blob: f3a41133ac3f9745ee98fcc109710ee8a2988cc2 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2011-2014, Intel Corporation.
*/
#ifndef _NVME_H
#define _NVME_H
#include <linux/nvme.h>
#include <linux/cdev.h>
#include <linux/pci.h>
#include <linux/kref.h>
#include <linux/blk-mq.h>
#include <linux/sed-opal.h>
#include <linux/fault-inject.h>
#include <linux/rcupdate.h>
#include <linux/wait.h>
#include <linux/t10-pi.h>
#include <linux/ratelimit_types.h>
#include <trace/events/block.h>
extern const struct pr_ops nvme_pr_ops;
extern unsigned int nvme_io_timeout;
#define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
extern unsigned int admin_timeout;
#define NVME_ADMIN_TIMEOUT (admin_timeout * HZ)
#define NVME_DEFAULT_KATO 5
#ifdef CONFIG_ARCH_NO_SG_CHAIN
#define NVME_INLINE_SG_CNT 0
#define NVME_INLINE_METADATA_SG_CNT 0
#else
#define NVME_INLINE_SG_CNT 2
#define NVME_INLINE_METADATA_SG_CNT 1
#endif
/*
* Default to a 4K page size, with the intention to update this
* path in the future to accommodate architectures with differing
* kernel and IO page sizes.
*/
#define NVME_CTRL_PAGE_SHIFT 12
#define NVME_CTRL_PAGE_SIZE (1 << NVME_CTRL_PAGE_SHIFT)
extern struct workqueue_struct *nvme_wq;
extern struct workqueue_struct *nvme_reset_wq;
extern struct workqueue_struct *nvme_delete_wq;
/*
* List of workarounds for devices that required behavior not specified in
* the standard.
*/
enum nvme_quirks {
/*
* Prefers I/O aligned to a stripe size specified in a vendor
* specific Identify field.
*/
NVME_QUIRK_STRIPE_SIZE = (1 << 0),
/*
* The controller doesn't handle Identify value others than 0 or 1
* correctly.
*/
NVME_QUIRK_IDENTIFY_CNS = (1 << 1),
/*
* The controller deterministically returns O's on reads to
* logical blocks that deallocate was called on.
*/
NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2),
/*
* The controller needs a delay before starts checking the device
* readiness, which is done by reading the NVME_CSTS_RDY bit.
*/
NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3),
/*
* APST should not be used.
*/
NVME_QUIRK_NO_APST = (1 << 4),
/*
* The deepest sleep state should not be used.
*/
NVME_QUIRK_NO_DEEPEST_PS = (1 << 5),
/*
* Set MEDIUM priority on SQ creation
*/
NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7),
/*
* Ignore device provided subnqn.
*/
NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8),
/*
* Broken Write Zeroes.
*/
NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9),
/*
* Force simple suspend/resume path.
*/
NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10),
/*
* Use only one interrupt vector for all queues
*/
NVME_QUIRK_SINGLE_VECTOR = (1 << 11),
/*
* Use non-standard 128 bytes SQEs.
*/
NVME_QUIRK_128_BYTES_SQES = (1 << 12),
/*
* Prevent tag overlap between queues
*/
NVME_QUIRK_SHARED_TAGS = (1 << 13),
/*
* Don't change the value of the temperature threshold feature
*/
NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14),
/*
* The controller doesn't handle the Identify Namespace
* Identification Descriptor list subcommand despite claiming
* NVMe 1.3 compliance.
*/
NVME_QUIRK_NO_NS_DESC_LIST = (1 << 15),
/*
* The controller does not properly handle DMA addresses over
* 48 bits.
*/
NVME_QUIRK_DMA_ADDRESS_BITS_48 = (1 << 16),
/*
* The controller requires the command_id value be limited, so skip
* encoding the generation sequence number.
*/
NVME_QUIRK_SKIP_CID_GEN = (1 << 17),
/*
* Reports garbage in the namespace identifiers (eui64, nguid, uuid).
*/
NVME_QUIRK_BOGUS_NID = (1 << 18),
/*
* No temperature thresholds for channels other than 0 (Composite).
*/
NVME_QUIRK_NO_SECONDARY_TEMP_THRESH = (1 << 19),
/*
* Disables simple suspend/resume path.
*/
NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND = (1 << 20),
/*
* MSI (but not MSI-X) interrupts are broken and never fire.
*/
NVME_QUIRK_BROKEN_MSI = (1 << 21),
};
/*
* Common request structure for NVMe passthrough. All drivers must have
* this structure as the first member of their request-private data.
*/
struct nvme_request {
struct nvme_command *cmd;
union nvme_result result;
u8 genctr;
u8 retries;
u8 flags;
u16 status;
#ifdef CONFIG_NVME_MULTIPATH
unsigned long start_time;
#endif
struct nvme_ctrl *ctrl;
};
/*
* Mark a bio as coming in through the mpath node.
*/
#define REQ_NVME_MPATH REQ_DRV
enum {
NVME_REQ_CANCELLED = (1 << 0),
NVME_REQ_USERCMD = (1 << 1),
NVME_MPATH_IO_STATS = (1 << 2),
};
static inline struct nvme_request *nvme_req(struct request *req)
{
return blk_mq_rq_to_pdu(req);
}
static inline u16 nvme_req_qid(struct request *req)
{
if (!req->q->queuedata)
return 0;
return req->mq_hctx->queue_num + 1;
}
/* The below value is the specific amount of delay needed before checking
* readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
* NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
* found empirically.
*/
#define NVME_QUIRK_DELAY_AMOUNT 2300
/*
* enum nvme_ctrl_state: Controller state
*
* @NVME_CTRL_NEW: New controller just allocated, initial state
* @NVME_CTRL_LIVE: Controller is connected and I/O capable
* @NVME_CTRL_RESETTING: Controller is resetting (or scheduled reset)
* @NVME_CTRL_CONNECTING: Controller is disconnected, now connecting the
* transport
* @NVME_CTRL_DELETING: Controller is deleting (or scheduled deletion)
* @NVME_CTRL_DELETING_NOIO: Controller is deleting and I/O is not
* disabled/failed immediately. This state comes
* after all async event processing took place and
* before ns removal and the controller deletion
* progress
* @NVME_CTRL_DEAD: Controller is non-present/unresponsive during
* shutdown or removal. In this case we forcibly
* kill all inflight I/O as they have no chance to
* complete
*/
enum nvme_ctrl_state {
NVME_CTRL_NEW,
NVME_CTRL_LIVE,
NVME_CTRL_RESETTING,
NVME_CTRL_CONNECTING,
NVME_CTRL_DELETING,
NVME_CTRL_DELETING_NOIO,
NVME_CTRL_DEAD,
};
struct nvme_fault_inject {
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
struct fault_attr attr;
struct dentry *parent;
bool dont_retry; /* DNR, do not retry */
u16 status; /* status code */
#endif
};
enum nvme_ctrl_flags {
NVME_CTRL_FAILFAST_EXPIRED = 0,
NVME_CTRL_ADMIN_Q_STOPPED = 1,
NVME_CTRL_STARTED_ONCE = 2,
NVME_CTRL_STOPPED = 3,
NVME_CTRL_SKIP_ID_CNS_CS = 4,
NVME_CTRL_DIRTY_CAPABILITY = 5,
NVME_CTRL_FROZEN = 6,
};
struct nvme_ctrl {
bool comp_seen;
bool identified;
bool passthru_err_log_enabled;
enum nvme_ctrl_state state;
spinlock_t lock;
struct mutex scan_lock;
const struct nvme_ctrl_ops *ops;
struct request_queue *admin_q;
struct request_queue *connect_q;
struct request_queue *fabrics_q;
struct device *dev;
int instance;
int numa_node;
struct blk_mq_tag_set *tagset;
struct blk_mq_tag_set *admin_tagset;
struct list_head namespaces;
struct mutex namespaces_lock;
struct srcu_struct srcu;
struct device ctrl_device;
struct device *device; /* char device */
#ifdef CONFIG_NVME_HWMON
struct device *hwmon_device;
#endif
struct cdev cdev;
struct work_struct reset_work;
struct work_struct delete_work;
wait_queue_head_t state_wq;
struct nvme_subsystem *subsys;
struct list_head subsys_entry;
struct opal_dev *opal_dev;
char name[12];
u16 cntlid;
u16 mtfa;
u32 ctrl_config;
u32 queue_count;
u64 cap;
u32 max_hw_sectors;
u32 max_segments;
u32 max_integrity_segments;
u32 max_zeroes_sectors;
#ifdef CONFIG_BLK_DEV_ZONED
u32 max_zone_append;
#endif
u16 crdt[3];
u16 oncs;
u8 dmrl;
u32 dmrsl;
u16 oacs;
u16 sqsize;
u32 max_namespaces;
atomic_t abort_limit;
u8 vwc;
u32 vs;
u32 sgls;
u16 kas;
u8 npss;
u8 apsta;
u16 wctemp;
u16 cctemp;
u32 oaes;
u32 aen_result;
u32 ctratt;
unsigned int shutdown_timeout;
unsigned int kato;
bool subsystem;
unsigned long quirks;
struct nvme_id_power_state psd[32];
struct nvme_effects_log *effects;
struct xarray cels;
struct work_struct scan_work;
struct work_struct async_event_work;
struct delayed_work ka_work;
struct delayed_work failfast_work;
struct nvme_command ka_cmd;
unsigned long ka_last_check_time;
struct work_struct fw_act_work;
unsigned long events;
#ifdef CONFIG_NVME_MULTIPATH
/* asymmetric namespace access: */
u8 anacap;
u8 anatt;
u32 anagrpmax;
u32 nanagrpid;
struct mutex ana_lock;
struct nvme_ana_rsp_hdr *ana_log_buf;
size_t ana_log_size;
struct timer_list anatt_timer;
struct work_struct ana_work;
#endif
#ifdef CONFIG_NVME_HOST_AUTH
struct work_struct dhchap_auth_work;
struct mutex dhchap_auth_mutex;
struct nvme_dhchap_queue_context *dhchap_ctxs;
struct nvme_dhchap_key *host_key;
struct nvme_dhchap_key *ctrl_key;
u16 transaction;
#endif
struct key *tls_key;
/* Power saving configuration */
u64 ps_max_latency_us;
bool apst_enabled;
/* PCIe only: */
u16 hmmaxd;
u32 hmpre;
u32 hmmin;
u32 hmminds;
/* Fabrics only */
u32 ioccsz;
u32 iorcsz;
u16 icdoff;
u16 maxcmd;
int nr_reconnects;
unsigned long flags;
struct nvmf_ctrl_options *opts;
struct page *discard_page;
unsigned long discard_page_busy;
struct nvme_fault_inject fault_inject;
enum nvme_ctrl_type cntrltype;
enum nvme_dctype dctype;
};
static inline enum nvme_ctrl_state nvme_ctrl_state(struct nvme_ctrl *ctrl)
{
return READ_ONCE(ctrl->state);
}
enum nvme_iopolicy {
NVME_IOPOLICY_NUMA,
NVME_IOPOLICY_RR,
};
struct nvme_subsystem {
int instance;
struct device dev;
/*
* Because we unregister the device on the last put we need
* a separate refcount.
*/
struct kref ref;
struct list_head entry;
struct mutex lock;
struct list_head ctrls;
struct list_head nsheads;
char subnqn[NVMF_NQN_SIZE];
char serial[20];
char model[40];
char firmware_rev[8];
u8 cmic;
enum nvme_subsys_type subtype;
u16 vendor_id;
u16 awupf; /* 0's based awupf value. */
struct ida ns_ida;
#ifdef CONFIG_NVME_MULTIPATH
enum nvme_iopolicy iopolicy;
#endif
};
/*
* Container structure for uniqueue namespace identifiers.
*/
struct nvme_ns_ids {
u8 eui64[8];
u8 nguid[16];
uuid_t uuid;
u8 csi;
};
/*
* Anchor structure for namespaces. There is one for each namespace in a
* NVMe subsystem that any of our controllers can see, and the namespace
* structure for each controller is chained of it. For private namespaces
* there is a 1:1 relation to our namespace structures, that is ->list
* only ever has a single entry for private namespaces.
*/
struct nvme_ns_head {
struct list_head list;
struct srcu_struct srcu;
struct nvme_subsystem *subsys;
struct nvme_ns_ids ids;
struct list_head entry;
struct kref ref;
bool shared;
bool passthru_err_log_enabled;
int instance;
struct nvme_effects_log *effects;
u64 nuse;
unsigned ns_id;
int lba_shift;
u16 ms;
u16 pi_size;
u8 pi_type;
u8 pi_offset;
u8 guard_type;
#ifdef CONFIG_BLK_DEV_ZONED
u64 zsze;
#endif
unsigned long features;
struct ratelimit_state rs_nuse;
struct cdev cdev;
struct device cdev_device;
struct gendisk *disk;
#ifdef CONFIG_NVME_MULTIPATH
struct bio_list requeue_list;
spinlock_t requeue_lock;
struct work_struct requeue_work;
struct mutex lock;
unsigned long flags;
#define NVME_NSHEAD_DISK_LIVE 0
struct nvme_ns __rcu *current_path[];
#endif
};
static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
{
return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
}
enum nvme_ns_features {
NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
NVME_NS_DEAC, /* DEAC bit in Write Zeores supported */
};
struct nvme_ns {
struct list_head list;
struct nvme_ctrl *ctrl;
struct request_queue *queue;
struct gendisk *disk;
#ifdef CONFIG_NVME_MULTIPATH
enum nvme_ana_state ana_state;
u32 ana_grpid;
#endif
struct list_head siblings;
struct kref kref;
struct nvme_ns_head *head;
unsigned long flags;
#define NVME_NS_REMOVING 0
#define NVME_NS_ANA_PENDING 2
#define NVME_NS_FORCE_RO 3
#define NVME_NS_READY 4
struct cdev cdev;
struct device cdev_device;
struct nvme_fault_inject fault_inject;
};
/* NVMe ns supports metadata actions by the controller (generate/strip) */
static inline bool nvme_ns_has_pi(struct nvme_ns_head *head)
{
return head->pi_type && head->ms == head->pi_size;
}
struct nvme_ctrl_ops {
const char *name;
struct module *module;
unsigned int flags;
#define NVME_F_FABRICS (1 << 0)
#define NVME_F_METADATA_SUPPORTED (1 << 1)
#define NVME_F_BLOCKING (1 << 2)
const struct attribute_group **dev_attr_groups;
int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
void (*free_ctrl)(struct nvme_ctrl *ctrl);
void (*submit_async_event)(struct nvme_ctrl *ctrl);
void (*delete_ctrl)(struct nvme_ctrl *ctrl);
void (*stop_ctrl)(struct nvme_ctrl *ctrl);
int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
void (*print_device_info)(struct nvme_ctrl *ctrl);
bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl);
};
/*
* nvme command_id is constructed as such:
* | xxxx | xxxxxxxxxxxx |
* gen request tag
*/
#define nvme_genctr_mask(gen) (gen & 0xf)
#define nvme_cid_install_genctr(gen) (nvme_genctr_mask(gen) << 12)
#define nvme_genctr_from_cid(cid) ((cid & 0xf000) >> 12)
#define nvme_tag_from_cid(cid) (cid & 0xfff)
static inline u16 nvme_cid(struct request *rq)
{
return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
}
static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
u16 command_id)
{
u8 genctr = nvme_genctr_from_cid(command_id);
u16 tag = nvme_tag_from_cid(command_id);
struct request *rq;
rq = blk_mq_tag_to_rq(tags, tag);
if (unlikely(!rq)) {
pr_err("could not locate request for tag %#x\n",
tag);
return NULL;
}
if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
dev_err(nvme_req(rq)->ctrl->device,
"request %#x genctr mismatch (got %#x expected %#x)\n",
tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
return NULL;
}
return rq;
}
static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
u16 command_id)
{
return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
}
/*
* Return the length of the string without the space padding
*/
static inline int nvme_strlen(char *s, int len)
{
while (s[len - 1] == ' ')
len--;
return len;
}
static inline void nvme_print_device_info(struct nvme_ctrl *ctrl)
{
struct nvme_subsystem *subsys = ctrl->subsys;
if (ctrl->ops->print_device_info) {
ctrl->ops->print_device_info(ctrl);
return;
}
dev_err(ctrl->device,
"VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id,
nvme_strlen(subsys->model, sizeof(subsys->model)),
subsys->model, nvme_strlen(subsys->firmware_rev,
sizeof(subsys->firmware_rev)),
subsys->firmware_rev);
}
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
const char *dev_name);
void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
void nvme_should_fail(struct request *req);
#else
static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
const char *dev_name)
{
}
static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
{
}
static inline void nvme_should_fail(struct request *req) {}
#endif
bool nvme_wait_reset(struct nvme_ctrl *ctrl);
int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
{
int ret;
if (!ctrl->subsystem)
return -ENOTTY;
if (!nvme_wait_reset(ctrl))
return -EBUSY;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
if (ret)
return ret;
return nvme_try_sched_reset(ctrl);
}
/*
* Convert a 512B sector number to a device logical block number.
*/
static inline u64 nvme_sect_to_lba(struct nvme_ns_head *head, sector_t sector)
{
return sector >> (head->lba_shift - SECTOR_SHIFT);
}
/*
* Convert a device logical block number to a 512B sector number.
*/
static inline sector_t nvme_lba_to_sect(struct nvme_ns_head *head, u64 lba)
{
return lba << (head->lba_shift - SECTOR_SHIFT);
}
/*
* Convert byte length to nvme's 0-based num dwords
*/
static inline u32 nvme_bytes_to_numd(size_t len)
{
return (len >> 2) - 1;
}
static inline bool nvme_is_ana_error(u16 status)
{
switch (status & 0x7ff) {
case NVME_SC_ANA_TRANSITION:
case NVME_SC_ANA_INACCESSIBLE:
case NVME_SC_ANA_PERSISTENT_LOSS:
return true;
default:
return false;
}
}
static inline bool nvme_is_path_error(u16 status)
{
/* check for a status code type of 'path related status' */
return (status & 0x700) == 0x300;
}
/*
* Fill in the status and result information from the CQE, and then figure out
* if blk-mq will need to use IPI magic to complete the request, and if yes do
* so. If not let the caller complete the request without an indirect function
* call.
*/
static inline bool nvme_try_complete_req(struct request *req, __le16 status,
union nvme_result result)
{
struct nvme_request *rq = nvme_req(req);
struct nvme_ctrl *ctrl = rq->ctrl;
if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
rq->genctr++;
rq->status = le16_to_cpu(status) >> 1;
rq->result = result;
/* inject error when permitted by fault injection framework */
nvme_should_fail(req);
if (unlikely(blk_should_fake_timeout(req->q)))
return true;
return blk_mq_complete_request_remote(req);
}
static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
{
get_device(ctrl->device);
}
static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
put_device(ctrl->device);
}
static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
{
return !qid &&
nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
}
/*
* Returns true for sink states that can't ever transition back to live.
*/
static inline bool nvme_state_terminal(struct nvme_ctrl *ctrl)
{
switch (nvme_ctrl_state(ctrl)) {
case NVME_CTRL_NEW:
case NVME_CTRL_LIVE:
case NVME_CTRL_RESETTING:
case NVME_CTRL_CONNECTING:
return false;
case NVME_CTRL_DELETING:
case NVME_CTRL_DELETING_NOIO:
case NVME_CTRL_DEAD:
return true;
default:
WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
return true;
}
}
void nvme_end_req(struct request *req);
void nvme_complete_rq(struct request *req);
void nvme_complete_batch_req(struct request *req);
static __always_inline void nvme_complete_batch(struct io_comp_batch *iob,
void (*fn)(struct request *rq))
{
struct request *req;
rq_list_for_each(&iob->req_list, req) {
fn(req);
nvme_complete_batch_req(req);
}
blk_mq_end_request_batch(iob);
}
blk_status_t nvme_host_path_error(struct request *req);
bool nvme_cancel_request(struct request *req, void *data);
void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
enum nvme_ctrl_state new_state);
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown);
int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
const struct nvme_ctrl_ops *ops, unsigned long quirks);
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
void nvme_start_ctrl(struct nvme_ctrl *ctrl);
void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended);
int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
const struct blk_mq_ops *ops, unsigned int cmd_size);
void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl);
int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
const struct blk_mq_ops *ops, unsigned int nr_maps,
unsigned int cmd_size);
void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl);
void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
volatile union nvme_result *res);
void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl);
void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl);
void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl);
void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl);
void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl);
void nvme_sync_queues(struct nvme_ctrl *ctrl);
void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
void nvme_unfreeze(struct nvme_ctrl *ctrl);
void nvme_wait_freeze(struct nvme_ctrl *ctrl);
int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
void nvme_start_freeze(struct nvme_ctrl *ctrl);
static inline enum req_op nvme_req_op(struct nvme_command *cmd)
{
return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
}
#define NVME_QID_ANY -1
void nvme_init_request(struct request *req, struct nvme_command *cmd);
void nvme_cleanup_cmd(struct request *req);
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
struct request *req);
bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
bool queue_live, enum nvme_ctrl_state state);
static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
bool queue_live)
{
enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
if (likely(state == NVME_CTRL_LIVE))
return true;
if (ctrl->ops->flags & NVME_F_FABRICS && state == NVME_CTRL_DELETING)
return queue_live;
return __nvme_check_ready(ctrl, rq, queue_live, state);
}
/*
* NSID shall be unique for all shared namespaces, or if at least one of the
* following conditions is met:
* 1. Namespace Management is supported by the controller
* 2. ANA is supported by the controller
* 3. NVM Set are supported by the controller
*
* In other case, private namespace are not required to report a unique NSID.
*/
static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl,
struct nvme_ns_head *head)
{
return head->shared ||
(ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) ||
(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) ||
(ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS);
}
/*
* Flags for __nvme_submit_sync_cmd()
*/
typedef __u32 __bitwise nvme_submit_flags_t;
enum {
/* Insert request at the head of the queue */
NVME_SUBMIT_AT_HEAD = (__force nvme_submit_flags_t)(1 << 0),
/* Set BLK_MQ_REQ_NOWAIT when allocating request */
NVME_SUBMIT_NOWAIT = (__force nvme_submit_flags_t)(1 << 1),
/* Set BLK_MQ_REQ_RESERVED when allocating request */
NVME_SUBMIT_RESERVED = (__force nvme_submit_flags_t)(1 << 2),
/* Retry command when NVME_SC_DNR is not set in the result */
NVME_SUBMIT_RETRY = (__force nvme_submit_flags_t)(1 << 3),
};
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buf, unsigned bufflen);
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
union nvme_result *result, void *buffer, unsigned bufflen,
int qid, nvme_submit_flags_t flags);
int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
unsigned int dword11, void *buffer, size_t buflen,
u32 *result);
int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
unsigned int dword11, void *buffer, size_t buflen,
u32 *result);
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
void nvme_queue_scan(struct nvme_ctrl *ctrl);
int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
void *log, size_t size, u64 offset);
bool nvme_tryget_ns_head(struct nvme_ns_head *head);
void nvme_put_ns_head(struct nvme_ns_head *head);
int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
const struct file_operations *fops, struct module *owner);
void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long arg);
long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long arg);
long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
unsigned long arg);
long nvme_dev_ioctl(struct file *file, unsigned int cmd,
unsigned long arg);
int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
struct io_comp_batch *iob, unsigned int poll_flags);
int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd,
unsigned int issue_flags);
int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
unsigned int issue_flags);
int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
struct nvme_id_ns **id);
int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
extern const struct attribute_group *nvme_ns_attr_groups[];
extern const struct pr_ops nvme_pr_ops;
extern const struct block_device_operations nvme_ns_head_ops;
extern const struct attribute_group nvme_dev_attrs_group;
extern const struct attribute_group *nvme_subsys_attrs_groups[];
extern const struct attribute_group *nvme_dev_attr_groups[];
extern const struct block_device_operations nvme_bdev_ops;
void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl);
struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
#ifdef CONFIG_NVME_MULTIPATH
static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
{
return ctrl->ana_log_buf != NULL;
}
void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys);
void nvme_failover_req(struct request *req);
void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid);
void nvme_mpath_remove_disk(struct nvme_ns_head *head);
int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
void nvme_mpath_update(struct nvme_ctrl *ctrl);
void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
void nvme_mpath_stop(struct nvme_ctrl *ctrl);
bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
void nvme_mpath_start_request(struct request *rq);
void nvme_mpath_end_request(struct request *rq);
static inline void nvme_trace_bio_complete(struct request *req)
{
struct nvme_ns *ns = req->q->queuedata;
if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio)
trace_block_bio_complete(ns->head->disk->queue, req->bio);
}
extern bool multipath;
extern struct device_attribute dev_attr_ana_grpid;
extern struct device_attribute dev_attr_ana_state;
extern struct device_attribute subsys_attr_iopolicy;
static inline bool nvme_disk_is_ns_head(struct gendisk *disk)
{
return disk->fops == &nvme_ns_head_ops;
}
#else
#define multipath false
static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
{
return false;
}
static inline void nvme_failover_req(struct request *req)
{
}
static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
{
}
static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
struct nvme_ns_head *head)
{
return 0;
}
static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
{
}
static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
{
}
static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
{
return false;
}
static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
{
}
static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
{
}
static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
{
}
static inline void nvme_trace_bio_complete(struct request *req)
{
}
static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
{
}
static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
struct nvme_id_ctrl *id)
{
if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
dev_warn(ctrl->device,
"Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
return 0;
}
static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
{
}
static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
{
}
static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
{
}
static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
{
}
static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
{
}
static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
{
}
static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
{
}
static inline void nvme_mpath_start_request(struct request *rq)
{
}
static inline void nvme_mpath_end_request(struct request *rq)
{
}
static inline bool nvme_disk_is_ns_head(struct gendisk *disk)
{
return false;
}
#endif /* CONFIG_NVME_MULTIPATH */
struct nvme_zone_info {
u64 zone_size;
unsigned int max_open_zones;
unsigned int max_active_zones;
};
int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data);
int nvme_query_zone_info(struct nvme_ns *ns, unsigned lbaf,
struct nvme_zone_info *zi);
void nvme_update_zone_info(struct nvme_ns *ns, struct queue_limits *lim,
struct nvme_zone_info *zi);
#ifdef CONFIG_BLK_DEV_ZONED
blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
struct nvme_command *cmnd,
enum nvme_zone_mgmt_action action);
#else
static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
struct request *req, struct nvme_command *cmnd,
enum nvme_zone_mgmt_action action)
{
return BLK_STS_NOTSUPP;
}
#endif
static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
{
struct gendisk *disk = dev_to_disk(dev);
WARN_ON(nvme_disk_is_ns_head(disk));
return disk->private_data;
}
#ifdef CONFIG_NVME_HWMON
int nvme_hwmon_init(struct nvme_ctrl *ctrl);
void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
#else
static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
{
return 0;
}
static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
{
}
#endif
static inline void nvme_start_request(struct request *rq)
{
if (rq->cmd_flags & REQ_NVME_MPATH)
nvme_mpath_start_request(rq);
blk_mq_start_request(rq);
}
static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
{
return ctrl->sgls & ((1 << 0) | (1 << 1));
}
#ifdef CONFIG_NVME_HOST_AUTH
int __init nvme_init_auth(void);
void __exit nvme_exit_auth(void);
int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl);
void nvme_auth_stop(struct nvme_ctrl *ctrl);
int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid);
int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid);
void nvme_auth_free(struct nvme_ctrl *ctrl);
#else
static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
{
return 0;
}
static inline int __init nvme_init_auth(void)
{
return 0;
}
static inline void __exit nvme_exit_auth(void)
{
}
static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {};
static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
{
return -EPROTONOSUPPORT;
}
static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
{
return -EPROTONOSUPPORT;
}
static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {};
#endif
u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
u8 opcode);
u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode);
int nvme_execute_rq(struct request *rq, bool at_head);
void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
struct nvme_command *cmd, int status);
struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
bool nvme_get_ns(struct nvme_ns *ns);
void nvme_put_ns(struct nvme_ns *ns);
static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
{
return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
}
#ifdef CONFIG_NVME_VERBOSE_ERRORS
const char *nvme_get_error_status_str(u16 status);
const char *nvme_get_opcode_str(u8 opcode);
const char *nvme_get_admin_opcode_str(u8 opcode);
const char *nvme_get_fabrics_opcode_str(u8 opcode);
#else /* CONFIG_NVME_VERBOSE_ERRORS */
static inline const char *nvme_get_error_status_str(u16 status)
{
return "I/O Error";
}
static inline const char *nvme_get_opcode_str(u8 opcode)
{
return "I/O Cmd";
}
static inline const char *nvme_get_admin_opcode_str(u8 opcode)
{
return "Admin Cmd";
}
static inline const char *nvme_get_fabrics_opcode_str(u8 opcode)
{
return "Fabrics Cmd";
}
#endif /* CONFIG_NVME_VERBOSE_ERRORS */
static inline const char *nvme_opcode_str(int qid, u8 opcode)
{
return qid ? nvme_get_opcode_str(opcode) :
nvme_get_admin_opcode_str(opcode);
}
static inline const char *nvme_fabrics_opcode_str(
int qid, const struct nvme_command *cmd)
{
if (nvme_is_fabrics(cmd))
return nvme_get_fabrics_opcode_str(cmd->fabrics.fctype);
return nvme_opcode_str(qid, cmd->common.opcode);
}
#endif /* _NVME_H */