
|  |  | 
|  | init_net_initialized = true; | 
|  |  | 
|  | rtnl_lock(); | 
|  | list_add_tail_rcu(&init_net.list, &net_namespace_list); | 
|  | rtnl_unlock(); | 
|  |  | 
|  | mutex_unlock(&net_mutex); | 
|  |  | 
|  | register_pernet_subsys(&net_ns_ops); | 
|  |  | 
|  | rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL); | 
|  | rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, | 
|  | NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pure_initcall(net_ns_init); | 
|  |  | 
|  | #ifdef CONFIG_NET_NS | 
|  | static int __register_pernet_operations(struct list_head *list, | 
|  | struct pernet_operations *ops) | 
|  | { | 
|  | struct net *net; | 
|  | int error; | 
|  | LIST_HEAD(net_exit_list); | 
|  |  | 
|  | list_add_tail(&ops->list, list); | 
|  | if (ops->init || (ops->id && ops->size)) { | 
|  | for_each_net(net) { | 
|  | error = ops_init(ops, net); | 
|  | if (error) | 
|  | goto out_undo; | 
|  | list_add_tail(&net->exit_list, &net_exit_list); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out_undo: | 
|  | /* If I have an error cleanup all namespaces I initialized */ | 
|  | list_del(&ops->list); | 
|  | ops_exit_list(ops, &net_exit_list); | 
|  | ops_free_list(ops, &net_exit_list); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void __unregister_pernet_operations(struct pernet_operations *ops) | 
|  | { | 
|  | struct net *net; | 
|  | LIST_HEAD(net_exit_list); | 
|  |  | 
|  | list_del(&ops->list); | 
|  | for_each_net(net) | 
|  | list_add_tail(&net->exit_list, &net_exit_list); | 
|  | ops_exit_list(ops, &net_exit_list); | 
|  | ops_free_list(ops, &net_exit_list); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static int __register_pernet_operations(struct list_head *list, | 
|  | struct pernet_operations *ops) | 
|  | { | 
|  | if (!init_net_initialized) { | 
|  | list_add_tail(&ops->list, list); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ops_init(ops, &init_net); | 
|  | } | 
|  |  | 
|  | static void __unregister_pernet_operations(struct pernet_operations *ops) | 
|  | { | 
|  | if (!init_net_initialized) { | 
|  | list_del(&ops->list); | 
|  | } else { | 
|  | LIST_HEAD(net_exit_list); | 
|  | list_add(&init_net.exit_list, &net_exit_list); | 
|  | ops_exit_list(ops, &net_exit_list); | 
|  | ops_free_list(ops, &net_exit_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_NET_NS */ | 
|  |  | 
|  | static DEFINE_IDA(net_generic_ids); | 
|  |  | 
|  | static int register_pernet_operations(struct list_head *list, | 
|  | struct pernet_operations *ops) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if (ops->id) { | 
|  | again: | 
|  | error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id); | 
|  | if (error < 0) { | 
|  | if (error == -EAGAIN) { | 
|  | ida_pre_get(&net_generic_ids, GFP_KERNEL); | 
|  | goto again; | 
|  | } | 
|  | return error; | 
|  | } | 
|  | max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); | 
|  | } | 
|  | error = __register_pernet_operations(list, ops); | 
|  | if (error) { | 
|  | rcu_barrier(); | 
|  | if (ops->id) | 
|  | ida_remove(&net_generic_ids, *ops->id); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void unregister_pernet_operations(struct pernet_operations *ops) | 
|  | { | 
|  |  | 
|  | __unregister_pernet_operations(ops); | 
|  | rcu_barrier(); | 
|  | if (ops->id) | 
|  | ida_remove(&net_generic_ids, *ops->id); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      register_pernet_subsys - register a network namespace subsystem | 
|  | *	@ops:  pernet operations structure for the subsystem | 
|  | * | 
|  | *	Register a subsystem which has init and exit functions | 
|  | *	that are called when network namespaces are created and | 
|  | *	destroyed respectively. | 
|  | * | 
|  | *	When registered all network namespace init functions are | 
|  | *	called for every existing network namespace.  Allowing kernel | 
|  | *	modules to have a race free view of the set of network namespaces. | 
|  | * | 
|  | *	When a new network namespace is created all of the init | 
|  | *	methods are called in the order in which they were registered. | 
|  | * | 
|  | *	When a network namespace is destroyed all of the exit methods | 
|  | *	are called in the reverse of the order with which they were | 
|  | *	registered. | 
|  | */ | 
|  | int register_pernet_subsys(struct pernet_operations *ops) | 
|  | { | 
|  | int error; | 
|  | mutex_lock(&net_mutex); | 
|  | error =  register_pernet_operations(first_device, ops); | 
|  | mutex_unlock(&net_mutex); | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_pernet_subsys); | 
|  |  | 
|  | /** | 
|  | *      unregister_pernet_subsys - unregister a network namespace subsystem | 
|  | *	@ops: pernet operations structure to manipulate | 
|  | * | 
|  | *	Remove the pernet operations structure from the list to be | 
|  | *	used when network namespaces are created or destroyed.  In | 
|  | *	addition run the exit method for all existing network | 
|  | *	namespaces. | 
|  | */ | 
|  | void unregister_pernet_subsys(struct pernet_operations *ops) | 
|  | { | 
|  | mutex_lock(&net_mutex); | 
|  | unregister_pernet_operations(ops); | 
|  | mutex_unlock(&net_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_pernet_subsys); | 
|  |  | 
|  | /** | 
|  | *      register_pernet_device - register a network namespace device | 
|  | *	@ops:  pernet operations structure for the subsystem | 
|  | * | 
|  | *	Register a device which has init and exit functions | 
|  | *	that are called when network namespaces are created and | 
|  | *	destroyed respectively. | 
|  | * | 
|  | *	When registered all network namespace init functions are | 
|  | *	called for every existing network namespace.  Allowing kernel | 
|  | *	modules to have a race free view of the set of network namespaces. | 
|  | * | 
|  | *	When a new network namespace is created all of the init | 
|  | *	methods are called in the order in which they were registered. | 
|  | * | 
|  | *	When a network namespace is destroyed all of the exit methods | 
|  | *	are called in the reverse of the order with which they were | 
|  | *	registered. | 
|  | */ | 
|  | int register_pernet_device(struct pernet_operations *ops) | 
|  | { | 
|  | int error; | 
|  | mutex_lock(&net_mutex); | 
|  | error = register_pernet_operations(&pernet_list, ops); | 
|  | if (!error && (first_device == &pernet_list)) | 
|  | first_device = &ops->list; | 
|  | mutex_unlock(&net_mutex); | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_pernet_device); | 
|  |  | 
|  | /** | 
|  | *      unregister_pernet_device - unregister a network namespace netdevice | 
|  | *	@ops: pernet operations structure to manipulate | 
|  | * | 
|  | *	Remove the pernet operations structure from the list to be | 
|  | *	used when network namespaces are created or destroyed.  In | 
|  | *	addition run the exit method for all existing network | 
|  | *	namespaces. | 
|  | */ | 
|  | void unregister_pernet_device(struct pernet_operations *ops) | 
|  | { | 
|  | mutex_lock(&net_mutex); | 
|  | if (&ops->list == first_device) | 
|  | first_device = first_device->next; | 
|  | unregister_pernet_operations(ops); | 
|  | mutex_unlock(&net_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_pernet_device); | 
|  |  | 
|  | #ifdef CONFIG_NET_NS | 
|  | static struct ns_common *netns_get(struct task_struct *task) | 
|  | { | 
|  | struct net *net = NULL; | 
|  | struct nsproxy *nsproxy; | 
|  |  | 
|  | task_lock(task); | 
|  | nsproxy = task->nsproxy; | 
|  | if (nsproxy) | 
|  | net = get_net(nsproxy->net_ns); | 
|  | task_unlock(task); | 
|  |  | 
|  | return net ? &net->ns : NULL; | 
|  | } | 
|  |  | 
|  | static inline struct net *to_net_ns(struct ns_common *ns) | 
|  | { | 
|  | return container_of(ns, struct net, ns); | 
|  | } | 
|  |  | 
|  | static void netns_put(struct ns_common *ns) | 
|  | { | 
|  | put_net(to_net_ns(ns)); | 
|  | } | 
|  |  | 
|  | static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) | 
|  | { | 
|  | struct net *net = to_net_ns(ns); | 
|  |  | 
|  | if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || | 
|  | !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | put_net(nsproxy->net_ns); | 
|  | nsproxy->net_ns = get_net(net); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct user_namespace *netns_owner(struct ns_common *ns) | 
|  | { | 
|  | return to_net_ns(ns)->user_ns; | 
|  | } | 
|  |  | 
|  | const struct proc_ns_operations netns_operations = { | 
|  | .name		= "net", | 
|  | .type		= CLONE_NEWNET, | 
|  | .get		= netns_get, | 
|  | .put		= netns_put, | 
|  | .install	= netns_install, | 
|  | .owner		= netns_owner, | 
|  | }; | 
|  | #endif |