| /* audit.c -- Auditing support -*- linux-c -*- |
| * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. |
| * System-call specific features have moved to auditsc.c |
| * |
| * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
| * |
| * Goals: 1) Integrate fully with SELinux. |
| * 2) Minimal run-time overhead: |
| * a) Minimal when syscall auditing is disabled (audit_enable=0). |
| * b) Small when syscall auditing is enabled and no audit record |
| * is generated (defer as much work as possible to record |
| * generation time): |
| * i) context is allocated, |
| * ii) names from getname are stored without a copy, and |
| * iii) inode information stored from path_lookup. |
| * 3) Ability to disable syscall auditing at boot time (audit=0). |
| * 4) Usable by other parts of the kernel (if audit_log* is called, |
| * then a syscall record will be generated automatically for the |
| * current syscall). |
| * 5) Netlink interface to user-space. |
| * 6) Support low-overhead kernel-based filtering to minimize the |
| * information that must be passed to user-space. |
| * |
| * Example user-space utilities: http://people.redhat.com/faith/audit/ |
| */ |
| |
| #include <linux/init.h> |
| #include <asm/atomic.h> |
| #include <asm/types.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| |
| #include <linux/audit.h> |
| |
| #include <net/sock.h> |
| #include <linux/skbuff.h> |
| #include <linux/netlink.h> |
| |
| /* No auditing will take place until audit_initialized != 0. |
| * (Initialization happens after skb_init is called.) */ |
| static int audit_initialized; |
| |
| /* No syscall auditing will take place unless audit_enabled != 0. */ |
| int audit_enabled; |
| |
| /* Default state when kernel boots without any parameters. */ |
| static int audit_default; |
| |
| /* If auditing cannot proceed, audit_failure selects what happens. */ |
| static int audit_failure = AUDIT_FAIL_PRINTK; |
| |
| /* If audit records are to be written to the netlink socket, audit_pid |
| * contains the (non-zero) pid. */ |
| static int audit_pid; |
| |
| /* If audit_limit is non-zero, limit the rate of sending audit records |
| * to that number per second. This prevents DoS attacks, but results in |
| * audit records being dropped. */ |
| static int audit_rate_limit; |
| |
| /* Number of outstanding audit_buffers allowed. */ |
| static int audit_backlog_limit = 64; |
| static atomic_t audit_backlog = ATOMIC_INIT(0); |
| |
| /* Records can be lost in several ways: |
| 0) [suppressed in audit_alloc] |
| 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] |
| 2) out of memory in audit_log_move [alloc_skb] |
| 3) suppressed due to audit_rate_limit |
| 4) suppressed due to audit_backlog_limit |
| */ |
| static atomic_t audit_lost = ATOMIC_INIT(0); |
| |
| /* The netlink socket. */ |
| static struct sock *audit_sock; |
| |
| /* There are two lists of audit buffers. The txlist contains audit |
| * buffers that cannot be sent immediately to the netlink device because |
| * we are in an irq context (these are sent later in a tasklet). |
| * |
| * The second list is a list of pre-allocated audit buffers (if more |
| * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of |
| * being placed on the freelist). */ |
| static DEFINE_SPINLOCK(audit_txlist_lock); |
| static DEFINE_SPINLOCK(audit_freelist_lock); |
| static int audit_freelist_count = 0; |
| static LIST_HEAD(audit_txlist); |
| static LIST_HEAD(audit_freelist); |
| |
| /* There are three lists of rules -- one to search at task creation |
| * time, one to search at syscall entry time, and another to search at |
| * syscall exit time. */ |
| static LIST_HEAD(audit_tsklist); |
| static LIST_HEAD(audit_entlist); |
| static LIST_HEAD(audit_extlist); |
| |
| /* The netlink socket is only to be read by 1 CPU, which lets us assume |
| * that list additions and deletions never happen simultaneiously in |
| * auditsc.c */ |
| static DECLARE_MUTEX(audit_netlink_sem); |
| |
| /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting |
| * audit records. Since printk uses a 1024 byte buffer, this buffer |
| * should be at least that large. */ |
| #define AUDIT_BUFSIZ 1024 |
| |
| /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the |
| * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ |
| #define AUDIT_MAXFREE (2*NR_CPUS) |
| |
| /* The audit_buffer is used when formatting an audit record. The caller |
| * locks briefly to get the record off the freelist or to allocate the |
| * buffer, and locks briefly to send the buffer to the netlink layer or |
| * to place it on a transmit queue. Multiple audit_buffers can be in |
| * use simultaneously. */ |
| struct audit_buffer { |
| struct list_head list; |
| struct sk_buff_head sklist; /* formatted skbs ready to send */ |
| struct audit_context *ctx; /* NULL or associated context */ |
| int len; /* used area of tmp */ |
| char tmp[AUDIT_BUFSIZ]; |
| |
| /* Pointer to header and contents */ |
| struct nlmsghdr *nlh; |
| int total; |
| int type; |
| int pid; |
| int count; /* Times requeued */ |
| }; |
| |
| void audit_set_type(struct audit_buffer *ab, int type) |
| { |
| ab->type = type; |
| } |
| |
| struct audit_entry { |
| struct list_head list; |
| struct audit_rule rule; |
| }; |
| |
| static void audit_log_end_irq(struct audit_buffer *ab); |
| static void audit_log_end_fast(struct audit_buffer *ab); |
| |
| static void audit_panic(const char *message) |
| { |
| switch (audit_failure) |
| { |
| case AUDIT_FAIL_SILENT: |
| break; |
| case AUDIT_FAIL_PRINTK: |
| printk(KERN_ERR "audit: %s\n", message); |
| break; |
| case AUDIT_FAIL_PANIC: |
| panic("audit: %s\n", message); |
| break; |
| } |
| } |
| |
| static inline int audit_rate_check(void) |
| { |
| static unsigned long last_check = 0; |
| static int messages = 0; |
| static DEFINE_SPINLOCK(lock); |
| unsigned long flags; |
| unsigned long now; |
| unsigned long elapsed; |
| int retval = 0; |
| |
| if (!audit_rate_limit) return 1; |
| |
| spin_lock_irqsave(&lock, flags); |
| if (++messages < audit_rate_limit) { |
| retval = 1; |
| } else { |
| now = jiffies; |
| elapsed = now - last_check; |
| if (elapsed > HZ) { |
| last_check = now; |
| messages = 0; |
| retval = 1; |
| } |
| } |
| spin_unlock_irqrestore(&lock, flags); |
| |
| return retval; |
| } |
| |
| /* Emit at least 1 message per second, even if audit_rate_check is |
| * throttling. */ |
| void audit_log_lost(const char *message) |
| { |
| static unsigned long last_msg = 0; |
| static DEFINE_SPINLOCK(lock); |
| unsigned long flags; |
| unsigned long now; |
| int print; |
| |
| atomic_inc(&audit_lost); |
| |
| print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); |
| |
| if (!print) { |
| spin_lock_irqsave(&lock, flags); |
| now = jiffies; |
| if (now - last_msg > HZ) { |
| print = 1; |
| last_msg = now; |
| } |
| spin_unlock_irqrestore(&lock, flags); |
| } |
| |
| if (print) { |
| printk(KERN_WARNING |
| "audit: audit_lost=%d audit_backlog=%d" |
| " audit_rate_limit=%d audit_backlog_limit=%d\n", |
| atomic_read(&audit_lost), |
| atomic_read(&audit_backlog), |
| audit_rate_limit, |
| audit_backlog_limit); |
| audit_panic(message); |
| } |
| |
| } |
| |
| static int audit_set_rate_limit(int limit) |
| { |
| int old = audit_rate_limit; |
| audit_rate_limit = limit; |
| audit_log(current->audit_context, "audit_rate_limit=%d old=%d", |
| audit_rate_limit, old); |
| return old; |
| } |
| |
| static int audit_set_backlog_limit(int limit) |
| { |
| int old = audit_backlog_limit; |
| audit_backlog_limit = limit; |
| audit_log(current->audit_context, "audit_backlog_limit=%d old=%d", |
| audit_backlog_limit, old); |
| return old; |
| } |
| |
| static int audit_set_enabled(int state) |
| { |
| int old = audit_enabled; |
| if (state != 0 && state != 1) |
| return -EINVAL; |
| audit_enabled = state; |
| audit_log(current->audit_context, "audit_enabled=%d old=%d", |
| audit_enabled, old); |
| return old; |
| } |
| |
| static int audit_set_failure(int state) |
| { |
| int old = audit_failure; |
| if (state != AUDIT_FAIL_SILENT |
| && state != AUDIT_FAIL_PRINTK |
| && state != AUDIT_FAIL_PANIC) |
| return -EINVAL; |
| audit_failure = state; |
| audit_log(current->audit_context, "audit_failure=%d old=%d", |
| audit_failure, old); |
| return old; |
| } |
| |
| #ifdef CONFIG_NET |
| void audit_send_reply(int pid, int seq, int type, int done, int multi, |
| void *payload, int size) |
| { |
| struct sk_buff *skb; |
| struct nlmsghdr *nlh; |
| int len = NLMSG_SPACE(size); |
| void *data; |
| int flags = multi ? NLM_F_MULTI : 0; |
| int t = done ? NLMSG_DONE : type; |
| |
| skb = alloc_skb(len, GFP_KERNEL); |
| if (!skb) |
| goto nlmsg_failure; |
| |
| nlh = NLMSG_PUT(skb, pid, seq, t, len - sizeof(*nlh)); |
| nlh->nlmsg_flags = flags; |
| data = NLMSG_DATA(nlh); |
| memcpy(data, payload, size); |
| netlink_unicast(audit_sock, skb, pid, MSG_DONTWAIT); |
| return; |
| |
| nlmsg_failure: /* Used by NLMSG_PUT */ |
| if (skb) |
| kfree_skb(skb); |
| } |
| |
| /* |
| * Check for appropriate CAP_AUDIT_ capabilities on incoming audit |
| * control messages. |
| */ |
| static int audit_netlink_ok(kernel_cap_t eff_cap, u16 msg_type) |
| { |
| int err = 0; |
| |
| switch (msg_type) { |
| case AUDIT_GET: |
| case AUDIT_LIST: |
| case AUDIT_SET: |
| case AUDIT_ADD: |
| case AUDIT_DEL: |
| if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL)) |
| err = -EPERM; |
| break; |
| case AUDIT_USER: |
| if (!cap_raised(eff_cap, CAP_AUDIT_WRITE)) |
| err = -EPERM; |
| break; |
| default: /* bad msg */ |
| err = -EINVAL; |
| } |
| |
| return err; |
| } |
| |
| static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) |
| { |
| u32 uid, pid, seq; |
| void *data; |
| struct audit_status *status_get, status_set; |
| int err; |
| struct audit_buffer *ab; |
| u16 msg_type = nlh->nlmsg_type; |
| |
| err = audit_netlink_ok(NETLINK_CB(skb).eff_cap, msg_type); |
| if (err) |
| return err; |
| |
| pid = NETLINK_CREDS(skb)->pid; |
| uid = NETLINK_CREDS(skb)->uid; |
| seq = nlh->nlmsg_seq; |
| data = NLMSG_DATA(nlh); |
| |
| switch (msg_type) { |
| case AUDIT_GET: |
| status_set.enabled = audit_enabled; |
| status_set.failure = audit_failure; |
| status_set.pid = audit_pid; |
| status_set.rate_limit = audit_rate_limit; |
| status_set.backlog_limit = audit_backlog_limit; |
| status_set.lost = atomic_read(&audit_lost); |
| status_set.backlog = atomic_read(&audit_backlog); |
| audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, |
| &status_set, sizeof(status_set)); |
| break; |
| case AUDIT_SET: |
| if (nlh->nlmsg_len < sizeof(struct audit_status)) |
| return -EINVAL; |
| status_get = (struct audit_status *)data; |
| if (status_get->mask & AUDIT_STATUS_ENABLED) { |
| err = audit_set_enabled(status_get->enabled); |
| if (err < 0) return err; |
| } |
| if (status_get->mask & AUDIT_STATUS_FAILURE) { |
| err = audit_set_failure(status_get->failure); |
| if (err < 0) return err; |
| } |
| if (status_get->mask & AUDIT_STATUS_PID) { |
| int old = audit_pid; |
| audit_pid = status_get->pid; |
| audit_log(current->audit_context, |
| "audit_pid=%d old=%d", audit_pid, old); |
| } |
| if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) |
| audit_set_rate_limit(status_get->rate_limit); |
| if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) |
| audit_set_backlog_limit(status_get->backlog_limit); |
| break; |
| case AUDIT_USER: |
| ab = audit_log_start(NULL); |
| if (!ab) |
| break; /* audit_panic has been called */ |
| audit_log_format(ab, |
| "user pid=%d uid=%d length=%d msg='%.1024s'", |
| pid, uid, |
| (int)(nlh->nlmsg_len |
| - ((char *)data - (char *)nlh)), |
| (char *)data); |
| ab->type = AUDIT_USER; |
| ab->pid = pid; |
| audit_log_end(ab); |
| break; |
| case AUDIT_ADD: |
| case AUDIT_DEL: |
| if (nlh->nlmsg_len < sizeof(struct audit_rule)) |
| return -EINVAL; |
| /* fallthrough */ |
| case AUDIT_LIST: |
| #ifdef CONFIG_AUDITSYSCALL |
| err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, |
| uid, seq, data); |
| #else |
| err = -EOPNOTSUPP; |
| #endif |
| break; |
| default: |
| err = -EINVAL; |
| break; |
| } |
| |
| return err < 0 ? err : 0; |
| } |
| |
| /* Get message from skb (based on rtnetlink_rcv_skb). Each message is |
| * processed by audit_receive_msg. Malformed skbs with wrong length are |
| * discarded silently. */ |
| static void audit_receive_skb(struct sk_buff *skb) |
| { |
| int err; |
| struct nlmsghdr *nlh; |
| u32 rlen; |
| |
| while (skb->len >= NLMSG_SPACE(0)) { |
| nlh = (struct nlmsghdr *)skb->data; |
| if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) |
| return; |
| rlen = NLMSG_ALIGN(nlh->nlmsg_len); |
| if (rlen > skb->len) |
| rlen = skb->len; |
| if ((err = audit_receive_msg(skb, nlh))) { |
| netlink_ack(skb, nlh, err); |
| } else if (nlh->nlmsg_flags & NLM_F_ACK) |
| netlink_ack(skb, nlh, 0); |
| skb_pull(skb, rlen); |
| } |
| } |
| |
| /* Receive messages from netlink socket. */ |
| static void audit_receive(struct sock *sk, int length) |
| { |
| struct sk_buff *skb; |
| unsigned int qlen; |
| |
| down(&audit_netlink_sem); |
| |
| for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) { |
| skb = skb_dequeue(&sk->sk_receive_queue); |
| audit_receive_skb(skb); |
| kfree_skb(skb); |
| } |
| up(&audit_netlink_sem); |
| } |
| |
| /* Move data from tmp buffer into an skb. This is an extra copy, and |
| * that is unfortunate. However, the copy will only occur when a record |
| * is being written to user space, which is already a high-overhead |
| * operation. (Elimination of the copy is possible, for example, by |
| * writing directly into a pre-allocated skb, at the cost of wasting |
| * memory. */ |
| static void audit_log_move(struct audit_buffer *ab) |
| { |
| struct sk_buff *skb; |
| char *start; |
| int extra = ab->nlh ? 0 : NLMSG_SPACE(0); |
| |
| /* possible resubmission */ |
| if (ab->len == 0) |
| return; |
| |
| skb = skb_peek(&ab->sklist); |
| if (!skb || skb_tailroom(skb) <= ab->len + extra) { |
| skb = alloc_skb(2 * ab->len + extra, GFP_ATOMIC); |
| if (!skb) { |
| ab->len = 0; /* Lose information in ab->tmp */ |
| audit_log_lost("out of memory in audit_log_move"); |
| return; |
| } |
| __skb_queue_tail(&ab->sklist, skb); |
| if (!ab->nlh) |
| ab->nlh = (struct nlmsghdr *)skb_put(skb, |
| NLMSG_SPACE(0)); |
| } |
| start = skb_put(skb, ab->len); |
| memcpy(start, ab->tmp, ab->len); |
| ab->len = 0; |
| } |
| |
| /* Iterate over the skbuff in the audit_buffer, sending their contents |
| * to user space. */ |
| static inline int audit_log_drain(struct audit_buffer *ab) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = skb_dequeue(&ab->sklist))) { |
| int retval = 0; |
| |
| if (audit_pid) { |
| if (ab->nlh) { |
| ab->nlh->nlmsg_len = ab->total; |
| ab->nlh->nlmsg_type = ab->type; |
| ab->nlh->nlmsg_flags = 0; |
| ab->nlh->nlmsg_seq = 0; |
| ab->nlh->nlmsg_pid = ab->pid; |
| } |
| skb_get(skb); /* because netlink_* frees */ |
| retval = netlink_unicast(audit_sock, skb, audit_pid, |
| MSG_DONTWAIT); |
| } |
| if (retval == -EAGAIN && ab->count < 5) { |
| ++ab->count; |
| skb_queue_tail(&ab->sklist, skb); |
| audit_log_end_irq(ab); |
| return 1; |
| } |
| if (retval < 0) { |
| if (retval == -ECONNREFUSED) { |
| printk(KERN_ERR |
| "audit: *NO* daemon at audit_pid=%d\n", |
| audit_pid); |
| audit_pid = 0; |
| } else |
| audit_log_lost("netlink socket too busy"); |
| } |
| if (!audit_pid) { /* No daemon */ |
| int offset = ab->nlh ? NLMSG_SPACE(0) : 0; |
| int len = skb->len - offset; |
| printk(KERN_ERR "%*.*s\n", |
| len, len, skb->data + offset); |
| } |
| kfree_skb(skb); |
| ab->nlh = NULL; |
| } |
| return 0; |
| } |
| |
| /* Initialize audit support at boot time. */ |
| static int __init audit_init(void) |
| { |
| printk(KERN_INFO "audit: initializing netlink socket (%s)\n", |
| audit_default ? "enabled" : "disabled"); |
| audit_sock = netlink_kernel_create(NETLINK_AUDIT, audit_receive); |
| if (!audit_sock) |
| audit_panic("cannot initialize netlink socket"); |
| |
| audit_initialized = 1; |
| audit_enabled = audit_default; |
| audit_log(NULL, "initialized"); |
| return 0; |
| } |
| |
| #else |
| /* Without CONFIG_NET, we have no skbuffs. For now, print what we have |
| * in the buffer. */ |
| static void audit_log_move(struct audit_buffer *ab) |
| { |
| printk(KERN_ERR "%*.*s\n", ab->len, ab->len, ab->tmp); |
| ab->len = 0; |
| } |
| |
| static inline int audit_log_drain(struct audit_buffer *ab) |
| { |
| return 0; |
| } |
| |
| /* Initialize audit support at boot time. */ |
| int __init audit_init(void) |
| { |
| printk(KERN_INFO "audit: initializing WITHOUT netlink support\n"); |
| audit_sock = NULL; |
| audit_pid = 0; |
| |
| audit_initialized = 1; |
| audit_enabled = audit_default; |
| audit_log(NULL, "initialized"); |
| return 0; |
| } |
| #endif |
| |
| __initcall(audit_init); |
| |
| /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ |
| static int __init audit_enable(char *str) |
| { |
| audit_default = !!simple_strtol(str, NULL, 0); |
| printk(KERN_INFO "audit: %s%s\n", |
| audit_default ? "enabled" : "disabled", |
| audit_initialized ? "" : " (after initialization)"); |
| if (audit_initialized) |
| audit_enabled = audit_default; |
| return 0; |
| } |
| |
| __setup("audit=", audit_enable); |
| |
| |
| /* Obtain an audit buffer. This routine does locking to obtain the |
| * audit buffer, but then no locking is required for calls to |
| * audit_log_*format. If the tsk is a task that is currently in a |
| * syscall, then the syscall is marked as auditable and an audit record |
| * will be written at syscall exit. If there is no associated task, tsk |
| * should be NULL. */ |
| struct audit_buffer *audit_log_start(struct audit_context *ctx) |
| { |
| struct audit_buffer *ab = NULL; |
| unsigned long flags; |
| struct timespec t; |
| int serial = 0; |
| |
| if (!audit_initialized) |
| return NULL; |
| |
| if (audit_backlog_limit |
| && atomic_read(&audit_backlog) > audit_backlog_limit) { |
| if (audit_rate_check()) |
| printk(KERN_WARNING |
| "audit: audit_backlog=%d > " |
| "audit_backlog_limit=%d\n", |
| atomic_read(&audit_backlog), |
| audit_backlog_limit); |
| audit_log_lost("backlog limit exceeded"); |
| return NULL; |
| } |
| |
| spin_lock_irqsave(&audit_freelist_lock, flags); |
| if (!list_empty(&audit_freelist)) { |
| ab = list_entry(audit_freelist.next, |
| struct audit_buffer, list); |
| list_del(&ab->list); |
| --audit_freelist_count; |
| } |
| spin_unlock_irqrestore(&audit_freelist_lock, flags); |
| |
| if (!ab) |
| ab = kmalloc(sizeof(*ab), GFP_ATOMIC); |
| if (!ab) { |
| audit_log_lost("out of memory in audit_log_start"); |
| return NULL; |
| } |
| |
| atomic_inc(&audit_backlog); |
| skb_queue_head_init(&ab->sklist); |
| |
| ab->ctx = ctx; |
| ab->len = 0; |
| ab->nlh = NULL; |
| ab->total = 0; |
| ab->type = AUDIT_KERNEL; |
| ab->pid = 0; |
| ab->count = 0; |
| |
| #ifdef CONFIG_AUDITSYSCALL |
| if (ab->ctx) |
| audit_get_stamp(ab->ctx, &t, &serial); |
| else |
| #endif |
| t = CURRENT_TIME; |
| |
| audit_log_format(ab, "audit(%lu.%03lu:%u): ", |
| t.tv_sec, t.tv_nsec/1000000, serial); |
| return ab; |
| } |
| |
| |
| /* Format an audit message into the audit buffer. If there isn't enough |
| * room in the audit buffer, more room will be allocated and vsnprint |
| * will be called a second time. Currently, we assume that a printk |
| * can't format message larger than 1024 bytes, so we don't either. */ |
| static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, |
| va_list args) |
| { |
| int len, avail; |
| |
| if (!ab) |
| return; |
| |
| avail = sizeof(ab->tmp) - ab->len; |
| if (avail <= 0) { |
| audit_log_move(ab); |
| avail = sizeof(ab->tmp) - ab->len; |
| } |
| len = vsnprintf(ab->tmp + ab->len, avail, fmt, args); |
| if (len >= avail) { |
| /* The printk buffer is 1024 bytes long, so if we get |
| * here and AUDIT_BUFSIZ is at least 1024, then we can |
| * log everything that printk could have logged. */ |
| audit_log_move(ab); |
| avail = sizeof(ab->tmp) - ab->len; |
| len = vsnprintf(ab->tmp + ab->len, avail, fmt, args); |
| } |
| ab->len += (len < avail) ? len : avail; |
| ab->total += (len < avail) ? len : avail; |
| } |
| |
| /* Format a message into the audit buffer. All the work is done in |
| * audit_log_vformat. */ |
| void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) |
| { |
| va_list args; |
| |
| if (!ab) |
| return; |
| va_start(args, fmt); |
| audit_log_vformat(ab, fmt, args); |
| va_end(args); |
| } |
| |
| /* This is a helper-function to print the d_path without using a static |
| * buffer or allocating another buffer in addition to the one in |
| * audit_buffer. */ |
| void audit_log_d_path(struct audit_buffer *ab, const char *prefix, |
| struct dentry *dentry, struct vfsmount *vfsmnt) |
| { |
| char *p; |
| int len, avail; |
| |
| if (prefix) audit_log_format(ab, " %s", prefix); |
| |
| if (ab->len > 128) |
| audit_log_move(ab); |
| avail = sizeof(ab->tmp) - ab->len; |
| p = d_path(dentry, vfsmnt, ab->tmp + ab->len, avail); |
| if (IS_ERR(p)) { |
| /* FIXME: can we save some information here? */ |
| audit_log_format(ab, "<toolong>"); |
| } else { |
| /* path isn't at start of buffer */ |
| len = (ab->tmp + sizeof(ab->tmp) - 1) - p; |
| memmove(ab->tmp + ab->len, p, len); |
| ab->len += len; |
| ab->total += len; |
| } |
| } |
| |
| /* Remove queued messages from the audit_txlist and send them to userspace. */ |
| static void audit_tasklet_handler(unsigned long arg) |
| { |
| LIST_HEAD(list); |
| struct audit_buffer *ab; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&audit_txlist_lock, flags); |
| list_splice_init(&audit_txlist, &list); |
| spin_unlock_irqrestore(&audit_txlist_lock, flags); |
| |
| while (!list_empty(&list)) { |
| ab = list_entry(list.next, struct audit_buffer, list); |
| list_del(&ab->list); |
| audit_log_end_fast(ab); |
| } |
| } |
| |
| static DECLARE_TASKLET(audit_tasklet, audit_tasklet_handler, 0); |
| |
| /* The netlink_* functions cannot be called inside an irq context, so |
| * the audit buffer is places on a queue and a tasklet is scheduled to |
| * remove them from the queue outside the irq context. May be called in |
| * any context. */ |
| static void audit_log_end_irq(struct audit_buffer *ab) |
| { |
| unsigned long flags; |
| |
| if (!ab) |
| return; |
| spin_lock_irqsave(&audit_txlist_lock, flags); |
| list_add_tail(&ab->list, &audit_txlist); |
| spin_unlock_irqrestore(&audit_txlist_lock, flags); |
| |
| tasklet_schedule(&audit_tasklet); |
| } |
| |
| /* Send the message in the audit buffer directly to user space. May not |
| * be called in an irq context. */ |
| static void audit_log_end_fast(struct audit_buffer *ab) |
| { |
| unsigned long flags; |
| |
| BUG_ON(in_irq()); |
| if (!ab) |
| return; |
| if (!audit_rate_check()) { |
| audit_log_lost("rate limit exceeded"); |
| } else { |
| audit_log_move(ab); |
| if (audit_log_drain(ab)) |
| return; |
| } |
| |
| atomic_dec(&audit_backlog); |
| spin_lock_irqsave(&audit_freelist_lock, flags); |
| if (++audit_freelist_count > AUDIT_MAXFREE) |
| kfree(ab); |
| else |
| list_add(&ab->list, &audit_freelist); |
| spin_unlock_irqrestore(&audit_freelist_lock, flags); |
| } |
| |
| /* Send or queue the message in the audit buffer, depending on the |
| * current context. (A convenience function that may be called in any |
| * context.) */ |
| void audit_log_end(struct audit_buffer *ab) |
| { |
| if (in_irq()) |
| audit_log_end_irq(ab); |
| else |
| audit_log_end_fast(ab); |
| } |
| |
| /* Log an audit record. This is a convenience function that calls |
| * audit_log_start, audit_log_vformat, and audit_log_end. It may be |
| * called in any context. */ |
| void audit_log(struct audit_context *ctx, const char *fmt, ...) |
| { |
| struct audit_buffer *ab; |
| va_list args; |
| |
| ab = audit_log_start(ctx); |
| if (ab) { |
| va_start(args, fmt); |
| audit_log_vformat(ab, fmt, args); |
| va_end(args); |
| audit_log_end(ab); |
| } |
| } |