| /* |
| * OpenRISC Linux |
| * |
| * Linux architectural port borrowing liberally from similar works of |
| * others. All original copyrights apply as per the original source |
| * declaration. |
| * |
| * Modifications for the OpenRISC architecture: |
| * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> |
| * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * DMA mapping callbacks... |
| * As alloc_coherent is the only DMA callback being used currently, that's |
| * the only thing implemented properly. The rest need looking into... |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/dma-debug.h> |
| #include <linux/export.h> |
| |
| #include <asm/cpuinfo.h> |
| #include <asm/spr_defs.h> |
| #include <asm/tlbflush.h> |
| |
| static int |
| page_set_nocache(pte_t *pte, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| unsigned long cl; |
| |
| pte_val(*pte) |= _PAGE_CI; |
| |
| /* |
| * Flush the page out of the TLB so that the new page flags get |
| * picked up next time there's an access |
| */ |
| flush_tlb_page(NULL, addr); |
| |
| /* Flush page out of dcache */ |
| for (cl = __pa(addr); cl < __pa(next); cl += cpuinfo.dcache_block_size) |
| mtspr(SPR_DCBFR, cl); |
| |
| return 0; |
| } |
| |
| static int |
| page_clear_nocache(pte_t *pte, unsigned long addr, |
| unsigned long next, struct mm_walk *walk) |
| { |
| pte_val(*pte) &= ~_PAGE_CI; |
| |
| /* |
| * Flush the page out of the TLB so that the new page flags get |
| * picked up next time there's an access |
| */ |
| flush_tlb_page(NULL, addr); |
| |
| return 0; |
| } |
| |
| /* |
| * Alloc "coherent" memory, which for OpenRISC means simply uncached. |
| * |
| * This function effectively just calls __get_free_pages, sets the |
| * cache-inhibit bit on those pages, and makes sure that the pages are |
| * flushed out of the cache before they are used. |
| * |
| * If the NON_CONSISTENT attribute is set, then this function just |
| * returns "normal", cachable memory. |
| * |
| * There are additional flags WEAK_ORDERING and WRITE_COMBINE to take |
| * into consideration here, too. All current known implementations of |
| * the OR1K support only strongly ordered memory accesses, so that flag |
| * is being ignored for now; uncached but write-combined memory is a |
| * missing feature of the OR1K. |
| */ |
| static void * |
| or1k_dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t gfp, |
| unsigned long attrs) |
| { |
| unsigned long va; |
| void *page; |
| struct mm_walk walk = { |
| .pte_entry = page_set_nocache, |
| .mm = &init_mm |
| }; |
| |
| page = alloc_pages_exact(size, gfp); |
| if (!page) |
| return NULL; |
| |
| /* This gives us the real physical address of the first page. */ |
| *dma_handle = __pa(page); |
| |
| va = (unsigned long)page; |
| |
| if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) { |
| /* |
| * We need to iterate through the pages, clearing the dcache for |
| * them and setting the cache-inhibit bit. |
| */ |
| if (walk_page_range(va, va + size, &walk)) { |
| free_pages_exact(page, size); |
| return NULL; |
| } |
| } |
| |
| return (void *)va; |
| } |
| |
| static void |
| or1k_dma_free(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_handle, unsigned long attrs) |
| { |
| unsigned long va = (unsigned long)vaddr; |
| struct mm_walk walk = { |
| .pte_entry = page_clear_nocache, |
| .mm = &init_mm |
| }; |
| |
| if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) { |
| /* walk_page_range shouldn't be able to fail here */ |
| WARN_ON(walk_page_range(va, va + size, &walk)); |
| } |
| |
| free_pages_exact(vaddr, size); |
| } |
| |
| static dma_addr_t |
| or1k_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| unsigned long cl; |
| dma_addr_t addr = page_to_phys(page) + offset; |
| |
| if (attrs & DMA_ATTR_SKIP_CPU_SYNC) |
| return addr; |
| |
| switch (dir) { |
| case DMA_TO_DEVICE: |
| /* Flush the dcache for the requested range */ |
| for (cl = addr; cl < addr + size; |
| cl += cpuinfo.dcache_block_size) |
| mtspr(SPR_DCBFR, cl); |
| break; |
| case DMA_FROM_DEVICE: |
| /* Invalidate the dcache for the requested range */ |
| for (cl = addr; cl < addr + size; |
| cl += cpuinfo.dcache_block_size) |
| mtspr(SPR_DCBIR, cl); |
| break; |
| default: |
| /* |
| * NOTE: If dir == DMA_BIDIRECTIONAL then there's no need to |
| * flush nor invalidate the cache here as the area will need |
| * to be manually synced anyway. |
| */ |
| break; |
| } |
| |
| return addr; |
| } |
| |
| static void |
| or1k_unmap_page(struct device *dev, dma_addr_t dma_handle, |
| size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| /* Nothing special to do here... */ |
| } |
| |
| static int |
| or1k_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| s->dma_address = or1k_map_page(dev, sg_page(s), s->offset, |
| s->length, dir, 0); |
| } |
| |
| return nents; |
| } |
| |
| static void |
| or1k_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| or1k_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, 0); |
| } |
| } |
| |
| static void |
| or1k_sync_single_for_cpu(struct device *dev, |
| dma_addr_t dma_handle, size_t size, |
| enum dma_data_direction dir) |
| { |
| unsigned long cl; |
| dma_addr_t addr = dma_handle; |
| |
| /* Invalidate the dcache for the requested range */ |
| for (cl = addr; cl < addr + size; cl += cpuinfo.dcache_block_size) |
| mtspr(SPR_DCBIR, cl); |
| } |
| |
| static void |
| or1k_sync_single_for_device(struct device *dev, |
| dma_addr_t dma_handle, size_t size, |
| enum dma_data_direction dir) |
| { |
| unsigned long cl; |
| dma_addr_t addr = dma_handle; |
| |
| /* Flush the dcache for the requested range */ |
| for (cl = addr; cl < addr + size; cl += cpuinfo.dcache_block_size) |
| mtspr(SPR_DCBFR, cl); |
| } |
| |
| struct dma_map_ops or1k_dma_map_ops = { |
| .alloc = or1k_dma_alloc, |
| .free = or1k_dma_free, |
| .map_page = or1k_map_page, |
| .unmap_page = or1k_unmap_page, |
| .map_sg = or1k_map_sg, |
| .unmap_sg = or1k_unmap_sg, |
| .sync_single_for_cpu = or1k_sync_single_for_cpu, |
| .sync_single_for_device = or1k_sync_single_for_device, |
| }; |
| EXPORT_SYMBOL(or1k_dma_map_ops); |
| |
| /* Number of entries preallocated for DMA-API debugging */ |
| #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) |
| |
| static int __init dma_init(void) |
| { |
| dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); |
| |
| return 0; |
| } |
| fs_initcall(dma_init); |