blob: 1e09329acc426873861d0bf5755dbba462a56b65 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef __NET_CFG80211_H
#define __NET_CFG80211_H
/*
* 802.11 device and configuration interface
*
* Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright 2015-2017 Intel Deutschland GmbH
* Copyright (C) 2018-2024 Intel Corporation
*/
#include <linux/ethtool.h>
#include <uapi/linux/rfkill.h>
#include <linux/netdevice.h>
#include <linux/debugfs.h>
#include <linux/list.h>
#include <linux/bug.h>
#include <linux/netlink.h>
#include <linux/skbuff.h>
#include <linux/nl80211.h>
#include <linux/if_ether.h>
#include <linux/ieee80211.h>
#include <linux/net.h>
#include <linux/rfkill.h>
#include <net/regulatory.h>
/**
* DOC: Introduction
*
* cfg80211 is the configuration API for 802.11 devices in Linux. It bridges
* userspace and drivers, and offers some utility functionality associated
* with 802.11. cfg80211 must, directly or indirectly via mac80211, be used
* by all modern wireless drivers in Linux, so that they offer a consistent
* API through nl80211. For backward compatibility, cfg80211 also offers
* wireless extensions to userspace, but hides them from drivers completely.
*
* Additionally, cfg80211 contains code to help enforce regulatory spectrum
* use restrictions.
*/
/**
* DOC: Device registration
*
* In order for a driver to use cfg80211, it must register the hardware device
* with cfg80211. This happens through a number of hardware capability structs
* described below.
*
* The fundamental structure for each device is the 'wiphy', of which each
* instance describes a physical wireless device connected to the system. Each
* such wiphy can have zero, one, or many virtual interfaces associated with
* it, which need to be identified as such by pointing the network interface's
* @ieee80211_ptr pointer to a &struct wireless_dev which further describes
* the wireless part of the interface. Normally this struct is embedded in the
* network interface's private data area. Drivers can optionally allow creating
* or destroying virtual interfaces on the fly, but without at least one or the
* ability to create some the wireless device isn't useful.
*
* Each wiphy structure contains device capability information, and also has
* a pointer to the various operations the driver offers. The definitions and
* structures here describe these capabilities in detail.
*/
struct wiphy;
/*
* wireless hardware capability structures
*/
/**
* enum ieee80211_channel_flags - channel flags
*
* Channel flags set by the regulatory control code.
*
* @IEEE80211_CHAN_DISABLED: This channel is disabled.
* @IEEE80211_CHAN_NO_IR: do not initiate radiation, this includes
* sending probe requests or beaconing.
* @IEEE80211_CHAN_PSD: Power spectral density (in dBm) is set for this
* channel.
* @IEEE80211_CHAN_RADAR: Radar detection is required on this channel.
* @IEEE80211_CHAN_NO_HT40PLUS: extension channel above this channel
* is not permitted.
* @IEEE80211_CHAN_NO_HT40MINUS: extension channel below this channel
* is not permitted.
* @IEEE80211_CHAN_NO_OFDM: OFDM is not allowed on this channel.
* @IEEE80211_CHAN_NO_80MHZ: If the driver supports 80 MHz on the band,
* this flag indicates that an 80 MHz channel cannot use this
* channel as the control or any of the secondary channels.
* This may be due to the driver or due to regulatory bandwidth
* restrictions.
* @IEEE80211_CHAN_NO_160MHZ: If the driver supports 160 MHz on the band,
* this flag indicates that an 160 MHz channel cannot use this
* channel as the control or any of the secondary channels.
* This may be due to the driver or due to regulatory bandwidth
* restrictions.
* @IEEE80211_CHAN_INDOOR_ONLY: see %NL80211_FREQUENCY_ATTR_INDOOR_ONLY
* @IEEE80211_CHAN_IR_CONCURRENT: see %NL80211_FREQUENCY_ATTR_IR_CONCURRENT
* @IEEE80211_CHAN_NO_20MHZ: 20 MHz bandwidth is not permitted
* on this channel.
* @IEEE80211_CHAN_NO_10MHZ: 10 MHz bandwidth is not permitted
* on this channel.
* @IEEE80211_CHAN_NO_HE: HE operation is not permitted on this channel.
* @IEEE80211_CHAN_1MHZ: 1 MHz bandwidth is permitted
* on this channel.
* @IEEE80211_CHAN_2MHZ: 2 MHz bandwidth is permitted
* on this channel.
* @IEEE80211_CHAN_4MHZ: 4 MHz bandwidth is permitted
* on this channel.
* @IEEE80211_CHAN_8MHZ: 8 MHz bandwidth is permitted
* on this channel.
* @IEEE80211_CHAN_16MHZ: 16 MHz bandwidth is permitted
* on this channel.
* @IEEE80211_CHAN_NO_320MHZ: If the driver supports 320 MHz on the band,
* this flag indicates that a 320 MHz channel cannot use this
* channel as the control or any of the secondary channels.
* This may be due to the driver or due to regulatory bandwidth
* restrictions.
* @IEEE80211_CHAN_NO_EHT: EHT operation is not permitted on this channel.
* @IEEE80211_CHAN_DFS_CONCURRENT: See %NL80211_RRF_DFS_CONCURRENT
* @IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT: Client connection with VLP AP
* not permitted using this channel
* @IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT: Client connection with AFC AP
* not permitted using this channel
* @IEEE80211_CHAN_CAN_MONITOR: This channel can be used for monitor
* mode even in the presence of other (regulatory) restrictions,
* even if it is otherwise disabled.
*/
enum ieee80211_channel_flags {
IEEE80211_CHAN_DISABLED = 1<<0,
IEEE80211_CHAN_NO_IR = 1<<1,
IEEE80211_CHAN_PSD = 1<<2,
IEEE80211_CHAN_RADAR = 1<<3,
IEEE80211_CHAN_NO_HT40PLUS = 1<<4,
IEEE80211_CHAN_NO_HT40MINUS = 1<<5,
IEEE80211_CHAN_NO_OFDM = 1<<6,
IEEE80211_CHAN_NO_80MHZ = 1<<7,
IEEE80211_CHAN_NO_160MHZ = 1<<8,
IEEE80211_CHAN_INDOOR_ONLY = 1<<9,
IEEE80211_CHAN_IR_CONCURRENT = 1<<10,
IEEE80211_CHAN_NO_20MHZ = 1<<11,
IEEE80211_CHAN_NO_10MHZ = 1<<12,
IEEE80211_CHAN_NO_HE = 1<<13,
IEEE80211_CHAN_1MHZ = 1<<14,
IEEE80211_CHAN_2MHZ = 1<<15,
IEEE80211_CHAN_4MHZ = 1<<16,
IEEE80211_CHAN_8MHZ = 1<<17,
IEEE80211_CHAN_16MHZ = 1<<18,
IEEE80211_CHAN_NO_320MHZ = 1<<19,
IEEE80211_CHAN_NO_EHT = 1<<20,
IEEE80211_CHAN_DFS_CONCURRENT = 1<<21,
IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT = 1<<22,
IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT = 1<<23,
IEEE80211_CHAN_CAN_MONITOR = 1<<24,
};
#define IEEE80211_CHAN_NO_HT40 \
(IEEE80211_CHAN_NO_HT40PLUS | IEEE80211_CHAN_NO_HT40MINUS)
#define IEEE80211_DFS_MIN_CAC_TIME_MS 60000
#define IEEE80211_DFS_MIN_NOP_TIME_MS (30 * 60 * 1000)
/**
* struct ieee80211_channel - channel definition
*
* This structure describes a single channel for use
* with cfg80211.
*
* @center_freq: center frequency in MHz
* @freq_offset: offset from @center_freq, in KHz
* @hw_value: hardware-specific value for the channel
* @flags: channel flags from &enum ieee80211_channel_flags.
* @orig_flags: channel flags at registration time, used by regulatory
* code to support devices with additional restrictions
* @band: band this channel belongs to.
* @max_antenna_gain: maximum antenna gain in dBi
* @max_power: maximum transmission power (in dBm)
* @max_reg_power: maximum regulatory transmission power (in dBm)
* @beacon_found: helper to regulatory code to indicate when a beacon
* has been found on this channel. Use regulatory_hint_found_beacon()
* to enable this, this is useful only on 5 GHz band.
* @orig_mag: internal use
* @orig_mpwr: internal use
* @dfs_state: current state of this channel. Only relevant if radar is required
* on this channel.
* @dfs_state_entered: timestamp (jiffies) when the dfs state was entered.
* @dfs_cac_ms: DFS CAC time in milliseconds, this is valid for DFS channels.
* @psd: power spectral density (in dBm)
*/
struct ieee80211_channel {
enum nl80211_band band;
u32 center_freq;
u16 freq_offset;
u16 hw_value;
u32 flags;
int max_antenna_gain;
int max_power;
int max_reg_power;
bool beacon_found;
u32 orig_flags;
int orig_mag, orig_mpwr;
enum nl80211_dfs_state dfs_state;
unsigned long dfs_state_entered;
unsigned int dfs_cac_ms;
s8 psd;
};
/**
* enum ieee80211_rate_flags - rate flags
*
* Hardware/specification flags for rates. These are structured
* in a way that allows using the same bitrate structure for
* different bands/PHY modes.
*
* @IEEE80211_RATE_SHORT_PREAMBLE: Hardware can send with short
* preamble on this bitrate; only relevant in 2.4GHz band and
* with CCK rates.
* @IEEE80211_RATE_MANDATORY_A: This bitrate is a mandatory rate
* when used with 802.11a (on the 5 GHz band); filled by the
* core code when registering the wiphy.
* @IEEE80211_RATE_MANDATORY_B: This bitrate is a mandatory rate
* when used with 802.11b (on the 2.4 GHz band); filled by the
* core code when registering the wiphy.
* @IEEE80211_RATE_MANDATORY_G: This bitrate is a mandatory rate
* when used with 802.11g (on the 2.4 GHz band); filled by the
* core code when registering the wiphy.
* @IEEE80211_RATE_ERP_G: This is an ERP rate in 802.11g mode.
* @IEEE80211_RATE_SUPPORTS_5MHZ: Rate can be used in 5 MHz mode
* @IEEE80211_RATE_SUPPORTS_10MHZ: Rate can be used in 10 MHz mode
*/
enum ieee80211_rate_flags {
IEEE80211_RATE_SHORT_PREAMBLE = 1<<0,
IEEE80211_RATE_MANDATORY_A = 1<<1,
IEEE80211_RATE_MANDATORY_B = 1<<2,
IEEE80211_RATE_MANDATORY_G = 1<<3,
IEEE80211_RATE_ERP_G = 1<<4,
IEEE80211_RATE_SUPPORTS_5MHZ = 1<<5,
IEEE80211_RATE_SUPPORTS_10MHZ = 1<<6,
};
/**
* enum ieee80211_bss_type - BSS type filter
*
* @IEEE80211_BSS_TYPE_ESS: Infrastructure BSS
* @IEEE80211_BSS_TYPE_PBSS: Personal BSS
* @IEEE80211_BSS_TYPE_IBSS: Independent BSS
* @IEEE80211_BSS_TYPE_MBSS: Mesh BSS
* @IEEE80211_BSS_TYPE_ANY: Wildcard value for matching any BSS type
*/
enum ieee80211_bss_type {
IEEE80211_BSS_TYPE_ESS,
IEEE80211_BSS_TYPE_PBSS,
IEEE80211_BSS_TYPE_IBSS,
IEEE80211_BSS_TYPE_MBSS,
IEEE80211_BSS_TYPE_ANY
};
/**
* enum ieee80211_privacy - BSS privacy filter
*
* @IEEE80211_PRIVACY_ON: privacy bit set
* @IEEE80211_PRIVACY_OFF: privacy bit clear
* @IEEE80211_PRIVACY_ANY: Wildcard value for matching any privacy setting
*/
enum ieee80211_privacy {
IEEE80211_PRIVACY_ON,
IEEE80211_PRIVACY_OFF,
IEEE80211_PRIVACY_ANY
};
#define IEEE80211_PRIVACY(x) \
((x) ? IEEE80211_PRIVACY_ON : IEEE80211_PRIVACY_OFF)
/**
* struct ieee80211_rate - bitrate definition
*
* This structure describes a bitrate that an 802.11 PHY can
* operate with. The two values @hw_value and @hw_value_short
* are only for driver use when pointers to this structure are
* passed around.
*
* @flags: rate-specific flags from &enum ieee80211_rate_flags
* @bitrate: bitrate in units of 100 Kbps
* @hw_value: driver/hardware value for this rate
* @hw_value_short: driver/hardware value for this rate when
* short preamble is used
*/
struct ieee80211_rate {
u32 flags;
u16 bitrate;
u16 hw_value, hw_value_short;
};
/**
* struct ieee80211_he_obss_pd - AP settings for spatial reuse
*
* @enable: is the feature enabled.
* @sr_ctrl: The SR Control field of SRP element.
* @non_srg_max_offset: non-SRG maximum tx power offset
* @min_offset: minimal tx power offset an associated station shall use
* @max_offset: maximum tx power offset an associated station shall use
* @bss_color_bitmap: bitmap that indicates the BSS color values used by
* members of the SRG
* @partial_bssid_bitmap: bitmap that indicates the partial BSSID values
* used by members of the SRG
*/
struct ieee80211_he_obss_pd {
bool enable;
u8 sr_ctrl;
u8 non_srg_max_offset;
u8 min_offset;
u8 max_offset;
u8 bss_color_bitmap[8];
u8 partial_bssid_bitmap[8];
};
/**
* struct cfg80211_he_bss_color - AP settings for BSS coloring
*
* @color: the current color.
* @enabled: HE BSS color is used
* @partial: define the AID equation.
*/
struct cfg80211_he_bss_color {
u8 color;
bool enabled;
bool partial;
};
/**
* struct ieee80211_sta_ht_cap - STA's HT capabilities
*
* This structure describes most essential parameters needed
* to describe 802.11n HT capabilities for an STA.
*
* @ht_supported: is HT supported by the STA
* @cap: HT capabilities map as described in 802.11n spec
* @ampdu_factor: Maximum A-MPDU length factor
* @ampdu_density: Minimum A-MPDU spacing
* @mcs: Supported MCS rates
*/
struct ieee80211_sta_ht_cap {
u16 cap; /* use IEEE80211_HT_CAP_ */
bool ht_supported;
u8 ampdu_factor;
u8 ampdu_density;
struct ieee80211_mcs_info mcs;
};
/**
* struct ieee80211_sta_vht_cap - STA's VHT capabilities
*
* This structure describes most essential parameters needed
* to describe 802.11ac VHT capabilities for an STA.
*
* @vht_supported: is VHT supported by the STA
* @cap: VHT capabilities map as described in 802.11ac spec
* @vht_mcs: Supported VHT MCS rates
*/
struct ieee80211_sta_vht_cap {
bool vht_supported;
u32 cap; /* use IEEE80211_VHT_CAP_ */
struct ieee80211_vht_mcs_info vht_mcs;
};
#define IEEE80211_HE_PPE_THRES_MAX_LEN 25
/**
* struct ieee80211_sta_he_cap - STA's HE capabilities
*
* This structure describes most essential parameters needed
* to describe 802.11ax HE capabilities for a STA.
*
* @has_he: true iff HE data is valid.
* @he_cap_elem: Fixed portion of the HE capabilities element.
* @he_mcs_nss_supp: The supported NSS/MCS combinations.
* @ppe_thres: Holds the PPE Thresholds data.
*/
struct ieee80211_sta_he_cap {
bool has_he;
struct ieee80211_he_cap_elem he_cap_elem;
struct ieee80211_he_mcs_nss_supp he_mcs_nss_supp;
u8 ppe_thres[IEEE80211_HE_PPE_THRES_MAX_LEN];
};
/**
* struct ieee80211_eht_mcs_nss_supp - EHT max supported NSS per MCS
*
* See P802.11be_D1.3 Table 9-401k - "Subfields of the Supported EHT-MCS
* and NSS Set field"
*
* @only_20mhz: MCS/NSS support for 20 MHz-only STA.
* @bw: MCS/NSS support for 80, 160 and 320 MHz
* @bw._80: MCS/NSS support for BW <= 80 MHz
* @bw._160: MCS/NSS support for BW = 160 MHz
* @bw._320: MCS/NSS support for BW = 320 MHz
*/
struct ieee80211_eht_mcs_nss_supp {
union {
struct ieee80211_eht_mcs_nss_supp_20mhz_only only_20mhz;
struct {
struct ieee80211_eht_mcs_nss_supp_bw _80;
struct ieee80211_eht_mcs_nss_supp_bw _160;
struct ieee80211_eht_mcs_nss_supp_bw _320;
} __packed bw;
} __packed;
} __packed;
#define IEEE80211_EHT_PPE_THRES_MAX_LEN 32
/**
* struct ieee80211_sta_eht_cap - STA's EHT capabilities
*
* This structure describes most essential parameters needed
* to describe 802.11be EHT capabilities for a STA.
*
* @has_eht: true iff EHT data is valid.
* @eht_cap_elem: Fixed portion of the eht capabilities element.
* @eht_mcs_nss_supp: The supported NSS/MCS combinations.
* @eht_ppe_thres: Holds the PPE Thresholds data.
*/
struct ieee80211_sta_eht_cap {
bool has_eht;
struct ieee80211_eht_cap_elem_fixed eht_cap_elem;
struct ieee80211_eht_mcs_nss_supp eht_mcs_nss_supp;
u8 eht_ppe_thres[IEEE80211_EHT_PPE_THRES_MAX_LEN];
};
/* sparse defines __CHECKER__; see Documentation/dev-tools/sparse.rst */
#ifdef __CHECKER__
/*
* This is used to mark the sband->iftype_data pointer which is supposed
* to be an array with special access semantics (per iftype), but a lot
* of code got it wrong in the past, so with this marking sparse will be
* noisy when the pointer is used directly.
*/
# define __iftd __attribute__((noderef, address_space(__iftype_data)))
#else
# define __iftd
#endif /* __CHECKER__ */
/**
* struct ieee80211_sband_iftype_data - sband data per interface type
*
* This structure encapsulates sband data that is relevant for the
* interface types defined in @types_mask. Each type in the
* @types_mask must be unique across all instances of iftype_data.
*
* @types_mask: interface types mask
* @he_cap: holds the HE capabilities
* @he_6ghz_capa: HE 6 GHz capabilities, must be filled in for a
* 6 GHz band channel (and 0 may be valid value).
* @eht_cap: STA's EHT capabilities
* @vendor_elems: vendor element(s) to advertise
* @vendor_elems.data: vendor element(s) data
* @vendor_elems.len: vendor element(s) length
*/
struct ieee80211_sband_iftype_data {
u16 types_mask;
struct ieee80211_sta_he_cap he_cap;
struct ieee80211_he_6ghz_capa he_6ghz_capa;
struct ieee80211_sta_eht_cap eht_cap;
struct {
const u8 *data;
unsigned int len;
} vendor_elems;
};
/**
* enum ieee80211_edmg_bw_config - allowed channel bandwidth configurations
*
* @IEEE80211_EDMG_BW_CONFIG_4: 2.16GHz
* @IEEE80211_EDMG_BW_CONFIG_5: 2.16GHz and 4.32GHz
* @IEEE80211_EDMG_BW_CONFIG_6: 2.16GHz, 4.32GHz and 6.48GHz
* @IEEE80211_EDMG_BW_CONFIG_7: 2.16GHz, 4.32GHz, 6.48GHz and 8.64GHz
* @IEEE80211_EDMG_BW_CONFIG_8: 2.16GHz and 2.16GHz + 2.16GHz
* @IEEE80211_EDMG_BW_CONFIG_9: 2.16GHz, 4.32GHz and 2.16GHz + 2.16GHz
* @IEEE80211_EDMG_BW_CONFIG_10: 2.16GHz, 4.32GHz, 6.48GHz and 2.16GHz+2.16GHz
* @IEEE80211_EDMG_BW_CONFIG_11: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz and
* 2.16GHz+2.16GHz
* @IEEE80211_EDMG_BW_CONFIG_12: 2.16GHz, 2.16GHz + 2.16GHz and
* 4.32GHz + 4.32GHz
* @IEEE80211_EDMG_BW_CONFIG_13: 2.16GHz, 4.32GHz, 2.16GHz + 2.16GHz and
* 4.32GHz + 4.32GHz
* @IEEE80211_EDMG_BW_CONFIG_14: 2.16GHz, 4.32GHz, 6.48GHz, 2.16GHz + 2.16GHz
* and 4.32GHz + 4.32GHz
* @IEEE80211_EDMG_BW_CONFIG_15: 2.16GHz, 4.32GHz, 6.48GHz, 8.64GHz,
* 2.16GHz + 2.16GHz and 4.32GHz + 4.32GHz
*/
enum ieee80211_edmg_bw_config {
IEEE80211_EDMG_BW_CONFIG_4 = 4,
IEEE80211_EDMG_BW_CONFIG_5 = 5,
IEEE80211_EDMG_BW_CONFIG_6 = 6,
IEEE80211_EDMG_BW_CONFIG_7 = 7,
IEEE80211_EDMG_BW_CONFIG_8 = 8,
IEEE80211_EDMG_BW_CONFIG_9 = 9,
IEEE80211_EDMG_BW_CONFIG_10 = 10,
IEEE80211_EDMG_BW_CONFIG_11 = 11,
IEEE80211_EDMG_BW_CONFIG_12 = 12,
IEEE80211_EDMG_BW_CONFIG_13 = 13,
IEEE80211_EDMG_BW_CONFIG_14 = 14,
IEEE80211_EDMG_BW_CONFIG_15 = 15,
};
/**
* struct ieee80211_edmg - EDMG configuration
*
* This structure describes most essential parameters needed
* to describe 802.11ay EDMG configuration
*
* @channels: bitmap that indicates the 2.16 GHz channel(s)
* that are allowed to be used for transmissions.
* Bit 0 indicates channel 1, bit 1 indicates channel 2, etc.
* Set to 0 indicate EDMG not supported.
* @bw_config: Channel BW Configuration subfield encodes
* the allowed channel bandwidth configurations
*/
struct ieee80211_edmg {
u8 channels;
enum ieee80211_edmg_bw_config bw_config;
};
/**
* struct ieee80211_sta_s1g_cap - STA's S1G capabilities
*
* This structure describes most essential parameters needed
* to describe 802.11ah S1G capabilities for a STA.
*
* @s1g: is STA an S1G STA
* @cap: S1G capabilities information
* @nss_mcs: Supported NSS MCS set
*/
struct ieee80211_sta_s1g_cap {
bool s1g;
u8 cap[10]; /* use S1G_CAPAB_ */
u8 nss_mcs[5];
};
/**
* struct ieee80211_supported_band - frequency band definition
*
* This structure describes a frequency band a wiphy
* is able to operate in.
*
* @channels: Array of channels the hardware can operate with
* in this band.
* @band: the band this structure represents
* @n_channels: Number of channels in @channels
* @bitrates: Array of bitrates the hardware can operate with
* in this band. Must be sorted to give a valid "supported
* rates" IE, i.e. CCK rates first, then OFDM.
* @n_bitrates: Number of bitrates in @bitrates
* @ht_cap: HT capabilities in this band
* @vht_cap: VHT capabilities in this band
* @s1g_cap: S1G capabilities in this band
* @edmg_cap: EDMG capabilities in this band
* @s1g_cap: S1G capabilities in this band (S1B band only, of course)
* @n_iftype_data: number of iftype data entries
* @iftype_data: interface type data entries. Note that the bits in
* @types_mask inside this structure cannot overlap (i.e. only
* one occurrence of each type is allowed across all instances of
* iftype_data).
*/
struct ieee80211_supported_band {
struct ieee80211_channel *channels;
struct ieee80211_rate *bitrates;
enum nl80211_band band;
int n_channels;
int n_bitrates;
struct ieee80211_sta_ht_cap ht_cap;
struct ieee80211_sta_vht_cap vht_cap;
struct ieee80211_sta_s1g_cap s1g_cap;
struct ieee80211_edmg edmg_cap;
u16 n_iftype_data;
const struct ieee80211_sband_iftype_data __iftd *iftype_data;
};
/**
* _ieee80211_set_sband_iftype_data - set sband iftype data array
* @sband: the sband to initialize
* @iftd: the iftype data array pointer
* @n_iftd: the length of the iftype data array
*
* Set the sband iftype data array; use this where the length cannot
* be derived from the ARRAY_SIZE() of the argument, but prefer
* ieee80211_set_sband_iftype_data() where it can be used.
*/
static inline void
_ieee80211_set_sband_iftype_data(struct ieee80211_supported_band *sband,
const struct ieee80211_sband_iftype_data *iftd,
u16 n_iftd)
{
sband->iftype_data = (const void __iftd __force *)iftd;
sband->n_iftype_data = n_iftd;
}
/**
* ieee80211_set_sband_iftype_data - set sband iftype data array
* @sband: the sband to initialize
* @iftd: the iftype data array
*/
#define ieee80211_set_sband_iftype_data(sband, iftd) \
_ieee80211_set_sband_iftype_data(sband, iftd, ARRAY_SIZE(iftd))
/**
* for_each_sband_iftype_data - iterate sband iftype data entries
* @sband: the sband whose iftype_data array to iterate
* @i: iterator counter
* @iftd: iftype data pointer to set
*/
#define for_each_sband_iftype_data(sband, i, iftd) \
for (i = 0, iftd = (const void __force *)&(sband)->iftype_data[i]; \
i < (sband)->n_iftype_data; \
i++, iftd = (const void __force *)&(sband)->iftype_data[i])
/**
* ieee80211_get_sband_iftype_data - return sband data for a given iftype
* @sband: the sband to search for the STA on
* @iftype: enum nl80211_iftype
*
* Return: pointer to struct ieee80211_sband_iftype_data, or NULL is none found
*/
static inline const struct ieee80211_sband_iftype_data *
ieee80211_get_sband_iftype_data(const struct ieee80211_supported_band *sband,
u8 iftype)
{
const struct ieee80211_sband_iftype_data *data;
int i;
if (WARN_ON(iftype >= NL80211_IFTYPE_MAX))
return NULL;
if (iftype == NL80211_IFTYPE_AP_VLAN)
iftype = NL80211_IFTYPE_AP;
for_each_sband_iftype_data(sband, i, data) {
if (data->types_mask & BIT(iftype))
return data;
}
return NULL;
}
/**
* ieee80211_get_he_iftype_cap - return HE capabilities for an sband's iftype
* @sband: the sband to search for the iftype on
* @iftype: enum nl80211_iftype
*
* Return: pointer to the struct ieee80211_sta_he_cap, or NULL is none found
*/
static inline const struct ieee80211_sta_he_cap *
ieee80211_get_he_iftype_cap(const struct ieee80211_supported_band *sband,
u8 iftype)
{
const struct ieee80211_sband_iftype_data *data =
ieee80211_get_sband_iftype_data(sband, iftype);
if (data && data->he_cap.has_he)
return &data->he_cap;
return NULL;
}
/**
* ieee80211_get_he_6ghz_capa - return HE 6 GHz capabilities
* @sband: the sband to search for the STA on
* @iftype: the iftype to search for
*
* Return: the 6GHz capabilities
*/
static inline __le16
ieee80211_get_he_6ghz_capa(const struct ieee80211_supported_band *sband,
enum nl80211_iftype iftype)
{
const struct ieee80211_sband_iftype_data *data =
ieee80211_get_sband_iftype_data(sband, iftype);
if (WARN_ON(!data || !data->he_cap.has_he))
return 0;
return data->he_6ghz_capa.capa;
}
/**
* ieee80211_get_eht_iftype_cap - return ETH capabilities for an sband's iftype
* @sband: the sband to search for the iftype on
* @iftype: enum nl80211_iftype
*
* Return: pointer to the struct ieee80211_sta_eht_cap, or NULL is none found
*/
static inline const struct ieee80211_sta_eht_cap *
ieee80211_get_eht_iftype_cap(const struct ieee80211_supported_band *sband,
enum nl80211_iftype iftype)
{
const struct ieee80211_sband_iftype_data *data =
ieee80211_get_sband_iftype_data(sband, iftype);
if (data && data->eht_cap.has_eht)
return &data->eht_cap;
return NULL;
}
/**
* wiphy_read_of_freq_limits - read frequency limits from device tree
*
* @wiphy: the wireless device to get extra limits for
*
* Some devices may have extra limitations specified in DT. This may be useful
* for chipsets that normally support more bands but are limited due to board
* design (e.g. by antennas or external power amplifier).
*
* This function reads info from DT and uses it to *modify* channels (disable
* unavailable ones). It's usually a *bad* idea to use it in drivers with
* shared channel data as DT limitations are device specific. You should make
* sure to call it only if channels in wiphy are copied and can be modified
* without affecting other devices.
*
* As this function access device node it has to be called after set_wiphy_dev.
* It also modifies channels so they have to be set first.
* If using this helper, call it before wiphy_register().
*/
#ifdef CONFIG_OF
void wiphy_read_of_freq_limits(struct wiphy *wiphy);
#else /* CONFIG_OF */
static inline void wiphy_read_of_freq_limits(struct wiphy *wiphy)
{
}
#endif /* !CONFIG_OF */
/*
* Wireless hardware/device configuration structures and methods
*/
/**
* DOC: Actions and configuration
*
* Each wireless device and each virtual interface offer a set of configuration
* operations and other actions that are invoked by userspace. Each of these
* actions is described in the operations structure, and the parameters these
* operations use are described separately.
*
* Additionally, some operations are asynchronous and expect to get status
* information via some functions that drivers need to call.
*
* Scanning and BSS list handling with its associated functionality is described
* in a separate chapter.
*/
#define VHT_MUMIMO_GROUPS_DATA_LEN (WLAN_MEMBERSHIP_LEN +\
WLAN_USER_POSITION_LEN)
/**
* struct vif_params - describes virtual interface parameters
* @flags: monitor interface flags, unchanged if 0, otherwise
* %MONITOR_FLAG_CHANGED will be set
* @use_4addr: use 4-address frames
* @macaddr: address to use for this virtual interface.
* If this parameter is set to zero address the driver may
* determine the address as needed.
* This feature is only fully supported by drivers that enable the
* %NL80211_FEATURE_MAC_ON_CREATE flag. Others may support creating
** only p2p devices with specified MAC.
* @vht_mumimo_groups: MU-MIMO groupID, used for monitoring MU-MIMO packets
* belonging to that MU-MIMO groupID; %NULL if not changed
* @vht_mumimo_follow_addr: MU-MIMO follow address, used for monitoring
* MU-MIMO packets going to the specified station; %NULL if not changed
*/
struct vif_params {
u32 flags;
int use_4addr;
u8 macaddr[ETH_ALEN];
const u8 *vht_mumimo_groups;
const u8 *vht_mumimo_follow_addr;
};
/**
* struct key_params - key information
*
* Information about a key
*
* @key: key material
* @key_len: length of key material
* @cipher: cipher suite selector
* @seq: sequence counter (IV/PN) for TKIP and CCMP keys, only used
* with the get_key() callback, must be in little endian,
* length given by @seq_len.
* @seq_len: length of @seq.
* @vlan_id: vlan_id for VLAN group key (if nonzero)
* @mode: key install mode (RX_TX, NO_TX or SET_TX)
*/
struct key_params {
const u8 *key;
const u8 *seq;
int key_len;
int seq_len;
u16 vlan_id;
u32 cipher;
enum nl80211_key_mode mode;
};
/**
* struct cfg80211_chan_def - channel definition
* @chan: the (control) channel
* @width: channel width
* @center_freq1: center frequency of first segment
* @center_freq2: center frequency of second segment
* (only with 80+80 MHz)
* @edmg: define the EDMG channels configuration.
* If edmg is requested (i.e. the .channels member is non-zero),
* chan will define the primary channel and all other
* parameters are ignored.
* @freq1_offset: offset from @center_freq1, in KHz
* @punctured: mask of the punctured 20 MHz subchannels, with
* bits turned on being disabled (punctured); numbered
* from lower to higher frequency (like in the spec)
*/
struct cfg80211_chan_def {
struct ieee80211_channel *chan;
enum nl80211_chan_width width;
u32 center_freq1;
u32 center_freq2;
struct ieee80211_edmg edmg;
u16 freq1_offset;
u16 punctured;
};
/*
* cfg80211_bitrate_mask - masks for bitrate control
*/
struct cfg80211_bitrate_mask {
struct {
u32 legacy;
u8 ht_mcs[IEEE80211_HT_MCS_MASK_LEN];
u16 vht_mcs[NL80211_VHT_NSS_MAX];
u16 he_mcs[NL80211_HE_NSS_MAX];
enum nl80211_txrate_gi gi;
enum nl80211_he_gi he_gi;
enum nl80211_he_ltf he_ltf;
} control[NUM_NL80211_BANDS];
};
/**
* struct cfg80211_tid_cfg - TID specific configuration
* @config_override: Flag to notify driver to reset TID configuration
* of the peer.
* @tids: bitmap of TIDs to modify
* @mask: bitmap of attributes indicating which parameter changed,
* similar to &nl80211_tid_config_supp.
* @noack: noack configuration value for the TID
* @retry_long: retry count value
* @retry_short: retry count value
* @ampdu: Enable/Disable MPDU aggregation
* @rtscts: Enable/Disable RTS/CTS
* @amsdu: Enable/Disable MSDU aggregation
* @txrate_type: Tx bitrate mask type
* @txrate_mask: Tx bitrate to be applied for the TID
*/
struct cfg80211_tid_cfg {
bool config_override;
u8 tids;
u64 mask;
enum nl80211_tid_config noack;
u8 retry_long, retry_short;
enum nl80211_tid_config ampdu;
enum nl80211_tid_config rtscts;
enum nl80211_tid_config amsdu;
enum nl80211_tx_rate_setting txrate_type;
struct cfg80211_bitrate_mask txrate_mask;
};
/**
* struct cfg80211_tid_config - TID configuration
* @peer: Station's MAC address
* @n_tid_conf: Number of TID specific configurations to be applied
* @tid_conf: Configuration change info
*/
struct cfg80211_tid_config {
const u8 *peer;
u32 n_tid_conf;
struct cfg80211_tid_cfg tid_conf[] __counted_by(n_tid_conf);
};
/**
* struct cfg80211_fils_aad - FILS AAD data
* @macaddr: STA MAC address
* @kek: FILS KEK
* @kek_len: FILS KEK length
* @snonce: STA Nonce
* @anonce: AP Nonce
*/
struct cfg80211_fils_aad {
const u8 *macaddr;
const u8 *kek;
u8 kek_len;
const u8 *snonce;
const u8 *anonce;
};
/**
* struct cfg80211_set_hw_timestamp - enable/disable HW timestamping
* @macaddr: peer MAC address. NULL to enable/disable HW timestamping for all
* addresses.
* @enable: if set, enable HW timestamping for the specified MAC address.
* Otherwise disable HW timestamping for the specified MAC address.
*/
struct cfg80211_set_hw_timestamp {
const u8 *macaddr;
bool enable;
};
/**
* cfg80211_get_chandef_type - return old channel type from chandef
* @chandef: the channel definition
*
* Return: The old channel type (NOHT, HT20, HT40+/-) from a given
* chandef, which must have a bandwidth allowing this conversion.
*/
static inline enum nl80211_channel_type
cfg80211_get_chandef_type(const struct cfg80211_chan_def *chandef)
{
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20_NOHT:
return NL80211_CHAN_NO_HT;
case NL80211_CHAN_WIDTH_20:
return NL80211_CHAN_HT20;
case NL80211_CHAN_WIDTH_40:
if (chandef->center_freq1 > chandef->chan->center_freq)
return NL80211_CHAN_HT40PLUS;
return NL80211_CHAN_HT40MINUS;
default:
WARN_ON(1);
return NL80211_CHAN_NO_HT;
}
}
/**
* cfg80211_chandef_create - create channel definition using channel type
* @chandef: the channel definition struct to fill
* @channel: the control channel
* @chantype: the channel type
*
* Given a channel type, create a channel definition.
*/
void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
struct ieee80211_channel *channel,
enum nl80211_channel_type chantype);
/**
* cfg80211_chandef_identical - check if two channel definitions are identical
* @chandef1: first channel definition
* @chandef2: second channel definition
*
* Return: %true if the channels defined by the channel definitions are
* identical, %false otherwise.
*/
static inline bool
cfg80211_chandef_identical(const struct cfg80211_chan_def *chandef1,
const struct cfg80211_chan_def *chandef2)
{
return (chandef1->chan == chandef2->chan &&
chandef1->width == chandef2->width &&
chandef1->center_freq1 == chandef2->center_freq1 &&
chandef1->freq1_offset == chandef2->freq1_offset &&
chandef1->center_freq2 == chandef2->center_freq2 &&
chandef1->punctured == chandef2->punctured);
}
/**
* cfg80211_chandef_is_edmg - check if chandef represents an EDMG channel
*
* @chandef: the channel definition
*
* Return: %true if EDMG defined, %false otherwise.
*/
static inline bool
cfg80211_chandef_is_edmg(const struct cfg80211_chan_def *chandef)
{
return chandef->edmg.channels || chandef->edmg.bw_config;
}
/**
* cfg80211_chandef_compatible - check if two channel definitions are compatible
* @chandef1: first channel definition
* @chandef2: second channel definition
*
* Return: %NULL if the given channel definitions are incompatible,
* chandef1 or chandef2 otherwise.
*/
const struct cfg80211_chan_def *
cfg80211_chandef_compatible(const struct cfg80211_chan_def *chandef1,
const struct cfg80211_chan_def *chandef2);
/**
* nl80211_chan_width_to_mhz - get the channel width in MHz
* @chan_width: the channel width from &enum nl80211_chan_width
*
* Return: channel width in MHz if the chan_width from &enum nl80211_chan_width
* is valid. -1 otherwise.
*/
int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width);
/**
* cfg80211_chandef_valid - check if a channel definition is valid
* @chandef: the channel definition to check
* Return: %true if the channel definition is valid. %false otherwise.
*/
bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef);
/**
* cfg80211_chandef_usable - check if secondary channels can be used
* @wiphy: the wiphy to validate against
* @chandef: the channel definition to check
* @prohibited_flags: the regulatory channel flags that must not be set
* Return: %true if secondary channels are usable. %false otherwise.
*/
bool cfg80211_chandef_usable(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef,
u32 prohibited_flags);
/**
* cfg80211_chandef_dfs_required - checks if radar detection is required
* @wiphy: the wiphy to validate against
* @chandef: the channel definition to check
* @iftype: the interface type as specified in &enum nl80211_iftype
* Returns:
* 1 if radar detection is required, 0 if it is not, < 0 on error
*/
int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef,
enum nl80211_iftype iftype);
/**
* cfg80211_chandef_dfs_usable - checks if chandef is DFS usable and we
* can/need start CAC on such channel
* @wiphy: the wiphy to validate against
* @chandef: the channel definition to check
*
* Return: true if all channels available and at least
* one channel requires CAC (NL80211_DFS_USABLE)
*/
bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef);
/**
* cfg80211_chandef_dfs_cac_time - get the DFS CAC time (in ms) for given
* channel definition
* @wiphy: the wiphy to validate against
* @chandef: the channel definition to check
*
* Returns: DFS CAC time (in ms) which applies for this channel definition
*/
unsigned int
cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef);
/**
* cfg80211_chandef_primary - calculate primary 40/80/160 MHz freq
* @chandef: chandef to calculate for
* @primary_chan_width: primary channel width to calculate center for
* @punctured: punctured sub-channel bitmap, will be recalculated
* according to the new bandwidth, can be %NULL
*
* Returns: the primary 40/80/160 MHz channel center frequency, or -1
* for errors, updating the punctured bitmap
*/
int cfg80211_chandef_primary(const struct cfg80211_chan_def *chandef,
enum nl80211_chan_width primary_chan_width,
u16 *punctured);
/**
* nl80211_send_chandef - sends the channel definition.
* @msg: the msg to send channel definition
* @chandef: the channel definition to check
*
* Returns: 0 if sent the channel definition to msg, < 0 on error
**/
int nl80211_send_chandef(struct sk_buff *msg, const struct cfg80211_chan_def *chandef);
/**
* ieee80211_chanwidth_rate_flags - return rate flags for channel width
* @width: the channel width of the channel
*
* In some channel types, not all rates may be used - for example CCK
* rates may not be used in 5/10 MHz channels.
*
* Returns: rate flags which apply for this channel width
*/
static inline enum ieee80211_rate_flags
ieee80211_chanwidth_rate_flags(enum nl80211_chan_width width)
{
switch (width) {
case NL80211_CHAN_WIDTH_5:
return IEEE80211_RATE_SUPPORTS_5MHZ;
case NL80211_CHAN_WIDTH_10:
return IEEE80211_RATE_SUPPORTS_10MHZ;
default:
break;
}
return 0;
}
/**
* ieee80211_chandef_rate_flags - returns rate flags for a channel
* @chandef: channel definition for the channel
*
* See ieee80211_chanwidth_rate_flags().
*
* Returns: rate flags which apply for this channel
*/
static inline enum ieee80211_rate_flags
ieee80211_chandef_rate_flags(struct cfg80211_chan_def *chandef)
{
return ieee80211_chanwidth_rate_flags(chandef->width);
}
/**
* ieee80211_chandef_max_power - maximum transmission power for the chandef
*
* In some regulations, the transmit power may depend on the configured channel
* bandwidth which may be defined as dBm/MHz. This function returns the actual
* max_power for non-standard (20 MHz) channels.
*
* @chandef: channel definition for the channel
*
* Returns: maximum allowed transmission power in dBm for the chandef
*/
static inline int
ieee80211_chandef_max_power(struct cfg80211_chan_def *chandef)
{
switch (chandef->width) {
case NL80211_CHAN_WIDTH_5:
return min(chandef->chan->max_reg_power - 6,
chandef->chan->max_power);
case NL80211_CHAN_WIDTH_10:
return min(chandef->chan->max_reg_power - 3,
chandef->chan->max_power);
default:
break;
}
return chandef->chan->max_power;
}
/**
* cfg80211_any_usable_channels - check for usable channels
* @wiphy: the wiphy to check for
* @band_mask: which bands to check on
* @prohibited_flags: which channels to not consider usable,
* %IEEE80211_CHAN_DISABLED is always taken into account
*/
bool cfg80211_any_usable_channels(struct wiphy *wiphy,
unsigned long band_mask,
u32 prohibited_flags);
/**
* enum survey_info_flags - survey information flags
*
* @SURVEY_INFO_NOISE_DBM: noise (in dBm) was filled in
* @SURVEY_INFO_IN_USE: channel is currently being used
* @SURVEY_INFO_TIME: active time (in ms) was filled in
* @SURVEY_INFO_TIME_BUSY: busy time was filled in
* @SURVEY_INFO_TIME_EXT_BUSY: extension channel busy time was filled in
* @SURVEY_INFO_TIME_RX: receive time was filled in
* @SURVEY_INFO_TIME_TX: transmit time was filled in
* @SURVEY_INFO_TIME_SCAN: scan time was filled in
* @SURVEY_INFO_TIME_BSS_RX: local BSS receive time was filled in
*
* Used by the driver to indicate which info in &struct survey_info
* it has filled in during the get_survey().
*/
enum survey_info_flags {
SURVEY_INFO_NOISE_DBM = BIT(0),
SURVEY_INFO_IN_USE = BIT(1),
SURVEY_INFO_TIME = BIT(2),
SURVEY_INFO_TIME_BUSY = BIT(3),
SURVEY_INFO_TIME_EXT_BUSY = BIT(4),
SURVEY_INFO_TIME_RX = BIT(5),
SURVEY_INFO_TIME_TX = BIT(6),
SURVEY_INFO_TIME_SCAN = BIT(7),
SURVEY_INFO_TIME_BSS_RX = BIT(8),
};
/**
* struct survey_info - channel survey response
*
* @channel: the channel this survey record reports, may be %NULL for a single
* record to report global statistics
* @filled: bitflag of flags from &enum survey_info_flags
* @noise: channel noise in dBm. This and all following fields are
* optional
* @time: amount of time in ms the radio was turn on (on the channel)
* @time_busy: amount of time the primary channel was sensed busy
* @time_ext_busy: amount of time the extension channel was sensed busy
* @time_rx: amount of time the radio spent receiving data
* @time_tx: amount of time the radio spent transmitting data
* @time_scan: amount of time the radio spent for scanning
* @time_bss_rx: amount of time the radio spent receiving data on a local BSS
*
* Used by dump_survey() to report back per-channel survey information.
*
* This structure can later be expanded with things like
* channel duty cycle etc.
*/
struct survey_info {
struct ieee80211_channel *channel;
u64 time;
u64 time_busy;
u64 time_ext_busy;
u64 time_rx;
u64 time_tx;
u64 time_scan;
u64 time_bss_rx;
u32 filled;
s8 noise;
};
#define CFG80211_MAX_NUM_AKM_SUITES 10
/**
* struct cfg80211_crypto_settings - Crypto settings
* @wpa_versions: indicates which, if any, WPA versions are enabled
* (from enum nl80211_wpa_versions)
* @cipher_group: group key cipher suite (or 0 if unset)
* @n_ciphers_pairwise: number of AP supported unicast ciphers
* @ciphers_pairwise: unicast key cipher suites
* @n_akm_suites: number of AKM suites
* @akm_suites: AKM suites
* @control_port: Whether user space controls IEEE 802.1X port, i.e.,
* sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
* required to assume that the port is unauthorized until authorized by
* user space. Otherwise, port is marked authorized by default.
* @control_port_ethertype: the control port protocol that should be
* allowed through even on unauthorized ports
* @control_port_no_encrypt: TRUE to prevent encryption of control port
* protocol frames.
* @control_port_over_nl80211: TRUE if userspace expects to exchange control
* port frames over NL80211 instead of the network interface.
* @control_port_no_preauth: disables pre-auth rx over the nl80211 control
* port for mac80211
* @psk: PSK (for devices supporting 4-way-handshake offload)
* @sae_pwd: password for SAE authentication (for devices supporting SAE
* offload)
* @sae_pwd_len: length of SAE password (for devices supporting SAE offload)
* @sae_pwe: The mechanisms allowed for SAE PWE derivation:
*
* NL80211_SAE_PWE_UNSPECIFIED
* Not-specified, used to indicate userspace did not specify any
* preference. The driver should follow its internal policy in
* such a scenario.
*
* NL80211_SAE_PWE_HUNT_AND_PECK
* Allow hunting-and-pecking loop only
*
* NL80211_SAE_PWE_HASH_TO_ELEMENT
* Allow hash-to-element only
*
* NL80211_SAE_PWE_BOTH
* Allow either hunting-and-pecking loop or hash-to-element
*/
struct cfg80211_crypto_settings {
u32 wpa_versions;
u32 cipher_group;
int n_ciphers_pairwise;
u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
int n_akm_suites;
u32 akm_suites[CFG80211_MAX_NUM_AKM_SUITES];
bool control_port;
__be16 control_port_ethertype;
bool control_port_no_encrypt;
bool control_port_over_nl80211;
bool control_port_no_preauth;
const u8 *psk;
const u8 *sae_pwd;
u8 sae_pwd_len;
enum nl80211_sae_pwe_mechanism sae_pwe;
};
/**
* struct cfg80211_mbssid_config - AP settings for multi bssid
*
* @tx_wdev: pointer to the transmitted interface in the MBSSID set
* @index: index of this AP in the multi bssid group.
* @ema: set to true if the beacons should be sent out in EMA mode.
*/
struct cfg80211_mbssid_config {
struct wireless_dev *tx_wdev;
u8 index;
bool ema;
};
/**
* struct cfg80211_mbssid_elems - Multiple BSSID elements
*
* @cnt: Number of elements in array %elems.
*
* @elem: Array of multiple BSSID element(s) to be added into Beacon frames.
* @elem.data: Data for multiple BSSID elements.
* @elem.len: Length of data.
*/
struct cfg80211_mbssid_elems {
u8 cnt;
struct {
const u8 *data;
size_t len;
} elem[] __counted_by(cnt);
};
/**
* struct cfg80211_rnr_elems - Reduced neighbor report (RNR) elements
*
* @cnt: Number of elements in array %elems.
*
* @elem: Array of RNR element(s) to be added into Beacon frames.
* @elem.data: Data for RNR elements.
* @elem.len: Length of data.
*/
struct cfg80211_rnr_elems {
u8 cnt;
struct {
const u8 *data;
size_t len;
} elem[] __counted_by(cnt);
};
/**
* struct cfg80211_beacon_data - beacon data
* @link_id: the link ID for the AP MLD link sending this beacon
* @head: head portion of beacon (before TIM IE)
* or %NULL if not changed
* @tail: tail portion of beacon (after TIM IE)
* or %NULL if not changed
* @head_len: length of @head
* @tail_len: length of @tail
* @beacon_ies: extra information element(s) to add into Beacon frames or %NULL
* @beacon_ies_len: length of beacon_ies in octets
* @proberesp_ies: extra information element(s) to add into Probe Response
* frames or %NULL
* @proberesp_ies_len: length of proberesp_ies in octets
* @assocresp_ies: extra information element(s) to add into (Re)Association
* Response frames or %NULL
* @assocresp_ies_len: length of assocresp_ies in octets
* @probe_resp_len: length of probe response template (@probe_resp)
* @probe_resp: probe response template (AP mode only)
* @mbssid_ies: multiple BSSID elements
* @rnr_ies: reduced neighbor report elements
* @ftm_responder: enable FTM responder functionality; -1 for no change
* (which also implies no change in LCI/civic location data)
* @lci: Measurement Report element content, starting with Measurement Token
* (measurement type 8)
* @civicloc: Measurement Report element content, starting with Measurement
* Token (measurement type 11)
* @lci_len: LCI data length
* @civicloc_len: Civic location data length
* @he_bss_color: BSS Color settings
* @he_bss_color_valid: indicates whether bss color
* attribute is present in beacon data or not.
*/
struct cfg80211_beacon_data {
unsigned int link_id;
const u8 *head, *tail;
const u8 *beacon_ies;
const u8 *proberesp_ies;
const u8 *assocresp_ies;
const u8 *probe_resp;
const u8 *lci;
const u8 *civicloc;
struct cfg80211_mbssid_elems *mbssid_ies;
struct cfg80211_rnr_elems *rnr_ies;
s8 ftm_responder;
size_t head_len, tail_len;
size_t beacon_ies_len;
size_t proberesp_ies_len;
size_t assocresp_ies_len;
size_t probe_resp_len;
size_t lci_len;
size_t civicloc_len;
struct cfg80211_he_bss_color he_bss_color;
bool he_bss_color_valid;
};
struct mac_address {
u8 addr[ETH_ALEN];
};
/**
* struct cfg80211_acl_data - Access control list data
*
* @acl_policy: ACL policy to be applied on the station's
* entry specified by mac_addr
* @n_acl_entries: Number of MAC address entries passed
* @mac_addrs: List of MAC addresses of stations to be used for ACL
*/
struct cfg80211_acl_data {
enum nl80211_acl_policy acl_policy;
int n_acl_entries;
/* Keep it last */
struct mac_address mac_addrs[] __counted_by(n_acl_entries);
};
/**
* struct cfg80211_fils_discovery - FILS discovery parameters from
* IEEE Std 802.11ai-2016, Annex C.3 MIB detail.
*
* @update: Set to true if the feature configuration should be updated.
* @min_interval: Minimum packet interval in TUs (0 - 10000)
* @max_interval: Maximum packet interval in TUs (0 - 10000)
* @tmpl_len: Template length
* @tmpl: Template data for FILS discovery frame including the action
* frame headers.
*/
struct cfg80211_fils_discovery {
bool update;
u32 min_interval;
u32 max_interval;
size_t tmpl_len;
const u8 *tmpl;
};
/**
* struct cfg80211_unsol_bcast_probe_resp - Unsolicited broadcast probe
* response parameters in 6GHz.
*
* @update: Set to true if the feature configuration should be updated.
* @interval: Packet interval in TUs. Maximum allowed is 20 TU, as mentioned
* in IEEE P802.11ax/D6.0 26.17.2.3.2 - AP behavior for fast passive
* scanning
* @tmpl_len: Template length
* @tmpl: Template data for probe response
*/
struct cfg80211_unsol_bcast_probe_resp {
bool update;
u32 interval;
size_t tmpl_len;
const u8 *tmpl;
};
/**
* struct cfg80211_ap_settings - AP configuration
*
* Used to configure an AP interface.
*
* @chandef: defines the channel to use
* @beacon: beacon data
* @beacon_interval: beacon interval
* @dtim_period: DTIM period
* @ssid: SSID to be used in the BSS (note: may be %NULL if not provided from
* user space)
* @ssid_len: length of @ssid
* @hidden_ssid: whether to hide the SSID in Beacon/Probe Response frames
* @crypto: crypto settings
* @privacy: the BSS uses privacy
* @auth_type: Authentication type (algorithm)
* @smps_mode: SMPS mode
* @inactivity_timeout: time in seconds to determine station's inactivity.
* @p2p_ctwindow: P2P CT Window
* @p2p_opp_ps: P2P opportunistic PS
* @acl: ACL configuration used by the drivers which has support for
* MAC address based access control
* @pbss: If set, start as a PCP instead of AP. Relevant for DMG
* networks.
* @beacon_rate: bitrate to be used for beacons
* @ht_cap: HT capabilities (or %NULL if HT isn't enabled)
* @vht_cap: VHT capabilities (or %NULL if VHT isn't enabled)
* @he_cap: HE capabilities (or %NULL if HE isn't enabled)
* @eht_cap: EHT capabilities (or %NULL if EHT isn't enabled)
* @eht_oper: EHT operation IE (or %NULL if EHT isn't enabled)
* @ht_required: stations must support HT
* @vht_required: stations must support VHT
* @twt_responder: Enable Target Wait Time
* @he_required: stations must support HE
* @sae_h2e_required: stations must support direct H2E technique in SAE
* @flags: flags, as defined in &enum nl80211_ap_settings_flags
* @he_obss_pd: OBSS Packet Detection settings
* @he_oper: HE operation IE (or %NULL if HE isn't enabled)
* @fils_discovery: FILS discovery transmission parameters
* @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
* @mbssid_config: AP settings for multiple bssid
*/
struct cfg80211_ap_settings {
struct cfg80211_chan_def chandef;
struct cfg80211_beacon_data beacon;
int beacon_interval, dtim_period;
const u8 *ssid;
size_t ssid_len;
enum nl80211_hidden_ssid hidden_ssid;
struct cfg80211_crypto_settings crypto;
bool privacy;
enum nl80211_auth_type auth_type;
enum nl80211_smps_mode smps_mode;
int inactivity_timeout;
u8 p2p_ctwindow;
bool p2p_opp_ps;
const struct cfg80211_acl_data *acl;
bool pbss;
struct cfg80211_bitrate_mask beacon_rate;
const struct ieee80211_ht_cap *ht_cap;
const struct ieee80211_vht_cap *vht_cap;
const struct ieee80211_he_cap_elem *he_cap;
const struct ieee80211_he_operation *he_oper;
const struct ieee80211_eht_cap_elem *eht_cap;
const struct ieee80211_eht_operation *eht_oper;
bool ht_required, vht_required, he_required, sae_h2e_required;
bool twt_responder;
u32 flags;
struct ieee80211_he_obss_pd he_obss_pd;
struct cfg80211_fils_discovery fils_discovery;
struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
struct cfg80211_mbssid_config mbssid_config;
};
/**
* struct cfg80211_ap_update - AP configuration update
*
* Subset of &struct cfg80211_ap_settings, for updating a running AP.
*
* @beacon: beacon data
* @fils_discovery: FILS discovery transmission parameters
* @unsol_bcast_probe_resp: Unsolicited broadcast probe response parameters
*/
struct cfg80211_ap_update {
struct cfg80211_beacon_data beacon;
struct cfg80211_fils_discovery fils_discovery;
struct cfg80211_unsol_bcast_probe_resp unsol_bcast_probe_resp;
};
/**
* struct cfg80211_csa_settings - channel switch settings
*
* Used for channel switch
*
* @chandef: defines the channel to use after the switch
* @beacon_csa: beacon data while performing the switch
* @counter_offsets_beacon: offsets of the counters within the beacon (tail)
* @counter_offsets_presp: offsets of the counters within the probe response
* @n_counter_offsets_beacon: number of csa counters the beacon (tail)
* @n_counter_offsets_presp: number of csa counters in the probe response
* @beacon_after: beacon data to be used on the new channel
* @radar_required: whether radar detection is required on the new channel
* @block_tx: whether transmissions should be blocked while changing
* @count: number of beacons until switch
* @link_id: defines the link on which channel switch is expected during
* MLO. 0 in case of non-MLO.
*/
struct cfg80211_csa_settings {
struct cfg80211_chan_def chandef;
struct cfg80211_beacon_data beacon_csa;
const u16 *counter_offsets_beacon;
const u16 *counter_offsets_presp;
unsigned int n_counter_offsets_beacon;
unsigned int n_counter_offsets_presp;
struct cfg80211_beacon_data beacon_after;
bool radar_required;
bool block_tx;
u8 count;
u8 link_id;
};
/**
* struct cfg80211_color_change_settings - color change settings
*
* Used for bss color change
*
* @beacon_color_change: beacon data while performing the color countdown
* @counter_offset_beacon: offsets of the counters within the beacon (tail)
* @counter_offset_presp: offsets of the counters within the probe response
* @beacon_next: beacon data to be used after the color change
* @count: number of beacons until the color change
* @color: the color used after the change
*/
struct cfg80211_color_change_settings {
struct cfg80211_beacon_data beacon_color_change;
u16 counter_offset_beacon;
u16 counter_offset_presp;
struct cfg80211_beacon_data beacon_next;
u8 count;
u8 color;
};
/**
* struct iface_combination_params - input parameters for interface combinations
*
* Used to pass interface combination parameters
*
* @num_different_channels: the number of different channels we want
* to use for verification
* @radar_detect: a bitmap where each bit corresponds to a channel
* width where radar detection is needed, as in the definition of
* &struct ieee80211_iface_combination.@radar_detect_widths
* @iftype_num: array with the number of interfaces of each interface
* type. The index is the interface type as specified in &enum
* nl80211_iftype.
* @new_beacon_int: set this to the beacon interval of a new interface
* that's not operating yet, if such is to be checked as part of
* the verification
*/
struct iface_combination_params {
int num_different_channels;
u8 radar_detect;
int iftype_num[NUM_NL80211_IFTYPES];
u32 new_beacon_int;
};
/**
* enum station_parameters_apply_mask - station parameter values to apply
* @STATION_PARAM_APPLY_UAPSD: apply new uAPSD parameters (uapsd_queues, max_sp)
* @STATION_PARAM_APPLY_CAPABILITY: apply new capability
* @STATION_PARAM_APPLY_PLINK_STATE: apply new plink state
*
* Not all station parameters have in-band "no change" signalling,
* for those that don't these flags will are used.
*/
enum station_parameters_apply_mask {
STATION_PARAM_APPLY_UAPSD = BIT(0),
STATION_PARAM_APPLY_CAPABILITY = BIT(1),
STATION_PARAM_APPLY_PLINK_STATE = BIT(2),
};
/**
* struct sta_txpwr - station txpower configuration
*
* Used to configure txpower for station.
*
* @power: tx power (in dBm) to be used for sending data traffic. If tx power
* is not provided, the default per-interface tx power setting will be
* overriding. Driver should be picking up the lowest tx power, either tx
* power per-interface or per-station.
* @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power
* will be less than or equal to specified from userspace, whereas if TPC
* %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power.
* NL80211_TX_POWER_FIXED is not a valid configuration option for
* per peer TPC.
*/
struct sta_txpwr {
s16 power;
enum nl80211_tx_power_setting type;
};
/**
* struct link_station_parameters - link station parameters
*
* Used to change and create a new link station.
*
* @mld_mac: MAC address of the station
* @link_id: the link id (-1 for non-MLD station)
* @link_mac: MAC address of the link
* @supported_rates: supported rates in IEEE 802.11 format
* (or NULL for no change)
* @supported_rates_len: number of supported rates
* @ht_capa: HT capabilities of station
* @vht_capa: VHT capabilities of station
* @opmode_notif: operating mode field from Operating Mode Notification
* @opmode_notif_used: information if operating mode field is used
* @he_capa: HE capabilities of station
* @he_capa_len: the length of the HE capabilities
* @txpwr: transmit power for an associated station
* @txpwr_set: txpwr field is set
* @he_6ghz_capa: HE 6 GHz Band capabilities of station
* @eht_capa: EHT capabilities of station
* @eht_capa_len: the length of the EHT capabilities
*/
struct link_station_parameters {
const u8 *mld_mac;
int link_id;
const u8 *link_mac;
const u8 *supported_rates;
u8 supported_rates_len;
const struct ieee80211_ht_cap *ht_capa;
const struct ieee80211_vht_cap *vht_capa;
u8 opmode_notif;
bool opmode_notif_used;
const struct ieee80211_he_cap_elem *he_capa;
u8 he_capa_len;
struct sta_txpwr txpwr;
bool txpwr_set;
const struct ieee80211_he_6ghz_capa *he_6ghz_capa;
const struct ieee80211_eht_cap_elem *eht_capa;
u8 eht_capa_len;
};
/**
* struct link_station_del_parameters - link station deletion parameters
*
* Used to delete a link station entry (or all stations).
*
* @mld_mac: MAC address of the station
* @link_id: the link id
*/
struct link_station_del_parameters {
const u8 *mld_mac;
u32 link_id;
};
/**
* struct cfg80211_ttlm_params: TID to link mapping parameters
*
* Used for setting a TID to link mapping.
*
* @dlink: Downlink TID to link mapping, as defined in section 9.4.2.314
* (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
* @ulink: Uplink TID to link mapping, as defined in section 9.4.2.314
* (TID-To-Link Mapping element) in Draft P802.11be_D4.0.
*/
struct cfg80211_ttlm_params {
u16 dlink[8];
u16 ulink[8];
};
/**
* struct station_parameters - station parameters
*
* Used to change and create a new station.
*
* @vlan: vlan interface station should belong to
* @sta_flags_mask: station flags that changed
* (bitmask of BIT(%NL80211_STA_FLAG_...))
* @sta_flags_set: station flags values
* (bitmask of BIT(%NL80211_STA_FLAG_...))
* @listen_interval: listen interval or -1 for no change
* @aid: AID or zero for no change
* @vlan_id: VLAN ID for station (if nonzero)
* @peer_aid: mesh peer AID or zero for no change
* @plink_action: plink action to take
* @plink_state: set the peer link state for a station
* @uapsd_queues: bitmap of queues configured for uapsd. same format
* as the AC bitmap in the QoS info field
* @max_sp: max Service Period. same format as the MAX_SP in the
* QoS info field (but already shifted down)
* @sta_modify_mask: bitmap indicating which parameters changed
* (for those that don't have a natural "no change" value),
* see &enum station_parameters_apply_mask
* @local_pm: local link-specific mesh power save mode (no change when set
* to unknown)
* @capability: station capability
* @ext_capab: extended capabilities of the station
* @ext_capab_len: number of extended capabilities
* @supported_channels: supported channels in IEEE 802.11 format
* @supported_channels_len: number of supported channels
* @supported_oper_classes: supported oper classes in IEEE 802.11 format
* @supported_oper_classes_len: number of supported operating classes
* @support_p2p_ps: information if station supports P2P PS mechanism
* @airtime_weight: airtime scheduler weight for this station
* @link_sta_params: link related params.
*/
struct station_parameters {
struct net_device *vlan;
u32 sta_flags_mask, sta_flags_set;
u32 sta_modify_mask;
int listen_interval;
u16 aid;
u16 vlan_id;
u16 peer_aid;
u8 plink_action;
u8 plink_state;
u8 uapsd_queues;
u8 max_sp;
enum nl80211_mesh_power_mode local_pm;
u16 capability;
const u8 *ext_capab;
u8 ext_capab_len;
const u8 *supported_channels;
u8 supported_channels_len;
const u8 *supported_oper_classes;
u8 supported_oper_classes_len;
int support_p2p_ps;
u16 airtime_weight;
struct link_station_parameters link_sta_params;
};
/**
* struct station_del_parameters - station deletion parameters
*
* Used to delete a station entry (or all stations).
*
* @mac: MAC address of the station to remove or NULL to remove all stations
* @subtype: Management frame subtype to use for indicating removal
* (10 = Disassociation, 12 = Deauthentication)
* @reason_code: Reason code for the Disassociation/Deauthentication frame
* @link_id: Link ID indicating a link that stations to be flushed must be
* using; valid only for MLO, but can also be -1 for MLO to really
* remove all stations.
*/
struct station_del_parameters {
const u8 *mac;
u8 subtype;
u16 reason_code;
int link_id;
};
/**
* enum cfg80211_station_type - the type of station being modified
* @CFG80211_STA_AP_CLIENT: client of an AP interface
* @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still
* unassociated (update properties for this type of client is permitted)
* @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has
* the AP MLME in the device
* @CFG80211_STA_AP_STA: AP station on managed interface
* @CFG80211_STA_IBSS: IBSS station
* @CFG80211_STA_TDLS_PEER_SETUP: TDLS peer on managed interface (dummy entry
* while TDLS setup is in progress, it moves out of this state when
* being marked authorized; use this only if TDLS with external setup is
* supported/used)
* @CFG80211_STA_TDLS_PEER_ACTIVE: TDLS peer on managed interface (active
* entry that is operating, has been marked authorized by userspace)
* @CFG80211_STA_MESH_PEER_KERNEL: peer on mesh interface (kernel managed)
* @CFG80211_STA_MESH_PEER_USER: peer on mesh interface (user managed)
*/
enum cfg80211_station_type {
CFG80211_STA_AP_CLIENT,
CFG80211_STA_AP_CLIENT_UNASSOC,
CFG80211_STA_AP_MLME_CLIENT,
CFG80211_STA_AP_STA,
CFG80211_STA_IBSS,
CFG80211_STA_TDLS_PEER_SETUP,
CFG80211_STA_TDLS_PEER_ACTIVE,
CFG80211_STA_MESH_PEER_KERNEL,
CFG80211_STA_MESH_PEER_USER,
};
/**
* cfg80211_check_station_change - validate parameter changes
* @wiphy: the wiphy this operates on
* @params: the new parameters for a station
* @statype: the type of station being modified
*
* Utility function for the @change_station driver method. Call this function
* with the appropriate station type looking up the station (and checking that
* it exists). It will verify whether the station change is acceptable, and if
* not will return an error code. Note that it may modify the parameters for
* backward compatibility reasons, so don't use them before calling this.
*/
int cfg80211_check_station_change(struct wiphy *wiphy,
struct station_parameters *params,
enum cfg80211_station_type statype);
/**
* enum rate_info_flags - bitrate info flags
*
* Used by the driver to indicate the specific rate transmission
* type for 802.11n transmissions.
*
* @RATE_INFO_FLAGS_MCS: mcs field filled with HT MCS
* @RATE_INFO_FLAGS_VHT_MCS: mcs field filled with VHT MCS
* @RATE_INFO_FLAGS_SHORT_GI: 400ns guard interval
* @RATE_INFO_FLAGS_DMG: 60GHz MCS
* @RATE_INFO_FLAGS_HE_MCS: HE MCS information
* @RATE_INFO_FLAGS_EDMG: 60GHz MCS in EDMG mode
* @RATE_INFO_FLAGS_EXTENDED_SC_DMG: 60GHz extended SC MCS
* @RATE_INFO_FLAGS_EHT_MCS: EHT MCS information
* @RATE_INFO_FLAGS_S1G_MCS: MCS field filled with S1G MCS
*/
enum rate_info_flags {
RATE_INFO_FLAGS_MCS = BIT(0),
RATE_INFO_FLAGS_VHT_MCS = BIT(1),
RATE_INFO_FLAGS_SHORT_GI = BIT(2),
RATE_INFO_FLAGS_DMG = BIT(3),
RATE_INFO_FLAGS_HE_MCS = BIT(4),
RATE_INFO_FLAGS_EDMG = BIT(5),
RATE_INFO_FLAGS_EXTENDED_SC_DMG = BIT(6),
RATE_INFO_FLAGS_EHT_MCS = BIT(7),
RATE_INFO_FLAGS_S1G_MCS = BIT(8),
};
/**
* enum rate_info_bw - rate bandwidth information
*
* Used by the driver to indicate the rate bandwidth.
*
* @RATE_INFO_BW_5: 5 MHz bandwidth
* @RATE_INFO_BW_10: 10 MHz bandwidth
* @RATE_INFO_BW_20: 20 MHz bandwidth
* @RATE_INFO_BW_40: 40 MHz bandwidth
* @RATE_INFO_BW_80: 80 MHz bandwidth
* @RATE_INFO_BW_160: 160 MHz bandwidth
* @RATE_INFO_BW_HE_RU: bandwidth determined by HE RU allocation
* @RATE_INFO_BW_320: 320 MHz bandwidth
* @RATE_INFO_BW_EHT_RU: bandwidth determined by EHT RU allocation
* @RATE_INFO_BW_1: 1 MHz bandwidth
* @RATE_INFO_BW_2: 2 MHz bandwidth
* @RATE_INFO_BW_4: 4 MHz bandwidth
* @RATE_INFO_BW_8: 8 MHz bandwidth
* @RATE_INFO_BW_16: 16 MHz bandwidth
*/
enum rate_info_bw {
RATE_INFO_BW_20 = 0,
RATE_INFO_BW_5,
RATE_INFO_BW_10,
RATE_INFO_BW_40,
RATE_INFO_BW_80,
RATE_INFO_BW_160,
RATE_INFO_BW_HE_RU,
RATE_INFO_BW_320,
RATE_INFO_BW_EHT_RU,
RATE_INFO_BW_1,
RATE_INFO_BW_2,
RATE_INFO_BW_4,
RATE_INFO_BW_8,
RATE_INFO_BW_16,
};
/**
* struct rate_info - bitrate information
*
* Information about a receiving or transmitting bitrate
*
* @flags: bitflag of flags from &enum rate_info_flags
* @legacy: bitrate in 100kbit/s for 802.11abg
* @mcs: mcs index if struct describes an HT/VHT/HE/EHT/S1G rate
* @nss: number of streams (VHT & HE only)
* @bw: bandwidth (from &enum rate_info_bw)
* @he_gi: HE guard interval (from &enum nl80211_he_gi)
* @he_dcm: HE DCM value
* @he_ru_alloc: HE RU allocation (from &enum nl80211_he_ru_alloc,
* only valid if bw is %RATE_INFO_BW_HE_RU)
* @n_bonded_ch: In case of EDMG the number of bonded channels (1-4)
* @eht_gi: EHT guard interval (from &enum nl80211_eht_gi)
* @eht_ru_alloc: EHT RU allocation (from &enum nl80211_eht_ru_alloc,
* only valid if bw is %RATE_INFO_BW_EHT_RU)
*/
struct rate_info {
u16 flags;
u16 legacy;
u8 mcs;
u8 nss;
u8 bw;
u8 he_gi;
u8 he_dcm;
u8 he_ru_alloc;
u8 n_bonded_ch;
u8 eht_gi;
u8 eht_ru_alloc;
};
/**
* enum bss_param_flags - bitrate info flags
*
* Used by the driver to indicate the specific rate transmission
* type for 802.11n transmissions.
*
* @BSS_PARAM_FLAGS_CTS_PROT: whether CTS protection is enabled
* @BSS_PARAM_FLAGS_SHORT_PREAMBLE: whether short preamble is enabled
* @BSS_PARAM_FLAGS_SHORT_SLOT_TIME: whether short slot time is enabled
*/
enum bss_param_flags {
BSS_PARAM_FLAGS_CTS_PROT = 1<<0,
BSS_PARAM_FLAGS_SHORT_PREAMBLE = 1<<1,
BSS_PARAM_FLAGS_SHORT_SLOT_TIME = 1<<2,
};
/**
* struct sta_bss_parameters - BSS parameters for the attached station
*
* Information about the currently associated BSS
*
* @flags: bitflag of flags from &enum bss_param_flags
* @dtim_period: DTIM period for the BSS
* @beacon_interval: beacon interval
*/
struct sta_bss_parameters {
u8 flags;
u8 dtim_period;
u16 beacon_interval;
};
/**
* struct cfg80211_txq_stats - TXQ statistics for this TID
* @filled: bitmap of flags using the bits of &enum nl80211_txq_stats to
* indicate the relevant values in this struct are filled
* @backlog_bytes: total number of bytes currently backlogged
* @backlog_packets: total number of packets currently backlogged
* @flows: number of new flows seen
* @drops: total number of packets dropped
* @ecn_marks: total number of packets marked with ECN CE
* @overlimit: number of drops due to queue space overflow
* @overmemory: number of drops due to memory limit overflow
* @collisions: number of hash collisions
* @tx_bytes: total number of bytes dequeued
* @tx_packets: total number of packets dequeued
* @max_flows: maximum number of flows supported
*/
struct cfg80211_txq_stats {
u32 filled;
u32 backlog_bytes;
u32 backlog_packets;
u32 flows;
u32 drops;
u32 ecn_marks;
u32 overlimit;
u32 overmemory;
u32 collisions;
u32 tx_bytes;
u32 tx_packets;
u32 max_flows;
};
/**
* struct cfg80211_tid_stats - per-TID statistics
* @filled: bitmap of flags using the bits of &enum nl80211_tid_stats to
* indicate the relevant values in this struct are filled
* @rx_msdu: number of received MSDUs
* @tx_msdu: number of (attempted) transmitted MSDUs
* @tx_msdu_retries: number of retries (not counting the first) for
* transmitted MSDUs
* @tx_msdu_failed: number of failed transmitted MSDUs
* @txq_stats: TXQ statistics
*/
struct cfg80211_tid_stats {
u32 filled;
u64 rx_msdu;
u64 tx_msdu;
u64 tx_msdu_retries;
u64 tx_msdu_failed;
struct cfg80211_txq_stats txq_stats;
};
#define IEEE80211_MAX_CHAINS 4
/**
* struct station_info - station information
*
* Station information filled by driver for get_station() and dump_station.
*
* @filled: bitflag of flags using the bits of &enum nl80211_sta_info to
* indicate the relevant values in this struct for them
* @connected_time: time(in secs) since a station is last connected
* @inactive_time: time since last station activity (tx/rx) in milliseconds
* @assoc_at: bootime (ns) of the last association
* @rx_bytes: bytes (size of MPDUs) received from this station
* @tx_bytes: bytes (size of MPDUs) transmitted to this station
* @llid: mesh local link id
* @plid: mesh peer link id
* @plink_state: mesh peer link state
* @signal: The signal strength, type depends on the wiphy's signal_type.
* For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
* @signal_avg: Average signal strength, type depends on the wiphy's signal_type.
* For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.
* @chains: bitmask for filled values in @chain_signal, @chain_signal_avg
* @chain_signal: per-chain signal strength of last received packet in dBm
* @chain_signal_avg: per-chain signal strength average in dBm
* @txrate: current unicast bitrate from this station
* @rxrate: current unicast bitrate to this station
* @rx_packets: packets (MSDUs & MMPDUs) received from this station
* @tx_packets: packets (MSDUs & MMPDUs) transmitted to this station
* @tx_retries: cumulative retry counts (MPDUs)
* @tx_failed: number of failed transmissions (MPDUs) (retries exceeded, no ACK)
* @rx_dropped_misc: Dropped for un-specified reason.
* @bss_param: current BSS parameters
* @generation: generation number for nl80211 dumps.
* This number should increase every time the list of stations
* changes, i.e. when a station is added or removed, so that
* userspace can tell whether it got a consistent snapshot.
* @assoc_req_ies: IEs from (Re)Association Request.
* This is used only when in AP mode with drivers that do not use
* user space MLME/SME implementation. The information is provided for
* the cfg80211_new_sta() calls to notify user space of the IEs.
* @assoc_req_ies_len: Length of assoc_req_ies buffer in octets.
* @sta_flags: station flags mask & values
* @beacon_loss_count: Number of times beacon loss event has triggered.
* @t_offset: Time offset of the station relative to this host.
* @local_pm: local mesh STA power save mode
* @peer_pm: peer mesh STA power save mode
* @nonpeer_pm: non-peer mesh STA power save mode
* @expected_throughput: expected throughput in kbps (including 802.11 headers)
* towards this station.
* @rx_beacon: number of beacons received from this peer
* @rx_beacon_signal_avg: signal strength average (in dBm) for beacons received
* from this peer
* @connected_to_gate: true if mesh STA has a path to mesh gate
* @rx_duration: aggregate PPDU duration(usecs) for all the frames from a peer
* @tx_duration: aggregate PPDU duration(usecs) for all the frames to a peer
* @airtime_weight: current airtime scheduling weight
* @pertid: per-TID statistics, see &struct cfg80211_tid_stats, using the last
* (IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
* Note that this doesn't use the @filled bit, but is used if non-NULL.
* @ack_signal: signal strength (in dBm) of the last ACK frame.
* @avg_ack_signal: average rssi value of ack packet for the no of msdu's has
* been sent.
* @rx_mpdu_count: number of MPDUs received from this station
* @fcs_err_count: number of packets (MPDUs) received from this station with
* an FCS error. This counter should be incremented only when TA of the
* received packet with an FCS error matches the peer MAC address.
* @airtime_link_metric: mesh airtime link metric.
* @connected_to_as: true if mesh STA has a path to authentication server
* @mlo_params_valid: Indicates @assoc_link_id and @mld_addr fields are filled
* by driver. Drivers use this only in cfg80211_new_sta() calls when AP
* MLD's MLME/SME is offload to driver. Drivers won't fill this
* information in cfg80211_del_sta_sinfo(), get_station() and
* dump_station() callbacks.
* @assoc_link_id: Indicates MLO link ID of the AP, with which the station
* completed (re)association. This information filled for both MLO
* and non-MLO STA connections when the AP affiliated with an MLD.
* @mld_addr: For MLO STA connection, filled with MLD address of the station.
* For non-MLO STA connection, filled with all zeros.
* @assoc_resp_ies: IEs from (Re)Association Response.
* This is used only when in AP mode with drivers that do not use user
* space MLME/SME implementation. The information is provided only for the
* cfg80211_new_sta() calls to notify user space of the IEs. Drivers won't
* fill this information in cfg80211_del_sta_sinfo(), get_station() and
* dump_station() callbacks. User space needs this information to determine
* the accepted and rejected affiliated links of the connected station.
* @assoc_resp_ies_len: Length of @assoc_resp_ies buffer in octets.
*/
struct station_info {
u64 filled;
u32 connected_time;
u32 inactive_time;
u64 assoc_at;
u64 rx_bytes;
u64 tx_bytes;
u16 llid;
u16 plid;
u8 plink_state;
s8 signal;
s8 signal_avg;
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];
s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
struct rate_info txrate;
struct rate_info rxrate;
u32 rx_packets;
u32 tx_packets;
u32 tx_retries;
u32 tx_failed;
u32 rx_dropped_misc;
struct sta_bss_parameters bss_param;
struct nl80211_sta_flag_update sta_flags;
int generation;
const u8 *assoc_req_ies;
size_t assoc_req_ies_len;
u32 beacon_loss_count;
s64 t_offset;
enum nl80211_mesh_power_mode local_pm;
enum nl80211_mesh_power_mode peer_pm;
enum nl80211_mesh_power_mode nonpeer_pm;
u32 expected_throughput;
u64 tx_duration;
u64 rx_duration;
u64 rx_beacon;
u8 rx_beacon_signal_avg;
u8 connected_to_gate;
struct cfg80211_tid_stats *pertid;
s8 ack_signal;
s8 avg_ack_signal;
u16 airtime_weight;
u32 rx_mpdu_count;
u32 fcs_err_count;
u32 airtime_link_metric;
u8 connected_to_as;
bool mlo_params_valid;
u8 assoc_link_id;
u8 mld_addr[ETH_ALEN] __aligned(2);
const u8 *assoc_resp_ies;
size_t assoc_resp_ies_len;
};
/**
* struct cfg80211_sar_sub_specs - sub specs limit
* @power: power limitation in 0.25dbm
* @freq_range_index: index the power limitation applies to
*/
struct cfg80211_sar_sub_specs {
s32 power;
u32 freq_range_index;
};
/**
* struct cfg80211_sar_specs - sar limit specs
* @type: it's set with power in 0.25dbm or other types
* @num_sub_specs: number of sar sub specs
* @sub_specs: memory to hold the sar sub specs
*/
struct cfg80211_sar_specs {
enum nl80211_sar_type type;
u32 num_sub_specs;
struct cfg80211_sar_sub_specs sub_specs[];
};
/**
* struct cfg80211_sar_freq_ranges - sar frequency ranges
* @start_freq: start range edge frequency
* @end_freq: end range edge frequency
*/
struct cfg80211_sar_freq_ranges {
u32 start_freq;
u32 end_freq;
};
/**
* struct cfg80211_sar_capa - sar limit capability
* @type: it's set via power in 0.25dbm or other types
* @num_freq_ranges: number of frequency ranges
* @freq_ranges: memory to hold the freq ranges.
*
* Note: WLAN driver may append new ranges or split an existing
* range to small ones and then append them.
*/
struct cfg80211_sar_capa {
enum nl80211_sar_type type;
u32 num_freq_ranges;
const struct cfg80211_sar_freq_ranges *freq_ranges;
};
#if IS_ENABLED(CONFIG_CFG80211)
/**
* cfg80211_get_station - retrieve information about a given station
* @dev: the device where the station is supposed to be connected to
* @mac_addr: the mac address of the station of interest
* @sinfo: pointer to the structure to fill with the information
*
* Returns 0 on success and sinfo is filled with the available information
* otherwise returns a negative error code and the content of sinfo has to be
* considered undefined.
*/
int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
struct station_info *sinfo);
#else
static inline int cfg80211_get_station(struct net_device *dev,
const u8 *mac_addr,
struct station_info *sinfo)
{
return -ENOENT;
}
#endif
/**
* enum monitor_flags - monitor flags
*
* Monitor interface configuration flags. Note that these must be the bits
* according to the nl80211 flags.
*
* @MONITOR_FLAG_CHANGED: set if the flags were changed
* @MONITOR_FLAG_FCSFAIL: pass frames with bad FCS
* @MONITOR_FLAG_PLCPFAIL: pass frames with bad PLCP
* @MONITOR_FLAG_CONTROL: pass control frames
* @MONITOR_FLAG_OTHER_BSS: disable BSSID filtering
* @MONITOR_FLAG_COOK_FRAMES: report frames after processing
* @MONITOR_FLAG_ACTIVE: active monitor, ACKs frames on its MAC address
*/
enum monitor_flags {
MONITOR_FLAG_CHANGED = 1<<__NL80211_MNTR_FLAG_INVALID,
MONITOR_FLAG_FCSFAIL = 1<<NL80211_MNTR_FLAG_FCSFAIL,
MONITOR_FLAG_PLCPFAIL = 1<<NL80211_MNTR_FLAG_PLCPFAIL,
MONITOR_FLAG_CONTROL = 1<<NL80211_MNTR_FLAG_CONTROL,
MONITOR_FLAG_OTHER_BSS = 1<<NL80211_MNTR_FLAG_OTHER_BSS,
MONITOR_FLAG_COOK_FRAMES = 1<<NL80211_MNTR_FLAG_COOK_FRAMES,
MONITOR_FLAG_ACTIVE = 1<<NL80211_MNTR_FLAG_ACTIVE,
};
/**
* enum mpath_info_flags - mesh path information flags
*
* Used by the driver to indicate which info in &struct mpath_info it has filled
* in during get_station() or dump_station().
*
* @MPATH_INFO_FRAME_QLEN: @frame_qlen filled
* @MPATH_INFO_SN: @sn filled
* @MPATH_INFO_METRIC: @metric filled
* @MPATH_INFO_EXPTIME: @exptime filled
* @MPATH_INFO_DISCOVERY_TIMEOUT: @discovery_timeout filled
* @MPATH_INFO_DISCOVERY_RETRIES: @discovery_retries filled
* @MPATH_INFO_FLAGS: @flags filled
* @MPATH_INFO_HOP_COUNT: @hop_count filled
* @MPATH_INFO_PATH_CHANGE: @path_change_count filled
*/
enum mpath_info_flags {
MPATH_INFO_FRAME_QLEN = BIT(0),
MPATH_INFO_SN = BIT(1),
MPATH_INFO_METRIC = BIT(2),
MPATH_INFO_EXPTIME = BIT(3),
MPATH_INFO_DISCOVERY_TIMEOUT = BIT(4),
MPATH_INFO_DISCOVERY_RETRIES = BIT(5),
MPATH_INFO_FLAGS = BIT(6),
MPATH_INFO_HOP_COUNT = BIT(7),
MPATH_INFO_PATH_CHANGE = BIT(8),
};
/**
* struct mpath_info - mesh path information
*
* Mesh path information filled by driver for get_mpath() and dump_mpath().
*
* @filled: bitfield of flags from &enum mpath_info_flags
* @frame_qlen: number of queued frames for this destination
* @sn: target sequence number
* @metric: metric (cost) of this mesh path
* @exptime: expiration time for the mesh path from now, in msecs
* @flags: mesh path flags from &enum mesh_path_flags
* @discovery_timeout: total mesh path discovery timeout, in msecs
* @discovery_retries: mesh path discovery retries
* @generation: generation number for nl80211 dumps.
* This number should increase every time the list of mesh paths
* changes, i.e. when a station is added or removed, so that
* userspace can tell whether it got a consistent snapshot.
* @hop_count: hops to destination
* @path_change_count: total number of path changes to destination
*/
struct mpath_info {
u32 filled;
u32 frame_qlen;
u32 sn;
u32 metric;
u32 exptime;
u32 discovery_timeout;
u8 discovery_retries;
u8 flags;
u8 hop_count;
u32 path_change_count;
int generation;
};
/**
* struct bss_parameters - BSS parameters
*
* Used to change BSS parameters (mainly for AP mode).
*
* @link_id: link_id or -1 for non-MLD
* @use_cts_prot: Whether to use CTS protection
* (0 = no, 1 = yes, -1 = do not change)
* @use_short_preamble: Whether the use of short preambles is allowed
* (0 = no, 1 = yes, -1 = do not change)
* @use_short_slot_time: Whether the use of short slot time is allowed
* (0 = no, 1 = yes, -1 = do not change)
* @basic_rates: basic rates in IEEE 802.11 format
* (or NULL for no change)
* @basic_rates_len: number of basic rates
* @ap_isolate: do not forward packets between connected stations
* (0 = no, 1 = yes, -1 = do not change)
* @ht_opmode: HT Operation mode
* (u16 = opmode, -1 = do not change)
* @p2p_ctwindow: P2P CT Window (-1 = no change)
* @p2p_opp_ps: P2P opportunistic PS (-1 = no change)
*/
struct bss_parameters {
int link_id;
int use_cts_prot;
int use_short_preamble;
int use_short_slot_time;
const u8 *basic_rates;
u8 basic_rates_len;
int ap_isolate;
int ht_opmode;
s8 p2p_ctwindow, p2p_opp_ps;
};
/**
* struct mesh_config - 802.11s mesh configuration
*
* These parameters can be changed while the mesh is active.
*
* @dot11MeshRetryTimeout: the initial retry timeout in millisecond units used
* by the Mesh Peering Open message
* @dot11MeshConfirmTimeout: the initial retry timeout in millisecond units
* used by the Mesh Peering Open message
* @dot11MeshHoldingTimeout: the confirm timeout in millisecond units used by
* the mesh peering management to close a mesh peering
* @dot11MeshMaxPeerLinks: the maximum number of peer links allowed on this
* mesh interface
* @dot11MeshMaxRetries: the maximum number of peer link open retries that can
* be sent to establish a new peer link instance in a mesh
* @dot11MeshTTL: the value of TTL field set at a source mesh STA
* @element_ttl: the value of TTL field set at a mesh STA for path selection
* elements
* @auto_open_plinks: whether we should automatically open peer links when we
* detect compatible mesh peers
* @dot11MeshNbrOffsetMaxNeighbor: the maximum number of neighbors to
* synchronize to for 11s default synchronization method
* @dot11MeshHWMPmaxPREQretries: the number of action frames containing a PREQ
* that an originator mesh STA can send to a particular path target
* @path_refresh_time: how frequently to refresh mesh paths in milliseconds
* @min_discovery_timeout: the minimum length of time to wait until giving up on
* a path discovery in milliseconds
* @dot11MeshHWMPactivePathTimeout: the time (in TUs) for which mesh STAs
* receiving a PREQ shall consider the forwarding information from the
* root to be valid. (TU = time unit)
* @dot11MeshHWMPpreqMinInterval: the minimum interval of time (in TUs) during
* which a mesh STA can send only one action frame containing a PREQ
* element
* @dot11MeshHWMPperrMinInterval: the minimum interval of time (in TUs) during
* which a mesh STA can send only one Action frame containing a PERR
* element
* @dot11MeshHWMPnetDiameterTraversalTime: the interval of time (in TUs) that
* it takes for an HWMP information element to propagate across the mesh
* @dot11MeshHWMPRootMode: the configuration of a mesh STA as root mesh STA
* @dot11MeshHWMPRannInterval: the interval of time (in TUs) between root
* announcements are transmitted
* @dot11MeshGateAnnouncementProtocol: whether to advertise that this mesh
* station has access to a broader network beyond the MBSS. (This is
* missnamed in draft 12.0: dot11MeshGateAnnouncementProtocol set to true
* only means that the station will announce others it's a mesh gate, but
* not necessarily using the gate announcement protocol. Still keeping the
* same nomenclature to be in sync with the spec)
* @dot11MeshForwarding: whether the Mesh STA is forwarding or non-forwarding
* entity (default is TRUE - forwarding entity)
* @rssi_threshold: the threshold for average signal strength of candidate
* station to establish a peer link
* @ht_opmode: mesh HT protection mode
*
* @dot11MeshHWMPactivePathToRootTimeout: The time (in TUs) for which mesh STAs
* receiving a proactive PREQ shall consider the forwarding information to
* the root mesh STA to be valid.
*
* @dot11MeshHWMProotInterval: The interval of time (in TUs) between proactive
* PREQs are transmitted.
* @dot11MeshHWMPconfirmationInterval: The minimum interval of time (in TUs)
* during which a mesh STA can send only one Action frame containing
* a PREQ element for root path confirmation.
* @power_mode: The default mesh power save mode which will be the initial
* setting for new peer links.
* @dot11MeshAwakeWindowDuration: The duration in TUs the STA will remain awake
* after transmitting its beacon.
* @plink_timeout: If no tx activity is seen from a STA we've established
* peering with for longer than this time (in seconds), then remove it
* from the STA's list of peers. Default is 30 minutes.
* @dot11MeshConnectedToAuthServer: if set to true then this mesh STA
* will advertise that it is connected to a authentication server
* in the mesh formation field.
* @dot11MeshConnectedToMeshGate: if set to true, advertise that this STA is
* connected to a mesh gate in mesh formation info. If false, the
* value in mesh formation is determined by the presence of root paths
* in the mesh path table
* @dot11MeshNolearn: Try to avoid multi-hop path discovery (e.g. PREQ/PREP
* for HWMP) if the destination is a direct neighbor. Note that this might
* not be the optimal decision as a multi-hop route might be better. So
* if using this setting you will likely also want to disable
* dot11MeshForwarding and use another mesh routing protocol on top.
*/
struct mesh_config {
u16 dot11MeshRetryTimeout;
u16 dot11MeshConfirmTimeout;
u16 dot11MeshHoldingTimeout;
u16 dot11MeshMaxPeerLinks;
u8 dot11MeshMaxRetries;
u8 dot11MeshTTL;
u8 element_ttl;
bool auto_open_plinks;
u32 dot11MeshNbrOffsetMaxNeighbor;
u8 dot11MeshHWMPmaxPREQretries;
u32 path_refresh_time;
u16 min_discovery_timeout;
u32 dot11MeshHWMPactivePathTimeout;
u16 dot11MeshHWMPpreqMinInterval;
u16 dot11MeshHWMPperrMinInterval;
u16 dot11MeshHWMPnetDiameterTraversalTime;
u8 dot11MeshHWMPRootMode;
bool dot11MeshConnectedToMeshGate;
bool dot11MeshConnectedToAuthServer;
u16 dot11MeshHWMPRannInterval;
bool dot11MeshGateAnnouncementProtocol;
bool dot11MeshForwarding;
s32 rssi_threshold;
u16 ht_opmode;
u32 dot11MeshHWMPactivePathToRootTimeout;
u16 dot11MeshHWMProotInterval;
u16 dot11MeshHWMPconfirmationInterval;
enum nl80211_mesh_power_mode power_mode;
u16 dot11MeshAwakeWindowDuration;
u32 plink_timeout;
bool dot11MeshNolearn;
};
/**
* struct mesh_setup - 802.11s mesh setup configuration
* @chandef: defines the channel to use
* @mesh_id: the mesh ID
* @mesh_id_len: length of the mesh ID, at least 1 and at most 32 bytes
* @sync_method: which synchronization method to use
* @path_sel_proto: which path selection protocol to use
* @path_metric: which metric to use
* @auth_id: which authentication method this mesh is using
* @ie: vendor information elements (optional)
* @ie_len: length of vendor information elements
* @is_authenticated: this mesh requires authentication
* @is_secure: this mesh uses security
* @user_mpm: userspace handles all MPM functions
* @dtim_period: DTIM period to use
* @beacon_interval: beacon interval to use
* @mcast_rate: multicast rate for Mesh Node [6Mbps is the default for 802.11a]
* @basic_rates: basic rates to use when creating the mesh
* @beacon_rate: bitrate to be used for beacons
* @userspace_handles_dfs: whether user space controls DFS operation, i.e.
* changes the channel when a radar is detected. This is required
* to operate on DFS channels.
* @control_port_over_nl80211: TRUE if userspace expects to exchange control
* port frames over NL80211 instead of the network interface.
*
* These parameters are fixed when the mesh is created.
*/
struct mesh_setup {
struct cfg80211_chan_def chandef;
const u8 *mesh_id;
u8 mesh_id_len;
u8 sync_method;
u8 path_sel_proto;
u8 path_metric;
u8 auth_id;
const u8 *ie;
u8 ie_len;
bool is_authenticated;
bool is_secure;
bool user_mpm;
u8 dtim_period;
u16 beacon_interval;
int mcast_rate[NUM_NL80211_BANDS];
u32 basic_rates;
struct cfg80211_bitrate_mask beacon_rate;
bool userspace_handles_dfs;
bool control_port_over_nl80211;
};
/**
* struct ocb_setup - 802.11p OCB mode setup configuration
* @chandef: defines the channel to use
*
* These parameters are fixed when connecting to the network
*/
struct ocb_setup {
struct cfg80211_chan_def chandef;
};
/**
* struct ieee80211_txq_params - TX queue parameters
* @ac: AC identifier
* @txop: Maximum burst time in units of 32 usecs, 0 meaning disabled
* @cwmin: Minimum contention window [a value of the form 2^n-1 in the range
* 1..32767]
* @cwmax: Maximum contention window [a value of the form 2^n-1 in the range
* 1..32767]
* @aifs: Arbitration interframe space [0..255]
* @link_id: link_id or -1 for non-MLD
*/
struct ieee80211_txq_params {
enum nl80211_ac ac;
u16 txop;
u16 cwmin;
u16 cwmax;
u8 aifs;
int link_id;
};
/**
* DOC: Scanning and BSS list handling
*
* The scanning process itself is fairly simple, but cfg80211 offers quite
* a bit of helper functionality. To start a scan, the scan operation will
* be invoked with a scan definition. This scan definition contains the
* channels to scan, and the SSIDs to send probe requests for (including the
* wildcard, if desired). A passive scan is indicated by having no SSIDs to
* probe. Additionally, a scan request may contain extra information elements
* that should be added to the probe request. The IEs are guaranteed to be
* well-formed, and will not exceed the maximum length the driver advertised
* in the wiphy structure.
*
* When scanning finds a BSS, cfg80211 needs to be notified of that, because
* it is responsible for maintaining the BSS list; the driver should not
* maintain a list itself. For this notification, various functions exist.
*
* Since drivers do not maintain a BSS list, there are also a number of
* functions to search for a BSS and obtain information about it from the
* BSS structure cfg80211 maintains. The BSS list is also made available
* to userspace.
*/
/**
* struct cfg80211_ssid - SSID description
* @ssid: the SSID
* @ssid_len: length of the ssid
*/
struct cfg80211_ssid {
u8 ssid[IEEE80211_MAX_SSID_LEN];
u8 ssid_len;
};
/**
* struct cfg80211_scan_info - information about completed scan
* @scan_start_tsf: scan start time in terms of the TSF of the BSS that the
* wireless device that requested the scan is connected to. If this
* information is not available, this field is left zero.
* @tsf_bssid: the BSSID according to which %scan_start_tsf is set.
* @aborted: set to true if the scan was aborted for any reason,
* userspace will be notified of that
*/
struct cfg80211_scan_info {
u64 scan_start_tsf;
u8 tsf_bssid[ETH_ALEN] __aligned(2);
bool aborted;
};
/**
* struct cfg80211_scan_6ghz_params - relevant for 6 GHz only
*
* @short_ssid: short ssid to scan for
* @bssid: bssid to scan for
* @channel_idx: idx of the channel in the channel array in the scan request
* which the above info is relevant to
* @unsolicited_probe: the AP transmits unsolicited probe response every 20 TU
* @short_ssid_valid: @short_ssid is valid and can be used
* @psc_no_listen: when set, and the channel is a PSC channel, no need to wait
* 20 TUs before starting to send probe requests.
* @psd_20: The AP's 20 MHz PSD value.
*/
struct cfg80211_scan_6ghz_params {
u32 short_ssid;
u32 channel_idx;
u8 bssid[ETH_ALEN];
bool unsolicited_probe;
bool short_ssid_valid;
bool psc_no_listen;
s8 psd_20;
};
/**
* struct cfg80211_scan_request - scan request description
*
* @ssids: SSIDs to scan for (active scan only)
* @n_ssids: number of SSIDs
* @channels: channels to scan on.
* @n_channels: total number of channels to scan
* @ie: optional information element(s) to add into Probe Request or %NULL
* @ie_len: length of ie in octets
* @duration: how long to listen on each channel, in TUs. If
* %duration_mandatory is not set, this is the maximum dwell time and
* the actual dwell time may be shorter.
* @duration_mandatory: if set, the scan duration must be as specified by the
* %duration field.
* @flags: control flags from &enum nl80211_scan_flags
* @rates: bitmap of rates to advertise for each band
* @wiphy: the wiphy this was for
* @scan_start: time (in jiffies) when the scan started
* @wdev: the wireless device to scan for
* @info: (internal) information about completed scan
* @notified: (internal) scan request was notified as done or aborted
* @no_cck: used to send probe requests at non CCK rate in 2GHz band
* @mac_addr: MAC address used with randomisation
* @mac_addr_mask: MAC address mask used with randomisation, bits that
* are 0 in the mask should be randomised, bits that are 1 should
* be taken from the @mac_addr
* @scan_6ghz: relevant for split scan request only,
* true if this is the second scan request
* @n_6ghz_params: number of 6 GHz params
* @scan_6ghz_params: 6 GHz params
* @bssid: BSSID to scan for (most commonly, the wildcard BSSID)
* @tsf_report_link_id: for MLO, indicates the link ID of the BSS that should be
* used for TSF reporting. Can be set to -1 to indicate no preference.
*/
struct cfg80211_scan_request {
struct cfg80211_ssid *ssids;
int n_ssids;
u32 n_channels;
const u8 *ie;
size_t ie_len;
u16 duration;
bool duration_mandatory;
u32 flags;
u32 rates[NUM_NL80211_BANDS];
struct wireless_dev *wdev;
u8 mac_addr[ETH_ALEN] __aligned(2);
u8 mac_addr_mask[ETH_ALEN] __aligned(2);
u8 bssid[ETH_ALEN] __aligned(2);
/* internal */
struct wiphy *wiphy;
unsigned long scan_start;
struct cfg80211_scan_info info;
bool notified;
bool no_cck;
bool scan_6ghz;
u32 n_6ghz_params;
struct cfg80211_scan_6ghz_params *scan_6ghz_params;
s8 tsf_report_link_id;
/* keep last */
struct ieee80211_channel *channels[] __counted_by(n_channels);
};
static inline void get_random_mask_addr(u8 *buf, const u8 *addr, const u8 *mask)
{
int i;
get_random_bytes(buf, ETH_ALEN);
for (i = 0; i < ETH_ALEN; i++) {
buf[i] &= ~mask[i];
buf[i] |= addr[i] & mask[i];
}
}
/**
* struct cfg80211_match_set - sets of attributes to match
*
* @ssid: SSID to be matched; may be zero-length in case of BSSID match
* or no match (RSSI only)
* @bssid: BSSID to be matched; may be all-zero BSSID in case of SSID match
* or no match (RSSI only)
* @rssi_thold: don't report scan results below this threshold (in s32 dBm)
*/
struct cfg80211_match_set {
struct cfg80211_ssid ssid;
u8 bssid[ETH_ALEN];
s32 rssi_thold;
};
/**
* struct cfg80211_sched_scan_plan - scan plan for scheduled scan
*
* @interval: interval between scheduled scan iterations. In seconds.
* @iterations: number of scan iterations in this scan plan. Zero means
* infinite loop.
* The last scan plan will always have this parameter set to zero,
* all other scan plans will have a finite number of iterations.
*/
struct cfg80211_sched_scan_plan {
u32 interval;
u32 iterations;
};
/**
* struct cfg80211_bss_select_adjust - BSS selection with RSSI adjustment.
*
* @band: band of BSS which should match for RSSI level adjustment.
* @delta: value of RSSI level adjustment.
*/
struct cfg80211_bss_select_adjust {
enum nl80211_band band;
s8 delta;
};
/**
* struct cfg80211_sched_scan_request - scheduled scan request description
*
* @reqid: identifies this request.
* @ssids: SSIDs to scan for (passed in the probe_reqs in active scans)
* @n_ssids: number of SSIDs
* @n_channels: total number of channels to scan
* @ie: optional information element(s) to add into Probe Request or %NULL
* @ie_len: length of ie in octets
* @flags: control flags from &enum nl80211_scan_flags
* @match_sets: sets of parameters to be matched for a scan result
* entry to be considered valid and to be passed to the host
* (others are filtered out).
* If omitted, all results are passed.
* @n_match_sets: number of match sets
* @report_results: indicates that results were reported for this request
* @wiphy: the wiphy this was for
* @dev: the interface
* @scan_start: start time of the scheduled scan
* @channels: channels to scan
* @min_rssi_thold: for drivers only supporting a single threshold, this
* contains the minimum over all matchsets
* @mac_addr: MAC address used with randomisation
* @mac_addr_mask: MAC address mask used with randomisation, bits that
* are 0 in the mask should be randomised, bits that are 1 should
* be taken from the @mac_addr
* @scan_plans: scan plans to be executed in this scheduled scan. Lowest
* index must be executed first.
* @n_scan_plans: number of scan plans, at least 1.
* @rcu_head: RCU callback used to free the struct
* @owner_nlportid: netlink portid of owner (if this should is a request
* owned by a particular socket)
* @nl_owner_dead: netlink owner socket was closed - this request be freed
* @list: for keeping list of requests.
* @delay: delay in seconds to use before starting the first scan
* cycle. The driver may ignore this parameter and start
* immediately (or at any other time), if this feature is not
* supported.
* @relative_rssi_set: Indicates whether @relative_rssi is set or not.
* @relative_rssi: Relative RSSI threshold in dB to restrict scan result
* reporting in connected state to cases where a matching BSS is determined
* to have better or slightly worse RSSI than the current connected BSS.
* The relative RSSI threshold values are ignored in disconnected state.
* @rssi_adjust: delta dB of RSSI preference to be given to the BSSs that belong
* to the specified band while deciding whether a better BSS is reported
* using @relative_rssi. If delta is a negative number, the BSSs that
* belong to the specified band will be penalized by delta dB in relative
* comparisons.
*/
struct cfg80211_sched_scan_request {
u64 reqid;
struct cfg80211_ssid *ssids;
int n_ssids;
u32 n_channels;
const u8 *ie;
size_t ie_len;
u32 flags;
struct cfg80211_match_set *match_sets;
int n_match_sets;
s32 min_rssi_thold;
u32 delay;
struct cfg80211_sched_scan_plan *scan_plans;
int n_scan_plans;
u8 mac_addr[ETH_ALEN] __aligned(2);
u8 mac_addr_mask[ETH_ALEN] __aligned(2);
bool relative_rssi_set;
s8 relative_rssi;
struct cfg80211_bss_select_adjust rssi_adjust;
/* internal */
struct wiphy *wiphy;
struct net_device *dev;
unsigned long scan_start;
bool report_results;
struct rcu_head rcu_head;
u32 owner_nlportid;
bool nl_owner_dead;
struct list_head list;
/* keep last */
struct ieee80211_channel *channels[];
};
/**
* enum cfg80211_signal_type - signal type
*
* @CFG80211_SIGNAL_TYPE_NONE: no signal strength information available
* @CFG80211_SIGNAL_TYPE_MBM: signal strength in mBm (100*dBm)
* @CFG80211_SIGNAL_TYPE_UNSPEC: signal strength, increasing from 0 through 100
*/
enum cfg80211_signal_type {
CFG80211_SIGNAL_TYPE_NONE,
CFG80211_SIGNAL_TYPE_MBM,
CFG80211_SIGNAL_TYPE_UNSPEC,
};
/**
* struct cfg80211_inform_bss - BSS inform data
* @chan: channel the frame was received on
* @signal: signal strength value, according to the wiphy's
* signal type
* @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was
* received; should match the time when the frame was actually
* received by the device (not just by the host, in case it was
* buffered on the device) and be accurate to about 10ms.
* If the frame isn't buffered, just passing the return value of
* ktime_get_boottime_ns() is likely appropriate.
* @parent_tsf: the time at the start of reception of the first octet of the
* timestamp field of the frame. The time is the TSF of the BSS specified
* by %parent_bssid.
* @parent_bssid: the BSS according to which %parent_tsf is set. This is set to
* the BSS that requested the scan in which the beacon/probe was received.
* @chains: bitmask for filled values in @chain_signal.
* @chain_signal: per-chain signal strength of last received BSS in dBm.
* @restrict_use: restrict usage, if not set, assume @use_for is
* %NL80211_BSS_USE_FOR_NORMAL.
* @use_for: bitmap of possible usage for this BSS, see
* &enum nl80211_bss_use_for
* @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
* if @restrict_use is set and @use_for is zero (empty); may be 0 for
* unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
* @drv_data: Data to be passed through to @inform_bss
*/
struct cfg80211_inform_bss {
struct ieee80211_channel *chan;
s32 signal;
u64 boottime_ns;
u64 parent_tsf;
u8 parent_bssid[ETH_ALEN] __aligned(2);
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];
u8 restrict_use:1, use_for:7;
u8 cannot_use_reasons;
void *drv_data;
};
/**
* struct cfg80211_bss_ies - BSS entry IE data
* @tsf: TSF contained in the frame that carried these IEs
* @rcu_head: internal use, for freeing
* @len: length of the IEs
* @from_beacon: these IEs are known to come from a beacon
* @data: IE data
*/
struct cfg80211_bss_ies {
u64 tsf;
struct rcu_head rcu_head;
int len;
bool from_beacon;
u8 data[];
};
/**
* struct cfg80211_bss - BSS description
*
* This structure describes a BSS (which may also be a mesh network)
* for use in scan results and similar.
*
* @channel: channel this BSS is on
* @bssid: BSSID of the BSS
* @beacon_interval: the beacon interval as from the frame
* @capability: the capability field in host byte order
* @ies: the information elements (Note that there is no guarantee that these
* are well-formed!); this is a pointer to either the beacon_ies or
* proberesp_ies depending on whether Probe Response frame has been
* received. It is always non-%NULL.
* @beacon_ies: the information elements from the last Beacon frame
* (implementation note: if @hidden_beacon_bss is set this struct doesn't
* own the beacon_ies, but they're just pointers to the ones from the
* @hidden_beacon_bss struct)
* @proberesp_ies: the information elements from the last Probe Response frame
* @proberesp_ecsa_stuck: ECSA element is stuck in the Probe Response frame,
* cannot rely on it having valid data
* @hidden_beacon_bss: in case this BSS struct represents a probe response from
* a BSS that hides the SSID in its beacon, this points to the BSS struct
* that holds the beacon data. @beacon_ies is still valid, of course, and
* points to the same data as hidden_beacon_bss->beacon_ies in that case.
* @transmitted_bss: pointer to the transmitted BSS, if this is a
* non-transmitted one (multi-BSSID support)
* @nontrans_list: list of non-transmitted BSS, if this is a transmitted one
* (multi-BSSID support)
* @signal: signal strength value (type depends on the wiphy's signal_type)
* @chains: bitmask for filled values in @chain_signal.
* @chain_signal: per-chain signal strength of last received BSS in dBm.
* @bssid_index: index in the multiple BSS set
* @max_bssid_indicator: max number of members in the BSS set
* @use_for: bitmap of possible usage for this BSS, see
* &enum nl80211_bss_use_for
* @cannot_use_reasons: the reasons (bitmap) for not being able to connect,
* if @restrict_use is set and @use_for is zero (empty); may be 0 for
* unspecified reasons; see &enum nl80211_bss_cannot_use_reasons
* @priv: private area for driver use, has at least wiphy->bss_priv_size bytes
*/
struct cfg80211_bss {
struct ieee80211_channel *channel;
const struct cfg80211_bss_ies __rcu *ies;
const struct cfg80211_bss_ies __rcu *beacon_ies;
const struct cfg80211_bss_ies __rcu *proberesp_ies;
struct cfg80211_bss *hidden_beacon_bss;
struct cfg80211_bss *transmitted_bss;
struct list_head nontrans_list;
s32 signal;
u16 beacon_interval;
u16 capability;
u8 bssid[ETH_ALEN];
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];
u8 proberesp_ecsa_stuck:1;
u8 bssid_index;
u8 max_bssid_indicator;
u8 use_for;
u8 cannot_use_reasons;
u8 priv[] __aligned(sizeof(void *));
};
/**
* ieee80211_bss_get_elem - find element with given ID
* @bss: the bss to search
* @id: the element ID
*
* Note that the return value is an RCU-protected pointer, so
* rcu_read_lock() must be held when calling this function.
* Return: %NULL if not found.
*/
const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id);
/**
* ieee80211_bss_get_ie - find IE with given ID
* @bss: the bss to search
* @id: the element ID
*
* Note that the return value is an RCU-protected pointer, so
* rcu_read_lock() must be held when calling this function.
* Return: %NULL if not found.
*/
static inline const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 id)
{
return (const void *)ieee80211_bss_get_elem(bss, id);
}
/**
* struct cfg80211_auth_request - Authentication request data
*
* This structure provides information needed to complete IEEE 802.11
* authentication.
*
* @bss: The BSS to authenticate with, the callee must obtain a reference
* to it if it needs to keep it.
* @auth_type: Authentication type (algorithm)
* @ie: Extra IEs to add to Authentication frame or %NULL
* @ie_len: Length of ie buffer in octets
* @key_len: length of WEP key for shared key authentication
* @key_idx: index of WEP key for shared key authentication
* @key: WEP key for shared key authentication
* @auth_data: Fields and elements in Authentication frames. This contains
* the authentication frame body (non-IE and IE data), excluding the
* Authentication algorithm number, i.e., starting at the Authentication
* transaction sequence number field.
* @auth_data_len: Length of auth_data buffer in octets
* @link_id: if >= 0, indicates authentication should be done as an MLD,
* the interface address is included as the MLD address and the
* necessary link (with the given link_id) will be created (and
* given an MLD address) by the driver
* @ap_mld_addr: AP MLD address in case of authentication request with
* an AP MLD, valid iff @link_id >= 0
*/
struct cfg80211_auth_request {
struct cfg80211_bss *bss;
const u8 *ie;
size_t ie_len;
enum nl80211_auth_type auth_type;
const u8 *key;
u8 key_len;
s8 key_idx;
const u8 *auth_data;
size_t auth_data_len;
s8 link_id;
const u8 *ap_mld_addr;
};
/**
* struct cfg80211_assoc_link - per-link information for MLO association
* @bss: the BSS pointer, see also &struct cfg80211_assoc_request::bss;
* if this is %NULL for a link, that link is not requested
* @elems: extra elements for the per-STA profile for this link
* @elems_len: length of the elements
* @disabled: If set this link should be included during association etc. but it
* should not be used until enabled by the AP MLD.
* @error: per-link error code, must be <= 0. If there is an error, then the
* operation as a whole must fail.
*/
struct cfg80211_assoc_link {
struct cfg80211_bss *bss;
const u8 *elems;
size_t elems_len;
bool disabled;
int error;
};
/**
* enum cfg80211_assoc_req_flags - Over-ride default behaviour in association.
*
* @ASSOC_REQ_DISABLE_HT: Disable HT (802.11n)
* @ASSOC_REQ_DISABLE_VHT: Disable VHT
* @ASSOC_REQ_USE_RRM: Declare RRM capability in this association
* @CONNECT_REQ_EXTERNAL_AUTH_SUPPORT: User space indicates external
* authentication capability. Drivers can offload authentication to
* userspace if this flag is set. Only applicable for cfg80211_connect()
* request (connect callback).
* @ASSOC_REQ_DISABLE_HE: Disable HE
* @ASSOC_REQ_DISABLE_EHT: Disable EHT
* @CONNECT_REQ_MLO_SUPPORT: Userspace indicates support for handling MLD links.
* Drivers shall disable MLO features for the current association if this
* flag is not set.
* @ASSOC_REQ_SPP_AMSDU: SPP A-MSDUs will be used on this connection (if any)
*/
enum cfg80211_assoc_req_flags {
ASSOC_REQ_DISABLE_HT = BIT(0),
ASSOC_REQ_DISABLE_VHT = BIT(1),
ASSOC_REQ_USE_RRM = BIT(2),
CONNECT_REQ_EXTERNAL_AUTH_SUPPORT = BIT(3),
ASSOC_REQ_DISABLE_HE = BIT(4),
ASSOC_REQ_DISABLE_EHT = BIT(5),
CONNECT_REQ_MLO_SUPPORT = BIT(6),
ASSOC_REQ_SPP_AMSDU = BIT(7),
};
/**
* struct cfg80211_assoc_request - (Re)Association request data
*
* This structure provides information needed to complete IEEE 802.11
* (re)association.
* @bss: The BSS to associate with. If the call is successful the driver is
* given a reference that it must give back to cfg80211_send_rx_assoc()
* or to cfg80211_assoc_timeout(). To ensure proper refcounting, new
* association requests while already associating must be rejected.
* This also applies to the @links.bss parameter, which is used instead
* of this one (it is %NULL) for MLO associations.
* @ie: Extra IEs to add to (Re)Association Request frame or %NULL
* @ie_len: Length of ie buffer in octets
* @use_mfp: Use management frame protection (IEEE 802.11w) in this association
* @crypto: crypto settings
* @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
* to indicate a request to reassociate within the ESS instead of a request
* do the initial association with the ESS. When included, this is set to
* the BSSID of the current association, i.e., to the value that is
* included in the Current AP address field of the Reassociation Request
* frame.
* @flags: See &enum cfg80211_assoc_req_flags
* @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
* will be used in ht_capa. Un-supported values will be ignored.
* @ht_capa_mask: The bits of ht_capa which are to be used.
* @vht_capa: VHT capability override
* @vht_capa_mask: VHT capability mask indicating which fields to use
* @fils_kek: FILS KEK for protecting (Re)Association Request/Response frame or
* %NULL if FILS is not used.
* @fils_kek_len: Length of fils_kek in octets
* @fils_nonces: FILS nonces (part of AAD) for protecting (Re)Association
* Request/Response frame or %NULL if FILS is not used. This field starts
* with 16 octets of STA Nonce followed by 16 octets of AP Nonce.
* @s1g_capa: S1G capability override
* @s1g_capa_mask: S1G capability override mask
* @links: per-link information for MLO connections
* @link_id: >= 0 for MLO connections, where links are given, and indicates
* the link on which the association request should be sent
* @ap_mld_addr: AP MLD address in case of MLO association request,
* valid iff @link_id >= 0
*/
struct cfg80211_assoc_request {
struct cfg80211_bss *bss;
const u8 *ie, *prev_bssid;
size_t ie_len;
struct cfg80211_crypto_settings crypto;
bool use_mfp;
u32 flags;
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;
struct ieee80211_vht_cap vht_capa, vht_capa_mask;
const u8 *fils_kek;
size_t fils_kek_len;
const u8 *fils_nonces;
struct ieee80211_s1g_cap s1g_capa, s1g_capa_mask;
struct cfg80211_assoc_link links[IEEE80211_MLD_MAX_NUM_LINKS];
const u8 *ap_mld_addr;
s8 link_id;
};
/**
* struct cfg80211_deauth_request - Deauthentication request data
*
* This structure provides information needed to complete IEEE 802.11
* deauthentication.
*
* @bssid: the BSSID or AP MLD address to deauthenticate from
* @ie: Extra IEs to add to Deauthentication frame or %NULL
* @ie_len: Length of ie buffer in octets
* @reason_code: The reason code for the deauthentication
* @local_state_change: if set, change local state only and
* do not set a deauth frame
*/
struct cfg80211_deauth_request {
const u8 *bssid;
const u8 *ie;
size_t ie_len;
u16 reason_code;
bool local_state_change;
};
/**
* struct cfg80211_disassoc_request - Disassociation request data
*
* This structure provides information needed to complete IEEE 802.11
* disassociation.
*
* @ap_addr: the BSSID or AP MLD address to disassociate from
* @ie: Extra IEs to add to Disassociation frame or %NULL
* @ie_len: Length of ie buffer in octets
* @reason_code: The reason code for the disassociation
* @local_state_change: This is a request for a local state only, i.e., no
* Disassociation frame is to be transmitted.
*/
struct cfg80211_disassoc_request {
const u8 *ap_addr;
const u8 *ie;
size_t ie_len;
u16 reason_code;
bool local_state_change;
};
/**
* struct cfg80211_ibss_params - IBSS parameters
*
* This structure defines the IBSS parameters for the join_ibss()
* method.
*
* @ssid: The SSID, will always be non-null.
* @ssid_len: The length of the SSID, will always be non-zero.
* @bssid: Fixed BSSID requested, maybe be %NULL, if set do not
* search for IBSSs with a different BSSID.
* @chandef: defines the channel to use if no other IBSS to join can be found
* @channel_fixed: The channel should be fixed -- do not search for
* IBSSs to join on other channels.
* @ie: information element(s) to include in the beacon
* @ie_len: length of that
* @beacon_interval: beacon interval to use
* @privacy: this is a protected network, keys will be configured
* after joining
* @control_port: whether user space controls IEEE 802.1X port, i.e.,
* sets/clears %NL80211_STA_FLAG_AUTHORIZED. If true, the driver is
* required to assume that the port is unauthorized until authorized by
* user space. Otherwise, port is marked authorized by default.
* @control_port_over_nl80211: TRUE if userspace expects to exchange control
* port frames over NL80211 instead of the network interface.
* @userspace_handles_dfs: whether user space controls DFS operation, i.e.
* changes the channel when a radar is detected. This is required
* to operate on DFS channels.
* @basic_rates: bitmap of basic rates to use when creating the IBSS
* @mcast_rate: per-band multicast rate index + 1 (0: disabled)
* @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
* will be used in ht_capa. Un-supported values will be ignored.
* @ht_capa_mask: The bits of ht_capa which are to be used.
* @wep_keys: static WEP keys, if not NULL points to an array of
* CFG80211_MAX_WEP_KEYS WEP keys
* @wep_tx_key: key index (0..3) of the default TX static WEP key
*/
struct cfg80211_ibss_params {
const u8 *ssid;
const u8 *bssid;
struct cfg80211_chan_def chandef;
const u8 *ie;
u8 ssid_len, ie_len;
u16 beacon_interval;
u32 basic_rates;
bool channel_fixed;
bool privacy;
bool control_port;
bool control_port_over_nl80211;
bool userspace_handles_dfs;
int mcast_rate[NUM_NL80211_BANDS];
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;
struct key_params *wep_keys;
int wep_tx_key;
};
/**
* struct cfg80211_bss_selection - connection parameters for BSS selection.
*
* @behaviour: requested BSS selection behaviour.
* @param: parameters for requestion behaviour.
* @param.band_pref: preferred band for %NL80211_BSS_SELECT_ATTR_BAND_PREF.
* @param.adjust: parameters for %NL80211_BSS_SELECT_ATTR_RSSI_ADJUST.
*/
struct cfg80211_bss_selection {
enum nl80211_bss_select_attr behaviour;
union {
enum nl80211_band band_pref;
struct cfg80211_bss_select_adjust adjust;
} param;
};
/**
* struct cfg80211_connect_params - Connection parameters
*
* This structure provides information needed to complete IEEE 802.11
* authentication and association.
*
* @channel: The channel to use or %NULL if not specified (auto-select based
* on scan results)
* @channel_hint: The channel of the recommended BSS for initial connection or
* %NULL if not specified
* @bssid: The AP BSSID or %NULL if not specified (auto-select based on scan
* results)
* @bssid_hint: The recommended AP BSSID for initial connection to the BSS or
* %NULL if not specified. Unlike the @bssid parameter, the driver is
* allowed to ignore this @bssid_hint if it has knowledge of a better BSS
* to use.
* @ssid: SSID
* @ssid_len: Length of ssid in octets
* @auth_type: Authentication type (algorithm)
* @ie: IEs for association request
* @ie_len: Length of assoc_ie in octets
* @privacy: indicates whether privacy-enabled APs should be used
* @mfp: indicate whether management frame protection is used
* @crypto: crypto settings
* @key_len: length of WEP key for shared key authentication
* @key_idx: index of WEP key for shared key authentication
* @key: WEP key for shared key authentication
* @flags: See &enum cfg80211_assoc_req_flags
* @bg_scan_period: Background scan period in seconds
* or -1 to indicate that default value is to be used.
* @ht_capa: HT Capabilities over-rides. Values set in ht_capa_mask
* will be used in ht_capa. Un-supported values will be ignored.
* @ht_capa_mask: The bits of ht_capa which are to be used.
* @vht_capa: VHT Capability overrides
* @vht_capa_mask: The bits of vht_capa which are to be used.
* @pbss: if set, connect to a PCP instead of AP. Valid for DMG
* networks.
* @bss_select: criteria to be used for BSS selection.
* @prev_bssid: previous BSSID, if not %NULL use reassociate frame. This is used
* to indicate a request to reassociate within the ESS instead of a request
* do the initial association with the ESS. When included, this is set to
* the BSSID of the current association, i.e., to the value that is
* included in the Current AP address field of the Reassociation Request
* frame.
* @fils_erp_username: EAP re-authentication protocol (ERP) username part of the
* NAI or %NULL if not specified. This is used to construct FILS wrapped
* data IE.
* @fils_erp_username_len: Length of @fils_erp_username in octets.
* @fils_erp_realm: EAP re-authentication protocol (ERP) realm part of NAI or
* %NULL if not specified. This specifies the domain name of ER server and
* is used to construct FILS wrapped data IE.
* @fils_erp_realm_len: Length of @fils_erp_realm in octets.
* @fils_erp_next_seq_num: The next sequence number to use in the FILS ERP
* messages. This is also used to construct FILS wrapped data IE.
* @fils_erp_rrk: ERP re-authentication Root Key (rRK) used to derive additional
* keys in FILS or %NULL if not specified.
* @fils_erp_rrk_len: Length of @fils_erp_rrk in octets.
* @want_1x: indicates user-space supports and wants to use 802.1X driver
* offload of 4-way handshake.
* @edmg: define the EDMG channels.
* This may specify multiple channels and bonding options for the driver
* to choose from, based on BSS configuration.
*/
struct cfg80211_connect_params {
struct ieee80211_channel *channel;
struct ieee80211_channel *channel_hint;
const u8 *bssid;
const u8 *bssid_hint;
const u8 *ssid;
size_t ssid_len;
enum nl80211_auth_type auth_type;
const u8 *ie;
size_t ie_len;
bool privacy;
enum nl80211_mfp mfp;
struct cfg80211_crypto_settings crypto;
const u8 *key;
u8 key_len, key_idx;
u32 flags;
int bg_scan_period;
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;
struct ieee80211_vht_cap vht_capa;
struct ieee80211_vht_cap vht_capa_mask;
bool pbss;
struct cfg80211_bss_selection bss_select;
const u8 *prev_bssid;
const u8 *fils_erp_username;
size_t fils_erp_username_len;
const u8 *fils_erp_realm;
size_t fils_erp_realm_len;
u16 fils_erp_next_seq_num;
const u8 *fils_erp_rrk;
size_t fils_erp_rrk_len;
bool want_1x;
struct ieee80211_edmg edmg;
};
/**
* enum cfg80211_connect_params_changed - Connection parameters being updated
*
* This enum provides information of all connect parameters that
* have to be updated as part of update_connect_params() call.
*
* @UPDATE_ASSOC_IES: Indicates whether association request IEs are updated
* @UPDATE_FILS_ERP_INFO: Indicates that FILS connection parameters (realm,
* username, erp sequence number and rrk) are updated
* @UPDATE_AUTH_TYPE: Indicates that authentication type is updated
*/
enum cfg80211_connect_params_changed {
UPDATE_ASSOC_IES = BIT(0),
UPDATE_FILS_ERP_INFO = BIT(1),
UPDATE_AUTH_TYPE = BIT(2),
};
/**
* enum wiphy_params_flags - set_wiphy_params bitfield values
* @WIPHY_PARAM_RETRY_SHORT: wiphy->retry_short has changed
* @WIPHY_PARAM_RETRY_LONG: wiphy->retry_long has changed
* @WIPHY_PARAM_FRAG_THRESHOLD: wiphy->frag_threshold has changed
* @WIPHY_PARAM_RTS_THRESHOLD: wiphy->rts_threshold has changed
* @WIPHY_PARAM_COVERAGE_CLASS: coverage class changed
* @WIPHY_PARAM_DYN_ACK: dynack has been enabled
* @WIPHY_PARAM_TXQ_LIMIT: TXQ packet limit has been changed
* @WIPHY_PARAM_TXQ_MEMORY_LIMIT: TXQ memory limit has been changed
* @WIPHY_PARAM_TXQ_QUANTUM: TXQ scheduler quantum
*/
enum wiphy_params_flags {
WIPHY_PARAM_RETRY_SHORT = 1 << 0,
WIPHY_PARAM_RETRY_LONG = 1 << 1,
WIPHY_PARAM_FRAG_THRESHOLD = 1 << 2,
WIPHY_PARAM_RTS_THRESHOLD = 1 << 3,
WIPHY_PARAM_COVERAGE_CLASS = 1 << 4,
WIPHY_PARAM_DYN_ACK = 1 << 5,
WIPHY_PARAM_TXQ_LIMIT = 1 << 6,
WIPHY_PARAM_TXQ_MEMORY_LIMIT = 1 << 7,
WIPHY_PARAM_TXQ_QUANTUM = 1 << 8,
};
#define IEEE80211_DEFAULT_AIRTIME_WEIGHT 256
/* The per TXQ device queue limit in airtime */
#define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_L 5000
#define IEEE80211_DEFAULT_AQL_TXQ_LIMIT_H 12000
/* The per interface airtime threshold to switch to lower queue limit */
#define IEEE80211_AQL_THRESHOLD 24000
/**
* struct cfg80211_pmksa - PMK Security Association
*
* This structure is passed to the set/del_pmksa() method for PMKSA
* caching.
*
* @bssid: The AP's BSSID (may be %NULL).
* @pmkid: The identifier to refer a PMKSA.
* @pmk: The PMK for the PMKSA identified by @pmkid. This is used for key
* derivation by a FILS STA. Otherwise, %NULL.
* @pmk_len: Length of the @pmk. The length of @pmk can differ depending on
* the hash algorithm used to generate this.
* @ssid: SSID to specify the ESS within which a PMKSA is valid when using FILS
* cache identifier (may be %NULL).
* @ssid_len: Length of the @ssid in octets.
* @cache_id: 2-octet cache identifier advertized by a FILS AP identifying the
* scope of PMKSA. This is valid only if @ssid_len is non-zero (may be
* %NULL).
* @pmk_lifetime: Maximum lifetime for PMKSA in seconds
* (dot11RSNAConfigPMKLifetime) or 0 if not specified.
* The configured PMKSA must not be used for PMKSA caching after
* expiration and any keys derived from this PMK become invalid on
* expiration, i.e., the current association must be dropped if the PMK
* used for it expires.
* @pmk_reauth_threshold: Threshold time for reauthentication (percentage of
* PMK lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
* Drivers are expected to trigger a full authentication instead of using
* this PMKSA for caching when reassociating to a new BSS after this
* threshold to generate a new PMK before the current one expires.
*/
struct cfg80211_pmksa {
const u8 *bssid;
const u8 *pmkid;
const u8 *pmk;
size_t pmk_len;
const u8 *ssid;
size_t ssid_len;
const u8 *cache_id;
u32 pmk_lifetime;
u8 pmk_reauth_threshold;
};
/**
* struct cfg80211_pkt_pattern - packet pattern
* @mask: bitmask where to match pattern and where to ignore bytes,
* one bit per byte, in same format as nl80211
* @pattern: bytes to match where bitmask is 1
* @pattern_len: length of pattern (in bytes)
* @pkt_offset: packet offset (in bytes)
*
* Internal note: @mask and @pattern are allocated in one chunk of
* memory, free @mask only!
*/
struct cfg80211_pkt_pattern {
const u8 *mask, *pattern;
int pattern_len;
int pkt_offset;
};
/**
* struct cfg80211_wowlan_tcp - TCP connection parameters
*
* @sock: (internal) socket for source port allocation
* @src: source IP address
* @dst: destination IP address
* @dst_mac: destination MAC address
* @src_port: source port
* @dst_port: destination port
* @payload_len: data payload length
* @payload: data payload buffer
* @payload_seq: payload sequence stamping configuration
* @data_interval: interval at which to send data packets
* @wake_len: wakeup payload match length
* @wake_data: wakeup payload match data
* @wake_mask: wakeup payload match mask
* @tokens_size: length of the tokens buffer
* @payload_tok: payload token usage configuration
*/
struct cfg80211_wowlan_tcp {
struct socket *sock;
__be32 src, dst;
u16 src_port, dst_port;
u8 dst_mac[ETH_ALEN];
int payload_len;
const u8 *payload;
struct nl80211_wowlan_tcp_data_seq payload_seq;
u32 data_interval;
u32 wake_len;
const u8 *wake_data, *wake_mask;
u32 tokens_size;
/* must be last, variable member */
struct nl80211_wowlan_tcp_data_token payload_tok;
};
/**
* struct cfg80211_wowlan - Wake on Wireless-LAN support info
*
* This structure defines the enabled WoWLAN triggers for the device.
* @any: wake up on any activity -- special trigger if device continues
* operating as normal during suspend
* @disconnect: wake up if getting disconnected
* @magic_pkt: wake up on receiving magic packet
* @patterns: wake up on receiving packet matching a pattern
* @n_patterns: number of patterns
* @gtk_rekey_failure: wake up on GTK rekey failure
* @eap_identity_req: wake up on EAP identity request packet
* @four_way_handshake: wake up on 4-way handshake
* @rfkill_release: wake up when rfkill is released
* @tcp: TCP connection establishment/wakeup parameters, see nl80211.h.
* NULL if not configured.
* @nd_config: configuration for the scan to be used for net detect wake.
*/
struct cfg80211_wowlan {
bool any, disconnect, magic_pkt, gtk_rekey_failure,
eap_identity_req, four_way_handshake,
rfkill_release;
struct cfg80211_pkt_pattern *patterns;
struct cfg80211_wowlan_tcp *tcp;
int n_patterns;
struct cfg80211_sched_scan_request *nd_config;
};
/**
* struct cfg80211_coalesce_rules - Coalesce rule parameters
*
* This structure defines coalesce rule for the device.
* @delay: maximum coalescing delay in msecs.
* @condition: condition for packet coalescence.
* see &enum nl80211_coalesce_condition.
* @patterns: array of packet patterns
* @n_patterns: number of patterns
*/
struct cfg80211_coalesce_rules {
int delay;
enum nl80211_coalesce_condition condition;
struct cfg80211_pkt_pattern *patterns;
int n_patterns;
};
/**
* struct cfg80211_coalesce - Packet coalescing settings
*
* This structure defines coalescing settings.
* @rules: array of coalesce rules
* @n_rules: number of rules
*/
struct cfg80211_coalesce {
struct cfg80211_coalesce_rules *rules;
int n_rules;
};
/**
* struct cfg80211_wowlan_nd_match - information about the match
*
* @ssid: SSID of the match that triggered the wake up
* @n_channels: Number of channels where the match occurred. This
* value may be zero if the driver can't report the channels.
* @channels: center frequencies of the channels where a match
* occurred (in MHz)
*/
struct cfg80211_wowlan_nd_match {
struct cfg80211_ssid ssid;
int n_channels;
u32 channels[];
};
/**
* struct cfg80211_wowlan_nd_info - net detect wake up information
*
* @n_matches: Number of match information instances provided in
* @matches. This value may be zero if the driver can't provide
* match information.
* @matches: Array of pointers to matches containing information about
* the matches that triggered the wake up.
*/
struct cfg80211_wowlan_nd_info {
int n_matches;
struct cfg80211_wowlan_nd_match *matches[];
};
/**
* struct cfg80211_wowlan_wakeup - wakeup report
* @disconnect: woke up by getting disconnected
* @magic_pkt: woke up by receiving magic packet
* @gtk_rekey_failure: woke up by GTK rekey failure
* @eap_identity_req: woke up by EAP identity request packet
* @four_way_handshake: woke up by 4-way handshake
* @rfkill_release: woke up by rfkill being released
* @pattern_idx: pattern that caused wakeup, -1 if not due to pattern
* @packet_present_len: copied wakeup packet data
* @packet_len: original wakeup packet length
* @packet: The packet causing the wakeup, if any.
* @packet_80211: For pattern match, magic packet and other data
* frame triggers an 802.3 frame should be reported, for
* disconnect due to deauth 802.11 frame. This indicates which
* it is.
* @tcp_match: TCP wakeup packet received
* @tcp_connlost: TCP connection lost or failed to establish
* @tcp_nomoretokens: TCP data ran out of tokens
* @net_detect: if not %NULL, woke up because of net detect
* @unprot_deauth_disassoc: woke up due to unprotected deauth or
* disassoc frame (in MFP).
*/
struct cfg80211_wowlan_wakeup {
bool disconnect, magic_pkt, gtk_rekey_failure,
eap_identity_req, four_way_handshake,
rfkill_release, packet_80211,
tcp_match, tcp_connlost, tcp_nomoretokens,
unprot_deauth_disassoc;
s32 pattern_idx;
u32 packet_present_len, packet_len;
const void *packet;
struct cfg80211_wowlan_nd_info *net_detect;
};
/**
* struct cfg80211_gtk_rekey_data - rekey data
* @kek: key encryption key (@kek_len bytes)
* @kck: key confirmation key (@kck_len bytes)
* @replay_ctr: replay counter (NL80211_REPLAY_CTR_LEN bytes)
* @kek_len: length of kek
* @kck_len: length of kck
* @akm: akm (oui, id)
*/
struct cfg80211_gtk_rekey_data {
const u8 *kek, *kck, *replay_ctr;
u32 akm;
u8 kek_len, kck_len;
};
/**
* struct cfg80211_update_ft_ies_params - FT IE Information
*
* This structure provides information needed to update the fast transition IE
*
* @md: The Mobility Domain ID, 2 Octet value
* @ie: Fast Transition IEs
* @ie_len: Length of ft_ie in octets
*/
struct cfg80211_update_ft_ies_params {
u16 md;
const u8 *ie;
size_t ie_len;
};
/**
* struct cfg80211_mgmt_tx_params - mgmt tx parameters
*
* This structure provides information needed to transmit a mgmt frame
*
* @chan: channel to use
* @offchan: indicates whether off channel operation is required
* @wait: duration for ROC
* @buf: buffer to transmit
* @len: buffer length
* @no_cck: don't use cck rates for this frame
* @dont_wait_for_ack: tells the low level not to wait for an ack
* @n_csa_offsets: length of csa_offsets array
* @csa_offsets: array of all the csa offsets in the frame
* @link_id: for MLO, the link ID to transmit on, -1 if not given; note
* that the link ID isn't validated (much), it's in range but the
* link might not exist (or be used by the receiver STA)
*/
struct cfg80211_mgmt_tx_params {
struct ieee80211_channel *chan;
bool offchan;
unsigned int wait;
const u8 *buf;
size_t len;
bool no_cck;
bool dont_wait_for_ack;
int n_csa_offsets;
const u16 *csa_offsets;
int link_id;
};
/**
* struct cfg80211_dscp_exception - DSCP exception
*
* @dscp: DSCP value that does not adhere to the user priority range definition
* @up: user priority value to which the corresponding DSCP value belongs
*/
struct cfg80211_dscp_exception {
u8 dscp;
u8 up;
};
/**
* struct cfg80211_dscp_range - DSCP range definition for user priority
*
* @low: lowest DSCP value of this user priority range, inclusive
* @high: highest DSCP value of this user priority range, inclusive
*/
struct cfg80211_dscp_range {
u8 low;
u8 high;
};
/* QoS Map Set element length defined in IEEE Std 802.11-2012, 8.4.2.97 */
#define IEEE80211_QOS_MAP_MAX_EX 21
#define IEEE80211_QOS_MAP_LEN_MIN 16
#define IEEE80211_QOS_MAP_LEN_MAX \
(IEEE80211_QOS_MAP_LEN_MIN + 2 * IEEE80211_QOS_MAP_MAX_EX)
/**
* struct cfg80211_qos_map - QoS Map Information
*
* This struct defines the Interworking QoS map setting for DSCP values
*
* @num_des: number of DSCP exceptions (0..21)
* @dscp_exception: optionally up to maximum of 21 DSCP exceptions from
* the user priority DSCP range definition
* @up: DSCP range definition for a particular user priority
*/
struct cfg80211_qos_map {
u8 num_des;
struct cfg80211_dscp_exception dscp_exception[IEEE80211_QOS_MAP_MAX_EX];
struct cfg80211_dscp_range up[8];
};
/**
* struct cfg80211_nan_conf - NAN configuration
*
* This struct defines NAN configuration parameters
*
* @master_pref: master preference (1 - 255)
* @bands: operating bands, a bitmap of &enum nl80211_band values.
* For instance, for NL80211_BAND_2GHZ, bit 0 would be set
* (i.e. BIT(NL80211_BAND_2GHZ)).
*/
struct cfg80211_nan_conf {
u8 master_pref;
u8 bands;
};
/**
* enum cfg80211_nan_conf_changes - indicates changed fields in NAN
* configuration
*
* @CFG80211_NAN_CONF_CHANGED_PREF: master preference
* @CFG80211_NAN_CONF_CHANGED_BANDS: operating bands
*/
enum cfg80211_nan_conf_changes {
CFG80211_NAN_CONF_CHANGED_PREF = BIT(0),
CFG80211_NAN_CONF_CHANGED_BANDS = BIT(1),
};
/**
* struct cfg80211_nan_func_filter - a NAN function Rx / Tx filter
*
* @filter: the content of the filter
* @len: the length of the filter
*/
struct cfg80211_nan_func_filter {
const u8 *filter;
u8 len;
};
/**
* struct cfg80211_nan_func - a NAN function
*
* @type: &enum nl80211_nan_function_type
* @service_id: the service ID of the function
* @publish_type: &nl80211_nan_publish_type
* @close_range: if true, the range should be limited. Threshold is
* implementation specific.
* @publish_bcast: if true, the solicited publish should be broadcasted
* @subscribe_active: if true, the subscribe is active
* @followup_id: the instance ID for follow up
* @followup_reqid: the requester instance ID for follow up
* @followup_dest: MAC address of the recipient of the follow up
* @ttl: time to live counter in DW.
* @serv_spec_info: Service Specific Info
* @serv_spec_info_len: Service Specific Info length
* @srf_include: if true, SRF is inclusive
* @srf_bf: Bloom Filter
* @srf_bf_len: Bloom Filter length
* @srf_bf_idx: Bloom Filter index
* @srf_macs: SRF MAC addresses
* @srf_num_macs: number of MAC addresses in SRF
* @rx_filters: rx filters that are matched with corresponding peer's tx_filter
* @tx_filters: filters that should be transmitted in the SDF.
* @num_rx_filters: length of &rx_filters.
* @num_tx_filters: length of &tx_filters.
* @instance_id: driver allocated id of the function.
* @cookie: unique NAN function identifier.
*/
struct cfg80211_nan_func {
enum nl80211_nan_function_type type;
u8 service_id[NL80211_NAN_FUNC_SERVICE_ID_LEN];
u8 publish_type;
bool close_range;
bool publish_bcast;
bool subscribe_active;
u8 followup_id;
u8 followup_reqid;
struct mac_address followup_dest;
u32 ttl;
const u8 *serv_spec_info;
u8 serv_spec_info_len;
bool srf_include;
const u8 *srf_bf;
u8 srf_bf_len;
u8 srf_bf_idx;
struct mac_address *srf_macs;
int srf_num_macs;
struct cfg80211_nan_func_filter *rx_filters;
struct cfg80211_nan_func_filter *tx_filters;
u8 num_tx_filters;
u8 num_rx_filters;
u8 instance_id;
u64 cookie;
};
/**
* struct cfg80211_pmk_conf - PMK configuration
*
* @aa: authenticator address
* @pmk_len: PMK length in bytes.
* @pmk: the PMK material
* @pmk_r0_name: PMK-R0 Name. NULL if not applicable (i.e., the PMK
* is not PMK-R0). When pmk_r0_name is not NULL, the pmk field
* holds PMK-R0.
*/
struct cfg80211_pmk_conf {
const u8 *aa;
u8 pmk_len;
const u8 *pmk;
const u8 *pmk_r0_name;
};
/**
* struct cfg80211_external_auth_params - Trigger External authentication.
*
* Commonly used across the external auth request and event interfaces.
*
* @action: action type / trigger for external authentication. Only significant
* for the authentication request event interface (driver to user space).
* @bssid: BSSID of the peer with which the authentication has
* to happen. Used by both the authentication request event and
* authentication response command interface.
* @ssid: SSID of the AP. Used by both the authentication request event and
* authentication response command interface.
* @key_mgmt_suite: AKM suite of the respective authentication. Used by the
* authentication request event interface.
* @status: status code, %WLAN_STATUS_SUCCESS for successful authentication,
* use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space cannot give you
* the real status code for failures. Used only for the authentication
* response command interface (user space to driver).
* @pmkid: The identifier to refer a PMKSA.
* @mld_addr: MLD address of the peer. Used by the authentication request event
* interface. Driver indicates this to enable MLO during the authentication
* offload to user space. Driver shall look at %NL80211_ATTR_MLO_SUPPORT
* flag capability in NL80211_CMD_CONNECT to know whether the user space
* supports enabling MLO during the authentication offload.
* User space should use the address of the interface (on which the
* authentication request event reported) as self MLD address. User space
* and driver should use MLD addresses in RA, TA and BSSID fields of
* authentication frames sent or received via cfg80211. The driver
* translates the MLD addresses to/from link addresses based on the link
* chosen for the authentication.
*/
struct cfg80211_external_auth_params {
enum nl80211_external_auth_action action;
u8 bssid[ETH_ALEN] __aligned(2);
struct cfg80211_ssid ssid;
unsigned int key_mgmt_suite;
u16 status;
const u8 *pmkid;
u8 mld_addr[ETH_ALEN] __aligned(2);
};
/**
* struct cfg80211_ftm_responder_stats - FTM responder statistics
*
* @filled: bitflag of flags using the bits of &enum nl80211_ftm_stats to
* indicate the relevant values in this struct for them
* @success_num: number of FTM sessions in which all frames were successfully
* answered
* @partial_num: number of FTM sessions in which part of frames were
* successfully answered
* @failed_num: number of failed FTM sessions
* @asap_num: number of ASAP FTM sessions
* @non_asap_num: number of non-ASAP FTM sessions
* @total_duration_ms: total sessions durations - gives an indication
* of how much time the responder was busy
* @unknown_triggers_num: number of unknown FTM triggers - triggers from
* initiators that didn't finish successfully the negotiation phase with
* the responder
* @reschedule_requests_num: number of FTM reschedule requests - initiator asks
* for a new scheduling although it already has scheduled FTM slot
* @out_of_window_triggers_num: total FTM triggers out of scheduled window
*/
struct cfg80211_ftm_responder_stats {
u32 filled;
u32 success_num;
u32 partial_num;
u32 failed_num;
u32 asap_num;
u32 non_asap_num;
u64 total_duration_ms;
u32 unknown_triggers_num;
u32 reschedule_requests_num;
u32 out_of_window_triggers_num;
};
/**
* struct cfg80211_pmsr_ftm_result - FTM result
* @failure_reason: if this measurement failed (PMSR status is
* %NL80211_PMSR_STATUS_FAILURE), this gives a more precise
* reason than just "failure"
* @burst_index: if reporting partial results, this is the index
* in [0 .. num_bursts-1] of the burst that's being reported
* @num_ftmr_attempts: number of FTM request frames transmitted
* @num_ftmr_successes: number of FTM request frames acked
* @busy_retry_time: if failure_reason is %NL80211_PMSR_FTM_FAILURE_PEER_BUSY,
* fill this to indicate in how many seconds a retry is deemed possible
* by the responder
* @num_bursts_exp: actual number of bursts exponent negotiated
* @burst_duration: actual burst duration negotiated
* @ftms_per_burst: actual FTMs per burst negotiated
* @lci_len: length of LCI information (if present)
* @civicloc_len: length of civic location information (if present)
* @lci: LCI data (may be %NULL)
* @civicloc: civic location data (may be %NULL)
* @rssi_avg: average RSSI over FTM action frames reported
* @rssi_spread: spread of the RSSI over FTM action frames reported
* @tx_rate: bitrate for transmitted FTM action frame response
* @rx_rate: bitrate of received FTM action frame
* @rtt_avg: average of RTTs measured (must have either this or @dist_avg)
* @rtt_variance: variance of RTTs measured (note that standard deviation is
* the square root of the variance)
* @rtt_spread: spread of the RTTs measured
* @dist_avg: average of distances (mm) measured
* (must have either this or @rtt_avg)
* @dist_variance: variance of distances measured (see also @rtt_variance)
* @dist_spread: spread of distances measured (see also @rtt_spread)
* @num_ftmr_attempts_valid: @num_ftmr_attempts is valid
* @num_ftmr_successes_valid: @num_ftmr_successes is valid
* @rssi_avg_valid: @rssi_avg is valid
* @rssi_spread_valid: @rssi_spread is valid
* @tx_rate_valid: @tx_rate is valid
* @rx_rate_valid: @rx_rate is valid
* @rtt_avg_valid: @rtt_avg is valid
* @rtt_variance_valid: @rtt_variance is valid
* @rtt_spread_valid: @rtt_spread is valid
* @dist_avg_valid: @dist_avg is valid
* @dist_variance_valid: @dist_variance is valid
* @dist_spread_valid: @dist_spread is valid
*/
struct cfg80211_pmsr_ftm_result {
const u8 *lci;
const u8 *civicloc;
unsigned int lci_len;
unsigned int civicloc_len;
enum nl80211_peer_measurement_ftm_failure_reasons failure_reason;
u32 num_ftmr_attempts, num_ftmr_successes;
s16 burst_index;
u8 busy_retry_time;
u8 num_bursts_exp;
u8 burst_duration;
u8 ftms_per_burst;
s32 rssi_avg;
s32 rssi_spread;
struct rate_info tx_rate, rx_rate;
s64 rtt_avg;
s64 rtt_variance;
s64 rtt_spread;
s64 dist_avg;
s64 dist_variance;
s64 dist_spread;
u16 num_ftmr_attempts_valid:1,
num_ftmr_successes_valid:1,
rssi_avg_valid:1,
rssi_spread_valid:1,
tx_rate_valid:1,
rx_rate_valid:1,
rtt_avg_valid:1,
rtt_variance_valid:1,
rtt_spread_valid:1,
dist_avg_valid:1,
dist_variance_valid:1,
dist_spread_valid:1;
};
/**
* struct cfg80211_pmsr_result - peer measurement result
* @addr: address of the peer
* @host_time: host time (use ktime_get_boottime() adjust to the time when the
* measurement was made)
* @ap_tsf: AP's TSF at measurement time
* @status: status of the measurement
* @final: if reporting partial results, mark this as the last one; if not
* reporting partial results always set this flag
* @ap_tsf_valid: indicates the @ap_tsf value is valid
* @type: type of the measurement reported, note that we only support reporting
* one type at a time, but you can report multiple results separately and
* they're all aggregated for userspace.
* @ftm: FTM result
*/
struct cfg80211_pmsr_result {
u64 host_time, ap_tsf;
enum nl80211_peer_measurement_status status;
u8 addr[ETH_ALEN];
u8 final:1,
ap_tsf_valid:1;
enum nl80211_peer_measurement_type type;
union {
struct cfg80211_pmsr_ftm_result ftm;
};
};
/**
* struct cfg80211_pmsr_ftm_request_peer - FTM request data
* @requested: indicates FTM is requested
* @preamble: frame preamble to use
* @burst_period: burst period to use
* @asap: indicates to use ASAP mode
* @num_bursts_exp: number of bursts exponent
* @burst_duration: burst duration
* @ftms_per_burst: number of FTMs per burst
* @ftmr_retries: number of retries for FTM request
* @request_lci: request LCI information
* @request_civicloc: request civic location information
* @trigger_based: use trigger based ranging for the measurement
* If neither @trigger_based nor @non_trigger_based is set,
* EDCA based ranging will be used.
* @non_trigger_based: use non trigger based ranging for the measurement
* If neither @trigger_based nor @non_trigger_based is set,
* EDCA based ranging will be used.
* @lmr_feedback: negotiate for I2R LMR feedback. Only valid if either
* @trigger_based or @non_trigger_based is set.
* @bss_color: the bss color of the responder. Optional. Set to zero to
* indicate the driver should set the BSS color. Only valid if
* @non_trigger_based or @trigger_based is set.
*
* See also nl80211 for the respective attribute documentation.
*/
struct cfg80211_pmsr_ftm_request_peer {
enum nl80211_preamble preamble;
u16 burst_period;
u8 requested:1,
asap:1,
request_lci:1,
request_civicloc:1,
trigger_based:1,
non_trigger_based:1,
lmr_feedback:1;
u8 num_bursts_exp;
u8 burst_duration;
u8 ftms_per_burst;
u8 ftmr_retries;
u8 bss_color;
};
/**
* struct cfg80211_pmsr_request_peer - peer data for a peer measurement request
* @addr: MAC address
* @chandef: channel to use
* @report_ap_tsf: report the associated AP's TSF
* @ftm: FTM data, see &struct cfg80211_pmsr_ftm_request_peer
*/
struct cfg80211_pmsr_request_peer {
u8 addr[ETH_ALEN];
struct cfg80211_chan_def chandef;
u8 report_ap_tsf:1;
struct cfg80211_pmsr_ftm_request_peer ftm;
};
/**
* struct cfg80211_pmsr_request - peer measurement request
* @cookie: cookie, set by cfg80211
* @nl_portid: netlink portid - used by cfg80211
* @drv_data: driver data for this request, if required for aborting,
* not otherwise freed or anything by cfg80211
* @mac_addr: MAC address used for (randomised) request
* @mac_addr_mask: MAC address mask used for randomisation, bits that
* are 0 in the mask should be randomised, bits that are 1 should
* be taken from the @mac_addr
* @list: used by cfg80211 to hold on to the request
* @timeout: timeout (in milliseconds) for the whole operation, if
* zero it means there's no timeout
* @n_peers: number of peers to do measurements with
* @peers: per-peer measurement request data
*/
struct cfg80211_pmsr_request {
u64 cookie;
void *drv_data;
u32 n_peers;
u32 nl_portid;
u32 timeout;
u8 mac_addr[ETH_ALEN] __aligned(2);
u8 mac_addr_mask[ETH_ALEN] __aligned(2);
struct list_head list;
struct cfg80211_pmsr_request_peer peers[] __counted_by(n_peers);
};
/**
* struct cfg80211_update_owe_info - OWE Information
*
* This structure provides information needed for the drivers to offload OWE
* (Opportunistic Wireless Encryption) processing to the user space.
*
* Commonly used across update_owe_info request and event interfaces.
*
* @peer: MAC address of the peer device for which the OWE processing
* has to be done.
* @status: status code, %WLAN_STATUS_SUCCESS for successful OWE info
* processing, use %WLAN_STATUS_UNSPECIFIED_FAILURE if user space
* cannot give you the real status code for failures. Used only for
* OWE update request command interface (user space to driver).
* @ie: IEs obtained from the peer or constructed by the user space. These are
* the IEs of the remote peer in the event from the host driver and
* the constructed IEs by the user space in the request interface.
* @ie_len: Length of IEs in octets.
* @assoc_link_id: MLO link ID of the AP, with which (re)association requested
* by peer. This will be filled by driver for both MLO and non-MLO station
* connections when the AP affiliated with an MLD. For non-MLD AP mode, it
* will be -1. Used only with OWE update event (driver to user space).
* @peer_mld_addr: For MLO connection, MLD address of the peer. For non-MLO
* connection, it will be all zeros. This is applicable only when
* @assoc_link_id is not -1, i.e., the AP affiliated with an MLD. Used only
* with OWE update event (driver to user space).
*/
struct cfg80211_update_owe_info {
u8 peer[ETH_ALEN] __aligned(2);
u16 status;
const u8 *ie;
size_t ie_len;
int assoc_link_id;
u8 peer_mld_addr[ETH_ALEN] __aligned(2);
};
/**
* struct mgmt_frame_regs - management frame registrations data
* @global_stypes: bitmap of management frame subtypes registered
* for the entire device
* @interface_stypes: bitmap of management frame subtypes registered
* for the given interface
* @global_mcast_stypes: mcast RX is needed globally for these subtypes
* @interface_mcast_stypes: mcast RX is needed on this interface
* for these subtypes
*/
struct mgmt_frame_regs {
u32 global_stypes, interface_stypes;
u32 global_mcast_stypes, interface_mcast_stypes;
};
/**
* struct cfg80211_ops - backend description for wireless configuration
*
* This struct is registered by fullmac card drivers and/or wireless stacks
* in order to handle configuration requests on their interfaces.
*
* All callbacks except where otherwise noted should return 0
* on success or a negative error code.
*
* All operations are invoked with the wiphy mutex held. The RTNL may be
* held in addition (due to wireless extensions) but this cannot be relied
* upon except in cases where documented below. Note that due to ordering,
* the RTNL also cannot be acquired in any handlers.
*
* @suspend: wiphy device needs to be suspended. The variable @wow will
* be %NULL or contain the enabled Wake-on-Wireless triggers that are
* configured for the device.
* @resume: wiphy device needs to be resumed
* @set_wakeup: Called when WoWLAN is enabled/disabled, use this callback
* to call device_set_wakeup_enable() to enable/disable wakeup from
* the device.
*
* @add_virtual_intf: create a new virtual interface with the given name,
* must set the struct wireless_dev's iftype. Beware: You must create
* the new netdev in the wiphy's network namespace! Returns the struct
* wireless_dev, or an ERR_PTR. For P2P device wdevs, the driver must
* also set the address member in the wdev.
* This additionally holds the RTNL to be able to do netdev changes.
*
* @del_virtual_intf: remove the virtual interface
* This additionally holds the RTNL to be able to do netdev changes.
*
* @change_virtual_intf: change type/configuration of virtual interface,
* keep the struct wireless_dev's iftype updated.
* This additionally holds the RTNL to be able to do netdev changes.
*
* @add_intf_link: Add a new MLO link to the given interface. Note that
* the wdev->link[] data structure has been updated, so the new link
* address is available.
* @del_intf_link: Remove an MLO link from the given interface.
*
* @add_key: add a key with the given parameters. @mac_addr will be %NULL
* when adding a group key. @link_id will be -1 for non-MLO connection.
* For MLO connection, @link_id will be >= 0 for group key and -1 for
* pairwise key, @mac_addr will be peer's MLD address for MLO pairwise key.
*
* @get_key: get information about the key with the given parameters.
* @mac_addr will be %NULL when requesting information for a group
* key. All pointers given to the @callback function need not be valid
* after it returns. This function should return an error if it is
* not possible to retrieve the key, -ENOENT if it doesn't exist.
* @link_id will be -1 for non-MLO connection. For MLO connection,
* @link_id will be >= 0 for group key and -1 for pairwise key, @mac_addr
* will be peer's MLD address for MLO pairwise key.
*
* @del_key: remove a key given the @mac_addr (%NULL for a group key)
* and @key_index, return -ENOENT if the key doesn't exist. @link_id will
* be -1 for non-MLO connection. For MLO connection, @link_id will be >= 0
* for group key and -1 for pairwise key, @mac_addr will be peer's MLD
* address for MLO pairwise key.
*
* @set_default_key: set the default key on an interface. @link_id will be >= 0
* for MLO connection and -1 for non-MLO connection.
*
* @set_default_mgmt_key: set the default management frame key on an interface.
* @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
*
* @set_default_beacon_key: set the default Beacon frame key on an interface.
* @link_id will be >= 0 for MLO connection and -1 for non-MLO connection.
*
* @set_rekey_data: give the data necessary for GTK rekeying to the driver
*
* @start_ap: Start acting in AP mode defined by the parameters.
* @change_beacon: Change the beacon parameters for an access point mode
* interface. This should reject the call when AP mode wasn't started.
* @stop_ap: Stop being an AP, including stopping beaconing.
*
* @add_station: Add a new station.
* @del_station: Remove a station
* @change_station: Modify a given station. Note that flags changes are not much
* validated in cfg80211, in particular the auth/assoc/authorized flags
* might come to the driver in invalid combinations -- make sure to check
* them, also against the existing state! Drivers must call
* cfg80211_check_station_change() to validate the information.
* @get_station: get station information for the station identified by @mac
* @dump_station: dump station callback -- resume dump at index @idx
*
* @add_mpath: add a fixed mesh path
* @del_mpath: delete a given mesh path
* @change_mpath: change a given mesh path
* @get_mpath: get a mesh path for the given parameters
* @dump_mpath: dump mesh path callback -- resume dump at index @idx
* @get_mpp: get a mesh proxy path for the given parameters
* @dump_mpp: dump mesh proxy path callback -- resume dump at index @idx
* @join_mesh: join the mesh network with the specified parameters
* (invoked with the wireless_dev mutex held)
* @leave_mesh: leave the current mesh network
* (invoked with the wireless_dev mutex held)
*
* @get_mesh_config: Get the current mesh configuration
*
* @update_mesh_config: Update mesh parameters on a running mesh.
* The mask is a bitfield which tells us which parameters to
* set, and which to leave alone.
*
* @change_bss: Modify parameters for a given BSS.
*
* @inform_bss: Called by cfg80211 while being informed about new BSS data
* for every BSS found within the reported data or frame. This is called
* from within the cfg8011 inform_bss handlers while holding the bss_lock.
* The data parameter is passed through from drv_data inside
* struct cfg80211_inform_bss.
* The new IE data for the BSS is explicitly passed.
*
* @set_txq_params: Set TX queue parameters
*
* @libertas_set_mesh_channel: Only for backward compatibility for libertas,
* as it doesn't implement join_mesh and needs to set the channel to
* join the mesh instead.
*
* @set_monitor_channel: Set the monitor mode channel for the device. If other
* interfaces are active this callback should reject the configuration.
* If no interfaces are active or the device is down, the channel should
* be stored for when a monitor interface becomes active.
*
* @scan: Request to do a scan. If returning zero, the scan request is given
* the driver, and will be valid until passed to cfg80211_scan_done().
* For scan results, call cfg80211_inform_bss(); you can call this outside
* the scan/scan_done bracket too.
* @abort_scan: Tell the driver to abort an ongoing scan. The driver shall
* indicate the status of the scan through cfg80211_scan_done().
*
* @auth: Request to authenticate with the specified peer
* (invoked with the wireless_dev mutex held)
* @assoc: Request to (re)associate with the specified peer
* (invoked with the wireless_dev mutex held)
* @deauth: Request to deauthenticate from the specified peer
* (invoked with the wireless_dev mutex held)
* @disassoc: Request to disassociate from the specified peer
* (invoked with the wireless_dev mutex held)
*
* @connect: Connect to the ESS with the specified parameters. When connected,
* call cfg80211_connect_result()/cfg80211_connect_bss() with status code
* %WLAN_STATUS_SUCCESS. If the connection fails for some reason, call
* cfg80211_connect_result()/cfg80211_connect_bss() with the status code
* from the AP or cfg80211_connect_timeout() if no frame with status code
* was received.
* The driver is allowed to roam to other BSSes within the ESS when the
* other BSS matches the connect parameters. When such roaming is initiated
* by the driver, the driver is expected to verify that the target matches
* the configured security parameters and to use Reassociation Request
* frame instead of Association Request frame.
* The connect function can also be used to request the driver to perform a
* specific roam when connected to an ESS. In that case, the prev_bssid
* parameter is set to the BSSID of the currently associated BSS as an
* indication of requesting reassociation.
* In both the driver-initiated and new connect() call initiated roaming
* cases, the result of roaming is indicated with a call to
* cfg80211_roamed(). (invoked with the wireless_dev mutex held)
* @update_connect_params: Update the connect parameters while connected to a
* BSS. The updated parameters can be used by driver/firmware for
* subsequent BSS selection (roaming) decisions and to form the
* Authentication/(Re)Association Request frames. This call does not
* request an immediate disassociation or reassociation with the current
* BSS, i.e., this impacts only subsequent (re)associations. The bits in
* changed are defined in &enum cfg80211_connect_params_changed.
* (invoked with the wireless_dev mutex held)
* @disconnect: Disconnect from the BSS/ESS or stop connection attempts if
* connection is in progress. Once done, call cfg80211_disconnected() in
* case connection was already established (invoked with the
* wireless_dev mutex held), otherwise call cfg80211_connect_timeout().
*
* @join_ibss: Join the specified IBSS (or create if necessary). Once done, call
* cfg80211_ibss_joined(), also call that function when changing BSSID due
* to a merge.
* (invoked with the wireless_dev mutex held)
* @leave_ibss: Leave the IBSS.
* (invoked with the wireless_dev mutex held)
*
* @set_mcast_rate: Set the specified multicast rate (only if vif is in ADHOC or
* MESH mode)
*
* @set_wiphy_params: Notify that wiphy parameters have changed;
* @changed bitfield (see &enum wiphy_params_flags) describes which values
* have changed. The actual parameter values are available in
* struct wiphy. If returning an error, no value should be changed.
*
* @set_tx_power: set the transmit power according to the parameters,
* the power passed is in mBm, to get dBm use MBM_TO_DBM(). The
* wdev may be %NULL if power was set for the wiphy, and will
* always be %NULL unless the driver supports per-vif TX power
* (as advertised by the nl80211 feature flag.)
* @get_tx_power: store the current TX power into the dbm variable;
* return 0 if successful
*
* @rfkill_poll: polls the hw rfkill line, use cfg80211 reporting
* functions to adjust rfkill hw state
*
* @dump_survey: get site survey information.
*
* @remain_on_channel: Request the driver to remain awake on the specified
* channel for the specified duration to complete an off-channel
* operation (e.g., public action frame exchange). When the driver is
* ready on the requested channel, it must indicate this with an event
* notification by calling cfg80211_ready_on_channel().
* @cancel_remain_on_channel: Cancel an on-going remain-on-channel operation.
* This allows the operation to be terminated prior to timeout based on
* the duration value.
* @mgmt_tx: Transmit a management frame.
* @mgmt_tx_cancel_wait: Cancel the wait time from transmitting a management
* frame on another channel
*
* @testmode_cmd: run a test mode command; @wdev may be %NULL
* @testmode_dump: Implement a test mode dump. The cb->args[2] and up may be
* used by the function, but 0 and 1 must not be touched. Additionally,
* return error codes other than -ENOBUFS and -ENOENT will terminate the
* dump and return to userspace with an error, so be careful. If any data
* was passed in from userspace then the data/len arguments will be present
* and point to the data contained in %NL80211_ATTR_TESTDATA.
*
* @set_bitrate_mask: set the bitrate mask configuration
*
* @set_pmksa: Cache a PMKID for a BSSID. This is mostly useful for fullmac
* devices running firmwares capable of generating the (re) association
* RSN IE. It allows for faster roaming between WPA2 BSSIDs.
* @del_pmksa: Delete a cached PMKID.
* @flush_pmksa: Flush all cached PMKIDs.
* @set_power_mgmt: Configure WLAN power management. A timeout value of -1
* allows the driver to adjust the dynamic ps timeout value.
* @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold.
* After configuration, the driver should (soon) send an event indicating
* the current level is above/below the configured threshold; this may
* need some care when the configuration is changed (without first being
* disabled.)
* @set_cqm_rssi_range_config: Configure two RSSI thresholds in the
* connection quality monitor. An event is to be sent only when the
* signal level is found to be outside the two values. The driver should
* set %NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented.
* If it is provided then there's no point providing @set_cqm_rssi_config.
* @set_cqm_txe_config: Configure connection quality monitor TX error
* thresholds.
* @sched_scan_start: Tell the driver to start a scheduled scan.
* @sched_scan_stop: Tell the driver to stop an ongoing scheduled scan with
* given request id. This call must stop the scheduled scan and be ready
* for starting a new one before it returns, i.e. @sched_scan_start may be
* called immediately after that again and should not fail in that case.
* The driver should not call cfg80211_sched_scan_stopped() for a requested
* stop (when this method returns 0).
*
* @update_mgmt_frame_registrations: Notify the driver that management frame
* registrations were updated. The callback is allowed to sleep.
*
* @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
* Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
* reject TX/RX mask combinations they cannot support by returning -EINVAL
* (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
*
* @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
*
* @tdls_mgmt: Transmit a TDLS management frame.
* @tdls_oper: Perform a high-level TDLS operation (e.g. TDLS link setup).
*
* @probe_client: probe an associated client, must return a cookie that it
* later passes to cfg80211_probe_status().
*
* @set_noack_map: Set the NoAck Map for the TIDs.
*
* @get_channel: Get the current operating channel for the virtual interface.
* For monitor interfaces, it should return %NULL unless there's a single
* current monitoring channel.
*
* @start_p2p_device: Start the given P2P device.
* @stop_p2p_device: Stop the given P2P device.
*
* @set_mac_acl: Sets MAC address control list in AP and P2P GO mode.
* Parameters include ACL policy, an array of MAC address of stations
* and the number of MAC addresses. If there is already a list in driver
* this new list replaces the existing one. Driver has to clear its ACL
* when number of MAC addresses entries is passed as 0. Drivers which
* advertise the support for MAC based ACL have to implement this callback.
*
* @start_radar_detection: Start radar detection in the driver.
*
* @end_cac: End running CAC, probably because a related CAC
* was finished on another phy.
*
* @update_ft_ies: Provide updated Fast BSS Transition information to the
* driver. If the SME is in the driver/firmware, this information can be
* used in building Authentication and Reassociation Request frames.
*
* @crit_proto_start: Indicates a critical protocol needs more link reliability
* for a given duration (milliseconds). The protocol is provided so the
* driver can take the most appropriate actions.
* @crit_proto_stop: Indicates critical protocol no longer needs increased link
* reliability. This operation can not fail.
* @set_coalesce: Set coalesce parameters.
*
* @channel_switch: initiate channel-switch procedure (with CSA). Driver is
* responsible for veryfing if the switch is possible. Since this is
* inherently tricky driver may decide to disconnect an interface later
* with cfg80211_stop_iface(). This doesn't mean driver can accept
* everything. It should do it's best to verify requests and reject them
* as soon as possible.
*
* @set_qos_map: Set QoS mapping information to the driver
*
* @set_ap_chanwidth: Set the AP (including P2P GO) mode channel width for the
* given interface This is used e.g. for dynamic HT 20/40 MHz channel width
* changes during the lifetime of the BSS.
*
* @add_tx_ts: validate (if admitted_time is 0) or add a TX TS to the device
* with the given parameters; action frame exchange has been handled by
* userspace so this just has to modify the TX path to take the TS into
* account.
* If the admitted time is 0 just validate the parameters to make sure
* the session can be created at all; it is valid to just always return
* success for that but that may result in inefficient behaviour (handshake
* with the peer followed by immediate teardown when the addition is later
* rejected)
* @del_tx_ts: remove an existing TX TS
*
* @join_ocb: join the OCB network with the specified parameters
* (invoked with the wireless_dev mutex held)
* @leave_ocb: leave the current OCB network
* (invoked with the wireless_dev mutex held)
*
* @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver
* is responsible for continually initiating channel-switching operations
* and returning to the base channel for communication with the AP.
* @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both
* peers must be on the base channel when the call completes.
* @start_nan: Start the NAN interface.
* @stop_nan: Stop the NAN interface.
* @add_nan_func: Add a NAN function. Returns negative value on failure.
* On success @nan_func ownership is transferred to the driver and
* it may access it outside of the scope of this function. The driver
* should free the @nan_func when no longer needed by calling
* cfg80211_free_nan_func().
* On success the driver should assign an instance_id in the
* provided @nan_func.
* @del_nan_func: Delete a NAN function.
* @nan_change_conf: changes NAN configuration. The changed parameters must
* be specified in @changes (using &enum cfg80211_nan_conf_changes);
* All other parameters must be ignored.
*
* @set_multicast_to_unicast: configure multicast to unicast conversion for BSS
*
* @get_txq_stats: Get TXQ stats for interface or phy. If wdev is %NULL, this
* function should return phy stats, and interface stats otherwise.
*
* @set_pmk: configure the PMK to be used for offloaded 802.1X 4-Way handshake.
* If not deleted through @del_pmk the PMK remains valid until disconnect
* upon which the driver should clear it.
* (invoked with the wireless_dev mutex held)
* @del_pmk: delete the previously configured PMK for the given authenticator.
* (invoked with the wireless_dev mutex held)
*
* @external_auth: indicates result of offloaded authentication processing from
* user space
*
* @tx_control_port: TX a control port frame (EAPoL). The noencrypt parameter
* tells the driver that the frame should not be encrypted.
*
* @get_ftm_responder_stats: Retrieve FTM responder statistics, if available.
* Statistics should be cumulative, currently no way to reset is provided.
* @start_pmsr: start peer measurement (e.g. FTM)
* @abort_pmsr: abort peer measurement
*
* @update_owe_info: Provide updated OWE info to driver. Driver implementing SME
* but offloading OWE processing to the user space will get the updated
* DH IE through this interface.
*
* @probe_mesh_link: Probe direct Mesh peer's link quality by sending data frame
* and overrule HWMP path selection algorithm.
* @set_tid_config: TID specific configuration, this can be peer or BSS specific
* This callback may sleep.
* @reset_tid_config: Reset TID specific configuration for the peer, for the
* given TIDs. This callback may sleep.
*
* @set_sar_specs: Update the SAR (TX power) settings.
*
* @color_change: Initiate a color change.
*
* @set_fils_aad: Set FILS AAD data to the AP driver so that the driver can use
* those to decrypt (Re)Association Request and encrypt (Re)Association
* Response frame.
*
* @set_radar_background: Configure dedicated offchannel chain available for
* radar/CAC detection on some hw. This chain can't be used to transmit
* or receive frames and it is bounded to a running wdev.
* Background radar/CAC detection allows to avoid the CAC downtime
* switching to a different channel during CAC detection on the selected
* radar channel.
* The caller is expected to set chandef pointer to NULL in order to
* disable background CAC/radar detection.
* @add_link_station: Add a link to a station.
* @mod_link_station: Modify a link of a station.
* @del_link_station: Remove a link of a station.
*
* @set_hw_timestamp: Enable/disable HW timestamping of TM/FTM frames.
* @set_ttlm: set the TID to link mapping.
*/
struct cfg80211_ops {
int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
int (*resume)(struct wiphy *wiphy);
void (*set_wakeup)(struct wiphy *wiphy, bool enabled);
struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,
const char *name,
unsigned char name_assign_type,
enum nl80211_iftype type,
struct vif_params *params);
int (*del_virtual_intf)(struct wiphy *wiphy,
struct wireless_dev *wdev);
int (*change_virtual_intf)(struct wiphy *wiphy,
struct net_device *dev,
enum nl80211_iftype type,
struct vif_params *params);
int (*add_intf_link)(struct wiphy *wiphy,
struct wireless_dev *wdev,
unsigned int link_id);
void (*del_intf_link)(struct wiphy *wiphy,
struct wireless_dev *wdev,
unsigned int link_id);
int (*add_key)(struct wiphy *wiphy, struct net_device *netdev,
int link_id, u8 key_index, bool pairwise,
const u8 *mac_addr, struct key_params *params);
int (*get_key)(struct wiphy *wiphy, struct net_device *netdev,
int link_id, u8 key_index, bool pairwise,
const u8 *mac_addr, void *cookie,
void (*callback)(void *cookie, struct key_params*));
int (*del_key)(struct wiphy *wiphy, struct net_device *netdev,
int link_id, u8 key_index, bool pairwise,
const u8 *mac_addr);
int (*set_default_key)(struct wiphy *wiphy,
struct net_device *netdev, int link_id,
u8 key_index, bool unicast, bool multicast);
int (*set_default_mgmt_key)(struct wiphy *wiphy,
struct net_device *netdev, int link_id,
u8 key_index);
int (*set_default_beacon_key)(struct wiphy *wiphy,
struct net_device *netdev,
int link_id,
u8 key_index);
int (*start_ap)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ap_settings *settings);
int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ap_update *info);
int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev,
unsigned int link_id);
int (*add_station)(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac,
struct station_parameters *params);
int (*del_station)(struct wiphy *wiphy, struct net_device *dev,
struct station_del_parameters *params);
int (*change_station)(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac,
struct station_parameters *params);
int (*get_station)(struct wiphy *wiphy, struct net_device *dev,
const u8 *mac, struct station_info *sinfo);
int (*dump_station)(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *mac, struct station_info *sinfo);
int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev,
const u8 *dst, const u8 *next_hop);
int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev,
const u8 *dst);
int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev,
const u8 *dst, const u8 *next_hop);
int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev,
u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *dst, u8 *next_hop,
struct mpath_info *pinfo);
int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev,
u8 *dst, u8 *mpp, struct mpath_info *pinfo);
int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,
int idx, u8 *dst, u8 *mpp,
struct mpath_info *pinfo);
int (*get_mesh_config)(struct wiphy *wiphy,
struct net_device *dev,
struct mesh_config *conf);
int (*update_mesh_config)(struct wiphy *wiphy,
struct net_device *dev, u32 mask,
const struct mesh_config *nconf);
int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev,
const struct mesh_config *conf,
const struct mesh_setup *setup);
int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev,
struct ocb_setup *setup);
int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
int (*change_bss)(struct wiphy *wiphy, struct net_device *dev,
struct bss_parameters *params);
void (*inform_bss)(struct wiphy *wiphy, struct cfg80211_bss *bss,
const struct cfg80211_bss_ies *ies, void *data);
int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,
struct ieee80211_txq_params *params);
int (*libertas_set_mesh_channel)(struct wiphy *wiphy,
struct net_device *dev,
struct ieee80211_channel *chan);
int (*set_monitor_channel)(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef);
int (*scan)(struct wiphy *wiphy,
struct cfg80211_scan_request *request);
void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
int (*auth)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_auth_request *req);
int (*assoc)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_assoc_request *req);
int (*deauth)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_deauth_request *req);
int (*disassoc)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_disassoc_request *req);
int (*connect)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme);
int (*update_connect_params)(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_connect_params *sme,
u32 changed);
int (*disconnect)(struct wiphy *wiphy, struct net_device *dev,
u16 reason_code);
int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params);
int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev,
int rate[NUM_NL80211_BANDS]);
int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed);
int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
enum nl80211_tx_power_setting type, int mbm);
int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev,
int *dbm);
void (*rfkill_poll)(struct wiphy *wiphy);
#ifdef CONFIG_NL80211_TESTMODE
int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev,
void *data, int len);
int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,
struct netlink_callback *cb,
void *data, int len);
#endif
int (*set_bitrate_mask)(struct wiphy *wiphy,
struct net_device *dev,
unsigned int link_id,
const u8 *peer,
const struct cfg80211_bitrate_mask *mask);
int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,
int idx, struct survey_info *info);
int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa);
int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa);
int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
int (*remain_on_channel)(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct ieee80211_channel *chan,
unsigned int duration,
u64 *cookie);
int (*cancel_remain_on_channel)(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie);
int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,
struct cfg80211_mgmt_tx_params *params,
u64 *cookie);
int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy,
struct wireless_dev *wdev,
u64 cookie);
int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev,
bool enabled, int timeout);
int (*set_cqm_rssi_config)(struct wiphy *wiphy,
struct net_device *dev,
s32 rssi_thold, u32 rssi_hyst);
int (*set_cqm_rssi_range_config)(struct wiphy *wiphy,
struct net_device *dev,
s32 rssi_low, s32 rssi_high);
int (*set_cqm_txe_config)(struct wiphy *wiphy,
struct net_device *dev,
u32 rate, u32 pkts, u32 intvl);
void (*update_mgmt_frame_registrations)(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct mgmt_frame_regs *upd);
int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
int (*sched_scan_start)(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_sched_scan_request *request);
int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev,
u64 reqid);
int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_gtk_rekey_data *data);
int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,
const u8 *peer, int link_id,
u8 action_code, u8 dialog_token, u16 status_code,
u32 peer_capability, bool initiator,
const u8 *buf, size_t len);
int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev,
const u8 *peer, enum nl80211_tdls_operation oper);
int (*probe_client)(struct wiphy *wiphy, struct net_device *dev,
const u8 *peer, u64 *cookie);
int (*set_noack_map)(struct wiphy *wiphy,
struct net_device *dev,
u16 noack_map);
int (*get_channel)(struct wiphy *wiphy,
struct wireless_dev *wdev,
unsigned int link_id,
struct cfg80211_chan_def *chandef);
int (*start_p2p_device)(struct wiphy *wiphy,
struct wireless_dev *wdev);
void (*stop_p2p_device)(struct wiphy *wiphy,
struct wireless_dev *wdev);
int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev,
const struct cfg80211_acl_data *params);
int (*start_radar_detection)(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_chan_def *chandef,
u32 cac_time_ms);
void (*end_cac)(struct wiphy *wiphy,
struct net_device *dev);
int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_update_ft_ies_params *ftie);
int (*crit_proto_start)(struct wiphy *wiphy,
struct wireless_dev *wdev,
enum nl80211_crit_proto_id protocol,
u16 duration);
void (*crit_proto_stop)(struct wiphy *wiphy,
struct wireless_dev *wdev);
int (*set_coalesce)(struct wiphy *wiphy,
struct cfg80211_coalesce *coalesce);
int (*channel_switch)(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_csa_settings *params);
int (*set_qos_map)(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_qos_map *qos_map);
int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,
unsigned int link_id,
struct cfg80211_chan_def *chandef);
int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
u8 tsid, const u8 *peer, u8 user_prio,
u16 admitted_time);
int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev,
u8 tsid, const u8 *peer);
int (*tdls_channel_switch)(struct wiphy *wiphy,
struct net_device *dev,
const u8 *addr, u8 oper_class,
struct cfg80211_chan_def *chandef);
void (*tdls_cancel_channel_switch)(struct wiphy *wiphy,
struct net_device *dev,
const u8 *addr);
int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev,
struct cfg80211_nan_conf *conf);
void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
struct cfg80211_nan_func *nan_func);
void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,
u64 cookie);
int (*nan_change_conf)(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct cfg80211_nan_conf *conf,
u32 changes);
int (*set_multicast_to_unicast)(struct wiphy *wiphy,
struct net_device *dev,
const bool enabled);
int (*get_txq_stats)(struct wiphy *wiphy,
struct wireless_dev *wdev,
struct cfg80211_txq_stats *txqstats);
int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev,
const struct cfg80211_pmk_conf *conf);
int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev,
const u8 *aa);
int (*external_auth)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_external_auth_params *params);
int (*tx_control_port)(struct wiphy *wiphy,
struct net_device *dev,
const u8 *buf, size_t len,
const u8 *dest, const __be16 proto,
const bool noencrypt, int link_id,
u64 *cookie);
int (*get_ftm_responder_stats)(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_ftm_responder_stats *ftm_stats);
int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
struct cfg80211_pmsr_request *request);
void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,
struct cfg80211_pmsr_request *request);
int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_update_owe_info *owe_info);
int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,
const u8 *buf, size_t len);
int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_tid_config *tid_conf);
int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,
const u8 *peer, u8 tids);
int (*set_sar_specs)(struct wiphy *wiphy,
struct cfg80211_sar_specs *sar);
int (*color_change)(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_color_change_settings *params);
int (*set_fils_aad)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_fils_aad *fils_aad);
int (*set_radar_background)(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef);
int (*add_link_station)(struct wiphy *wiphy, struct net_device *dev,
struct link_station_parameters *params);
int (*mod_link_station)(struct wiphy *wiphy, struct net_device *dev,
struct link_station_parameters *params);
int (*del_link_station)(struct wiphy *wiphy, struct net_device *dev,
struct link_station_del_parameters *params);
int (*set_hw_timestamp)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_set_hw_timestamp *hwts);
int (*set_ttlm)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ttlm_params *params);
};
/*
* wireless hardware and networking interfaces structures
* and registration/helper functions
*/
/**
* enum wiphy_flags - wiphy capability flags
*
* @WIPHY_FLAG_SPLIT_SCAN_6GHZ: if set to true, the scan request will be split
* into two, first for legacy bands and second for 6 GHz.
* @WIPHY_FLAG_NETNS_OK: if not set, do not allow changing the netns of this
* wiphy at all
* @WIPHY_FLAG_PS_ON_BY_DEFAULT: if set to true, powersave will be enabled
* by default -- this flag will be set depending on the kernel's default
* on wiphy_new(), but can be changed by the driver if it has a good
* reason to override the default
* @WIPHY_FLAG_4ADDR_AP: supports 4addr mode even on AP (with a single station
* on a VLAN interface). This flag also serves an extra purpose of
* supporting 4ADDR AP mode on devices which do not support AP/VLAN iftype.
* @WIPHY_FLAG_4ADDR_STATION: supports 4addr mode even as a station
* @WIPHY_FLAG_CONTROL_PORT_PROTOCOL: This device supports setting the
* control port protocol ethertype. The device also honours the
* control_port_no_encrypt flag.
* @WIPHY_FLAG_IBSS_RSN: The device supports IBSS RSN.
* @WIPHY_FLAG_MESH_AUTH: The device supports mesh authentication by routing
* auth frames to userspace. See @NL80211_MESH_SETUP_USERSPACE_AUTH.
* @WIPHY_FLAG_SUPPORTS_FW_ROAM: The device supports roaming feature in the
* firmware.
* @WIPHY_FLAG_AP_UAPSD: The device supports uapsd on AP.
* @WIPHY_FLAG_SUPPORTS_TDLS: The device supports TDLS (802.11z) operation.
* @WIPHY_FLAG_TDLS_EXTERNAL_SETUP: The device does not handle TDLS (802.11z)
* link setup/discovery operations internally. Setup, discovery and
* teardown packets should be sent through the @NL80211_CMD_TDLS_MGMT
* command. When this flag is not set, @NL80211_CMD_TDLS_OPER should be
* used for asking the driver/firmware to perform a TDLS operation.
* @WIPHY_FLAG_HAVE_AP_SME: device integrates AP SME
* @WIPHY_FLAG_REPORTS_OBSS: the device will report beacons from other BSSes
* when there are virtual interfaces in AP mode by calling
* cfg80211_report_obss_beacon().
* @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD: When operating as an AP, the device
* responds to probe-requests in hardware.
* @WIPHY_FLAG_OFFCHAN_TX: Device supports direct off-channel TX.
* @WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL: Device supports remain-on-channel call.
* @WIPHY_FLAG_SUPPORTS_5_10_MHZ: Device supports 5 MHz and 10 MHz channels.
* @WIPHY_FLAG_HAS_CHANNEL_SWITCH: Device supports channel switch in
* beaconing mode (AP, IBSS, Mesh, ...).
* @WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK: The device supports bigger kek and kck keys
* @WIPHY_FLAG_SUPPORTS_MLO: This is a temporary flag gating the MLO APIs,
* in order to not have them reachable in normal drivers, until we have
* complete feature/interface combinations/etc. advertisement. No driver
* should set this flag for now.
* @WIPHY_FLAG_SUPPORTS_EXT_KCK_32: The device supports 32-byte KCK keys.
* @WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER: The device could handle reg notify for
* NL80211_REGDOM_SET_BY_DRIVER.
* @WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON: reg_call_notifier() is called if driver
* set this flag to update channels on beacon hints.
* @WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY: support connection to non-primary link
* of an NSTR mobile AP MLD.
* @WIPHY_FLAG_DISABLE_WEXT: disable wireless extensions for this device
*/
enum wiphy_flags {
WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK = BIT(0),
WIPHY_FLAG_SUPPORTS_MLO = BIT(1),
WIPHY_FLAG_SPLIT_SCAN_6GHZ = BIT(2),
WIPHY_FLAG_NETNS_OK = BIT(3),
WIPHY_FLAG_PS_ON_BY_DEFAULT = BIT(4),
WIPHY_FLAG_4ADDR_AP = BIT(5),
WIPHY_FLAG_4ADDR_STATION = BIT(6),
WIPHY_FLAG_CONTROL_PORT_PROTOCOL = BIT(7),
WIPHY_FLAG_IBSS_RSN = BIT(8),
WIPHY_FLAG_DISABLE_WEXT = BIT(9),
WIPHY_FLAG_MESH_AUTH = BIT(10),
WIPHY_FLAG_SUPPORTS_EXT_KCK_32 = BIT(11),
WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY = BIT(12),
WIPHY_FLAG_SUPPORTS_FW_ROAM = BIT(13),
WIPHY_FLAG_AP_UAPSD = BIT(14),
WIPHY_FLAG_SUPPORTS_TDLS = BIT(15),
WIPHY_FLAG_TDLS_EXTERNAL_SETUP = BIT(16),
WIPHY_FLAG_HAVE_AP_SME = BIT(17),
WIPHY_FLAG_REPORTS_OBSS = BIT(18),
WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD = BIT(19),
WIPHY_FLAG_OFFCHAN_TX = BIT(20),
WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL = BIT(21),
WIPHY_FLAG_SUPPORTS_5_10_MHZ = BIT(22),
WIPHY_FLAG_HAS_CHANNEL_SWITCH = BIT(23),
WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER = BIT(24),
WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON = BIT(25),
};
/**
* struct ieee80211_iface_limit - limit on certain interface types
* @max: maximum number of interfaces of these types
* @types: interface types (bits)
*/
struct ieee80211_iface_limit {
u16 max;
u16 types;
};
/**
* struct ieee80211_iface_combination - possible interface combination
*
* With this structure the driver can describe which interface
* combinations it supports concurrently.
*
* Examples:
*
* 1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:
*
* .. code-block:: c
*
* struct ieee80211_iface_limit limits1[] = {
* { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
* { .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
* };
* struct ieee80211_iface_combination combination1 = {
* .limits = limits1,
* .n_limits = ARRAY_SIZE(limits1),
* .max_interfaces = 2,
* .beacon_int_infra_match = true,
* };
*
*
* 2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:
*
* .. code-block:: c
*
* struct ieee80211_iface_limit limits2[] = {
* { .max = 8, .types = BIT(NL80211_IFTYPE_AP) |
* BIT(NL80211_IFTYPE_P2P_GO), },
* };
* struct ieee80211_iface_combination combination2 = {
* .limits = limits2,
* .n_limits = ARRAY_SIZE(limits2),
* .max_interfaces = 8,
* .num_different_channels = 1,
* };
*
*
* 3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.
*
* This allows for an infrastructure connection and three P2P connections.
*
* .. code-block:: c
*
* struct ieee80211_iface_limit limits3[] = {
* { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
* { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |
* BIT(NL80211_IFTYPE_P2P_CLIENT), },
* };
* struct ieee80211_iface_combination combination3 = {
* .limits = limits3,
* .n_limits = ARRAY_SIZE(limits3),
* .max_interfaces = 4,
* .num_different_channels = 2,
* };
*
*/
struct ieee80211_iface_combination {
/**
* @limits:
* limits for the given interface types
*/
const struct ieee80211_iface_limit *limits;
/**
* @num_different_channels:
* can use up to this many different channels
*/
u32 num_different_channels;
/**
* @max_interfaces:
* maximum number of interfaces in total allowed in this group
*/
u16 max_interfaces;
/**
* @n_limits:
* number of limitations
*/
u8 n_limits;
/**
* @beacon_int_infra_match:
* In this combination, the beacon intervals between infrastructure
* and AP types must match. This is required only in special cases.
*/
bool beacon_int_infra_match;
/**
* @radar_detect_widths:
* bitmap of channel widths supported for radar detection
*/
u8 radar_detect_widths;
/**
* @radar_detect_regions:
* bitmap of regions supported for radar detection
*/
u8 radar_detect_regions;
/**
* @beacon_int_min_gcd:
* This interface combination supports different beacon intervals.
*
* = 0
* all beacon intervals for different interface must be same.
* > 0
* any beacon interval for the interface part of this combination AND
* GCD of all beacon intervals from beaconing interfaces of this
* combination must be greater or equal to this value.
*/
u32 beacon_int_min_gcd;
};
struct ieee80211_txrx_stypes {
u16 tx, rx;
};
/**
* enum wiphy_wowlan_support_flags - WoWLAN support flags
* @WIPHY_WOWLAN_ANY: supports wakeup for the special "any"
* trigger that keeps the device operating as-is and
* wakes up the host on any activity, for example a
* received packet that passed filtering; note that the
* packet should be preserved in that case
* @WIPHY_WOWLAN_MAGIC_PKT: supports wakeup on magic packet
* (see nl80211.h)
* @WIPHY_WOWLAN_DISCONNECT: supports wakeup on disconnect
* @WIPHY_WOWLAN_SUPPORTS_GTK_REKEY: supports GTK rekeying while asleep
* @WIPHY_WOWLAN_GTK_REKEY_FAILURE: supports wakeup on GTK rekey failure
* @WIPHY_WOWLAN_EAP_IDENTITY_REQ: supports wakeup on EAP identity request
* @WIPHY_WOWLAN_4WAY_HANDSHAKE: supports wakeup on 4-way handshake failure
* @WIPHY_WOWLAN_RFKILL_RELEASE: supports wakeup on RF-kill release
* @WIPHY_WOWLAN_NET_DETECT: supports wakeup on network detection
*/
enum wiphy_wowlan_support_flags {
WIPHY_WOWLAN_ANY = BIT(0),
WIPHY_WOWLAN_MAGIC_PKT = BIT(1),
WIPHY_WOWLAN_DISCONNECT = BIT(2),
WIPHY_WOWLAN_SUPPORTS_GTK_REKEY = BIT(3),
WIPHY_WOWLAN_GTK_REKEY_FAILURE = BIT(4),
WIPHY_WOWLAN_EAP_IDENTITY_REQ = BIT(5),
WIPHY_WOWLAN_4WAY_HANDSHAKE = BIT(6),
WIPHY_WOWLAN_RFKILL_RELEASE = BIT(7),
WIPHY_WOWLAN_NET_DETECT = BIT(8),
};
struct wiphy_wowlan_tcp_support {
const struct nl80211_wowlan_tcp_data_token_feature *tok;
u32 data_payload_max;
u32 data_interval_max;
u32 wake_payload_max;
bool seq;
};
/**
* struct wiphy_wowlan_support - WoWLAN support data
* @flags: see &enum wiphy_wowlan_support_flags
* @n_patterns: number of supported wakeup patterns
* (see nl80211.h for the pattern definition)
* @pattern_max_len: maximum length of each pattern
* @pattern_min_len: minimum length of each pattern
* @max_pkt_offset: maximum Rx packet offset
* @max_nd_match_sets: maximum number of matchsets for net-detect,
* similar, but not necessarily identical, to max_match_sets for
* scheduled scans.
* See &struct cfg80211_sched_scan_request.@match_sets for more
* details.
* @tcp: TCP wakeup support information
*/
struct wiphy_wowlan_support {
u32 flags;
int n_patterns;
int pattern_max_len;
int pattern_min_len;
int max_pkt_offset;
int max_nd_match_sets;
const struct wiphy_wowlan_tcp_support *tcp;
};
/**
* struct wiphy_coalesce_support - coalesce support data
* @n_rules: maximum number of coalesce rules
* @max_delay: maximum supported coalescing delay in msecs
* @n_patterns: number of supported patterns in a rule
* (see nl80211.h for the pattern definition)
* @pattern_max_len: maximum length of each pattern
* @pattern_min_len: minimum length of each pattern
* @max_pkt_offset: maximum Rx packet offset
*/
struct wiphy_coalesce_support {
int n_rules;
int max_delay;
int n_patterns;
int pattern_max_len;
int pattern_min_len;
int max_pkt_offset;
};
/**
* enum wiphy_vendor_command_flags - validation flags for vendor commands
* @WIPHY_VENDOR_CMD_NEED_WDEV: vendor command requires wdev
* @WIPHY_VENDOR_CMD_NEED_NETDEV: vendor command requires netdev
* @WIPHY_VENDOR_CMD_NEED_RUNNING: interface/wdev must be up & running
* (must be combined with %_WDEV or %_NETDEV)
*/
enum wiphy_vendor_command_flags {
WIPHY_VENDOR_CMD_NEED_WDEV = BIT(0),
WIPHY_VENDOR_CMD_NEED_NETDEV = BIT(1),
WIPHY_VENDOR_CMD_NEED_RUNNING = BIT(2),
};
/**
* enum wiphy_opmode_flag - Station's ht/vht operation mode information flags
*
* @STA_OPMODE_MAX_BW_CHANGED: Max Bandwidth changed
* @STA_OPMODE_SMPS_MODE_CHANGED: SMPS mode changed
* @STA_OPMODE_N_SS_CHANGED: max N_SS (number of spatial streams) changed
*
*/
enum wiphy_opmode_flag {
STA_OPMODE_MAX_BW_CHANGED = BIT(0),
STA_OPMODE_SMPS_MODE_CHANGED = BIT(1),
STA_OPMODE_N_SS_CHANGED = BIT(2),
};
/**
* struct sta_opmode_info - Station's ht/vht operation mode information
* @changed: contains value from &enum wiphy_opmode_flag
* @smps_mode: New SMPS mode value from &enum nl80211_smps_mode of a station
* @bw: new max bandwidth value from &enum nl80211_chan_width of a station
* @rx_nss: new rx_nss value of a station
*/
struct sta_opmode_info {
u32 changed;
enum nl80211_smps_mode smps_mode;
enum nl80211_chan_width bw;
u8 rx_nss;
};
#define VENDOR_CMD_RAW_DATA ((const struct nla_policy *)(long)(-ENODATA))
/**
* struct wiphy_vendor_command - vendor command definition
* @info: vendor command identifying information, as used in nl80211
* @flags: flags, see &enum wiphy_vendor_command_flags
* @doit: callback for the operation, note that wdev is %NULL if the
* flags didn't ask for a wdev and non-%NULL otherwise; the data
* pointer may be %NULL if userspace provided no data at all
* @dumpit: dump callback, for transferring bigger/multiple items. The
* @storage points to cb->args[5], ie. is preserved over the multiple
* dumpit calls.
* @policy: policy pointer for attributes within %NL80211_ATTR_VENDOR_DATA.
* Set this to %VENDOR_CMD_RAW_DATA if no policy can be given and the
* attribute is just raw data (e.g. a firmware command).
* @maxattr: highest attribute number in policy
* It's recommended to not have the same sub command with both @doit and
* @dumpit, so that userspace can assume certain ones are get and others
* are used with dump requests.
*/
struct wiphy_vendor_command {
struct nl80211_vendor_cmd_info info;
u32 flags;
int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int data_len);
int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev,
struct sk_buff *skb, const void *data, int data_len,
unsigned long *storage);
const struct nla_policy *policy;
unsigned int maxattr;
};
/**
* struct wiphy_iftype_ext_capab - extended capabilities per interface type
* @iftype: interface type
* @extended_capabilities: extended capabilities supported by the driver,
* additional capabilities might be supported by userspace; these are the
* 802.11 extended capabilities ("Extended Capabilities element") and are
* in the same format as in the information element. See IEEE Std
* 802.11-2012 8.4.2.29 for the defined fields.
* @extended_capabilities_mask: mask of the valid values
* @extended_capabilities_len: length of the extended capabilities
* @eml_capabilities: EML capabilities (for MLO)
* @mld_capa_and_ops: MLD capabilities and operations (for MLO)
*/
struct wiphy_iftype_ext_capab {
enum nl80211_iftype iftype;
const u8 *extended_capabilities;
const u8 *extended_capabilities_mask;
u8 extended_capabilities_len;
u16 eml_capabilities;
u16 mld_capa_and_ops;
};
/**
* cfg80211_get_iftype_ext_capa - lookup interface type extended capability
* @wiphy: the wiphy to look up from
* @type: the interface type to look up
*/
const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type);
/**
* struct cfg80211_pmsr_capabilities - cfg80211 peer measurement capabilities
* @max_peers: maximum number of peers in a single measurement
* @report_ap_tsf: can report assoc AP's TSF for radio resource measurement
* @randomize_mac_addr: can randomize MAC address for measurement
* @ftm: FTM measurement data
* @ftm.supported: FTM measurement is supported
* @ftm.asap: ASAP-mode is supported
* @ftm.non_asap: non-ASAP-mode is supported
* @ftm.request_lci: can request LCI data
* @ftm.request_civicloc: can request civic location data
* @ftm.preambles: bitmap of preambles supported (&enum nl80211_preamble)
* @ftm.bandwidths: bitmap of bandwidths supported (&enum nl80211_chan_width)
* @ftm.max_bursts_exponent: maximum burst exponent supported
* (set to -1 if not limited; note that setting this will necessarily
* forbid using the value 15 to let the responder pick)
* @ftm.max_ftms_per_burst: maximum FTMs per burst supported (set to 0 if
* not limited)
* @ftm.trigger_based: trigger based ranging measurement is supported
* @ftm.non_trigger_based: non trigger based ranging measurement is supported
*/
struct cfg80211_pmsr_capabilities {
unsigned int max_peers;
u8 report_ap_tsf:1,
randomize_mac_addr:1;
struct {
u32 preambles;
u32 bandwidths;
s8 max_bursts_exponent;
u8 max_ftms_per_burst;
u8 supported:1,
asap:1,
non_asap:1,
request_lci:1,
request_civicloc:1,
trigger_based:1,
non_trigger_based:1;
} ftm;
};
/**
* struct wiphy_iftype_akm_suites - This structure encapsulates supported akm
* suites for interface types defined in @iftypes_mask. Each type in the
* @iftypes_mask must be unique across all instances of iftype_akm_suites.
*
* @iftypes_mask: bitmask of interfaces types
* @akm_suites: points to an array of supported akm suites
* @n_akm_suites: number of supported AKM suites
*/
struct wiphy_iftype_akm_suites {
u16 iftypes_mask;
const u32 *akm_suites;
int n_akm_suites;
};
#define CFG80211_HW_TIMESTAMP_ALL_PEERS 0xffff
/**
* struct wiphy - wireless hardware description
* @mtx: mutex for the data (structures) of this device
* @reg_notifier: the driver's regulatory notification callback,
* note that if your driver uses wiphy_apply_custom_regulatory()
* the reg_notifier's request can be passed as NULL
* @regd: the driver's regulatory domain, if one was requested via
* the regulatory_hint() API. This can be used by the driver
* on the reg_notifier() if it chooses to ignore future
* regulatory domain changes caused by other drivers.
* @signal_type: signal type reported in &struct cfg80211_bss.
* @cipher_suites: supported cipher suites
* @n_cipher_suites: number of supported cipher suites
* @akm_suites: supported AKM suites. These are the default AKMs supported if
* the supported AKMs not advertized for a specific interface type in
* iftype_akm_suites.
* @n_akm_suites: number of supported AKM suites
* @iftype_akm_suites: array of supported akm suites info per interface type.
* Note that the bits in @iftypes_mask inside this structure cannot
* overlap (i.e. only one occurrence of each type is allowed across all
* instances of iftype_akm_suites).
* @num_iftype_akm_suites: number of interface types for which supported akm
* suites are specified separately.
* @retry_short: Retry limit for short frames (dot11ShortRetryLimit)
* @retry_long: Retry limit for long frames (dot11LongRetryLimit)
* @frag_threshold: Fragmentation threshold (dot11FragmentationThreshold);
* -1 = fragmentation disabled, only odd values >= 256 used
* @rts_threshold: RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled
* @_net: the network namespace this wiphy currently lives in
* @perm_addr: permanent MAC address of this device
* @addr_mask: If the device supports multiple MAC addresses by masking,
* set this to a mask with variable bits set to 1, e.g. if the last
* four bits are variable then set it to 00-00-00-00-00-0f. The actual
* variable bits shall be determined by the interfaces added, with
* interfaces not matching the mask being rejected to be brought up.
* @n_addresses: number of addresses in @addresses.
* @addresses: If the device has more than one address, set this pointer
* to a list of addresses (6 bytes each). The first one will be used
* by default for perm_addr. In this case, the mask should be set to
* all-zeroes. In this case it is assumed that the device can handle
* the same number of arbitrary MAC addresses.
* @registered: protects ->resume and ->suspend sysfs callbacks against
* unregister hardware
* @debugfsdir: debugfs directory used for this wiphy (ieee80211/<wiphyname>).
* It will be renamed automatically on wiphy renames
* @dev: (virtual) struct device for this wiphy. The item in
* /sys/class/ieee80211/ points to this. You need use set_wiphy_dev()
* (see below).
* @wext: wireless extension handlers
* @priv: driver private data (sized according to wiphy_new() parameter)
* @interface_modes: bitmask of interfaces types valid for this wiphy,
* must be set by driver
* @iface_combinations: Valid interface combinations array, should not
* list single interface types.
* @n_iface_combinations: number of entries in @iface_combinations array.
* @software_iftypes: bitmask of software interface types, these are not
* subject to any restrictions since they are purely managed in SW.
* @flags: wiphy flags, see &enum wiphy_flags
* @regulatory_flags: wiphy regulatory flags, see
* &enum ieee80211_regulatory_flags
* @features: features advertised to nl80211, see &enum nl80211_feature_flags.
* @ext_features: extended features advertised to nl80211, see
* &enum nl80211_ext_feature_index.
* @bss_priv_size: each BSS struct has private data allocated with it,
* this variable determines its size
* @max_scan_ssids: maximum number of SSIDs the device can scan for in
* any given scan
* @max_sched_scan_reqs: maximum number of scheduled scan requests that
* the device can run concurrently.
* @max_sched_scan_ssids: maximum number of SSIDs the device can scan
* for in any given scheduled scan
* @max_match_sets: maximum number of match sets the device can handle
* when performing a scheduled scan, 0 if filtering is not
* supported.
* @max_scan_ie_len: maximum length of user-controlled IEs device can
* add to probe request frames transmitted during a scan, must not
* include fixed IEs like supported rates
* @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled
* scans
* @max_sched_scan_plans: maximum number of scan plans (scan interval and number
* of iterations) for scheduled scan supported by the device.
* @max_sched_scan_plan_interval: maximum interval (in seconds) for a
* single scan plan supported by the device.
* @max_sched_scan_plan_iterations: maximum number of iterations for a single
* scan plan supported by the device.
* @coverage_class: current coverage class
* @fw_version: firmware version for ethtool reporting
* @hw_version: hardware version for ethtool reporting
* @max_num_pmkids: maximum number of PMKIDs supported by device
* @privid: a pointer that drivers can use to identify if an arbitrary
* wiphy is theirs, e.g. in global notifiers
* @bands: information about bands/channels supported by this device
*
* @mgmt_stypes: bitmasks of frame subtypes that can be subscribed to or
* transmitted through nl80211, points to an array indexed by interface
* type
*
* @available_antennas_tx: bitmap of antennas which are available to be
* configured as TX antennas. Antenna configuration commands will be
* rejected unless this or @available_antennas_rx is set.
*
* @available_antennas_rx: bitmap of antennas which are available to be
* configured as RX antennas. Antenna configuration commands will be
* rejected unless this or @available_antennas_tx is set.
*
* @probe_resp_offload:
* Bitmap of supported protocols for probe response offloading.
* See &enum nl80211_probe_resp_offload_support_attr. Only valid
* when the wiphy flag @WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.
*
* @max_remain_on_channel_duration: Maximum time a remain-on-channel operation
* may request, if implemented.
*
* @wowlan: WoWLAN support information
* @wowlan_config: current WoWLAN configuration; this should usually not be
* used since access to it is necessarily racy, use the parameter passed
* to the suspend() operation instead.
*
* @ap_sme_capa: AP SME capabilities, flags from &enum nl80211_ap_sme_features.
* @ht_capa_mod_mask: Specify what ht_cap values can be over-ridden.
* If null, then none can be over-ridden.
* @vht_capa_mod_mask: Specify what VHT capabilities can be over-ridden.
* If null, then none can be over-ridden.
*
* @wdev_list: the list of associated (virtual) interfaces; this list must
* not be modified by the driver, but can be read with RTNL/RCU protection.
*
* @max_acl_mac_addrs: Maximum number of MAC addresses that the device
* supports for ACL.
*
* @extended_capabilities: extended capabilities supported by the driver,
* additional capabilities might be supported by userspace; these are
* the 802.11 extended capabilities ("Extended Capabilities element")
* and are in the same format as in the information element. See
* 802.11-2012 8.4.2.29 for the defined fields. These are the default
* extended capabilities to be used if the capabilities are not specified
* for a specific interface type in iftype_ext_capab.
* @extended_capabilities_mask: mask of the valid values
* @extended_capabilities_len: length of the extended capabilities
* @iftype_ext_capab: array of extended capabilities per interface type
* @num_iftype_ext_capab: number of interface types for which extended
* capabilities are specified separately.
* @coalesce: packet coalescing support information
*
* @vendor_commands: array of vendor commands supported by the hardware
* @n_vendor_commands: number of vendor commands
* @vendor_events: array of vendor events supported by the hardware
* @n_vendor_events: number of vendor events
*
* @max_ap_assoc_sta: maximum number of associated stations supported in AP mode
* (including P2P GO) or 0 to indicate no such limit is advertised. The
* driver is allowed to advertise a theoretical limit that it can reach in
* some cases, but may not always reach.
*
* @max_num_csa_counters: Number of supported csa_counters in beacons
* and probe responses. This value should be set if the driver
* wishes to limit the number of csa counters. Default (0) means
* infinite.
* @bss_select_support: bitmask indicating the BSS selection criteria supported
* by the driver in the .connect() callback. The bit position maps to the
* attribute indices defined in &enum nl80211_bss_select_attr.
*
* @nan_supported_bands: bands supported by the device in NAN mode, a
* bitmap of &enum nl80211_band values. For instance, for
* NL80211_BAND_2GHZ, bit 0 would be set
* (i.e. BIT(NL80211_BAND_2GHZ)).
*
* @txq_limit: configuration of internal TX queue frame limit
* @txq_memory_limit: configuration internal TX queue memory limit
* @txq_quantum: configuration of internal TX queue scheduler quantum
*
* @tx_queue_len: allow setting transmit queue len for drivers not using
* wake_tx_queue
*
* @support_mbssid: can HW support association with nontransmitted AP
* @support_only_he_mbssid: don't parse MBSSID elements if it is not
* HE AP, in order to avoid compatibility issues.
* @support_mbssid must be set for this to have any effect.
*
* @pmsr_capa: peer measurement capabilities
*
* @tid_config_support: describes the per-TID config support that the
* device has
* @tid_config_support.vif: bitmap of attributes (configurations)
* supported by the driver for each vif
* @tid_config_support.peer: bitmap of attributes (configurations)
* supported by the driver for each peer
* @tid_config_support.max_retry: maximum supported retry count for
* long/short retry configuration
*
* @max_data_retry_count: maximum supported per TID retry count for
* configuration through the %NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
* %NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes
* @sar_capa: SAR control capabilities
* @rfkill: a pointer to the rfkill structure
*
* @mbssid_max_interfaces: maximum number of interfaces supported by the driver
* in a multiple BSSID set. This field must be set to a non-zero value
* by the driver to advertise MBSSID support.
* @ema_max_profile_periodicity: maximum profile periodicity supported by
* the driver. Setting this field to a non-zero value indicates that the
* driver supports enhanced multi-BSSID advertisements (EMA AP).
* @max_num_akm_suites: maximum number of AKM suites allowed for
* configuration through %NL80211_CMD_CONNECT, %NL80211_CMD_ASSOCIATE and
* %NL80211_CMD_START_AP. Set to NL80211_MAX_NR_AKM_SUITES if not set by
* driver. If set by driver minimum allowed value is
* NL80211_MAX_NR_AKM_SUITES in order to avoid compatibility issues with
* legacy userspace and maximum allowed value is
* CFG80211_MAX_NUM_AKM_SUITES.
*
* @hw_timestamp_max_peers: maximum number of peers that the driver supports
* enabling HW timestamping for concurrently. Setting this field to a
* non-zero value indicates that the driver supports HW timestamping.
* A value of %CFG80211_HW_TIMESTAMP_ALL_PEERS indicates the driver
* supports enabling HW timestamping for all peers (i.e. no need to
* specify a mac address).
*/
struct wiphy {
struct mutex mtx;
/* assign these fields before you register the wiphy */
u8 perm_addr[ETH_ALEN];
u8 addr_mask[ETH_ALEN];
struct mac_address *addresses;
const struct ieee80211_txrx_stypes *mgmt_stypes;
const struct ieee80211_iface_combination *iface_combinations;
int n_iface_combinations;
u16 software_iftypes;
u16 n_addresses;
/* Supported interface modes, OR together BIT(NL80211_IFTYPE_...) */
u16 interface_modes;
u16 max_acl_mac_addrs;
u32 flags, regulatory_flags, features;
u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
u32 ap_sme_capa;
enum cfg80211_signal_type signal_type;
int bss_priv_size;
u8 max_scan_ssids;
u8 max_sched_scan_reqs;
u8 max_sched_scan_ssids;
u8 max_match_sets;
u16 max_scan_ie_len;
u16 max_sched_scan_ie_len;
u32 max_sched_scan_plans;
u32 max_sched_scan_plan_interval;
u32 max_sched_scan_plan_iterations;
int n_cipher_suites;
const u32 *cipher_suites;
int n_akm_suites;
const u32 *akm_suites;
const struct wiphy_iftype_akm_suites *iftype_akm_suites;
unsigned int num_iftype_akm_suites;
u8 retry_short;
u8 retry_long;
u32 frag_threshold;
u32 rts_threshold;
u8 coverage_class;
char fw_version[ETHTOOL_FWVERS_LEN];
u32 hw_version;
#ifdef CONFIG_PM
const struct wiphy_wowlan_support *wowlan;
struct cfg80211_wowlan *wowlan_config;
#endif
u16 max_remain_on_channel_duration;
u8 max_num_pmkids;
u32 available_antennas_tx;
u32 available_antennas_rx;
u32 probe_resp_offload;
const u8 *extended_capabilities, *extended_capabilities_mask;
u8 extended_capabilities_len;
const struct wiphy_iftype_ext_capab *iftype_ext_capab;
unsigned int num_iftype_ext_capab;
const void *privid;
struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
void (*reg_notifier)(struct wiphy *wiphy,
struct regulatory_request *request);
/* fields below are read-only, assigned by cfg80211 */
const struct ieee80211_regdomain __rcu *regd;
struct device dev;
bool registered;
struct dentry *debugfsdir;
const struct ieee80211_ht_cap *ht_capa_mod_mask;
const struct ieee80211_vht_cap *vht_capa_mod_mask;
struct list_head wdev_list;
possible_net_t _net;
#ifdef CONFIG_CFG80211_WEXT
const struct iw_handler_def *wext;
#endif
const struct wiphy_coalesce_support *coalesce;
const struct wiphy_vendor_command *vendor_commands;
const struct nl80211_vendor_cmd_info *vendor_events;
int n_vendor_commands, n_vendor_events;
u16 max_ap_assoc_sta;
u8 max_num_csa_counters;
u32 bss_select_support;
u8 nan_supported_bands;
u32 txq_limit;
u32 txq_memory_limit;
u32 txq_quantum;
unsigned long tx_queue_len;
u8 support_mbssid:1,
support_only_he_mbssid:1;
const struct cfg80211_pmsr_capabilities *pmsr_capa;
struct {
u64 peer, vif;
u8 max_retry;
} tid_config_support;
u8 max_data_retry_count;
const struct cfg80211_sar_capa *sar_capa;
struct rfkill *rfkill;
u8 mbssid_max_interfaces;
u8 ema_max_profile_periodicity;
u16 max_num_akm_suites;
u16 hw_timestamp_max_peers;
char priv[] __aligned(NETDEV_ALIGN);
};
static inline struct net *wiphy_net(struct wiphy *wiphy)
{
return read_pnet(&wiphy->_net);
}
static inline void wiphy_net_set(struct wiphy *wiphy, struct net *net)
{
write_pnet(&wiphy->_net, net);
}
/**
* wiphy_priv - return priv from wiphy
*
* @wiphy: the wiphy whose priv pointer to return
* Return: The priv of @wiphy.
*/
static inline void *wiphy_priv(struct wiphy *wiphy)
{
BUG_ON(!wiphy);
return &wiphy->priv;
}
/**
* priv_to_wiphy - return the wiphy containing the priv
*
* @priv: a pointer previously returned by wiphy_priv
* Return: The wiphy of @priv.
*/
static inline struct wiphy *priv_to_wiphy(void *priv)
{
BUG_ON(!priv);
return container_of(priv, struct wiphy, priv);
}
/**
* set_wiphy_dev - set device pointer for wiphy
*
* @wiphy: The wiphy whose device to bind
* @dev: The device to parent it to
*/
static inline void set_wiphy_dev(struct wiphy *wiphy, struct device *dev)
{
wiphy->dev.parent = dev;
}
/**
* wiphy_dev - get wiphy dev pointer
*
* @wiphy: The wiphy whose device struct to look up
* Return: The dev of @wiphy.
*/
static inline struct device *wiphy_dev(struct wiphy *wiphy)
{
return wiphy->dev.parent;
}
/**
* wiphy_name - get wiphy name
*
* @wiphy: The wiphy whose name to return
* Return: The name of @wiphy.
*/
static inline const char *wiphy_name(const struct wiphy *wiphy)
{
return dev_name(&wiphy->dev);
}
/**
* wiphy_new_nm - create a new wiphy for use with cfg80211
*
* @ops: The configuration operations for this device
* @sizeof_priv: The size of the private area to allocate
* @requested_name: Request a particular name.
* NULL is valid value, and means use the default phy%d naming.
*
* Create a new wiphy and associate the given operations with it.
* @sizeof_priv bytes are allocated for private use.
*
* Return: A pointer to the new wiphy. This pointer must be
* assigned to each netdev's ieee80211_ptr for proper operation.
*/
struct wiphy *wiphy_new_nm(const struct cfg80211_ops *ops, int sizeof_priv,
const char *requested_name);
/**
* wiphy_new - create a new wiphy for use with cfg80211
*
* @ops: The configuration operations for this device
* @sizeof_priv: The size of the private area to allocate
*
* Create a new wiphy and associate the given operations with it.
* @sizeof_priv bytes are allocated for private use.
*
* Return: A pointer to the new wiphy. This pointer must be
* assigned to each netdev's ieee80211_ptr for proper operation.
*/
static inline struct wiphy *wiphy_new(const struct cfg80211_ops *ops,
int sizeof_priv)
{
return wiphy_new_nm(ops, sizeof_priv, NULL);
}
/**
* wiphy_register - register a wiphy with cfg80211
*
* @wiphy: The wiphy to register.
*
* Return: A non-negative wiphy index or a negative error code.
*/
int wiphy_register(struct wiphy *wiphy);
/* this is a define for better error reporting (file/line) */
#define lockdep_assert_wiphy(wiphy) lockdep_assert_held(&(wiphy)->mtx)
/**
* rcu_dereference_wiphy - rcu_dereference with debug checking
* @wiphy: the wiphy to check the locking on
* @p: The pointer to read, prior to dereferencing
*
* Do an rcu_dereference(p), but check caller either holds rcu_read_lock()
* or RTNL. Note: Please prefer wiphy_dereference() or rcu_dereference().
*/
#define rcu_dereference_wiphy(wiphy, p) \
rcu_dereference_check(p, lockdep_is_held(&wiphy->mtx))
/**
* wiphy_dereference - fetch RCU pointer when updates are prevented by wiphy mtx
* @wiphy: the wiphy to check the locking on
* @p: The pointer to read, prior to dereferencing
*
* Return the value of the specified RCU-protected pointer, but omit the
* READ_ONCE(), because caller holds the wiphy mutex used for updates.
*/
#define wiphy_dereference(wiphy, p) \
rcu_dereference_protected(p, lockdep_is_held(&wiphy->mtx))
/**
* get_wiphy_regdom - get custom regdomain for the given wiphy
* @wiphy: the wiphy to get the regdomain from
*/
const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy);
/**
* wiphy_unregister - deregister a wiphy from cfg80211
*
* @wiphy: The wiphy to unregister.
*
* After this call, no more requests can be made with this priv
* pointer, but the call may sleep to wait for an outstanding
* request that is being handled.
*/
void wiphy_unregister(struct wiphy *wiphy);
/**
* wiphy_free - free wiphy
*
* @wiphy: The wiphy to free
*/
void wiphy_free(struct wiphy *wiphy);
/* internal structs */
struct cfg80211_conn;
struct cfg80211_internal_bss;
struct cfg80211_cached_keys;
struct cfg80211_cqm_config;
/**
* wiphy_lock - lock the wiphy
* @wiphy: the wiphy to lock
*
* This is needed around registering and unregistering netdevs that
* aren't created through cfg80211 calls, since that requires locking
* in cfg80211 when the notifiers is called, but that cannot
* differentiate which way it's called.
*
* It can also be used by drivers for their own purposes.
*
* When cfg80211 ops are called, the wiphy is already locked.
*
* Note that this makes sure that no workers that have been queued
* with wiphy_queue_work() are running.
*/
static inline void wiphy_lock(struct wiphy *wiphy)
__acquires(&wiphy->mtx)
{
mutex_lock(&wiphy->mtx);
__acquire(&wiphy->mtx);
}
/**
* wiphy_unlock - unlock the wiphy again
* @wiphy: the wiphy to unlock
*/
static inline void wiphy_unlock(struct wiphy *wiphy)
__releases(&wiphy->mtx)
{
__release(&wiphy->mtx);
mutex_unlock(&wiphy->mtx);
}
struct wiphy_work;
typedef void (*wiphy_work_func_t)(struct wiphy *, struct wiphy_work *);
struct wiphy_work {
struct list_head entry;
wiphy_work_func_t func;
};
static inline void wiphy_work_init(struct wiphy_work *work,
wiphy_work_func_t func)
{
INIT_LIST_HEAD(&work->entry);
work->func = func;
}
/**
* wiphy_work_queue - queue work for the wiphy
* @wiphy: the wiphy to queue for
* @work: the work item
*
* This is useful for work that must be done asynchronously, and work
* queued here has the special property that the wiphy mutex will be
* held as if wiphy_lock() was called, and that it cannot be running
* after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
* use just cancel_work() instead of cancel_work_sync(), it requires
* being in a section protected by wiphy_lock().
*/
void wiphy_work_queue(struct wiphy *wiphy, struct wiphy_work *work);
/**
* wiphy_work_cancel - cancel previously queued work
* @wiphy: the wiphy, for debug purposes
* @work: the work to cancel
*
* Cancel the work *without* waiting for it, this assumes being
* called under the wiphy mutex acquired by wiphy_lock().
*/
void wiphy_work_cancel(struct wiphy *wiphy, struct wiphy_work *work);
/**
* wiphy_work_flush - flush previously queued work
* @wiphy: the wiphy, for debug purposes
* @work: the work to flush, this can be %NULL to flush all work
*
* Flush the work (i.e. run it if pending). This must be called
* under the wiphy mutex acquired by wiphy_lock().
*/
void wiphy_work_flush(struct wiphy *wiphy, struct wiphy_work *work);
struct wiphy_delayed_work {
struct wiphy_work work;
struct wiphy *wiphy;
struct timer_list timer;
};
void wiphy_delayed_work_timer(struct timer_list *t);
static inline void wiphy_delayed_work_init(struct wiphy_delayed_work *dwork,
wiphy_work_func_t func)
{
timer_setup(&dwork->timer, wiphy_delayed_work_timer, 0);
wiphy_work_init(&dwork->work, func);
}
/**
* wiphy_delayed_work_queue - queue delayed work for the wiphy
* @wiphy: the wiphy to queue for
* @dwork: the delayable worker
* @delay: number of jiffies to wait before queueing
*
* This is useful for work that must be done asynchronously, and work
* queued here has the special property that the wiphy mutex will be
* held as if wiphy_lock() was called, and that it cannot be running
* after wiphy_lock() was called. Therefore, wiphy_cancel_work() can
* use just cancel_work() instead of cancel_work_sync(), it requires
* being in a section protected by wiphy_lock().
*/
void wiphy_delayed_work_queue(struct wiphy *wiphy,
struct wiphy_delayed_work *dwork,
unsigned long delay);
/**
* wiphy_delayed_work_cancel - cancel previously queued delayed work
* @wiphy: the wiphy, for debug purposes
* @dwork: the delayed work to cancel
*
* Cancel the work *without* waiting for it, this assumes being
* called under the wiphy mutex acquired by wiphy_lock().
*/
void wiphy_delayed_work_cancel(struct wiphy *wiphy,
struct wiphy_delayed_work *dwork);
/**
* wiphy_delayed_work_flush - flush previously queued delayed work
* @wiphy: the wiphy, for debug purposes
* @dwork: the delayed work to flush
*
* Flush the work (i.e. run it if pending). This must be called
* under the wiphy mutex acquired by wiphy_lock().
*/
void wiphy_delayed_work_flush(struct wiphy *wiphy,
struct wiphy_delayed_work *dwork);
/**
* struct wireless_dev - wireless device state
*
* For netdevs, this structure must be allocated by the driver
* that uses the ieee80211_ptr field in struct net_device (this
* is intentional so it can be allocated along with the netdev.)
* It need not be registered then as netdev registration will
* be intercepted by cfg80211 to see the new wireless device,
* however, drivers must lock the wiphy before registering or
* unregistering netdevs if they pre-create any netdevs (in ops
* called from cfg80211, the wiphy is already locked.)
*
* For non-netdev uses, it must also be allocated by the driver
* in response to the cfg80211 callbacks that require it, as
* there's no netdev registration in that case it may not be
* allocated outside of callback operations that return it.
*
* @wiphy: pointer to hardware description
* @iftype: interface type
* @registered: is this wdev already registered with cfg80211
* @registering: indicates we're doing registration under wiphy lock
* for the notifier
* @list: (private) Used to collect the interfaces
* @netdev: (private) Used to reference back to the netdev, may be %NULL
* @identifier: (private) Identifier used in nl80211 to identify this
* wireless device if it has no netdev
* @u: union containing data specific to @iftype
* @connected: indicates if connected or not (STA mode)
* @wext: (private) Used by the internal wireless extensions compat code
* @wext.ibss: (private) IBSS data part of wext handling
* @wext.connect: (private) connection handling data
* @wext.keys: (private) (WEP) key data
* @wext.ie: (private) extra elements for association
* @wext.ie_len: (private) length of extra elements
* @wext.bssid: (private) selected network BSSID
* @wext.ssid: (private) selected network SSID
* @wext.default_key: (private) selected default key index
* @wext.default_mgmt_key: (private) selected default management key index
* @wext.prev_bssid: (private) previous BSSID for reassociation
* @wext.prev_bssid_valid: (private) previous BSSID validity
* @use_4addr: indicates 4addr mode is used on this interface, must be
* set by driver (if supported) on add_interface BEFORE registering the
* netdev and may otherwise be used by driver read-only, will be update
* by cfg80211 on change_interface
* @mgmt_registrations: list of registrations for management frames
* @mgmt_registrations_need_update: mgmt registrations were updated,
* need to propagate the update to the driver
* @address: The address for this device, valid only if @netdev is %NULL
* @is_running: true if this is a non-netdev device that has been started, e.g.
* the P2P Device.
* @cac_started: true if DFS channel availability check has been started
* @cac_start_time: timestamp (jiffies) when the dfs state was entered.
* @cac_time_ms: CAC time in ms
* @ps: powersave mode is enabled
* @ps_timeout: dynamic powersave timeout
* @ap_unexpected_nlportid: (private) netlink port ID of application
* registered for unexpected class 3 frames (AP mode)
* @conn: (private) cfg80211 software SME connection state machine data
* @connect_keys: (private) keys to set after connection is established
* @conn_bss_type: connecting/connected BSS type
* @conn_owner_nlportid: (private) connection owner socket port ID
* @disconnect_wk: (private) auto-disconnect work
* @disconnect_bssid: (private) the BSSID to use for auto-disconnect
* @event_list: (private) list for internal event processing
* @event_lock: (private) lock for event list
* @owner_nlportid: (private) owner socket port ID
* @nl_owner_dead: (private) owner socket went away
* @cqm_rssi_work: (private) CQM RSSI reporting work
* @cqm_config: (private) nl80211 RSSI monitor state
* @pmsr_list: (private) peer measurement requests
* @pmsr_lock: (private) peer measurements requests/results lock
* @pmsr_free_wk: (private) peer measurements cleanup work
* @unprot_beacon_reported: (private) timestamp of last
* unprotected beacon report
* @links: array of %IEEE80211_MLD_MAX_NUM_LINKS elements containing @addr
* @ap and @client for each link
* @valid_links: bitmap describing what elements of @links are valid
*/
struct wireless_dev {
struct wiphy *wiphy;
enum nl80211_iftype iftype;
/* the remainder of this struct should be private to cfg80211 */
struct list_head list;
struct net_device *netdev;
u32 identifier;
struct list_head mgmt_registrations;
u8 mgmt_registrations_need_update:1;
bool use_4addr, is_running, registered, registering;
u8 address[ETH_ALEN] __aligned(sizeof(u16));
/* currently used for IBSS and SME - might be rearranged later */
struct cfg80211_conn *conn;
struct cfg80211_cached_keys *connect_keys;
enum ieee80211_bss_type conn_bss_type;
u32 conn_owner_nlportid;
struct work_struct disconnect_wk;
u8 disconnect_bssid[ETH_ALEN];
struct list_head event_list;
spinlock_t event_lock;
u8 connected:1;
bool ps;
int ps_timeout;
u32 ap_unexpected_nlportid;
u32 owner_nlportid;
bool nl_owner_dead;
/* FIXME: need to rework radar detection for MLO */
bool cac_started;
unsigned long cac_start_time;
unsigned int cac_time_ms;
#ifdef CONFIG_CFG80211_WEXT
/* wext data */
struct {
struct cfg80211_ibss_params ibss;
struct cfg80211_connect_params connect;
struct cfg80211_cached_keys *keys;
const u8 *ie;
size_t ie_len;
u8 bssid[ETH_ALEN];
u8 prev_bssid[ETH_ALEN];
u8 ssid[IEEE80211_MAX_SSID_LEN];
s8 default_key, default_mgmt_key;
bool prev_bssid_valid;
} wext;
#endif
struct wiphy_work cqm_rssi_work;
struct cfg80211_cqm_config __rcu *cqm_config;
struct list_head pmsr_list;
spinlock_t pmsr_lock;
struct work_struct pmsr_free_wk;
unsigned long unprot_beacon_reported;
union {
struct {
u8 connected_addr[ETH_ALEN] __aligned(2);
u8 ssid[IEEE80211_MAX_SSID_LEN];
u8 ssid_len;
} client;
struct {
int beacon_interval;
struct cfg80211_chan_def preset_chandef;
struct cfg80211_chan_def chandef;
u8 id[IEEE80211_MAX_MESH_ID_LEN];
u8 id_len, id_up_len;
} mesh;
struct {
struct cfg80211_chan_def preset_chandef;
u8 ssid[IEEE80211_MAX_SSID_LEN];
u8 ssid_len;
} ap;
struct {
struct cfg80211_internal_bss *current_bss;
struct cfg80211_chan_def chandef;
int beacon_interval;
u8 ssid[IEEE80211_MAX_SSID_LEN];
u8 ssid_len;
} ibss;
struct {
struct cfg80211_chan_def chandef;
} ocb;
} u;
struct {
u8 addr[ETH_ALEN] __aligned(2);
union {
struct {
unsigned int beacon_interval;
struct cfg80211_chan_def chandef;
} ap;
struct {
struct cfg80211_internal_bss *current_bss;
} client;
};
} links[IEEE80211_MLD_MAX_NUM_LINKS];
u16 valid_links;
};
static inline const u8 *wdev_address(struct wireless_dev *wdev)
{
if (wdev->netdev)
return wdev->netdev->dev_addr;
return wdev->address;
}
static inline bool wdev_running(struct wireless_dev *wdev)
{
if (wdev->netdev)
return netif_running(wdev->netdev);
return wdev->is_running;
}
/**
* wdev_priv - return wiphy priv from wireless_dev
*
* @wdev: The wireless device whose wiphy's priv pointer to return
* Return: The wiphy priv of @wdev.
*/
static inline void *wdev_priv(struct wireless_dev *wdev)
{
BUG_ON(!wdev);
return wiphy_priv(wdev->wiphy);
}
/**
* wdev_chandef - return chandef pointer from wireless_dev
* @wdev: the wdev
* @link_id: the link ID for MLO
*
* Return: The chandef depending on the mode, or %NULL.
*/
struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
unsigned int link_id);
static inline void WARN_INVALID_LINK_ID(struct wireless_dev *wdev,
unsigned int link_id)
{
WARN_ON(link_id && !wdev->valid_links);
WARN_ON(wdev->valid_links &&
!(wdev->valid_links & BIT(link_id)));
}
#define for_each_valid_link(link_info, link_id) \
for (link_id = 0; \
link_id < ((link_info)->valid_links ? \
ARRAY_SIZE((link_info)->links) : 1); \
link_id++) \
if (!(link_info)->valid_links || \
((link_info)->valid_links & BIT(link_id)))
/**
* DOC: Utility functions
*
* cfg80211 offers a number of utility functions that can be useful.
*/
/**
* ieee80211_channel_equal - compare two struct ieee80211_channel
*
* @a: 1st struct ieee80211_channel
* @b: 2nd struct ieee80211_channel
* Return: true if center frequency of @a == @b
*/
static inline bool
ieee80211_channel_equal(struct ieee80211_channel *a,
struct ieee80211_channel *b)
{
return (a->center_freq == b->center_freq &&
a->freq_offset == b->freq_offset);
}
/**
* ieee80211_channel_to_khz - convert ieee80211_channel to frequency in KHz
* @chan: struct ieee80211_channel to convert
* Return: The corresponding frequency (in KHz)
*/
static inline u32
ieee80211_channel_to_khz(const struct ieee80211_channel *chan)
{
return MHZ_TO_KHZ(chan->center_freq) + chan->freq_offset;
}
/**
* ieee80211_s1g_channel_width - get allowed channel width from @chan
*
* Only allowed for band NL80211_BAND_S1GHZ
* @chan: channel
* Return: The allowed channel width for this center_freq
*/
enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel *chan);
/**
* ieee80211_channel_to_freq_khz - convert channel number to frequency
* @chan: channel number
* @band: band, necessary due to channel number overlap
* Return: The corresponding frequency (in KHz), or 0 if the conversion failed.
*/
u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band);
/**
* ieee80211_channel_to_frequency - convert channel number to frequency
* @chan: channel number
* @band: band, necessary due to channel number overlap
* Return: The corresponding frequency (in MHz), or 0 if the conversion failed.
*/
static inline int
ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
{
return KHZ_TO_MHZ(ieee80211_channel_to_freq_khz(chan, band));
}
/**
* ieee80211_freq_khz_to_channel - convert frequency to channel number
* @freq: center frequency in KHz
* Return: The corresponding channel, or 0 if the conversion failed.
*/
int ieee80211_freq_khz_to_channel(u32 freq);
/**
* ieee80211_frequency_to_channel - convert frequency to channel number
* @freq: center frequency in MHz
* Return: The corresponding channel, or 0 if the conversion failed.
*/
static inline int
ieee80211_frequency_to_channel(int freq)
{
return ieee80211_freq_khz_to_channel(MHZ_TO_KHZ(freq));
}
/**
* ieee80211_get_channel_khz - get channel struct from wiphy for specified
* frequency
* @wiphy: the struct wiphy to get the channel for
* @freq: the center frequency (in KHz) of the channel
* Return: The channel struct from @wiphy at @freq.
*/
struct ieee80211_channel *
ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq);
/**
* ieee80211_get_channel - get channel struct from wiphy for specified frequency
*
* @wiphy: the struct wiphy to get the channel for
* @freq: the center frequency (in MHz) of the channel
* Return: The channel struct from @wiphy at @freq.
*/
static inline struct ieee80211_channel *
ieee80211_get_channel(struct wiphy *wiphy, int freq)
{
return ieee80211_get_channel_khz(wiphy, MHZ_TO_KHZ(freq));
}
/**
* cfg80211_channel_is_psc - Check if the channel is a 6 GHz PSC
* @chan: control channel to check
*
* The Preferred Scanning Channels (PSC) are defined in
* Draft IEEE P802.11ax/D5.0, 26.17.2.3.3
*/
static inline bool cfg80211_channel_is_psc(struct ieee80211_channel *chan)
{
if (chan->band != NL80211_BAND_6GHZ)
return false;
return ieee80211_frequency_to_channel(chan->center_freq) % 16 == 5;
}
/**
* ieee80211_get_response_rate - get basic rate for a given rate
*
* @sband: the band to look for rates in
* @basic_rates: bitmap of basic rates
* @bitrate: the bitrate for which to find the basic rate
*
* Return: The basic rate corresponding to a given bitrate, that
* is the next lower bitrate contained in the basic rate map,
* which is, for this function, given as a bitmap of indices of
* rates in the band's bitrate table.
*/
const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
u32 basic_rates, int bitrate);
/**
* ieee80211_mandatory_rates - get mandatory rates for a given band
* @sband: the band to look for rates in
*
* This function returns a bitmap of the mandatory rates for the given
* band, bits are set according to the rate position in the bitrates array.
*/
u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband);
/*
* Radiotap parsing functions -- for controlled injection support
*
* Implemented in net/wireless/radiotap.c
* Documentation in Documentation/networking/radiotap-headers.rst
*/
struct radiotap_align_size {
uint8_t align:4, size:4;
};
struct ieee80211_radiotap_namespace {
const struct radiotap_align_size *align_size;
int n_bits;
uint32_t oui;
uint8_t subns;
};
struct ieee80211_radiotap_vendor_namespaces {
const struct ieee80211_radiotap_namespace *ns;
int n_ns;
};
/**
* struct ieee80211_radiotap_iterator - tracks walk thru present radiotap args
* @this_arg_index: index of current arg, valid after each successful call
* to ieee80211_radiotap_iterator_next()
* @this_arg: pointer to current radiotap arg; it is valid after each
* call to ieee80211_radiotap_iterator_next() but also after
* ieee80211_radiotap_iterator_init() where it will point to
* the beginning of the actual data portion
* @this_arg_size: length of the current arg, for convenience
* @current_namespace: pointer to the current namespace definition
* (or internally %NULL if the current namespace is unknown)
* @is_radiotap_ns: indicates whether the current namespace is the default
* radiotap namespace or not
*
* @_rtheader: pointer to the radiotap header we are walking through
* @_max_length: length of radiotap header in cpu byte ordering
* @_arg_index: next argument index
* @_arg: next argument pointer
* @_next_bitmap: internal pointer to next present u32
* @_bitmap_shifter: internal shifter for curr u32 bitmap, b0 set == arg present
* @_vns: vendor namespace definitions
* @_next_ns_data: beginning of the next namespace's data
* @_reset_on_ext: internal; reset the arg index to 0 when going to the
* next bitmap word
*
* Describes the radiotap parser state. Fields prefixed with an underscore
* must not be used by users of the parser, only by the parser internally.
*/
struct ieee80211_radiotap_iterator {
struct ieee80211_radiotap_header *_rtheader;
const struct ieee80211_radiotap_vendor_namespaces *_vns;
const struct ieee80211_radiotap_namespace *current_namespace;
unsigned char *_arg, *_next_ns_data;
__le32 *_next_bitmap;
unsigned char *this_arg;
int this_arg_index;
int this_arg_size;
int is_radiotap_ns;
int _max_length;
int _arg_index;
uint32_t _bitmap_shifter;
int _reset_on_ext;
};
int
ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,
struct ieee80211_radiotap_header *radiotap_header,
int max_length,
const struct ieee80211_radiotap_vendor_namespaces *vns);
int
ieee80211_radiotap_iterator_next(struct ieee80211_radiotap_iterator *iterator);
extern const unsigned char rfc1042_header[6];
extern const unsigned char bridge_tunnel_header[6];
/**
* ieee80211_get_hdrlen_from_skb - get header length from data
*
* @skb: the frame
*
* Given an skb with a raw 802.11 header at the data pointer this function
* returns the 802.11 header length.
*
* Return: The 802.11 header length in bytes (not including encryption
* headers). Or 0 if the data in the sk_buff is too short to contain a valid
* 802.11 header.
*/
unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
/**
* ieee80211_hdrlen - get header length in bytes from frame control
* @fc: frame control field in little-endian format
* Return: The header length in bytes.
*/
unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc);
/**
* ieee80211_get_mesh_hdrlen - get mesh extension header length
* @meshhdr: the mesh extension header, only the flags field
* (first byte) will be accessed
* Return: The length of the extension header, which is always at
* least 6 bytes and at most 18 if address 5 and 6 are present.
*/
unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr);
/**
* DOC: Data path helpers
*
* In addition to generic utilities, cfg80211 also offers
* functions that help implement the data path for devices
* that do not do the 802.11/802.3 conversion on the device.
*/
/**
* ieee80211_data_to_8023_exthdr - convert an 802.11 data frame to 802.3
* @skb: the 802.11 data frame
* @ehdr: pointer to a &struct ethhdr that will get the header, instead
* of it being pushed into the SKB
* @addr: the device MAC address
* @iftype: the virtual interface type
* @data_offset: offset of payload after the 802.11 header
* @is_amsdu: true if the 802.11 header is A-MSDU
* Return: 0 on success. Non-zero on error.
*/
int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
const u8 *addr, enum nl80211_iftype iftype,
u8 data_offset, bool is_amsdu);
/**
* ieee80211_data_to_8023 - convert an 802.11 data frame to 802.3
* @skb: the 802.11 data frame
* @addr: the device MAC address
* @iftype: the virtual interface type
* Return: 0 on success. Non-zero on error.
*/
static inline int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
enum nl80211_iftype iftype)
{
return ieee80211_data_to_8023_exthdr(skb, NULL, addr, iftype, 0, false);
}
/**
* ieee80211_is_valid_amsdu - check if subframe lengths of an A-MSDU are valid
*
* This is used to detect non-standard A-MSDU frames, e.g. the ones generated
* by ath10k and ath11k, where the subframe length includes the length of the
* mesh control field.
*
* @skb: The input A-MSDU frame without any headers.
* @mesh_hdr: the type of mesh header to test
* 0: non-mesh A-MSDU length field
* 1: big-endian mesh A-MSDU length field
* 2: little-endian mesh A-MSDU length field
* Returns: true if subframe header lengths are valid for the @mesh_hdr mode
*/
bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr);
/**
* ieee80211_amsdu_to_8023s - decode an IEEE 802.11n A-MSDU frame
*
* Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames.
* The @list will be empty if the decode fails. The @skb must be fully
* header-less before being passed in here; it is freed in this function.
*
* @skb: The input A-MSDU frame without any headers.
* @list: The output list of 802.3 frames. It must be allocated and
* initialized by the caller.
* @addr: The device MAC address.
* @iftype: The device interface type.
* @extra_headroom: The hardware extra headroom for SKBs in the @list.
* @check_da: DA to check in the inner ethernet header, or NULL
* @check_sa: SA to check in the inner ethernet header, or NULL
* @mesh_control: see mesh_hdr in ieee80211_is_valid_amsdu
*/
void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
const u8 *addr, enum nl80211_iftype iftype,
const unsigned int extra_headroom,
const u8 *check_da, const u8 *check_sa,
u8 mesh_control);
/**
* ieee80211_get_8023_tunnel_proto - get RFC1042 or bridge tunnel encap protocol
*
* Check for RFC1042 or bridge tunnel header and fetch the encapsulated
* protocol.
*
* @hdr: pointer to the MSDU payload
* @proto: destination pointer to store the protocol
* Return: true if encapsulation was found
*/
bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto);
/**
* ieee80211_strip_8023_mesh_hdr - strip mesh header from converted 802.3 frames
*
* Strip the mesh header, which was left in by ieee80211_data_to_8023 as part
* of the MSDU data. Also move any source/destination addresses from the mesh
* header to the ethernet header (if present).
*
* @skb: The 802.3 frame with embedded mesh header
*/
int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb);
/**
* cfg80211_classify8021d - determine the 802.1p/1d tag for a data frame
* @skb: the data frame
* @qos_map: Interworking QoS mapping or %NULL if not in use
* Return: The 802.1p/1d tag.
*/
unsigned int cfg80211_classify8021d(struct sk_buff *skb,
struct cfg80211_qos_map *qos_map);
/**
* cfg80211_find_elem_match - match information element and byte array in data
*
* @eid: element ID
* @ies: data consisting of IEs
* @len: length of data
* @match: byte array to match
* @match_len: number of bytes in the match array
* @match_offset: offset in the IE data where the byte array should match.
* Note the difference to cfg80211_find_ie_match() which considers
* the offset to start from the element ID byte, but here we take
* the data portion instead.
*
* Return: %NULL if the element ID could not be found or if
* the element is invalid (claims to be longer than the given
* data) or if the byte array doesn't match; otherwise return the
* requested element struct.
*
* Note: There are no checks on the element length other than
* having to fit into the given data and being large enough for the
* byte array to match.
*/
const struct element *
cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
const u8 *match, unsigned int match_len,
unsigned int match_offset);
/**
* cfg80211_find_ie_match - match information element and byte array in data
*
* @eid: element ID
* @ies: data consisting of IEs
* @len: length of data
* @match: byte array to match
* @match_len: number of bytes in the match array
* @match_offset: offset in the IE where the byte array should match.
* If match_len is zero, this must also be set to zero.
* Otherwise this must be set to 2 or more, because the first
* byte is the element id, which is already compared to eid, and
* the second byte is the IE length.
*
* Return: %NULL if the element ID could not be found or if
* the element is invalid (claims to be longer than the given
* data) or if the byte array doesn't match, or a pointer to the first
* byte of the requested element, that is the byte containing the
* element ID.
*
* Note: There are no checks on the element length other than
* having to fit into the given data and being large enough for the
* byte array to match.
*/
static inline const u8 *
cfg80211_find_ie_match(u8 eid, const u8 *ies, unsigned int len,
const u8 *match, unsigned int match_len,
unsigned int match_offset)
{
/* match_offset can't be smaller than 2, unless match_len is
* zero, in which case match_offset must be zero as well.
*/
if (WARN_ON((match_len && match_offset < 2) ||
(!match_len && match_offset)))
return NULL;
return (const void *)cfg80211_find_elem_match(eid, ies, len,
match, match_len,
match_offset ?
match_offset - 2 : 0);
}
/**
* cfg80211_find_elem - find information element in data
*
* @eid: element ID
* @ies: data consisting of IEs
* @len: length of data
*
* Return: %NULL if the element ID could not be found or if
* the element is invalid (claims to be longer than the given
* data) or if the byte array doesn't match; otherwise return the
* requested element struct.
*
* Note: There are no checks on the element length other than
* having to fit into the given data.
*/
static inline const struct element *
cfg80211_find_elem(u8 eid, const u8 *ies, int len)
{
return cfg80211_find_elem_match(eid, ies, len, NULL, 0, 0);
}
/**
* cfg80211_find_ie - find information element in data
*
* @eid: element ID
* @ies: data consisting of IEs
* @len: length of data
*
* Return: %NULL if the element ID could not be found or if
* the element is invalid (claims to be longer than the given
* data), or a pointer to the first byte of the requested
* element, that is the byte containing the element ID.
*
* Note: There are no checks on the element length other than
* having to fit into the given data.
*/
static inline const u8 *cfg80211_find_ie(u8 eid, const u8 *ies, int len)
{
return cfg80211_find_ie_match(eid, ies, len, NULL, 0, 0);
}
/**
* cfg80211_find_ext_elem - find information element with EID Extension in data
*
* @ext_eid: element ID Extension
* @ies: data consisting of IEs
* @len: length of data
*
* Return: %NULL if the extended element could not be found or if
* the element is invalid (claims to be longer than the given
* data) or if the byte array doesn't match; otherwise return the
* requested element struct.
*
* Note: There are no checks on the element length other than
* having to fit into the given data.
*/
static inline const struct element *
cfg80211_find_ext_elem(u8 ext_eid, const u8 *ies, int len)
{
return cfg80211_find_elem_match(WLAN_EID_EXTENSION, ies, len,
&ext_eid, 1, 0);
}
/**
* cfg80211_find_ext_ie - find information element with EID Extension in data
*
* @ext_eid: element ID Extension
* @ies: data consisting of IEs
* @len: length of data
*
* Return: %NULL if the extended element ID could not be found or if
* the element is invalid (claims to be longer than the given
* data), or a pointer to the first byte of the requested
* element, that is the byte containing the element ID.
*
* Note: There are no checks on the element length other than
* having to fit into the given data.
*/
static inline const u8 *cfg80211_find_ext_ie(u8 ext_eid, const u8 *ies, int len)
{
return cfg80211_find_ie_match(WLAN_EID_EXTENSION, ies, len,
&ext_eid, 1, 2);
}
/**
* cfg80211_find_vendor_elem - find vendor specific information element in data
*
* @oui: vendor OUI
* @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
* @ies: data consisting of IEs
* @len: length of data
*
* Return: %NULL if the vendor specific element ID could not be found or if the
* element is invalid (claims to be longer than the given data); otherwise
* return the element structure for the requested element.
*
* Note: There are no checks on the element length other than having to fit into
* the given data.
*/
const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
const u8 *ies,
unsigned int len);
/**
* cfg80211_find_vendor_ie - find vendor specific information element in data
*
* @oui: vendor OUI
* @oui_type: vendor-specific OUI type (must be < 0xff), negative means any
* @ies: data consisting of IEs
* @len: length of data
*
* Return: %NULL if the vendor specific element ID could not be found or if the
* element is invalid (claims to be longer than the given data), or a pointer to
* the first byte of the requested element, that is the byte containing the
* element ID.
*
* Note: There are no checks on the element length other than having to fit into
* the given data.
*/
static inline const u8 *
cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
const u8 *ies, unsigned int len)
{
return (const void *)cfg80211_find_vendor_elem(oui, oui_type, ies, len);
}
/**
* enum cfg80211_rnr_iter_ret - reduced neighbor report iteration state
* @RNR_ITER_CONTINUE: continue iterating with the next entry
* @RNR_ITER_BREAK: break iteration and return success
* @RNR_ITER_ERROR: break iteration and return error
*/
enum cfg80211_rnr_iter_ret {
RNR_ITER_CONTINUE,
RNR_ITER_BREAK,
RNR_ITER_ERROR,
};
/**
* cfg80211_iter_rnr - iterate reduced neighbor report entries
* @elems: the frame elements to iterate RNR elements and then
* their entries in
* @elems_len: length of the elements
* @iter: iteration function, see also &enum cfg80211_rnr_iter_ret
* for the return value
* @iter_data: additional data passed to the iteration function
* Return: %true on success (after successfully iterating all entries
* or if the iteration function returned %RNR_ITER_BREAK),
* %false on error (iteration function returned %RNR_ITER_ERROR
* or elements were malformed.)
*/
bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
enum cfg80211_rnr_iter_ret
(*iter)(void *data, u8 type,
const struct ieee80211_neighbor_ap_info *info,
const u8 *tbtt_info, u8 tbtt_info_len),
void *iter_data);
/**
* cfg80211_defragment_element - Defrag the given element data into a buffer
*
* @elem: the element to defragment
* @ies: elements where @elem is contained
* @ieslen: length of @ies
* @data: buffer to store element data, or %NULL to just determine size
* @data_len: length of @data, or 0
* @frag_id: the element ID of fragments
*
* Return: length of @data, or -EINVAL on error
*
* Copy out all data from an element that may be fragmented into @data, while
* skipping all headers.
*
* The function uses memmove() internally. It is acceptable to defragment an
* element in-place.
*/
ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
size_t ieslen, u8 *data, size_t data_len,
u8 frag_id);
/**
* cfg80211_send_layer2_update - send layer 2 update frame
*
* @dev: network device
* @addr: STA MAC address
*
* Wireless drivers can use this function to update forwarding tables in bridge
* devices upon STA association.
*/
void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr);
/**
* DOC: Regulatory enforcement infrastructure
*
* TODO
*/
/**
* regulatory_hint - driver hint to the wireless core a regulatory domain
* @wiphy: the wireless device giving the hint (used only for reporting
* conflicts)
* @alpha2: the ISO/IEC 3166 alpha2 the driver claims its regulatory domain
* should be in. If @rd is set this should be NULL. Note that if you
* set this to NULL you should still set rd->alpha2 to some accepted
* alpha2.
*
* Wireless drivers can use this function to hint to the wireless core
* what it believes should be the current regulatory domain by
* giving it an ISO/IEC 3166 alpha2 country code it knows its regulatory
* domain should be in or by providing a completely build regulatory domain.
* If the driver provides an ISO/IEC 3166 alpha2 userspace will be queried
* for a regulatory domain structure for the respective country.
*
* The wiphy must have been registered to cfg80211 prior to this call.
* For cfg80211 drivers this means you must first use wiphy_register(),
* for mac80211 drivers you must first use ieee80211_register_hw().
*
* Drivers should check the return value, its possible you can get
* an -ENOMEM.
*
* Return: 0 on success. -ENOMEM.
*/
int regulatory_hint(struct wiphy *wiphy, const char *alpha2);
/**
* regulatory_set_wiphy_regd - set regdom info for self managed drivers
* @wiphy: the wireless device we want to process the regulatory domain on
* @rd: the regulatory domain information to use for this wiphy
*
* Set the regulatory domain information for self-managed wiphys, only they
* may use this function. See %REGULATORY_WIPHY_SELF_MANAGED for more
* information.
*
* Return: 0 on success. -EINVAL, -EPERM
*/
int regulatory_set_wiphy_regd(struct wiphy *wiphy,
struct ieee80211_regdomain *rd);
/**
* regulatory_set_wiphy_regd_sync - set regdom for self-managed drivers
* @wiphy: the wireless device we want to process the regulatory domain on
* @rd: the regulatory domain information to use for this wiphy
*
* This functions requires the RTNL and the wiphy mutex to be held and
* applies the new regdomain synchronously to this wiphy. For more details
* see regulatory_set_wiphy_regd().
*
* Return: 0 on success. -EINVAL, -EPERM
*/
int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
struct ieee80211_regdomain *rd);
/**
* wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
* @wiphy: the wireless device we want to process the regulatory domain on
* @regd: the custom regulatory domain to use for this wiphy
*
* Drivers can sometimes have custom regulatory domains which do not apply
* to a specific country. Drivers can use this to apply such custom regulatory
* domains. This routine must be called prior to wiphy registration. The
* custom regulatory domain will be trusted completely and as such previous
* default channel settings will be disregarded. If no rule is found for a
* channel on the regulatory domain the channel will be disabled.
* Drivers using this for a wiphy should also set the wiphy flag
* REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy
* that called this helper.
*/
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
const struct ieee80211_regdomain *regd);
/**
* freq_reg_info - get regulatory information for the given frequency
* @wiphy: the wiphy for which we want to process this rule for
* @center_freq: Frequency in KHz for which we want regulatory information for
*
* Use this function to get the regulatory rule for a specific frequency on
* a given wireless device. If the device has a specific regulatory domain
* it wants to follow we respect that unless a country IE has been received
* and processed already.
*
* Return: A valid pointer, or, when an error occurs, for example if no rule
* can be found, the return value is encoded using ERR_PTR(). Use IS_ERR() to
* check and PTR_ERR() to obtain the numeric return value. The numeric return
* value will be -ERANGE if we determine the given center_freq does not even
* have a regulatory rule for a frequency range in the center_freq's band.
* See freq_in_rule_band() for our current definition of a band -- this is
* purely subjective and right now it's 802.11 specific.
*/
const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
u32 center_freq);
/**
* reg_initiator_name - map regulatory request initiator enum to name
* @initiator: the regulatory request initiator
*
* You can use this to map the regulatory request initiator enum to a
* proper string representation.
*/
const char *reg_initiator_name(enum nl80211_reg_initiator initiator);
/**
* regulatory_pre_cac_allowed - check if pre-CAC allowed in the current regdom
* @wiphy: wiphy for which pre-CAC capability is checked.
*
* Pre-CAC is allowed only in some regdomains (notable ETSI).
*/
bool regulatory_pre_cac_allowed(struct wiphy *wiphy);
/**
* DOC: Internal regulatory db functions
*
*/
/**
* reg_query_regdb_wmm - Query internal regulatory db for wmm rule
* Regulatory self-managed driver can use it to proactively
*
* @alpha2: the ISO/IEC 3166 alpha2 wmm rule to be queried.
* @freq: the frequency (in MHz) to be queried.
* @rule: pointer to store the wmm rule from the regulatory db.
*
* Self-managed wireless drivers can use this function to query
* the internal regulatory database to check whether the given
* ISO/IEC 3166 alpha2 country and freq have wmm rule limitations.
*
* Drivers should check the return value, its possible you can get
* an -ENODATA.
*
* Return: 0 on success. -ENODATA.
*/
int reg_query_regdb_wmm(char *alpha2, int freq,
struct ieee80211_reg_rule *rule);
/*
* callbacks for asynchronous cfg80211 methods, notification
* functions and BSS handling helpers
*/
/**
* cfg80211_scan_done - notify that scan finished
*
* @request: the corresponding scan request
* @info: information about the completed scan
*/
void cfg80211_scan_done(struct cfg80211_scan_request *request,
struct cfg80211_scan_info *info);
/**
* cfg80211_sched_scan_results - notify that new scan results are available
*
* @wiphy: the wiphy which got scheduled scan results
* @reqid: identifier for the related scheduled scan request
*/
void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid);
/**
* cfg80211_sched_scan_stopped - notify that the scheduled scan has stopped
*
* @wiphy: the wiphy on which the scheduled scan stopped
* @reqid: identifier for the related scheduled scan request
*
* The driver can call this function to inform cfg80211 that the
* scheduled scan had to be stopped, for whatever reason. The driver
* is then called back via the sched_scan_stop operation when done.
*/
void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid);
/**
* cfg80211_sched_scan_stopped_locked - notify that the scheduled scan has stopped
*
* @wiphy: the wiphy on which the scheduled scan stopped
* @reqid: identifier for the related scheduled scan request
*
* The driver can call this function to inform cfg80211 that the
* scheduled scan had to be stopped, for whatever reason. The driver
* is then called back via the sched_scan_stop operation when done.
* This function should be called with the wiphy mutex held.
*/
void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid);
/**
* cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame
* @wiphy: the wiphy reporting the BSS
* @data: the BSS metadata
* @mgmt: the management frame (probe response or beacon)
* @len: length of the management frame
* @gfp: context flags
*
* This informs cfg80211 that BSS information was found and
* the BSS should be updated/added.
*
* Return: A referenced struct, must be released with cfg80211_put_bss()!
* Or %NULL on error.
*/
struct cfg80211_bss * __must_check
cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
struct ieee80211_mgmt *mgmt, size_t len,
gfp_t gfp);
static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss_frame(struct wiphy *wiphy,
struct ieee80211_channel *rx_channel,
struct ieee80211_mgmt *mgmt, size_t len,
s32 signal, gfp_t gfp)
{
struct cfg80211_inform_bss data = {
.chan = rx_channel,
.signal = signal,
};
return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp);
}
/**
* cfg80211_gen_new_bssid - generate a nontransmitted BSSID for multi-BSSID
* @bssid: transmitter BSSID
* @max_bssid: max BSSID indicator, taken from Multiple BSSID element
* @mbssid_index: BSSID index, taken from Multiple BSSID index element
* @new_bssid: calculated nontransmitted BSSID
*/
static inline void cfg80211_gen_new_bssid(const u8 *bssid, u8 max_bssid,
u8 mbssid_index, u8 *new_bssid)
{
u64 bssid_u64 = ether_addr_to_u64(bssid);
u64 mask = GENMASK_ULL(max_bssid - 1, 0);
u64 new_bssid_u64;
new_bssid_u64 = bssid_u64 & ~mask;
new_bssid_u64 |= ((bssid_u64 & mask) + mbssid_index) & mask;
u64_to_ether_addr(new_bssid_u64, new_bssid);
}
/**
* cfg80211_is_element_inherited - returns if element ID should be inherited
* @element: element to check
* @non_inherit_element: non inheritance element
*/
bool cfg80211_is_element_inherited(const struct element *element,
const struct element *non_inherit_element);
/**
* cfg80211_merge_profile - merges a MBSSID profile if it is split between IEs
* @ie: ies
* @ielen: length of IEs
* @mbssid_elem: current MBSSID element
* @sub_elem: current MBSSID subelement (profile)
* @merged_ie: location of the merged profile
* @max_copy_len: max merged profile length
*/
size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
const struct element *mbssid_elem,
const struct element *sub_elem,
u8 *merged_ie, size_t max_copy_len);
/**
* enum cfg80211_bss_frame_type - frame type that the BSS data came from
* @CFG80211_BSS_FTYPE_UNKNOWN: driver doesn't know whether the data is
* from a beacon or probe response
* @CFG80211_BSS_FTYPE_BEACON: data comes from a beacon
* @CFG80211_BSS_FTYPE_PRESP: data comes from a probe response
* @CFG80211_BSS_FTYPE_S1G_BEACON: data comes from an S1G beacon
*/
enum cfg80211_bss_frame_type {
CFG80211_BSS_FTYPE_UNKNOWN,
CFG80211_BSS_FTYPE_BEACON,
CFG80211_BSS_FTYPE_PRESP,
CFG80211_BSS_FTYPE_S1G_BEACON,
};
/**
* cfg80211_get_ies_channel_number - returns the channel number from ies
* @ie: IEs
* @ielen: length of IEs
* @band: enum nl80211_band of the channel
*
* Returns the channel number, or -1 if none could be determined.
*/
int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
enum nl80211_band band);
/**
* cfg80211_ssid_eq - compare two SSIDs
* @a: first SSID
* @b: second SSID
*
* Return: %true if SSIDs are equal, %false otherwise.
*/
static inline bool
cfg80211_ssid_eq(struct cfg80211_ssid *a, struct cfg80211_ssid *b)
{
if (WARN_ON(!a || !b))
return false;
if (a->ssid_len != b->ssid_len)
return false;
return memcmp(a->ssid, b->ssid, a->ssid_len) ? false : true;
}
/**
* cfg80211_inform_bss_data - inform cfg80211 of a new BSS
*
* @wiphy: the wiphy reporting the BSS
* @data: the BSS metadata
* @ftype: frame type (if known)
* @bssid: the BSSID of the BSS
* @tsf: the TSF sent by the peer in the beacon/probe response (or 0)
* @capability: the capability field sent by the peer
* @beacon_interval: the beacon interval announced by the peer
* @ie: additional IEs sent by the peer
* @ielen: length of the additional IEs
* @gfp: context flags
*
* This informs cfg80211 that BSS information was found and
* the BSS should be updated/added.
*
* Return: A referenced struct, must be released with cfg80211_put_bss()!
* Or %NULL on error.
*/
struct cfg80211_bss * __must_check
cfg80211_inform_bss_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
enum cfg80211_bss_frame_type ftype,
const u8 *bssid, u64 tsf, u16 capability,
u16 beacon_interval, const u8 *ie, size_t ielen,
gfp_t gfp);
static inline struct cfg80211_bss * __must_check
cfg80211_inform_bss(struct wiphy *wiphy,
struct ieee80211_channel *rx_channel,
enum cfg80211_bss_frame_type ftype,
const u8 *bssid, u64 tsf, u16 capability,
u16 beacon_interval, const u8 *ie, size_t ielen,
s32 signal, gfp_t gfp)
{
struct cfg80211_inform_bss data = {
.chan = rx_channel,
.signal = signal,
};
return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf,
capability, beacon_interval, ie, ielen,
gfp);
}
/**
* __cfg80211_get_bss - get a BSS reference
* @wiphy: the wiphy this BSS struct belongs to
* @channel: the channel to search on (or %NULL)
* @bssid: the desired BSSID (or %NULL)
* @ssid: the desired SSID (or %NULL)
* @ssid_len: length of the SSID (or 0)
* @bss_type: type of BSS, see &enum ieee80211_bss_type
* @privacy: privacy filter, see &enum ieee80211_privacy
* @use_for: indicates which use is intended
*/
struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
struct ieee80211_channel *channel,
const u8 *bssid,
const u8 *ssid, size_t ssid_len,
enum ieee80211_bss_type bss_type,
enum ieee80211_privacy privacy,
u32 use_for);
/**
* cfg80211_get_bss - get a BSS reference
* @wiphy: the wiphy this BSS struct belongs to
* @channel: the channel to search on (or %NULL)
* @bssid: the desired BSSID (or %NULL)
* @ssid: the desired SSID (or %NULL)
* @ssid_len: length of the SSID (or 0)
* @bss_type: type of BSS, see &enum ieee80211_bss_type
* @privacy: privacy filter, see &enum ieee80211_privacy
*
* This version implies regular usage, %NL80211_BSS_USE_FOR_NORMAL.
*/
static inline struct cfg80211_bss *
cfg80211_get_bss(struct wiphy *wiphy, struct ieee80211_channel *channel,
const u8 *bssid, const u8 *ssid, size_t ssid_len,
enum ieee80211_bss_type bss_type,
enum ieee80211_privacy privacy)
{
return __cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len,
bss_type, privacy,
NL80211_BSS_USE_FOR_NORMAL);
}
static inline struct cfg80211_bss *
cfg80211_get_ibss(struct wiphy *wiphy,
struct ieee80211_channel *channel,
const u8 *ssid, size_t ssid_len)
{
return cfg80211_get_bss(wiphy, channel, NULL, ssid, ssid_len,
IEEE80211_BSS_TYPE_IBSS,
IEEE80211_PRIVACY_ANY);
}
/**
* cfg80211_ref_bss - reference BSS struct
* @wiphy: the wiphy this BSS struct belongs to
* @bss: the BSS struct to reference
*
* Increments the refcount of the given BSS struct.
*/
void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
/**
* cfg80211_put_bss - unref BSS struct
* @wiphy: the wiphy this BSS struct belongs to
* @bss: the BSS struct
*
* Decrements the refcount of the given BSS struct.
*/
void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
/**
* cfg80211_unlink_bss - unlink BSS from internal data structures
* @wiphy: the wiphy
* @bss: the bss to remove
*
* This function removes the given BSS from the internal data structures
* thereby making it no longer show up in scan results etc. Use this
* function when you detect a BSS is gone. Normally BSSes will also time
* out, so it is not necessary to use this function at all.
*/
void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *bss);
/**
* cfg80211_bss_iter - iterate all BSS entries
*
* This function iterates over the BSS entries associated with the given wiphy
* and calls the callback for the iterated BSS. The iterator function is not
* allowed to call functions that might modify the internal state of the BSS DB.
*
* @wiphy: the wiphy
* @chandef: if given, the iterator function will be called only if the channel
* of the currently iterated BSS is a subset of the given channel.
* @iter: the iterator function to call
* @iter_data: an argument to the iterator function
*/
void cfg80211_bss_iter(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
void (*iter)(struct wiphy *wiphy,
struct cfg80211_bss *bss,
void *data),
void *iter_data);
/**
* cfg80211_rx_mlme_mgmt - notification of processed MLME management frame
* @dev: network device
* @buf: authentication frame (header + body)
* @len: length of the frame data
*
* This function is called whenever an authentication, disassociation or
* deauthentication frame has been received and processed in station mode.
* After being asked to authenticate via cfg80211_ops::auth() the driver must
* call either this function or cfg80211_auth_timeout().
* After being asked to associate via cfg80211_ops::assoc() the driver must
* call either this function or cfg80211_auth_timeout().
* While connected, the driver must calls this for received and processed
* disassociation and deauthentication frames. If the frame couldn't be used
* because it was unprotected, the driver must call the function
* cfg80211_rx_unprot_mlme_mgmt() instead.
*
* This function may sleep. The caller must hold the corresponding wdev's mutex.
*/
void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len);
/**
* cfg80211_auth_timeout - notification of timed out authentication
* @dev: network device
* @addr: The MAC address of the device with which the authentication timed out
*
* This function may sleep. The caller must hold the corresponding wdev's
* mutex.
*/
void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr);
/**
* struct cfg80211_rx_assoc_resp_data - association response data
* @buf: (Re)Association Response frame (header + body)
* @len: length of the frame data
* @uapsd_queues: bitmap of queues configured for uapsd. Same format
* as the AC bitmap in the QoS info field
* @req_ies: information elements from the (Re)Association Request frame
* @req_ies_len: length of req_ies data
* @ap_mld_addr: AP MLD address (in case of MLO)
* @links: per-link information indexed by link ID, use links[0] for
* non-MLO connections
* @links.bss: the BSS that association was requested with, ownership of the
* pointer moves to cfg80211 in the call to cfg80211_rx_assoc_resp()
* @links.status: Set this (along with a BSS pointer) for links that
* were rejected by the AP.
*/
struct cfg80211_rx_assoc_resp_data {
const u8 *buf;
size_t len;
const u8 *req_ies;
size_t req_ies_len;
int uapsd_queues;
const u8 *ap_mld_addr;
struct {
u8 addr[ETH_ALEN] __aligned(2);
struct cfg80211_bss *bss;
u16 status;
} links[IEEE80211_MLD_MAX_NUM_LINKS];
};
/**
* cfg80211_rx_assoc_resp - notification of processed association response
* @dev: network device
* @data: association response data, &struct cfg80211_rx_assoc_resp_data
*
* After being asked to associate via cfg80211_ops::assoc() the driver must
* call either this function or cfg80211_auth_timeout().
*
* This function may sleep. The caller must hold the corresponding wdev's mutex.
*/
void cfg80211_rx_assoc_resp(struct net_device *dev,
const struct cfg80211_rx_assoc_resp_data *data);
/**
* struct cfg80211_assoc_failure - association failure data
* @ap_mld_addr: AP MLD address, or %NULL
* @bss: list of BSSes, must use entry 0 for non-MLO connections
* (@ap_mld_addr is %NULL)
* @timeout: indicates the association failed due to timeout, otherwise
* the association was abandoned for a reason reported through some
* other API (e.g. deauth RX)
*/
struct cfg80211_assoc_failure {
const u8 *ap_mld_addr;
struct cfg80211_bss *bss[IEEE80211_MLD_MAX_NUM_LINKS];
bool timeout;
};
/**
* cfg80211_assoc_failure - notification of association failure
* @dev: network device
* @data: data describing the association failure
*
* This function may sleep. The caller must hold the corresponding wdev's mutex.
*/
void cfg80211_assoc_failure(struct net_device *dev,
struct cfg80211_assoc_failure *data);
/**
* cfg80211_tx_mlme_mgmt - notification of transmitted deauth/disassoc frame
* @dev: network device
* @buf: 802.11 frame (header + body)
* @len: length of the frame data
* @reconnect: immediate reconnect is desired (include the nl80211 attribute)
*
* This function is called whenever deauthentication has been processed in
* station mode. This includes both received deauthentication frames and
* locally generated ones. This function may sleep. The caller must hold the
* corresponding wdev's mutex.
*/
void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len,
bool reconnect);
/**
* cfg80211_rx_unprot_mlme_mgmt - notification of unprotected mlme mgmt frame
* @dev: network device
* @buf: received management frame (header + body)
* @len: length of the frame data
*
* This function is called whenever a received deauthentication or dissassoc
* frame has been dropped in station mode because of MFP being used but the
* frame was not protected. This is also used to notify reception of a Beacon
* frame that was dropped because it did not include a valid MME MIC while
* beacon protection was enabled (BIGTK configured in station mode).
*
* This function may sleep.
*/
void cfg80211_rx_unprot_mlme_mgmt(struct net_device *dev,
const u8 *buf, size_t len);
/**
* cfg80211_michael_mic_failure - notification of Michael MIC failure (TKIP)
* @dev: network device
* @addr: The source MAC address of the frame
* @key_type: The key type that the received frame used
* @key_id: Key identifier (0..3). Can be -1 if missing.
* @tsc: The TSC value of the frame that generated the MIC failure (6 octets)
* @gfp: allocation flags
*
* This function is called whenever the local MAC detects a MIC failure in a
* received frame. This matches with MLME-MICHAELMICFAILURE.indication()
* primitive.
*/
void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
enum nl80211_key_type key_type, int key_id,
const u8 *tsc, gfp_t gfp);
/**
* cfg80211_ibss_joined - notify cfg80211 that device joined an IBSS
*
* @dev: network device
* @bssid: the BSSID of the IBSS joined
* @channel: the channel of the IBSS joined
* @gfp: allocation flags
*
* This function notifies cfg80211 that the device joined an IBSS or
* switched to a different BSSID. Before this function can be called,
* either a beacon has to have been received from the IBSS, or one of
* the cfg80211_inform_bss{,_frame} functions must have been called
* with the locally generated beacon -- this guarantees that there is
* always a scan result for this IBSS. cfg80211 will handle the rest.
*/
void cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid,
struct ieee80211_channel *channel, gfp_t gfp);
/**
* cfg80211_notify_new_peer_candidate - notify cfg80211 of a new mesh peer
* candidate
*
* @dev: network device
* @macaddr: the MAC address of the new candidate
* @ie: information elements advertised by the peer candidate
* @ie_len: length of the information elements buffer
* @sig_dbm: signal level in dBm
* @gfp: allocation flags
*
* This function notifies cfg80211 that the mesh peer candidate has been
* detected, most likely via a beacon or, less likely, via a probe response.
* cfg80211 then sends a notification to userspace.
*/
void cfg80211_notify_new_peer_candidate(struct net_device *dev,
const u8 *macaddr, const u8 *ie, u8 ie_len,
int sig_dbm, gfp_t gfp);
/**
* DOC: RFkill integration
*
* RFkill integration in cfg80211 is almost invisible to drivers,
* as cfg80211 automatically registers an rfkill instance for each
* wireless device it knows about. Soft kill is also translated
* into disconnecting and turning all interfaces off. Drivers are
* expected to turn off the device when all interfaces are down.
*
* However, devices may have a hard RFkill line, in which case they
* also need to interact with the rfkill subsystem, via cfg80211.
* They can do this with a few helper functions documented here.
*/
/**
* wiphy_rfkill_set_hw_state_reason - notify cfg80211 about hw block state
* @wiphy: the wiphy
* @blocked: block status
* @reason: one of reasons in &enum rfkill_hard_block_reasons
*/
void wiphy_rfkill_set_hw_state_reason(struct wiphy *wiphy, bool blocked,
enum rfkill_hard_block_reasons reason);
static inline void wiphy_rfkill_set_hw_state(struct wiphy *wiphy, bool blocked)
{
wiphy_rfkill_set_hw_state_reason(wiphy, blocked,
RFKILL_HARD_BLOCK_SIGNAL);
}
/**
* wiphy_rfkill_start_polling - start polling rfkill
* @wiphy: the wiphy
*/
void wiphy_rfkill_start_polling(struct wiphy *wiphy);
/**
* wiphy_rfkill_stop_polling - stop polling rfkill
* @wiphy: the wiphy
*/
static inline void wiphy_rfkill_stop_polling(struct wiphy *wiphy)
{
rfkill_pause_polling(wiphy->rfkill);
}
/**
* DOC: Vendor commands
*
* Occasionally, there are special protocol or firmware features that
* can't be implemented very openly. For this and similar cases, the
* vendor command functionality allows implementing the features with
* (typically closed-source) userspace and firmware, using nl80211 as
* the configuration mechanism.
*
* A driver supporting vendor commands must register them as an array
* in struct wiphy, with handlers for each one. Each command has an
* OUI and sub command ID to identify it.
*
* Note that this feature should not be (ab)used to implement protocol
* features that could openly be shared across drivers. In particular,
* it must never be required to use vendor commands to implement any
* "normal" functionality that higher-level userspace like connection
* managers etc. need.
*/
struct sk_buff *__cfg80211_alloc_reply_skb(struct wiphy *wiphy,
enum nl80211_commands cmd,
enum nl80211_attrs attr,
int approxlen);
struct sk_buff *__cfg80211_alloc_event_skb(struct wiphy *wiphy,
struct wireless_dev *wdev,
enum nl80211_commands cmd,
enum nl80211_attrs attr,
unsigned int portid,
int vendor_event_idx,
int approxlen, gfp_t gfp);
void __cfg80211_send_event_skb(struct sk_buff *skb, gfp_t gfp);
/**
* cfg80211_vendor_cmd_alloc_reply_skb - allocate vendor command reply
* @wiphy: the wiphy
* @approxlen: an upper bound of the length of the data that will
* be put into the skb
*
* This function allocates and pre-fills an skb for a reply to
* a vendor command. Since it is intended for a reply, calling
* it outside of a vendor command's doit() operation is invalid.
*
* The returned skb is pre-filled with some identifying data in
* a way that any data that is put into the skb (with skb_put(),
* nla_put() or similar) will end up being within the
* %NL80211_ATTR_VENDOR_DATA attribute, so all that needs to be done
* with the skb is adding data for the corresponding userspace tool
* which can then read that data out of the vendor data attribute.
* You must not modify the skb in any other way.
*
* When done, call cfg80211_vendor_cmd_reply() with the skb and return
* its error code as the result of the doit() operation.
*
* Return: An allocated and pre-filled skb. %NULL if any errors happen.
*/
static inline struct sk_buff *
cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
{
return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_VENDOR,
NL80211_ATTR_VENDOR_DATA, approxlen);
}
/**
* cfg80211_vendor_cmd_reply - send the reply skb
* @skb: The skb, must have been allocated with
* cfg80211_vendor_cmd_alloc_reply_skb()
*
* Since calling this function will usually be the last thing
* before returning from the vendor command doit() you should
* return the error code. Note that this function consumes the
* skb regardless of the return value.
*
* Return: An error code or 0 on success.
*/
int cfg80211_vendor_cmd_reply(struct sk_buff *skb);
/**
* cfg80211_vendor_cmd_get_sender - get the current sender netlink ID
* @wiphy: the wiphy
*
* Return the current netlink port ID in a vendor command handler.
* Valid to call only there.
*/
unsigned int cfg80211_vendor_cmd_get_sender(struct wiphy *wiphy);
/**
* cfg80211_vendor_event_alloc - allocate vendor-specific event skb
* @wiphy: the wiphy
* @wdev: the wireless device
* @event_idx: index of the vendor event in the wiphy's vendor_events
* @approxlen: an upper bound of the length of the data that will
* be put into the skb
* @gfp: allocation flags
*
* This function allocates and pre-fills an skb for an event on the
* vendor-specific multicast group.
*
* If wdev != NULL, both the ifindex and identifier of the specified
* wireless device are added to the event message before the vendor data
* attribute.
*
* When done filling the skb, call cfg80211_vendor_event() with the
* skb to send the event.
*
* Return: An allocated and pre-filled skb. %NULL if any errors happen.
*/
static inline struct sk_buff *
cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev,
int approxlen, int event_idx, gfp_t gfp)
{
return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
NL80211_ATTR_VENDOR_DATA,
0, event_idx, approxlen, gfp);
}
/**
* cfg80211_vendor_event_alloc_ucast - alloc unicast vendor-specific event skb
* @wiphy: the wiphy
* @wdev: the wireless device
* @event_idx: index of the vendor event in the wiphy's vendor_events
* @portid: port ID of the receiver
* @approxlen: an upper bound of the length of the data that will
* be put into the skb
* @gfp: allocation flags
*
* This function allocates and pre-fills an skb for an event to send to
* a specific (userland) socket. This socket would previously have been
* obtained by cfg80211_vendor_cmd_get_sender(), and the caller MUST take
* care to register a netlink notifier to see when the socket closes.
*
* If wdev != NULL, both the ifindex and identifier of the specified
* wireless device are added to the event message before the vendor data
* attribute.
*
* When done filling the skb, call cfg80211_vendor_event() with the
* skb to send the event.
*
* Return: An allocated and pre-filled skb. %NULL if any errors happen.
*/
static inline struct sk_buff *
cfg80211_vendor_event_alloc_ucast(struct wiphy *wiphy,
struct wireless_dev *wdev,
unsigned int portid, int approxlen,
int event_idx, gfp_t gfp)
{
return __cfg80211_alloc_event_skb(wiphy, wdev, NL80211_CMD_VENDOR,
NL80211_ATTR_VENDOR_DATA,
portid, event_idx, approxlen, gfp);
}
/**
* cfg80211_vendor_event - send the event
* @skb: The skb, must have been allocated with cfg80211_vendor_event_alloc()
* @gfp: allocation flags
*
* This function sends the given @skb, which must have been allocated
* by cfg80211_vendor_event_alloc(), as an event. It always consumes it.
*/
static inline void cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp)
{
__cfg80211_send_event_skb(skb, gfp);
}
#ifdef CONFIG_NL80211_TESTMODE
/**
* DOC: Test mode
*
* Test mode is a set of utility functions to allow drivers to
* interact with driver-specific tools to aid, for instance,
* factory programming.
*
* This chapter describes how drivers interact with it. For more
* information see the nl80211 book's chapter on it.
*/
/**
* cfg80211_testmode_alloc_reply_skb - allocate testmode reply
* @wiphy: the wiphy
* @approxlen: an upper bound of the length of the data that will
* be put into the skb
*
* This function allocates and pre-fills an skb for a reply to
* the testmode command. Since it is intended for a reply, calling
* it outside of the @testmode_cmd operation is invalid.
*
* The returned skb is pre-filled with the wiphy index and set up in
* a way that any data that is put into the skb (with skb_put(),
* nla_put() or similar) will end up being within the
* %NL80211_ATTR_TESTDATA attribute, so all that needs to be done
* with the skb is adding data for the corresponding userspace tool
* which can then read that data out of the testdata attribute. You
* must not modify the skb in any other way.
*
* When done, call cfg80211_testmode_reply() with the skb and return
* its error code as the result of the @testmode_cmd operation.
*
* Return: An allocated and pre-filled skb. %NULL if any errors happen.
*/
static inline struct sk_buff *
cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy, int approxlen)
{
return __cfg80211_alloc_reply_skb(wiphy, NL80211_CMD_TESTMODE,
NL80211_ATTR_TESTDATA, approxlen);
}
/**
* cfg80211_testmode_reply - send the reply skb
* @skb: The skb, must have been allocated with
* cfg80211_testmode_alloc_reply_skb()
*
* Since calling this function will usually be the last thing
* before returning from the @testmode_cmd you should return
* the error code. Note that this function consumes the skb
* regardless of the return value.
*
* Return: An error code or 0 on success.
*/
static inline int cfg80211_testmode_reply(struct sk_buff *skb)
{
return cfg80211_vendor_cmd_reply(skb);
}
/**
* cfg80211_testmode_alloc_event_skb - allocate testmode event
* @wiphy: the wiphy
* @approxlen: an upper bound of the length of the data that will
* be put into the skb
* @gfp: allocation flags
*
* This function allocates and pre-fills an skb for an event on the
* testmode multicast group.
*
* The returned skb is set up in the same way as with
* cfg80211_testmode_alloc_reply_skb() but prepared for an event. As
* there, you should simply add data to it that will then end up in the
* %NL80211_ATTR_TESTDATA attribute. Again, you must not modify the skb
* in any other way.
*
* When done filling the skb, call cfg80211_testmode_event() with the
* skb to send the event.
*
* Return: An allocated and pre-filled skb. %NULL if any errors happen.
*/
static inline struct sk_buff *
cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy, int approxlen, gfp_t gfp)
{
return __cfg80211_alloc_event_skb(wiphy, NULL, NL80211_CMD_TESTMODE,
NL80211_ATTR_TESTDATA, 0, -1,
approxlen, gfp);
}
/**
* cfg80211_testmode_event - send the event
* @skb: The skb, must have been allocated with
* cfg80211_testmode_alloc_event_skb()
* @gfp: allocation flags
*
* This function sends the given @skb, which must have been allocated
* by cfg80211_testmode_alloc_event_skb(), as an event. It always
* consumes it.
*/
static inline void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
{
__cfg80211_send_event_skb(skb, gfp);
}
#define CFG80211_TESTMODE_CMD(cmd) .testmode_cmd = (cmd),
#define CFG80211_TESTMODE_DUMP(cmd) .testmode_dump = (cmd),
#else
#define CFG80211_TESTMODE_CMD(cmd)
#define CFG80211_TESTMODE_DUMP(cmd)
#endif
/**
* struct cfg80211_fils_resp_params - FILS connection response params
* @kek: KEK derived from a successful FILS connection (may be %NULL)
* @kek_len: Length of @fils_kek in octets
* @update_erp_next_seq_num: Boolean value to specify whether the value in
* @erp_next_seq_num is valid.
* @erp_next_seq_num: The next sequence number to use in ERP message in
* FILS Authentication. This value should be specified irrespective of the
* status for a FILS connection.
* @pmk: A new PMK if derived from a successful FILS connection (may be %NULL).
* @pmk_len: Length of @pmk in octets
* @pmkid: A new PMKID if derived from a successful FILS connection or the PMKID
* used for this FILS connection (may be %NULL).
*/
struct cfg80211_fils_resp_params {
const u8 *kek;
size_t kek_len;
bool update_erp_next_seq_num;
u16 erp_next_seq_num;
const u8 *pmk;
size_t pmk_len;
const u8 *pmkid;
};
/**
* struct cfg80211_connect_resp_params - Connection response params
* @status: Status code, %WLAN_STATUS_SUCCESS for successful connection, use
* %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
* the real status code for failures. If this call is used to report a
* failure due to a timeout (e.g., not receiving an Authentication frame
* from the AP) instead of an explicit rejection by the AP, -1 is used to
* indicate that this is a failure, but without a status code.
* @timeout_reason is used to report the reason for the timeout in that
* case.
* @req_ie: Association request IEs (may be %NULL)
* @req_ie_len: Association request IEs length
* @resp_ie: Association response IEs (may be %NULL)
* @resp_ie_len: Association response IEs length
* @fils: FILS connection response parameters.
* @timeout_reason: Reason for connection timeout. This is used when the
* connection fails due to a timeout instead of an explicit rejection from
* the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
* not known. This value is used only if @status < 0 to indicate that the
* failure is due to a timeout and not due to explicit rejection by the AP.
* This value is ignored in other cases (@status >= 0).
* @valid_links: For MLO connection, BIT mask of the valid link ids. Otherwise
* zero.
* @ap_mld_addr: For MLO connection, MLD address of the AP. Otherwise %NULL.
* @links : For MLO connection, contains link info for the valid links indicated
* using @valid_links. For non-MLO connection, links[0] contains the
* connected AP info.
* @links.addr: For MLO connection, MAC address of the STA link. Otherwise
* %NULL.
* @links.bssid: For MLO connection, MAC address of the AP link. For non-MLO
* connection, links[0].bssid points to the BSSID of the AP (may be %NULL).
* @links.bss: For MLO connection, entry of bss to which STA link is connected.
* For non-MLO connection, links[0].bss points to entry of bss to which STA
* is connected. It can be obtained through cfg80211_get_bss() (may be
* %NULL). It is recommended to store the bss from the connect_request and
* hold a reference to it and return through this param to avoid a warning
* if the bss is expired during the connection, esp. for those drivers
* implementing connect op. Only one parameter among @bssid and @bss needs
* to be specified.
* @links.status: per-link status code, to report a status code that's not
* %WLAN_STATUS_SUCCESS for a given link, it must also be in the
* @valid_links bitmap and may have a BSS pointer (which is then released)
*/
struct cfg80211_connect_resp_params {
int status;
const u8 *req_ie;
size_t req_ie_len;
const u8 *resp_ie;
size_t resp_ie_len;
struct cfg80211_fils_resp_params fils;
enum nl80211_timeout_reason timeout_reason;
const u8 *ap_mld_addr;
u16 valid_links;
struct {
const u8 *addr;
const u8 *bssid;
struct cfg80211_bss *bss;
u16 status;
} links[IEEE80211_MLD_MAX_NUM_LINKS];
};
/**
* cfg80211_connect_done - notify cfg80211 of connection result
*
* @dev: network device
* @params: connection response parameters
* @gfp: allocation flags
*
* It should be called by the underlying driver once execution of the connection
* request from connect() has been completed. This is similar to
* cfg80211_connect_bss(), but takes a structure pointer for connection response
* parameters. Only one of the functions among cfg80211_connect_bss(),
* cfg80211_connect_result(), cfg80211_connect_timeout(),
* and cfg80211_connect_done() should be called.
*/
void cfg80211_connect_done(struct net_device *dev,
struct cfg80211_connect_resp_params *params,
gfp_t gfp);
/**
* cfg80211_connect_bss - notify cfg80211 of connection result
*
* @dev: network device
* @bssid: the BSSID of the AP
* @bss: Entry of bss to which STA got connected to, can be obtained through
* cfg80211_get_bss() (may be %NULL). But it is recommended to store the
* bss from the connect_request and hold a reference to it and return
* through this param to avoid a warning if the bss is expired during the
* connection, esp. for those drivers implementing connect op.
* Only one parameter among @bssid and @bss needs to be specified.
* @req_ie: association request IEs (maybe be %NULL)
* @req_ie_len: association request IEs length
* @resp_ie: association response IEs (may be %NULL)
* @resp_ie_len: assoc response IEs length
* @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
* %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
* the real status code for failures. If this call is used to report a
* failure due to a timeout (e.g., not receiving an Authentication frame
* from the AP) instead of an explicit rejection by the AP, -1 is used to
* indicate that this is a failure, but without a status code.
* @timeout_reason is used to report the reason for the timeout in that
* case.
* @gfp: allocation flags
* @timeout_reason: reason for connection timeout. This is used when the
* connection fails due to a timeout instead of an explicit rejection from
* the AP. %NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is
* not known. This value is used only if @status < 0 to indicate that the
* failure is due to a timeout and not due to explicit rejection by the AP.
* This value is ignored in other cases (@status >= 0).
*
* It should be called by the underlying driver once execution of the connection
* request from connect() has been completed. This is similar to
* cfg80211_connect_result(), but with the option of identifying the exact bss
* entry for the connection. Only one of the functions among
* cfg80211_connect_bss(), cfg80211_connect_result(),
* cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
*/
static inline void
cfg80211_connect_bss(struct net_device *dev, const u8 *bssid,
struct cfg80211_bss *bss, const u8 *req_ie,
size_t req_ie_len, const u8 *resp_ie,
size_t resp_ie_len, int status, gfp_t gfp,
enum nl80211_timeout_reason timeout_reason)
{
struct cfg80211_connect_resp_params params;
memset(&params, 0, sizeof(params));
params.status = status;
params.links[0].bssid = bssid;
params.links[0].bss = bss;
params.req_ie = req_ie;
params.req_ie_len = req_ie_len;
params.resp_ie = resp_ie;
params.resp_ie_len = resp_ie_len;
params.timeout_reason = timeout_reason;
cfg80211_connect_done(dev, &params, gfp);
}
/**
* cfg80211_connect_result - notify cfg80211 of connection result
*
* @dev: network device
* @bssid: the BSSID of the AP
* @req_ie: association request IEs (maybe be %NULL)
* @req_ie_len: association request IEs length
* @resp_ie: association response IEs (may be %NULL)
* @resp_ie_len: assoc response IEs length
* @status: status code, %WLAN_STATUS_SUCCESS for successful connection, use
* %WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you
* the real status code for failures.
* @gfp: allocation flags
*
* It should be called by the underlying driver once execution of the connection
* request from connect() has been completed. This is similar to
* cfg80211_connect_bss() which allows the exact bss entry to be specified. Only
* one of the functions among cfg80211_connect_bss(), cfg80211_connect_result(),
* cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
*/
static inline void
cfg80211_connect_result(struct net_device *dev, const u8 *bssid,
const u8 *req_ie, size_t req_ie_len,
const u8 *resp_ie, size_t resp_ie_len,
u16 status, gfp_t gfp)
{
cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, resp_ie,
resp_ie_len, status, gfp,
NL80211_TIMEOUT_UNSPECIFIED);
}
/**
* cfg80211_connect_timeout - notify cfg80211 of connection timeout
*
* @dev: network device
* @bssid: the BSSID of the AP
* @req_ie: association request IEs (maybe be %NULL)
* @req_ie_len: association request IEs length
* @gfp: allocation flags
* @timeout_reason: reason for connection timeout.
*
* It should be called by the underlying driver whenever connect() has failed
* in a sequence where no explicit authentication/association rejection was
* received from the AP. This could happen, e.g., due to not being able to send
* out the Authentication or Association Request frame or timing out while
* waiting for the response. Only one of the functions among
* cfg80211_connect_bss(), cfg80211_connect_result(),
* cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.
*/
static inline void
cfg80211_connect_timeout(struct net_device *dev, const u8 *bssid,
const u8 *req_ie, size_t req_ie_len, gfp_t gfp,
enum nl80211_timeout_reason timeout_reason)
{
cfg80211_connect_bss(dev, bssid, NULL, req_ie, req_ie_len, NULL, 0, -1,
gfp, timeout_reason);
}
/**
* struct cfg80211_roam_info - driver initiated roaming information
*
* @req_ie: association request IEs (maybe be %NULL)
* @req_ie_len: association request IEs length
* @resp_ie: association response IEs (may be %NULL)
* @resp_ie_len: assoc response IEs length
* @fils: FILS related roaming information.
* @valid_links: For MLO roaming, BIT mask of the new valid links is set.
* Otherwise zero.
* @ap_mld_addr: For MLO roaming, MLD address of the new AP. Otherwise %NULL.
* @links : For MLO roaming, contains new link info for the valid links set in
* @valid_links. For non-MLO roaming, links[0] contains the new AP info.
* @links.addr: For MLO roaming, MAC address of the STA link. Otherwise %NULL.
* @links.bssid: For MLO roaming, MAC address of the new AP link. For non-MLO
* roaming, links[0].bssid points to the BSSID of the new AP. May be
* %NULL if %links.bss is set.
* @links.channel: the channel of the new AP.
* @links.bss: For MLO roaming, entry of new bss to which STA link got
* roamed. For non-MLO roaming, links[0].bss points to entry of bss to
* which STA got roamed (may be %NULL if %links.bssid is set)
*/
struct cfg80211_roam_info {
const u8 *req_ie;
size_t req_ie_len;
const u8 *resp_ie;
size_t resp_ie_len;
struct cfg80211_fils_resp_params fils;
const u8 *ap_mld_addr;
u16 valid_links;
struct {
const u8 *addr;
const u8 *bssid;
struct ieee80211_channel *channel;
struct cfg80211_bss *bss;
} links[IEEE80211_MLD_MAX_NUM_LINKS];
};
/**
* cfg80211_roamed - notify cfg80211 of roaming
*
* @dev: network device
* @info: information about the new BSS. struct &cfg80211_roam_info.
* @gfp: allocation flags
*
* This function may be called with the driver passing either the BSSID of the
* new AP or passing the bss entry to avoid a race in timeout of the bss entry.
* It should be called by the underlying driver whenever it roamed from one AP
* to another while connected. Drivers which have roaming implemented in
* firmware should pass the bss entry to avoid a race in bss entry timeout where
* the bss entry of the new AP is seen in the driver, but gets timed out by the
* time it is accessed in __cfg80211_roamed() due to delay in scheduling
* rdev->event_work. In case of any failures, the reference is released
* either in cfg80211_roamed() or in __cfg80211_romed(), Otherwise, it will be
* released while disconnecting from the current bss.
*/
void cfg80211_roamed(struct net_device *dev, struct cfg80211_roam_info *info,
gfp_t gfp);
/**
* cfg80211_port_authorized - notify cfg80211 of successful security association
*
* @dev: network device
* @peer_addr: BSSID of the AP/P2P GO in case of STA/GC or STA/GC MAC address
* in case of AP/P2P GO
* @td_bitmap: transition disable policy
* @td_bitmap_len: Length of transition disable policy
* @gfp: allocation flags
*
* This function should be called by a driver that supports 4 way handshake
* offload after a security association was successfully established (i.e.,
* the 4 way handshake was completed successfully). The call to this function
* should be preceded with a call to cfg80211_connect_result(),
* cfg80211_connect_done(), cfg80211_connect_bss() or cfg80211_roamed() to
* indicate the 802.11 association.
* This function can also be called by AP/P2P GO driver that supports
* authentication offload. In this case the peer_mac passed is that of
* associated STA/GC.
*/
void cfg80211_port_authorized(struct net_device *dev, const u8 *peer_addr,
const u8* td_bitmap, u8 td_bitmap_len, gfp_t gfp);
/**
* cfg80211_disconnected - notify cfg80211 that connection was dropped
*
* @dev: network device
* @ie: information elements of the deauth/disassoc frame (may be %NULL)
* @ie_len: length of IEs
* @reason: reason code for the disconnection, set it to 0 if unknown
* @locally_generated: disconnection was requested locally
* @gfp: allocation flags
*
* After it calls this function, the driver should enter an idle state
* and not try to connect to any AP any more.
*/
void cfg80211_disconnected(struct net_device *dev, u16 reason,
const u8 *ie, size_t ie_len,
bool locally_generated, gfp_t gfp);
/**
* cfg80211_ready_on_channel - notification of remain_on_channel start
* @wdev: wireless device
* @cookie: the request cookie
* @chan: The current channel (from remain_on_channel request)
* @duration: Duration in milliseconds that the driver intents to remain on the
* channel
* @gfp: allocation flags
*/
void cfg80211_ready_on_channel(struct wireless_dev *wdev, u64 cookie,
struct ieee80211_channel *chan,
unsigned int duration, gfp_t gfp);
/**
* cfg80211_remain_on_channel_expired - remain_on_channel duration expired
* @wdev: wireless device
* @cookie: the request cookie
* @chan: The current channel (from remain_on_channel request)
* @gfp: allocation flags
*/
void cfg80211_remain_on_channel_expired(struct wireless_dev *wdev, u64 cookie,
struct ieee80211_channel *chan,
gfp_t gfp);
/**
* cfg80211_tx_mgmt_expired - tx_mgmt duration expired
* @wdev: wireless device
* @cookie: the requested cookie
* @chan: The current channel (from tx_mgmt request)
* @gfp: allocation flags
*/
void cfg80211_tx_mgmt_expired(struct wireless_dev *wdev, u64 cookie,
struct ieee80211_channel *chan, gfp_t gfp);
/**
* cfg80211_sinfo_alloc_tid_stats - allocate per-tid statistics.
*
* @sinfo: the station information
* @gfp: allocation flags
*/
int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp);
/**
* cfg80211_sinfo_release_content - release contents of station info
* @sinfo: the station information
*
* Releases any potentially allocated sub-information of the station
* information, but not the struct itself (since it's typically on
* the stack.)
*/
static inline void cfg80211_sinfo_release_content(struct station_info *sinfo)
{
kfree(sinfo->pertid);
}
/**
* cfg80211_new_sta - notify userspace about station
*
* @dev: the netdev
* @mac_addr: the station's address
* @sinfo: the station information
* @gfp: allocation flags
*/
void cfg80211_new_sta(struct net_device *dev, const u8 *mac_addr,
struct station_info *sinfo, gfp_t gfp);
/**
* cfg80211_del_sta_sinfo - notify userspace about deletion of a station
* @dev: the netdev
* @mac_addr: the station's address. For MLD station, MLD address is used.
* @sinfo: the station information/statistics
* @gfp: allocation flags
*/
void cfg80211_del_sta_sinfo(struct net_device *dev, const u8 *mac_addr,
struct station_info *sinfo, gfp_t gfp);
/**
* cfg80211_del_sta - notify userspace about deletion of a station
*
* @dev: the netdev
* @mac_addr: the station's address. For MLD station, MLD address is used.
* @gfp: allocation flags
*/
static inline void cfg80211_del_sta(struct net_device *dev,
const u8 *mac_addr, gfp_t gfp)
{
cfg80211_del_sta_sinfo(dev, mac_addr, NULL, gfp);
}
/**
* cfg80211_conn_failed - connection request failed notification
*
* @dev: the netdev
* @mac_addr: the station's address
* @reason: the reason for connection failure
* @gfp: allocation flags
*
* Whenever a station tries to connect to an AP and if the station
* could not connect to the AP as the AP has rejected the connection
* for some reasons, this function is called.
*
* The reason for connection failure can be any of the value from
* nl80211_connect_failed_reason enum
*/
void cfg80211_conn_failed(struct net_device *dev, const u8 *mac_addr,
enum nl80211_connect_failed_reason reason,
gfp_t gfp);
/**
* struct cfg80211_rx_info - received management frame info
*
* @freq: Frequency on which the frame was received in kHz
* @sig_dbm: signal strength in dBm, or 0 if unknown
* @have_link_id: indicates the frame was received on a link of
* an MLD, i.e. the @link_id field is valid
* @link_id: the ID of the link the frame was received on
* @buf: Management frame (header + body)
* @len: length of the frame data
* @flags: flags, as defined in &enum nl80211_rxmgmt_flags
* @rx_tstamp: Hardware timestamp of frame RX in nanoseconds
* @ack_tstamp: Hardware timestamp of ack TX in nanoseconds
*/
struct cfg80211_rx_info {
int freq;
int sig_dbm;
bool have_link_id;
u8 link_id;
const u8 *buf;
size_t len;
u32 flags;
u64 rx_tstamp;
u64 ack_tstamp;
};
/**
* cfg80211_rx_mgmt_ext - management frame notification with extended info
* @wdev: wireless device receiving the frame
* @info: RX info as defined in struct cfg80211_rx_info
*
* This function is called whenever an Action frame is received for a station
* mode interface, but is not processed in kernel.
*
* Return: %true if a user space application has registered for this frame.
* For action frames, that makes it responsible for rejecting unrecognized
* action frames; %false otherwise, in which case for action frames the
* driver is responsible for rejecting the frame.
*/
bool cfg80211_rx_mgmt_ext(struct wireless_dev *wdev,
struct cfg80211_rx_info *info);
/**
* cfg80211_rx_mgmt_khz - notification of received, unprocessed management frame
* @wdev: wireless device receiving the frame
* @freq: Frequency on which the frame was received in KHz
* @sig_dbm: signal strength in dBm, or 0 if unknown
* @buf: Management frame (header + body)
* @len: length of the frame data
* @flags: flags, as defined in enum nl80211_rxmgmt_flags
*
* This function is called whenever an Action frame is received for a station
* mode interface, but is not processed in kernel.
*
* Return: %true if a user space application has registered for this frame.
* For action frames, that makes it responsible for rejecting unrecognized
* action frames; %false otherwise, in which case for action frames the
* driver is responsible for rejecting the frame.
*/
static inline bool cfg80211_rx_mgmt_khz(struct wireless_dev *wdev, int freq,
int sig_dbm, const u8 *buf, size_t len,
u32 flags)
{
struct cfg80211_rx_info info = {
.freq = freq,
.sig_dbm = sig_dbm,
.buf = buf,
.len = len,
.flags = flags
};
return cfg80211_rx_mgmt_ext(wdev, &info);
}
/**
* cfg80211_rx_mgmt - notification of received, unprocessed management frame
* @wdev: wireless device receiving the frame
* @freq: Frequency on which the frame was received in MHz
* @sig_dbm: signal strength in dBm, or 0 if unknown
* @buf: Management frame (header + body)
* @len: length of the frame data
* @flags: flags, as defined in enum nl80211_rxmgmt_flags
*
* This function is called whenever an Action frame is received for a station
* mode interface, but is not processed in kernel.
*
* Return: %true if a user space application has registered for this frame.
* For action frames, that makes it responsible for rejecting unrecognized
* action frames; %false otherwise, in which case for action frames the
* driver is responsible for rejecting the frame.
*/
static inline bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq,
int sig_dbm, const u8 *buf, size_t len,
u32 flags)
{
struct cfg80211_rx_info info = {
.freq = MHZ_TO_KHZ(freq),
.sig_dbm = sig_dbm,
.buf = buf,
.len = len,
.flags = flags
};
return cfg80211_rx_mgmt_ext(wdev, &info);
}
/**
* struct cfg80211_tx_status - TX status for management frame information
*
* @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
* @tx_tstamp: hardware TX timestamp in nanoseconds
* @ack_tstamp: hardware ack RX timestamp in nanoseconds
* @buf: Management frame (header + body)
* @len: length of the frame data
* @ack: Whether frame was acknowledged
*/
struct cfg80211_tx_status {
u64 cookie;
u64 tx_tstamp;
u64 ack_tstamp;
const u8 *buf;
size_t len;
bool ack;
};
/**
* cfg80211_mgmt_tx_status_ext - TX status notification with extended info
* @wdev: wireless device receiving the frame
* @status: TX status data
* @gfp: context flags
*
* This function is called whenever a management frame was requested to be
* transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
* transmission attempt with extended info.
*/
void cfg80211_mgmt_tx_status_ext(struct wireless_dev *wdev,
struct cfg80211_tx_status *status, gfp_t gfp);
/**
* cfg80211_mgmt_tx_status - notification of TX status for management frame
* @wdev: wireless device receiving the frame
* @cookie: Cookie returned by cfg80211_ops::mgmt_tx()
* @buf: Management frame (header + body)
* @len: length of the frame data
* @ack: Whether frame was acknowledged
* @gfp: context flags
*
* This function is called whenever a management frame was requested to be
* transmitted with cfg80211_ops::mgmt_tx() to report the TX status of the
* transmission attempt.
*/
static inline void cfg80211_mgmt_tx_status(struct wireless_dev *wdev,
u64 cookie, const u8 *buf,
size_t len, bool ack, gfp_t gfp)
{
struct cfg80211_tx_status status = {
.cookie = cookie,
.buf = buf,
.len = len,
.ack = ack
};
cfg80211_mgmt_tx_status_ext(wdev, &status, gfp);
}
/**
* cfg80211_control_port_tx_status - notification of TX status for control
* port frames
* @wdev: wireless device receiving the frame
* @cookie: Cookie returned by cfg80211_ops::tx_control_port()
* @buf: Data frame (header + body)
* @len: length of the frame data
* @ack: Whether frame was acknowledged
* @gfp: context flags
*
* This function is called whenever a control port frame was requested to be
* transmitted with cfg80211_ops::tx_control_port() to report the TX status of
* the transmission attempt.
*/
void cfg80211_control_port_tx_status(struct wireless_dev *wdev, u64 cookie,
const u8 *buf, size_t len, bool ack,
gfp_t gfp);
/**
* cfg80211_rx_control_port - notification about a received control port frame
* @dev: The device the frame matched to
* @skb: The skbuf with the control port frame. It is assumed that the skbuf
* is 802.3 formatted (with 802.3 header). The skb can be non-linear.
* This function does not take ownership of the skb, so the caller is
* responsible for any cleanup. The caller must also ensure that
* skb->protocol is set appropriately.
* @unencrypted: Whether the frame was received unencrypted
* @link_id: the link the frame was received on, -1 if not applicable or unknown
*
* This function is used to inform userspace about a received control port
* frame. It should only be used if userspace indicated it wants to receive
* control port frames over nl80211.
*
* The frame is the data portion of the 802.3 or 802.11 data frame with all
* network layer headers removed (e.g. the raw EAPoL frame).
*
* Return: %true if the frame was passed to userspace
*/
bool cfg80211_rx_control_port(struct net_device *dev, struct sk_buff *skb,
bool unencrypted, int link_id);
/**
* cfg80211_cqm_rssi_notify - connection quality monitoring rssi event
* @dev: network device
* @rssi_event: the triggered RSSI event
* @rssi_level: new RSSI level value or 0 if not available
* @gfp: context flags
*
* This function is called when a configured connection quality monitoring
* rssi threshold reached event occurs.
*/
void cfg80211_cqm_rssi_notify(struct net_device *dev,
enum nl80211_cqm_rssi_threshold_event rssi_event,
s32 rssi_level, gfp_t gfp);
/**
* cfg80211_cqm_pktloss_notify - notify userspace about packetloss to peer
* @dev: network device
* @peer: peer's MAC address
* @num_packets: how many packets were lost -- should be a fixed threshold
* but probably no less than maybe 50, or maybe a throughput dependent
* threshold (to account for temporary interference)
* @gfp: context flags
*/
void cfg80211_cqm_pktloss_notify(struct net_device *dev,
const u8 *peer, u32 num_packets, gfp_t gfp);
/**
* cfg80211_cqm_txe_notify - TX error rate event
* @dev: network device
* @peer: peer's MAC address
* @num_packets: how many packets were lost
* @rate: % of packets which failed transmission
* @intvl: interval (in s) over which the TX failure threshold was breached.
* @gfp: context flags
*
* Notify userspace when configured % TX failures over number of packets in a
* given interval is exceeded.
*/
void cfg80211_cqm_txe_notify(struct net_device *dev, const u8 *peer,
u32 num_packets, u32 rate, u32 intvl, gfp_t gfp);
/**
* cfg80211_cqm_beacon_loss_notify - beacon loss event
* @dev: network device
* @gfp: context flags
*
* Notify userspace about beacon loss from the connected AP.
*/
void cfg80211_cqm_beacon_loss_notify(struct net_device *dev, gfp_t gfp);
/**
* __cfg80211_radar_event - radar detection event
* @wiphy: the wiphy
* @chandef: chandef for the current channel
* @offchan: the radar has been detected on the offchannel chain
* @gfp: context flags
*
* This function is called when a radar is detected on the current chanenl.
*/
void __cfg80211_radar_event(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
bool offchan, gfp_t gfp);
static inline void
cfg80211_radar_event(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
gfp_t gfp)
{
__cfg80211_radar_event(wiphy, chandef, false, gfp);
}
static inline void
cfg80211_background_radar_event(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
gfp_t gfp)
{
__cfg80211_radar_event(wiphy, chandef, true, gfp);
}
/**
* cfg80211_sta_opmode_change_notify - STA's ht/vht operation mode change event
* @dev: network device
* @mac: MAC address of a station which opmode got modified
* @sta_opmode: station's current opmode value
* @gfp: context flags
*
* Driver should call this function when station's opmode modified via action
* frame.
*/
void cfg80211_sta_opmode_change_notify(struct net_device *dev, const u8 *mac,
struct sta_opmode_info *sta_opmode,
gfp_t gfp);
/**
* cfg80211_cac_event - Channel availability check (CAC) event
* @netdev: network device
* @chandef: chandef for the current channel
* @event: type of event
* @gfp: context flags
*
* This function is called when a Channel availability check (CAC) is finished
* or aborted. This must be called to notify the completion of a CAC process,
* also by full-MAC drivers.
*/
void cfg80211_cac_event(struct net_device *netdev,
const struct cfg80211_chan_def *chandef,
enum nl80211_radar_event event, gfp_t gfp);
/**
* cfg80211_background_cac_abort - Channel Availability Check offchan abort event
* @wiphy: the wiphy
*
* This function is called by the driver when a Channel Availability Check
* (CAC) is aborted by a offchannel dedicated chain.
*/
void cfg80211_background_cac_abort(struct wiphy *wiphy);
/**
* cfg80211_gtk_rekey_notify - notify userspace about driver rekeying
* @dev: network device
* @bssid: BSSID of AP (to avoid races)
* @replay_ctr: new replay counter
* @gfp: allocation flags
*/
void cfg80211_gtk_rekey_notify(struct net_device *dev, const u8 *bssid,
const u8 *replay_ctr, gfp_t gfp);
/**
* cfg80211_pmksa_candidate_notify - notify about PMKSA caching candidate
* @dev: network device
* @index: candidate index (the smaller the index, the higher the priority)
* @bssid: BSSID of AP
* @preauth: Whether AP advertises support for RSN pre-authentication
* @gfp: allocation flags
*/
void cfg80211_pmksa_candidate_notify(struct net_device *dev, int index,
const u8 *bssid, bool preauth, gfp_t gfp);
/**
* cfg80211_rx_spurious_frame - inform userspace about a spurious frame
* @dev: The device the frame matched to
* @addr: the transmitter address
* @gfp: context flags
*
* This function is used in AP mode (only!) to inform userspace that
* a spurious class 3 frame was received, to be able to deauth the
* sender.
* Return: %true if the frame was passed to userspace (or this failed
* for a reason other than not having a subscription.)
*/
bool cfg80211_rx_spurious_frame(struct net_device *dev,
const u8 *addr, gfp_t gfp);
/**
* cfg80211_rx_unexpected_4addr_frame - inform about unexpected WDS frame
* @dev: The device the frame matched to
* @addr: the transmitter address
* @gfp: context flags
*
* This function is used in AP mode (only!) to inform userspace that
* an associated station sent a 4addr frame but that wasn't expected.
* It is allowed and desirable to send this event only once for each
* station to avoid event flooding.
* Return: %true if the frame was passed to userspace (or this failed
* for a reason other than not having a subscription.)
*/
bool cfg80211_rx_unexpected_4addr_frame(struct net_device *dev,
const u8 *addr, gfp_t gfp);
/**
* cfg80211_probe_status - notify userspace about probe status
* @dev: the device the probe was sent on
* @addr: the address of the peer
* @cookie: the cookie filled in @probe_client previously
* @acked: indicates whether probe was acked or not
* @ack_signal: signal strength (in dBm) of the ACK frame.
* @is_valid_ack_signal: indicates the ack_signal is valid or not.
* @gfp: allocation flags
*/
void cfg80211_probe_status(struct net_device *dev, const u8 *addr,
u64 cookie, bool acked, s32 ack_signal,
bool is_valid_ack_signal, gfp_t gfp);
/**
* cfg80211_report_obss_beacon_khz - report beacon from other APs
* @wiphy: The wiphy that received the beacon
* @frame: the frame
* @len: length of the frame
* @freq: frequency the frame was received on in KHz
* @sig_dbm: signal strength in dBm, or 0 if unknown
*
* Use this function to report to userspace when a beacon was
* received. It is not useful to call this when there is no
* netdev that is in AP/GO mode.
*/
void cfg80211_report_obss_beacon_khz(struct wiphy *wiphy, const u8 *frame,
size_t len, int freq, int sig_dbm);
/**
* cfg80211_report_obss_beacon - report beacon from other APs
* @wiphy: The wiphy that received the beacon
* @frame: the frame
* @len: length of the frame
* @freq: frequency the frame was received on
* @sig_dbm: signal strength in dBm, or 0 if unknown
*
* Use this function to report to userspace when a beacon was
* received. It is not useful to call this when there is no
* netdev that is in AP/GO mode.
*/
static inline void cfg80211_report_obss_beacon(struct wiphy *wiphy,
const u8 *frame, size_t len,
int freq, int sig_dbm)
{
cfg80211_report_obss_beacon_khz(wiphy, frame, len, MHZ_TO_KHZ(freq),
sig_dbm);
}
/**
* cfg80211_reg_can_beacon - check if beaconing is allowed
* @wiphy: the wiphy
* @chandef: the channel definition
* @iftype: interface type
*
* Return: %true if there is no secondary channel or the secondary channel(s)
* can be used for beaconing (i.e. is not a radar channel etc.)
*/
bool cfg80211_reg_can_beacon(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
enum nl80211_iftype iftype);
/**
* cfg80211_reg_can_beacon_relax - check if beaconing is allowed with relaxation
* @wiphy: the wiphy
* @chandef: the channel definition
* @iftype: interface type
*
* Return: %true if there is no secondary channel or the secondary channel(s)
* can be used for beaconing (i.e. is not a radar channel etc.). This version
* also checks if IR-relaxation conditions apply, to allow beaconing under
* more permissive conditions.
*
* Requires the wiphy mutex to be held.
*/
bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
enum nl80211_iftype iftype);
/*
* cfg80211_ch_switch_notify - update wdev channel and notify userspace
* @dev: the device which switched channels
* @chandef: the new channel definition
* @link_id: the link ID for MLO, must be 0 for non-MLO
*
* Caller must hold wiphy mutex, therefore must only be called from sleepable
* driver context!
*/
void cfg80211_ch_switch_notify(struct net_device *dev,
struct cfg80211_chan_def *chandef,
unsigned int link_id);
/*
* cfg80211_ch_switch_started_notify - notify channel switch start
* @dev: the device on which the channel switch started
* @chandef: the future channel definition
* @link_id: the link ID for MLO, must be 0 for non-MLO
* @count: the number of TBTTs until the channel switch happens
* @quiet: whether or not immediate quiet was requested by the AP
*
* Inform the userspace about the channel switch that has just
* started, so that it can take appropriate actions (eg. starting
* channel switch on other vifs), if necessary.
*/
void cfg80211_ch_switch_started_notify(struct net_device *dev,
struct cfg80211_chan_def *chandef,
unsigned int link_id, u8 count,
bool quiet);
/**
* ieee80211_operating_class_to_band - convert operating class to band
*
* @operating_class: the operating class to convert
* @band: band pointer to fill
*
* Returns %true if the conversion was successful, %false otherwise.
*/
bool ieee80211_operating_class_to_band(u8 operating_class,
enum nl80211_band *band);
/**
* ieee80211_operating_class_to_chandef - convert operating class to chandef
*
* @operating_class: the operating class to convert
* @chan: the ieee80211_channel to convert
* @chandef: a pointer to the resulting chandef
*
* Returns %true if the conversion was successful, %false otherwise.
*/
bool ieee80211_operating_class_to_chandef(u8 operating_class,
struct ieee80211_channel *chan,
struct cfg80211_chan_def *chandef);
/**
* ieee80211_chandef_to_operating_class - convert chandef to operation class
*
* @chandef: the chandef to convert
* @op_class: a pointer to the resulting operating class
*
* Returns %true if the conversion was successful, %false otherwise.
*/
bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
u8 *op_class);
/**
* ieee80211_chandef_to_khz - convert chandef to frequency in KHz
*
* @chandef: the chandef to convert
*
* Returns the center frequency of chandef (1st segment) in KHz.
*/
static inline u32
ieee80211_chandef_to_khz(const struct cfg80211_chan_def *chandef)
{
return MHZ_TO_KHZ(chandef->center_freq1) + chandef->freq1_offset;
}
/*
* cfg80211_tdls_oper_request - request userspace to perform TDLS operation
* @dev: the device on which the operation is requested
* @peer: the MAC address of the peer device
* @oper: the requested TDLS operation (NL80211_TDLS_SETUP or
* NL80211_TDLS_TEARDOWN)
* @reason_code: the reason code for teardown request
* @gfp: allocation flags
*
* This function is used to request userspace to perform TDLS operation that
* requires knowledge of keys, i.e., link setup or teardown when the AP
* connection uses encryption. This is optional mechanism for the driver to use
* if it can automatically determine when a TDLS link could be useful (e.g.,
* based on traffic and signal strength for a peer).
*/
void cfg80211_tdls_oper_request(struct net_device *dev, const u8 *peer,
enum nl80211_tdls_operation oper,
u16 reason_code, gfp_t gfp);
/*
* cfg80211_calculate_bitrate - calculate actual bitrate (in 100Kbps units)
* @rate: given rate_info to calculate bitrate from
*
* return 0 if MCS index >= 32
*/
u32 cfg80211_calculate_bitrate(struct rate_info *rate);
/**
* cfg80211_unregister_wdev - remove the given wdev
* @wdev: struct wireless_dev to remove
*
* This function removes the device so it can no longer be used. It is necessary
* to call this function even when cfg80211 requests the removal of the device
* by calling the del_virtual_intf() callback. The function must also be called
* when the driver wishes to unregister the wdev, e.g. when the hardware device
* is unbound from the driver.
*
* Requires the RTNL and wiphy mutex to be held.
*/
void cfg80211_unregister_wdev(struct wireless_dev *wdev);
/**
* cfg80211_register_netdevice - register the given netdev
* @dev: the netdev to register
*
* Note: In contexts coming from cfg80211 callbacks, you must call this rather
* than register_netdevice(), unregister_netdev() is impossible as the RTNL is
* held. Otherwise, both register_netdevice() and register_netdev() are usable
* instead as well.
*
* Requires the RTNL and wiphy mutex to be held.
*/
int cfg80211_register_netdevice(struct net_device *dev);
/**
* cfg80211_unregister_netdevice - unregister the given netdev
* @dev: the netdev to register
*
* Note: In contexts coming from cfg80211 callbacks, you must call this rather
* than unregister_netdevice(), unregister_netdev() is impossible as the RTNL
* is held. Otherwise, both unregister_netdevice() and unregister_netdev() are
* usable instead as well.
*
* Requires the RTNL and wiphy mutex to be held.
*/
static inline void cfg80211_unregister_netdevice(struct net_device *dev)
{
#if IS_ENABLED(CONFIG_CFG80211)
cfg80211_unregister_wdev(dev->ieee80211_ptr);
#endif
}
/**
* struct cfg80211_ft_event_params - FT Information Elements
* @ies: FT IEs
* @ies_len: length of the FT IE in bytes
* @target_ap: target AP's MAC address
* @ric_ies: RIC IE
* @ric_ies_len: length of the RIC IE in bytes
*/
struct cfg80211_ft_event_params {
const u8 *ies;
size_t ies_len;
const u8 *target_ap;
const u8 *ric_ies;
size_t ric_ies_len;
};
/**
* cfg80211_ft_event - notify userspace about FT IE and RIC IE
* @netdev: network device
* @ft_event: IE information
*/
void cfg80211_ft_event(struct net_device *netdev,
struct cfg80211_ft_event_params *ft_event);
/**
* cfg80211_get_p2p_attr - find and copy a P2P attribute from IE buffer
* @ies: the input IE buffer
* @len: the input length
* @attr: the attribute ID to find
* @buf: output buffer, can be %NULL if the data isn't needed, e.g.
* if the function is only called to get the needed buffer size
* @bufsize: size of the output buffer
*
* The function finds a given P2P attribute in the (vendor) IEs and
* copies its contents to the given buffer.
*
* Return: A negative error code (-%EILSEQ or -%ENOENT) if the data is
* malformed or the attribute can't be found (respectively), or the
* length of the found attribute (which can be zero).
*/
int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
enum ieee80211_p2p_attr_id attr,
u8 *buf, unsigned int bufsize);
/**
* ieee80211_ie_split_ric - split an IE buffer according to ordering (with RIC)
* @ies: the IE buffer
* @ielen: the length of the IE buffer
* @ids: an array with element IDs that are allowed before
* the split. A WLAN_EID_EXTENSION value means that the next
* EID in the list is a sub-element of the EXTENSION IE.
* @n_ids: the size of the element ID array
* @after_ric: array IE types that come after the RIC element
* @n_after_ric: size of the @after_ric array
* @offset: offset where to start splitting in the buffer
*
* This function splits an IE buffer by updating the @offset
* variable to point to the location where the buffer should be
* split.
*
* It assumes that the given IE buffer is well-formed, this
* has to be guaranteed by the caller!
*
* It also assumes that the IEs in the buffer are ordered
* correctly, if not the result of using this function will not
* be ordered correctly either, i.e. it does no reordering.
*
* The function returns the offset where the next part of the
* buffer starts, which may be @ielen if the entire (remainder)
* of the buffer should be used.
*/
size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
const u8 *ids, int n_ids,
const u8 *after_ric, int n_after_ric,
size_t offset);
/**
* ieee80211_ie_split - split an IE buffer according to ordering
* @ies: the IE buffer
* @ielen: the length of the IE buffer
* @ids: an array with element IDs that are allowed before
* the split. A WLAN_EID_EXTENSION value means that the next
* EID in the list is a sub-element of the EXTENSION IE.
* @n_ids: the size of the element ID array
* @offset: offset where to start splitting in the buffer
*
* This function splits an IE buffer by updating the @offset
* variable to point to the location where the buffer should be
* split.
*
* It assumes that the given IE buffer is well-formed, this
* has to be guaranteed by the caller!
*
* It also assumes that the IEs in the buffer are ordered
* correctly, if not the result of using this function will not
* be ordered correctly either, i.e. it does no reordering.
*
* The function returns the offset where the next part of the
* buffer starts, which may be @ielen if the entire (remainder)
* of the buffer should be used.
*/
static inline size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
const u8 *ids, int n_ids, size_t offset)
{
return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset);
}
/**
* ieee80211_fragment_element - fragment the last element in skb
* @skb: The skbuf that the element was added to
* @len_pos: Pointer to length of the element to fragment
* @frag_id: The element ID to use for fragments
*
* This function fragments all data after @len_pos, adding fragmentation
* elements with the given ID as appropriate. The SKB will grow in size
* accordingly.
*/
void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id);
/**
* cfg80211_report_wowlan_wakeup - report wakeup from WoWLAN
* @wdev: the wireless device reporting the wakeup
* @wakeup: the wakeup report
* @gfp: allocation flags
*
* This function reports that the given device woke up. If it
* caused the wakeup, report the reason(s), otherwise you may
* pass %NULL as the @wakeup parameter to advertise that something
* else caused the wakeup.
*/
void cfg80211_report_wowlan_wakeup(struct wireless_dev *wdev,
struct cfg80211_wowlan_wakeup *wakeup,
gfp_t gfp);
/**
* cfg80211_crit_proto_stopped() - indicate critical protocol stopped by driver.
*
* @wdev: the wireless device for which critical protocol is stopped.
* @gfp: allocation flags
*
* This function can be called by the driver to indicate it has reverted
* operation back to normal. One reason could be that the duration given
* by .crit_proto_start() has expired.
*/
void cfg80211_crit_proto_stopped(struct wireless_dev *wdev, gfp_t gfp);
/**
* ieee80211_get_num_supported_channels - get number of channels device has
* @wiphy: the wiphy
*
* Return: the number of channels supported by the device.
*/
unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy);
/**
* cfg80211_check_combinations - check interface combinations
*
* @wiphy: the wiphy
* @params: the interface combinations parameter
*
* This function can be called by the driver to check whether a
* combination of interfaces and their types are allowed according to
* the interface combinations.
*/
int cfg80211_check_combinations(struct wiphy *wiphy,
struct iface_combination_params *params);
/**
* cfg80211_iter_combinations - iterate over matching combinations
*
* @wiphy: the wiphy
* @params: the interface combinations parameter
* @iter: function to call for each matching combination
* @data: pointer to pass to iter function
*
* This function can be called by the driver to check what possible
* combinations it fits in at a given moment, e.g. for channel switching
* purposes.
*/
int cfg80211_iter_combinations(struct wiphy *wiphy,
struct iface_combination_params *params,
void (*iter)(const struct ieee80211_iface_combination *c,
void *data),
void *data);
/*
* cfg80211_stop_iface - trigger interface disconnection
*
* @wiphy: the wiphy
* @wdev: wireless device
* @gfp: context flags
*
* Trigger interface to be stopped as if AP was stopped, IBSS/mesh left, STA
* disconnected.
*
* Note: This doesn't need any locks and is asynchronous.
*/
void cfg80211_stop_iface(struct wiphy *wiphy, struct wireless_dev *wdev,
gfp_t gfp);
/**
* cfg80211_shutdown_all_interfaces - shut down all interfaces for a wiphy
* @wiphy: the wiphy to shut down
*
* This function shuts down all interfaces belonging to this wiphy by
* calling dev_close() (and treating non-netdev interfaces as needed).
* It shouldn't really be used unless there are some fatal device errors
* that really can't be recovered in any other way.
*
* Callers must hold the RTNL and be able to deal with callbacks into
* the driver while the function is running.
*/
void cfg80211_shutdown_all_interfaces(struct wiphy *wiphy);
/**
* wiphy_ext_feature_set - set the extended feature flag
*
* @wiphy: the wiphy to modify.
* @ftidx: extended feature bit index.
*
* The extended features are flagged in multiple bytes (see
* &struct wiphy.@ext_features)
*/
static inline void wiphy_ext_feature_set(struct wiphy *wiphy,
enum nl80211_ext_feature_index ftidx)
{
u8 *ft_byte;
ft_byte = &wiphy->ext_features[ftidx / 8];
*ft_byte |= BIT(ftidx % 8);
}
/**
* wiphy_ext_feature_isset - check the extended feature flag
*
* @wiphy: the wiphy to modify.
* @ftidx: extended feature bit index.
*
* The extended features are flagged in multiple bytes (see
* &struct wiphy.@ext_features)
*/
static inline bool
wiphy_ext_feature_isset(struct wiphy *wiphy,
enum nl80211_ext_feature_index ftidx)
{
u8 ft_byte;
ft_byte = wiphy->ext_features[ftidx / 8];
return (ft_byte & BIT(ftidx % 8)) != 0;
}
/**
* cfg80211_free_nan_func - free NAN function
* @f: NAN function that should be freed
*
* Frees all the NAN function and all it's allocated members.
*/
void cfg80211_free_nan_func(struct cfg80211_nan_func *f);
/**
* struct cfg80211_nan_match_params - NAN match parameters
* @type: the type of the function that triggered a match. If it is
* %NL80211_NAN_FUNC_SUBSCRIBE it means that we replied to a subscriber.
* If it is %NL80211_NAN_FUNC_PUBLISH, it means that we got a discovery
* result.
* If it is %NL80211_NAN_FUNC_FOLLOW_UP, we received a follow up.
* @inst_id: the local instance id
* @peer_inst_id: the instance id of the peer's function
* @addr: the MAC address of the peer
* @info_len: the length of the &info
* @info: the Service Specific Info from the peer (if any)
* @cookie: unique identifier of the corresponding function
*/
struct cfg80211_nan_match_params {
enum nl80211_nan_function_type type;
u8 inst_id;
u8 peer_inst_id;
const u8 *addr;
u8 info_len;
const u8 *info;
u64 cookie;
};
/**
* cfg80211_nan_match - report a match for a NAN function.
* @wdev: the wireless device reporting the match
* @match: match notification parameters
* @gfp: allocation flags
*
* This function reports that the a NAN function had a match. This
* can be a subscribe that had a match or a solicited publish that
* was sent. It can also be a follow up that was received.
*/
void cfg80211_nan_match(struct wireless_dev *wdev,
struct cfg80211_nan_match_params *match, gfp_t gfp);
/**
* cfg80211_nan_func_terminated - notify about NAN function termination.
*
* @wdev: the wireless device reporting the match
* @inst_id: the local instance id
* @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*)
* @cookie: unique NAN function identifier
* @gfp: allocation flags
*
* This function reports that the a NAN function is terminated.
*/
void cfg80211_nan_func_terminated(struct wireless_dev *wdev,
u8 inst_id,
enum nl80211_nan_func_term_reason reason,
u64 cookie, gfp_t gfp);
/* ethtool helper */
void cfg80211_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info);
/**
* cfg80211_external_auth_request - userspace request for authentication
* @netdev: network device
* @params: External authentication parameters
* @gfp: allocation flags
* Returns: 0 on success, < 0 on error
*/
int cfg80211_external_auth_request(struct net_device *netdev,
struct cfg80211_external_auth_params *params,
gfp_t gfp);
/**
* cfg80211_pmsr_report - report peer measurement result data
* @wdev: the wireless device reporting the measurement
* @req: the original measurement request
* @result: the result data
* @gfp: allocation flags
*/
void cfg80211_pmsr_report(struct wireless_dev *wdev,
struct cfg80211_pmsr_request *req,
struct cfg80211_pmsr_result *result,
gfp_t gfp);
/**
* cfg80211_pmsr_complete - report peer measurement completed
* @wdev: the wireless device reporting the measurement
* @req: the original measurement request
* @gfp: allocation flags
*
* Report that the entire measurement completed, after this
* the request pointer will no longer be valid.
*/
void cfg80211_pmsr_complete(struct wireless_dev *wdev,
struct cfg80211_pmsr_request *req,
gfp_t gfp);
/**
* cfg80211_iftype_allowed - check whether the interface can be allowed
* @wiphy: the wiphy
* @iftype: interface type
* @is_4addr: use_4addr flag, must be '0' when check_swif is '1'
* @check_swif: check iftype against software interfaces
*
* Check whether the interface is allowed to operate; additionally, this API
* can be used to check iftype against the software interfaces when
* check_swif is '1'.
*/
bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
bool is_4addr, u8 check_swif);
/**
* cfg80211_assoc_comeback - notification of association that was
* temporarily rejected with a comeback
* @netdev: network device
* @ap_addr: AP (MLD) address that rejected the association
* @timeout: timeout interval value TUs.
*
* this function may sleep. the caller must hold the corresponding wdev's mutex.
*/
void cfg80211_assoc_comeback(struct net_device *netdev,
const u8 *ap_addr, u32 timeout);
/* Logging, debugging and troubleshooting/diagnostic helpers. */
/* wiphy_printk helpers, similar to dev_printk */
#define wiphy_printk(level, wiphy, format, args...) \
dev_printk(level, &(wiphy)->dev, format, ##args)
#define wiphy_emerg(wiphy, format, args...) \
dev_emerg(&(wiphy)->dev, format, ##args)
#define wiphy_alert(wiphy, format, args...) \
dev_alert(&(wiphy)->dev, format, ##args)
#define wiphy_crit(wiphy, format, args...) \
dev_crit(&(wiphy)->dev, format, ##args)
#define wiphy_err(wiphy, format, args...) \
dev_err(&(wiphy)->dev, format, ##args)
#define wiphy_warn(wiphy, format, args...) \
dev_warn(&(wiphy)->dev, format, ##args)
#define wiphy_notice(wiphy, format, args...) \
dev_notice(&(wiphy)->dev, format, ##args)
#define wiphy_info(wiphy, format, args...) \
dev_info(&(wiphy)->dev, format, ##args)
#define wiphy_info_once(wiphy, format, args...) \
dev_info_once(&(wiphy)->dev, format, ##args)
#define wiphy_err_ratelimited(wiphy, format, args...) \
dev_err_ratelimited(&(wiphy)->dev, format, ##args)
#define wiphy_warn_ratelimited(wiphy, format, args...) \
dev_warn_ratelimited(&(wiphy)->dev, format, ##args)
#define wiphy_debug(wiphy, format, args...) \
wiphy_printk(KERN_DEBUG, wiphy, format, ##args)
#define wiphy_dbg(wiphy, format, args...) \
dev_dbg(&(wiphy)->dev, format, ##args)
#if defined(VERBOSE_DEBUG)
#define wiphy_vdbg wiphy_dbg
#else
#define wiphy_vdbg(wiphy, format, args...) \
({ \
if (0) \
wiphy_printk(KERN_DEBUG, wiphy, format, ##args); \
0; \
})
#endif
/*
* wiphy_WARN() acts like wiphy_printk(), but with the key difference
* of using a WARN/WARN_ON to get the message out, including the
* file/line information and a backtrace.
*/
#define wiphy_WARN(wiphy, format, args...) \
WARN(1, "wiphy: %s\n" format, wiphy_name(wiphy), ##args);
/**
* cfg80211_update_owe_info_event - Notify the peer's OWE info to user space
* @netdev: network device
* @owe_info: peer's owe info
* @gfp: allocation flags
*/
void cfg80211_update_owe_info_event(struct net_device *netdev,
struct cfg80211_update_owe_info *owe_info,
gfp_t gfp);
/**
* cfg80211_bss_flush - resets all the scan entries
* @wiphy: the wiphy
*/
void cfg80211_bss_flush(struct wiphy *wiphy);
/**
* cfg80211_bss_color_notify - notify about bss color event
* @dev: network device
* @cmd: the actual event we want to notify
* @count: the number of TBTTs until the color change happens
* @color_bitmap: representations of the colors that the local BSS is aware of
*/
int cfg80211_bss_color_notify(struct net_device *dev,
enum nl80211_commands cmd, u8 count,
u64 color_bitmap);
/**
* cfg80211_obss_color_collision_notify - notify about bss color collision
* @dev: network device
* @color_bitmap: representations of the colors that the local BSS is aware of
*/
static inline int cfg80211_obss_color_collision_notify(struct net_device *dev,
u64 color_bitmap)
{
return cfg80211_bss_color_notify(dev, NL80211_CMD_OBSS_COLOR_COLLISION,
0, color_bitmap);
}
/**
* cfg80211_color_change_started_notify - notify color change start
* @dev: the device on which the color is switched
* @count: the number of TBTTs until the color change happens
*
* Inform the userspace about the color change that has started.
*/
static inline int cfg80211_color_change_started_notify(struct net_device *dev,
u8 count)
{
return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_STARTED,
count, 0);
}
/**
* cfg80211_color_change_aborted_notify - notify color change abort
* @dev: the device on which the color is switched
*
* Inform the userspace about the color change that has aborted.
*/
static inline int cfg80211_color_change_aborted_notify(struct net_device *dev)
{
return cfg80211_bss_color_notify(dev, NL80211_CMD_COLOR_CHANGE_ABORTED,
0, 0);
}
/**
* cfg80211_color_change_notify - notify color change completion
* @dev: the device on which the color was switched
*
* Inform the userspace about the color change that has completed.
*/
static inline int cfg80211_color_change_notify(struct net_device *dev)
{
return cfg80211_bss_color_notify(dev,
NL80211_CMD_COLOR_CHANGE_COMPLETED,
0, 0);
}
/**
* cfg80211_links_removed - Notify about removed STA MLD setup links.
* @dev: network device.
* @link_mask: BIT mask of removed STA MLD setup link IDs.
*
* Inform cfg80211 and the userspace about removed STA MLD setup links due to
* AP MLD removing the corresponding affiliated APs with Multi-Link
* reconfiguration. Note that it's not valid to remove all links, in this
* case disconnect instead.
* Also note that the wdev mutex must be held.
*/
void cfg80211_links_removed(struct net_device *dev, u16 link_mask);
/**
* cfg80211_schedule_channels_check - schedule regulatory check if needed
* @wdev: the wireless device to check
*
* In case the device supports NO_IR or DFS relaxations, schedule regulatory
* channels check, as previous concurrent operation conditions may not
* hold anymore.
*/
void cfg80211_schedule_channels_check(struct wireless_dev *wdev);
#ifdef CONFIG_CFG80211_DEBUGFS
/**
* wiphy_locked_debugfs_read - do a locked read in debugfs
* @wiphy: the wiphy to use
* @file: the file being read
* @buf: the buffer to fill and then read from
* @bufsize: size of the buffer
* @userbuf: the user buffer to copy to
* @count: read count
* @ppos: read position
* @handler: the read handler to call (under wiphy lock)
* @data: additional data to pass to the read handler
*/
ssize_t wiphy_locked_debugfs_read(struct wiphy *wiphy, struct file *file,
char *buf, size_t bufsize,
char __user *userbuf, size_t count,
loff_t *ppos,
ssize_t (*handler)(struct wiphy *wiphy,
struct file *file,
char *buf,
size_t bufsize,
void *data),
void *data);
/**
* wiphy_locked_debugfs_write - do a locked write in debugfs
* @wiphy: the wiphy to use
* @file: the file being written to
* @buf: the buffer to copy the user data to
* @bufsize: size of the buffer
* @userbuf: the user buffer to copy from
* @count: read count
* @handler: the write handler to call (under wiphy lock)
* @data: additional data to pass to the write handler
*/
ssize_t wiphy_locked_debugfs_write(struct wiphy *wiphy, struct file *file,
char *buf, size_t bufsize,
const char __user *userbuf, size_t count,
ssize_t (*handler)(struct wiphy *wiphy,
struct file *file,
char *buf,
size_t count,
void *data),
void *data);
#endif
#endif /* __NET_CFG80211_H */