| /* |
| * Copyright (C) 2010 IBM Corporation |
| * Copyright (C) 2010 Politecnico di Torino, Italy |
| * TORSEC group -- http://security.polito.it |
| * |
| * Authors: |
| * Mimi Zohar <zohar@us.ibm.com> |
| * Roberto Sassu <roberto.sassu@polito.it> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, version 2 of the License. |
| * |
| * See Documentation/security/keys/trusted-encrypted.rst |
| */ |
| |
| #include <linux/uaccess.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/parser.h> |
| #include <linux/string.h> |
| #include <linux/err.h> |
| #include <keys/user-type.h> |
| #include <keys/trusted-type.h> |
| #include <keys/encrypted-type.h> |
| #include <linux/key-type.h> |
| #include <linux/random.h> |
| #include <linux/rcupdate.h> |
| #include <linux/scatterlist.h> |
| #include <linux/ctype.h> |
| #include <crypto/aes.h> |
| #include <crypto/algapi.h> |
| #include <crypto/hash.h> |
| #include <crypto/sha.h> |
| #include <crypto/skcipher.h> |
| |
| #include "encrypted.h" |
| #include "ecryptfs_format.h" |
| |
| static const char KEY_TRUSTED_PREFIX[] = "trusted:"; |
| static const char KEY_USER_PREFIX[] = "user:"; |
| static const char hash_alg[] = "sha256"; |
| static const char hmac_alg[] = "hmac(sha256)"; |
| static const char blkcipher_alg[] = "cbc(aes)"; |
| static const char key_format_default[] = "default"; |
| static const char key_format_ecryptfs[] = "ecryptfs"; |
| static const char key_format_enc32[] = "enc32"; |
| static unsigned int ivsize; |
| static int blksize; |
| |
| #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) |
| #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) |
| #define KEY_ECRYPTFS_DESC_LEN 16 |
| #define HASH_SIZE SHA256_DIGEST_SIZE |
| #define MAX_DATA_SIZE 4096 |
| #define MIN_DATA_SIZE 20 |
| #define KEY_ENC32_PAYLOAD_LEN 32 |
| |
| static struct crypto_shash *hash_tfm; |
| |
| enum { |
| Opt_err = -1, Opt_new, Opt_load, Opt_update |
| }; |
| |
| enum { |
| Opt_error = -1, Opt_default, Opt_ecryptfs, Opt_enc32 |
| }; |
| |
| static const match_table_t key_format_tokens = { |
| {Opt_default, "default"}, |
| {Opt_ecryptfs, "ecryptfs"}, |
| {Opt_enc32, "enc32"}, |
| {Opt_error, NULL} |
| }; |
| |
| static const match_table_t key_tokens = { |
| {Opt_new, "new"}, |
| {Opt_load, "load"}, |
| {Opt_update, "update"}, |
| {Opt_err, NULL} |
| }; |
| |
| static int aes_get_sizes(void) |
| { |
| struct crypto_skcipher *tfm; |
| |
| tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(tfm)) { |
| pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", |
| PTR_ERR(tfm)); |
| return PTR_ERR(tfm); |
| } |
| ivsize = crypto_skcipher_ivsize(tfm); |
| blksize = crypto_skcipher_blocksize(tfm); |
| crypto_free_skcipher(tfm); |
| return 0; |
| } |
| |
| /* |
| * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key |
| * |
| * The description of a encrypted key with format 'ecryptfs' must contain |
| * exactly 16 hexadecimal characters. |
| * |
| */ |
| static int valid_ecryptfs_desc(const char *ecryptfs_desc) |
| { |
| int i; |
| |
| if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) { |
| pr_err("encrypted_key: key description must be %d hexadecimal " |
| "characters long\n", KEY_ECRYPTFS_DESC_LEN); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) { |
| if (!isxdigit(ecryptfs_desc[i])) { |
| pr_err("encrypted_key: key description must contain " |
| "only hexadecimal characters\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key |
| * |
| * key-type:= "trusted:" | "user:" |
| * desc:= master-key description |
| * |
| * Verify that 'key-type' is valid and that 'desc' exists. On key update, |
| * only the master key description is permitted to change, not the key-type. |
| * The key-type remains constant. |
| * |
| * On success returns 0, otherwise -EINVAL. |
| */ |
| static int valid_master_desc(const char *new_desc, const char *orig_desc) |
| { |
| int prefix_len; |
| |
| if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) |
| prefix_len = KEY_TRUSTED_PREFIX_LEN; |
| else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) |
| prefix_len = KEY_USER_PREFIX_LEN; |
| else |
| return -EINVAL; |
| |
| if (!new_desc[prefix_len]) |
| return -EINVAL; |
| |
| if (orig_desc && strncmp(new_desc, orig_desc, prefix_len)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * datablob_parse - parse the keyctl data |
| * |
| * datablob format: |
| * new [<format>] <master-key name> <decrypted data length> |
| * load [<format>] <master-key name> <decrypted data length> |
| * <encrypted iv + data> |
| * update <new-master-key name> |
| * |
| * Tokenizes a copy of the keyctl data, returning a pointer to each token, |
| * which is null terminated. |
| * |
| * On success returns 0, otherwise -EINVAL. |
| */ |
| static int datablob_parse(char *datablob, const char **format, |
| char **master_desc, char **decrypted_datalen, |
| char **hex_encoded_iv) |
| { |
| substring_t args[MAX_OPT_ARGS]; |
| int ret = -EINVAL; |
| int key_cmd; |
| int key_format; |
| char *p, *keyword; |
| |
| keyword = strsep(&datablob, " \t"); |
| if (!keyword) { |
| pr_info("encrypted_key: insufficient parameters specified\n"); |
| return ret; |
| } |
| key_cmd = match_token(keyword, key_tokens, args); |
| |
| /* Get optional format: default | ecryptfs */ |
| p = strsep(&datablob, " \t"); |
| if (!p) { |
| pr_err("encrypted_key: insufficient parameters specified\n"); |
| return ret; |
| } |
| |
| key_format = match_token(p, key_format_tokens, args); |
| switch (key_format) { |
| case Opt_ecryptfs: |
| case Opt_enc32: |
| case Opt_default: |
| *format = p; |
| *master_desc = strsep(&datablob, " \t"); |
| break; |
| case Opt_error: |
| *master_desc = p; |
| break; |
| } |
| |
| if (!*master_desc) { |
| pr_info("encrypted_key: master key parameter is missing\n"); |
| goto out; |
| } |
| |
| if (valid_master_desc(*master_desc, NULL) < 0) { |
| pr_info("encrypted_key: master key parameter \'%s\' " |
| "is invalid\n", *master_desc); |
| goto out; |
| } |
| |
| if (decrypted_datalen) { |
| *decrypted_datalen = strsep(&datablob, " \t"); |
| if (!*decrypted_datalen) { |
| pr_info("encrypted_key: keylen parameter is missing\n"); |
| goto out; |
| } |
| } |
| |
| switch (key_cmd) { |
| case Opt_new: |
| if (!decrypted_datalen) { |
| pr_info("encrypted_key: keyword \'%s\' not allowed " |
| "when called from .update method\n", keyword); |
| break; |
| } |
| ret = 0; |
| break; |
| case Opt_load: |
| if (!decrypted_datalen) { |
| pr_info("encrypted_key: keyword \'%s\' not allowed " |
| "when called from .update method\n", keyword); |
| break; |
| } |
| *hex_encoded_iv = strsep(&datablob, " \t"); |
| if (!*hex_encoded_iv) { |
| pr_info("encrypted_key: hex blob is missing\n"); |
| break; |
| } |
| ret = 0; |
| break; |
| case Opt_update: |
| if (decrypted_datalen) { |
| pr_info("encrypted_key: keyword \'%s\' not allowed " |
| "when called from .instantiate method\n", |
| keyword); |
| break; |
| } |
| ret = 0; |
| break; |
| case Opt_err: |
| pr_info("encrypted_key: keyword \'%s\' not recognized\n", |
| keyword); |
| break; |
| } |
| out: |
| return ret; |
| } |
| |
| /* |
| * datablob_format - format as an ascii string, before copying to userspace |
| */ |
| static char *datablob_format(struct encrypted_key_payload *epayload, |
| size_t asciiblob_len) |
| { |
| char *ascii_buf, *bufp; |
| u8 *iv = epayload->iv; |
| int len; |
| int i; |
| |
| ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); |
| if (!ascii_buf) |
| goto out; |
| |
| ascii_buf[asciiblob_len] = '\0'; |
| |
| /* copy datablob master_desc and datalen strings */ |
| len = sprintf(ascii_buf, "%s %s %s ", epayload->format, |
| epayload->master_desc, epayload->datalen); |
| |
| /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ |
| bufp = &ascii_buf[len]; |
| for (i = 0; i < (asciiblob_len - len) / 2; i++) |
| bufp = hex_byte_pack(bufp, iv[i]); |
| out: |
| return ascii_buf; |
| } |
| |
| /* |
| * request_user_key - request the user key |
| * |
| * Use a user provided key to encrypt/decrypt an encrypted-key. |
| */ |
| static struct key *request_user_key(const char *master_desc, const u8 **master_key, |
| size_t *master_keylen) |
| { |
| const struct user_key_payload *upayload; |
| struct key *ukey; |
| |
| ukey = request_key(&key_type_user, master_desc, NULL); |
| if (IS_ERR(ukey)) |
| goto error; |
| |
| down_read(&ukey->sem); |
| upayload = user_key_payload_locked(ukey); |
| if (!upayload) { |
| /* key was revoked before we acquired its semaphore */ |
| up_read(&ukey->sem); |
| key_put(ukey); |
| ukey = ERR_PTR(-EKEYREVOKED); |
| goto error; |
| } |
| *master_key = upayload->data; |
| *master_keylen = upayload->datalen; |
| error: |
| return ukey; |
| } |
| |
| static int calc_hash(struct crypto_shash *tfm, u8 *digest, |
| const u8 *buf, unsigned int buflen) |
| { |
| SHASH_DESC_ON_STACK(desc, tfm); |
| int err; |
| |
| desc->tfm = tfm; |
| desc->flags = 0; |
| |
| err = crypto_shash_digest(desc, buf, buflen, digest); |
| shash_desc_zero(desc); |
| return err; |
| } |
| |
| static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, |
| const u8 *buf, unsigned int buflen) |
| { |
| struct crypto_shash *tfm; |
| int err; |
| |
| tfm = crypto_alloc_shash(hmac_alg, 0, 0); |
| if (IS_ERR(tfm)) { |
| pr_err("encrypted_key: can't alloc %s transform: %ld\n", |
| hmac_alg, PTR_ERR(tfm)); |
| return PTR_ERR(tfm); |
| } |
| |
| err = crypto_shash_setkey(tfm, key, keylen); |
| if (!err) |
| err = calc_hash(tfm, digest, buf, buflen); |
| crypto_free_shash(tfm); |
| return err; |
| } |
| |
| enum derived_key_type { ENC_KEY, AUTH_KEY }; |
| |
| /* Derive authentication/encryption key from trusted key */ |
| static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, |
| const u8 *master_key, size_t master_keylen) |
| { |
| u8 *derived_buf; |
| unsigned int derived_buf_len; |
| int ret; |
| |
| derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; |
| if (derived_buf_len < HASH_SIZE) |
| derived_buf_len = HASH_SIZE; |
| |
| derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); |
| if (!derived_buf) |
| return -ENOMEM; |
| |
| if (key_type) |
| strcpy(derived_buf, "AUTH_KEY"); |
| else |
| strcpy(derived_buf, "ENC_KEY"); |
| |
| memcpy(derived_buf + strlen(derived_buf) + 1, master_key, |
| master_keylen); |
| ret = calc_hash(hash_tfm, derived_key, derived_buf, derived_buf_len); |
| kzfree(derived_buf); |
| return ret; |
| } |
| |
| static struct skcipher_request *init_skcipher_req(const u8 *key, |
| unsigned int key_len) |
| { |
| struct skcipher_request *req; |
| struct crypto_skcipher *tfm; |
| int ret; |
| |
| tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(tfm)) { |
| pr_err("encrypted_key: failed to load %s transform (%ld)\n", |
| blkcipher_alg, PTR_ERR(tfm)); |
| return ERR_CAST(tfm); |
| } |
| |
| ret = crypto_skcipher_setkey(tfm, key, key_len); |
| if (ret < 0) { |
| pr_err("encrypted_key: failed to setkey (%d)\n", ret); |
| crypto_free_skcipher(tfm); |
| return ERR_PTR(ret); |
| } |
| |
| req = skcipher_request_alloc(tfm, GFP_KERNEL); |
| if (!req) { |
| pr_err("encrypted_key: failed to allocate request for %s\n", |
| blkcipher_alg); |
| crypto_free_skcipher(tfm); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| return req; |
| } |
| |
| static struct key *request_master_key(struct encrypted_key_payload *epayload, |
| const u8 **master_key, size_t *master_keylen) |
| { |
| struct key *mkey = ERR_PTR(-EINVAL); |
| |
| if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, |
| KEY_TRUSTED_PREFIX_LEN)) { |
| mkey = request_trusted_key(epayload->master_desc + |
| KEY_TRUSTED_PREFIX_LEN, |
| master_key, master_keylen); |
| } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, |
| KEY_USER_PREFIX_LEN)) { |
| mkey = request_user_key(epayload->master_desc + |
| KEY_USER_PREFIX_LEN, |
| master_key, master_keylen); |
| } else |
| goto out; |
| |
| if (IS_ERR(mkey)) { |
| int ret = PTR_ERR(mkey); |
| |
| if (ret == -ENOTSUPP) |
| pr_info("encrypted_key: key %s not supported", |
| epayload->master_desc); |
| else |
| pr_info("encrypted_key: key %s not found", |
| epayload->master_desc); |
| goto out; |
| } |
| |
| dump_master_key(*master_key, *master_keylen); |
| out: |
| return mkey; |
| } |
| |
| /* Before returning data to userspace, encrypt decrypted data. */ |
| static int derived_key_encrypt(struct encrypted_key_payload *epayload, |
| const u8 *derived_key, |
| unsigned int derived_keylen) |
| { |
| struct scatterlist sg_in[2]; |
| struct scatterlist sg_out[1]; |
| struct crypto_skcipher *tfm; |
| struct skcipher_request *req; |
| unsigned int encrypted_datalen; |
| u8 iv[AES_BLOCK_SIZE]; |
| int ret; |
| |
| encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); |
| |
| req = init_skcipher_req(derived_key, derived_keylen); |
| ret = PTR_ERR(req); |
| if (IS_ERR(req)) |
| goto out; |
| dump_decrypted_data(epayload); |
| |
| sg_init_table(sg_in, 2); |
| sg_set_buf(&sg_in[0], epayload->decrypted_data, |
| epayload->decrypted_datalen); |
| sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0); |
| |
| sg_init_table(sg_out, 1); |
| sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); |
| |
| memcpy(iv, epayload->iv, sizeof(iv)); |
| skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv); |
| ret = crypto_skcipher_encrypt(req); |
| tfm = crypto_skcipher_reqtfm(req); |
| skcipher_request_free(req); |
| crypto_free_skcipher(tfm); |
| if (ret < 0) |
| pr_err("encrypted_key: failed to encrypt (%d)\n", ret); |
| else |
| dump_encrypted_data(epayload, encrypted_datalen); |
| out: |
| return ret; |
| } |
| |
| static int datablob_hmac_append(struct encrypted_key_payload *epayload, |
| const u8 *master_key, size_t master_keylen) |
| { |
| u8 derived_key[HASH_SIZE]; |
| u8 *digest; |
| int ret; |
| |
| ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); |
| if (ret < 0) |
| goto out; |
| |
| digest = epayload->format + epayload->datablob_len; |
| ret = calc_hmac(digest, derived_key, sizeof derived_key, |
| epayload->format, epayload->datablob_len); |
| if (!ret) |
| dump_hmac(NULL, digest, HASH_SIZE); |
| out: |
| memzero_explicit(derived_key, sizeof(derived_key)); |
| return ret; |
| } |
| |
| /* verify HMAC before decrypting encrypted key */ |
| static int datablob_hmac_verify(struct encrypted_key_payload *epayload, |
| const u8 *format, const u8 *master_key, |
| size_t master_keylen) |
| { |
| u8 derived_key[HASH_SIZE]; |
| u8 digest[HASH_SIZE]; |
| int ret; |
| char *p; |
| unsigned short len; |
| |
| ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); |
| if (ret < 0) |
| goto out; |
| |
| len = epayload->datablob_len; |
| if (!format) { |
| p = epayload->master_desc; |
| len -= strlen(epayload->format) + 1; |
| } else |
| p = epayload->format; |
| |
| ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len); |
| if (ret < 0) |
| goto out; |
| ret = crypto_memneq(digest, epayload->format + epayload->datablob_len, |
| sizeof(digest)); |
| if (ret) { |
| ret = -EINVAL; |
| dump_hmac("datablob", |
| epayload->format + epayload->datablob_len, |
| HASH_SIZE); |
| dump_hmac("calc", digest, HASH_SIZE); |
| } |
| out: |
| memzero_explicit(derived_key, sizeof(derived_key)); |
| return ret; |
| } |
| |
| static int derived_key_decrypt(struct encrypted_key_payload *epayload, |
| const u8 *derived_key, |
| unsigned int derived_keylen) |
| { |
| struct scatterlist sg_in[1]; |
| struct scatterlist sg_out[2]; |
| struct crypto_skcipher *tfm; |
| struct skcipher_request *req; |
| unsigned int encrypted_datalen; |
| u8 iv[AES_BLOCK_SIZE]; |
| u8 *pad; |
| int ret; |
| |
| /* Throwaway buffer to hold the unused zero padding at the end */ |
| pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL); |
| if (!pad) |
| return -ENOMEM; |
| |
| encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); |
| req = init_skcipher_req(derived_key, derived_keylen); |
| ret = PTR_ERR(req); |
| if (IS_ERR(req)) |
| goto out; |
| dump_encrypted_data(epayload, encrypted_datalen); |
| |
| sg_init_table(sg_in, 1); |
| sg_init_table(sg_out, 2); |
| sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); |
| sg_set_buf(&sg_out[0], epayload->decrypted_data, |
| epayload->decrypted_datalen); |
| sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE); |
| |
| memcpy(iv, epayload->iv, sizeof(iv)); |
| skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv); |
| ret = crypto_skcipher_decrypt(req); |
| tfm = crypto_skcipher_reqtfm(req); |
| skcipher_request_free(req); |
| crypto_free_skcipher(tfm); |
| if (ret < 0) |
| goto out; |
| dump_decrypted_data(epayload); |
| out: |
| kfree(pad); |
| return ret; |
| } |
| |
| /* Allocate memory for decrypted key and datablob. */ |
| static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, |
| const char *format, |
| const char *master_desc, |
| const char *datalen) |
| { |
| struct encrypted_key_payload *epayload = NULL; |
| unsigned short datablob_len; |
| unsigned short decrypted_datalen; |
| unsigned short payload_datalen; |
| unsigned int encrypted_datalen; |
| unsigned int format_len; |
| long dlen; |
| int ret; |
| |
| ret = kstrtol(datalen, 10, &dlen); |
| if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) |
| return ERR_PTR(-EINVAL); |
| |
| format_len = (!format) ? strlen(key_format_default) : strlen(format); |
| decrypted_datalen = dlen; |
| payload_datalen = decrypted_datalen; |
| if (format) { |
| if (!strcmp(format, key_format_ecryptfs)) { |
| if (dlen != ECRYPTFS_MAX_KEY_BYTES) { |
| pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n", |
| ECRYPTFS_MAX_KEY_BYTES); |
| return ERR_PTR(-EINVAL); |
| } |
| decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES; |
| payload_datalen = sizeof(struct ecryptfs_auth_tok); |
| } else if (!strcmp(format, key_format_enc32)) { |
| if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) { |
| pr_err("encrypted_key: enc32 key payload incorrect length: %d\n", |
| decrypted_datalen); |
| return ERR_PTR(-EINVAL); |
| } |
| } |
| } |
| |
| encrypted_datalen = roundup(decrypted_datalen, blksize); |
| |
| datablob_len = format_len + 1 + strlen(master_desc) + 1 |
| + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen; |
| |
| ret = key_payload_reserve(key, payload_datalen + datablob_len |
| + HASH_SIZE + 1); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| epayload = kzalloc(sizeof(*epayload) + payload_datalen + |
| datablob_len + HASH_SIZE + 1, GFP_KERNEL); |
| if (!epayload) |
| return ERR_PTR(-ENOMEM); |
| |
| epayload->payload_datalen = payload_datalen; |
| epayload->decrypted_datalen = decrypted_datalen; |
| epayload->datablob_len = datablob_len; |
| return epayload; |
| } |
| |
| static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, |
| const char *format, const char *hex_encoded_iv) |
| { |
| struct key *mkey; |
| u8 derived_key[HASH_SIZE]; |
| const u8 *master_key; |
| u8 *hmac; |
| const char *hex_encoded_data; |
| unsigned int encrypted_datalen; |
| size_t master_keylen; |
| size_t asciilen; |
| int ret; |
| |
| encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); |
| asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; |
| if (strlen(hex_encoded_iv) != asciilen) |
| return -EINVAL; |
| |
| hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; |
| ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize); |
| if (ret < 0) |
| return -EINVAL; |
| ret = hex2bin(epayload->encrypted_data, hex_encoded_data, |
| encrypted_datalen); |
| if (ret < 0) |
| return -EINVAL; |
| |
| hmac = epayload->format + epayload->datablob_len; |
| ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), |
| HASH_SIZE); |
| if (ret < 0) |
| return -EINVAL; |
| |
| mkey = request_master_key(epayload, &master_key, &master_keylen); |
| if (IS_ERR(mkey)) |
| return PTR_ERR(mkey); |
| |
| ret = datablob_hmac_verify(epayload, format, master_key, master_keylen); |
| if (ret < 0) { |
| pr_err("encrypted_key: bad hmac (%d)\n", ret); |
| goto out; |
| } |
| |
| ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); |
| if (ret < 0) |
| goto out; |
| |
| ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); |
| if (ret < 0) |
| pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); |
| out: |
| up_read(&mkey->sem); |
| key_put(mkey); |
| memzero_explicit(derived_key, sizeof(derived_key)); |
| return ret; |
| } |
| |
| static void __ekey_init(struct encrypted_key_payload *epayload, |
| const char *format, const char *master_desc, |
| const char *datalen) |
| { |
| unsigned int format_len; |
| |
| format_len = (!format) ? strlen(key_format_default) : strlen(format); |
| epayload->format = epayload->payload_data + epayload->payload_datalen; |
| epayload->master_desc = epayload->format + format_len + 1; |
| epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; |
| epayload->iv = epayload->datalen + strlen(datalen) + 1; |
| epayload->encrypted_data = epayload->iv + ivsize + 1; |
| epayload->decrypted_data = epayload->payload_data; |
| |
| if (!format) |
| memcpy(epayload->format, key_format_default, format_len); |
| else { |
| if (!strcmp(format, key_format_ecryptfs)) |
| epayload->decrypted_data = |
| ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data); |
| |
| memcpy(epayload->format, format, format_len); |
| } |
| |
| memcpy(epayload->master_desc, master_desc, strlen(master_desc)); |
| memcpy(epayload->datalen, datalen, strlen(datalen)); |
| } |
| |
| /* |
| * encrypted_init - initialize an encrypted key |
| * |
| * For a new key, use a random number for both the iv and data |
| * itself. For an old key, decrypt the hex encoded data. |
| */ |
| static int encrypted_init(struct encrypted_key_payload *epayload, |
| const char *key_desc, const char *format, |
| const char *master_desc, const char *datalen, |
| const char *hex_encoded_iv) |
| { |
| int ret = 0; |
| |
| if (format && !strcmp(format, key_format_ecryptfs)) { |
| ret = valid_ecryptfs_desc(key_desc); |
| if (ret < 0) |
| return ret; |
| |
| ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data, |
| key_desc); |
| } |
| |
| __ekey_init(epayload, format, master_desc, datalen); |
| if (!hex_encoded_iv) { |
| get_random_bytes(epayload->iv, ivsize); |
| |
| get_random_bytes(epayload->decrypted_data, |
| epayload->decrypted_datalen); |
| } else |
| ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv); |
| return ret; |
| } |
| |
| /* |
| * encrypted_instantiate - instantiate an encrypted key |
| * |
| * Decrypt an existing encrypted datablob or create a new encrypted key |
| * based on a kernel random number. |
| * |
| * On success, return 0. Otherwise return errno. |
| */ |
| static int encrypted_instantiate(struct key *key, |
| struct key_preparsed_payload *prep) |
| { |
| struct encrypted_key_payload *epayload = NULL; |
| char *datablob = NULL; |
| const char *format = NULL; |
| char *master_desc = NULL; |
| char *decrypted_datalen = NULL; |
| char *hex_encoded_iv = NULL; |
| size_t datalen = prep->datalen; |
| int ret; |
| |
| if (datalen <= 0 || datalen > 32767 || !prep->data) |
| return -EINVAL; |
| |
| datablob = kmalloc(datalen + 1, GFP_KERNEL); |
| if (!datablob) |
| return -ENOMEM; |
| datablob[datalen] = 0; |
| memcpy(datablob, prep->data, datalen); |
| ret = datablob_parse(datablob, &format, &master_desc, |
| &decrypted_datalen, &hex_encoded_iv); |
| if (ret < 0) |
| goto out; |
| |
| epayload = encrypted_key_alloc(key, format, master_desc, |
| decrypted_datalen); |
| if (IS_ERR(epayload)) { |
| ret = PTR_ERR(epayload); |
| goto out; |
| } |
| ret = encrypted_init(epayload, key->description, format, master_desc, |
| decrypted_datalen, hex_encoded_iv); |
| if (ret < 0) { |
| kzfree(epayload); |
| goto out; |
| } |
| |
| rcu_assign_keypointer(key, epayload); |
| out: |
| kzfree(datablob); |
| return ret; |
| } |
| |
| static void encrypted_rcu_free(struct rcu_head *rcu) |
| { |
| struct encrypted_key_payload *epayload; |
| |
| epayload = container_of(rcu, struct encrypted_key_payload, rcu); |
| kzfree(epayload); |
| } |
| |
| /* |
| * encrypted_update - update the master key description |
| * |
| * Change the master key description for an existing encrypted key. |
| * The next read will return an encrypted datablob using the new |
| * master key description. |
| * |
| * On success, return 0. Otherwise return errno. |
| */ |
| static int encrypted_update(struct key *key, struct key_preparsed_payload *prep) |
| { |
| struct encrypted_key_payload *epayload = key->payload.data[0]; |
| struct encrypted_key_payload *new_epayload; |
| char *buf; |
| char *new_master_desc = NULL; |
| const char *format = NULL; |
| size_t datalen = prep->datalen; |
| int ret = 0; |
| |
| if (key_is_negative(key)) |
| return -ENOKEY; |
| if (datalen <= 0 || datalen > 32767 || !prep->data) |
| return -EINVAL; |
| |
| buf = kmalloc(datalen + 1, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| buf[datalen] = 0; |
| memcpy(buf, prep->data, datalen); |
| ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL); |
| if (ret < 0) |
| goto out; |
| |
| ret = valid_master_desc(new_master_desc, epayload->master_desc); |
| if (ret < 0) |
| goto out; |
| |
| new_epayload = encrypted_key_alloc(key, epayload->format, |
| new_master_desc, epayload->datalen); |
| if (IS_ERR(new_epayload)) { |
| ret = PTR_ERR(new_epayload); |
| goto out; |
| } |
| |
| __ekey_init(new_epayload, epayload->format, new_master_desc, |
| epayload->datalen); |
| |
| memcpy(new_epayload->iv, epayload->iv, ivsize); |
| memcpy(new_epayload->payload_data, epayload->payload_data, |
| epayload->payload_datalen); |
| |
| rcu_assign_keypointer(key, new_epayload); |
| call_rcu(&epayload->rcu, encrypted_rcu_free); |
| out: |
| kzfree(buf); |
| return ret; |
| } |
| |
| /* |
| * encrypted_read - format and copy the encrypted data to userspace |
| * |
| * The resulting datablob format is: |
| * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> |
| * |
| * On success, return to userspace the encrypted key datablob size. |
| */ |
| static long encrypted_read(const struct key *key, char __user *buffer, |
| size_t buflen) |
| { |
| struct encrypted_key_payload *epayload; |
| struct key *mkey; |
| const u8 *master_key; |
| size_t master_keylen; |
| char derived_key[HASH_SIZE]; |
| char *ascii_buf; |
| size_t asciiblob_len; |
| int ret; |
| |
| epayload = dereference_key_locked(key); |
| |
| /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ |
| asciiblob_len = epayload->datablob_len + ivsize + 1 |
| + roundup(epayload->decrypted_datalen, blksize) |
| + (HASH_SIZE * 2); |
| |
| if (!buffer || buflen < asciiblob_len) |
| return asciiblob_len; |
| |
| mkey = request_master_key(epayload, &master_key, &master_keylen); |
| if (IS_ERR(mkey)) |
| return PTR_ERR(mkey); |
| |
| ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); |
| if (ret < 0) |
| goto out; |
| |
| ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); |
| if (ret < 0) |
| goto out; |
| |
| ret = datablob_hmac_append(epayload, master_key, master_keylen); |
| if (ret < 0) |
| goto out; |
| |
| ascii_buf = datablob_format(epayload, asciiblob_len); |
| if (!ascii_buf) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| up_read(&mkey->sem); |
| key_put(mkey); |
| memzero_explicit(derived_key, sizeof(derived_key)); |
| |
| if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0) |
| ret = -EFAULT; |
| kzfree(ascii_buf); |
| |
| return asciiblob_len; |
| out: |
| up_read(&mkey->sem); |
| key_put(mkey); |
| memzero_explicit(derived_key, sizeof(derived_key)); |
| return ret; |
| } |
| |
| /* |
| * encrypted_destroy - clear and free the key's payload |
| */ |
| static void encrypted_destroy(struct key *key) |
| { |
| kzfree(key->payload.data[0]); |
| } |
| |
| struct key_type key_type_encrypted = { |
| .name = "encrypted", |
| .instantiate = encrypted_instantiate, |
| .update = encrypted_update, |
| .destroy = encrypted_destroy, |
| .describe = user_describe, |
| .read = encrypted_read, |
| }; |
| EXPORT_SYMBOL_GPL(key_type_encrypted); |
| |
| static int __init init_encrypted(void) |
| { |
| int ret; |
| |
| hash_tfm = crypto_alloc_shash(hash_alg, 0, 0); |
| if (IS_ERR(hash_tfm)) { |
| pr_err("encrypted_key: can't allocate %s transform: %ld\n", |
| hash_alg, PTR_ERR(hash_tfm)); |
| return PTR_ERR(hash_tfm); |
| } |
| |
| ret = aes_get_sizes(); |
| if (ret < 0) |
| goto out; |
| ret = register_key_type(&key_type_encrypted); |
| if (ret < 0) |
| goto out; |
| return 0; |
| out: |
| crypto_free_shash(hash_tfm); |
| return ret; |
| |
| } |
| |
| static void __exit cleanup_encrypted(void) |
| { |
| crypto_free_shash(hash_tfm); |
| unregister_key_type(&key_type_encrypted); |
| } |
| |
| late_initcall(init_encrypted); |
| module_exit(cleanup_encrypted); |
| |
| MODULE_LICENSE("GPL"); |