| /* |
| * Driver for the Octeon bootbus compact flash. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2005 - 2012 Cavium Inc. |
| * Copyright (C) 2008 Wind River Systems |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/libata.h> |
| #include <linux/hrtimer.h> |
| #include <linux/slab.h> |
| #include <linux/irq.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/platform_device.h> |
| #include <scsi/scsi_host.h> |
| #include <trace/events/libata.h> |
| #include <asm/byteorder.h> |
| #include <asm/octeon/octeon.h> |
| |
| /* |
| * The Octeon bootbus compact flash interface is connected in at least |
| * 3 different configurations on various evaluation boards: |
| * |
| * -- 8 bits no irq, no DMA |
| * -- 16 bits no irq, no DMA |
| * -- 16 bits True IDE mode with DMA, but no irq. |
| * |
| * In the last case the DMA engine can generate an interrupt when the |
| * transfer is complete. For the first two cases only PIO is supported. |
| * |
| */ |
| |
| #define DRV_NAME "pata_octeon_cf" |
| #define DRV_VERSION "2.2" |
| |
| /* Poll interval in nS. */ |
| #define OCTEON_CF_BUSY_POLL_INTERVAL 500000 |
| |
| #define DMA_CFG 0 |
| #define DMA_TIM 0x20 |
| #define DMA_INT 0x38 |
| #define DMA_INT_EN 0x50 |
| |
| struct octeon_cf_port { |
| struct hrtimer delayed_finish; |
| struct ata_port *ap; |
| int dma_finished; |
| void *c0; |
| unsigned int cs0; |
| unsigned int cs1; |
| bool is_true_ide; |
| u64 dma_base; |
| }; |
| |
| static struct scsi_host_template octeon_cf_sht = { |
| ATA_PIO_SHT(DRV_NAME), |
| }; |
| |
| static int enable_dma; |
| module_param(enable_dma, int, 0444); |
| MODULE_PARM_DESC(enable_dma, |
| "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)"); |
| |
| /** |
| * Convert nanosecond based time to setting used in the |
| * boot bus timing register, based on timing multiple |
| */ |
| static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs) |
| { |
| /* |
| * Compute # of eclock periods to get desired duration in |
| * nanoseconds. |
| */ |
| return DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000), |
| 1000 * tim_mult); |
| } |
| |
| static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier) |
| { |
| union cvmx_mio_boot_reg_cfgx reg_cfg; |
| unsigned int tim_mult; |
| |
| switch (multiplier) { |
| case 8: |
| tim_mult = 3; |
| break; |
| case 4: |
| tim_mult = 0; |
| break; |
| case 2: |
| tim_mult = 2; |
| break; |
| default: |
| tim_mult = 1; |
| break; |
| } |
| |
| reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); |
| reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */ |
| reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */ |
| reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */ |
| reg_cfg.s.sam = 0; /* Don't combine write and output enable */ |
| reg_cfg.s.we_ext = 0; /* No write enable extension */ |
| reg_cfg.s.oe_ext = 0; /* No read enable extension */ |
| reg_cfg.s.en = 1; /* Enable this region */ |
| reg_cfg.s.orbit = 0; /* Don't combine with previous region */ |
| reg_cfg.s.ale = 0; /* Don't do address multiplexing */ |
| cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64); |
| } |
| |
| /** |
| * Called after libata determines the needed PIO mode. This |
| * function programs the Octeon bootbus regions to support the |
| * timing requirements of the PIO mode. |
| * |
| * @ap: ATA port information |
| * @dev: ATA device |
| */ |
| static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev) |
| { |
| struct octeon_cf_port *cf_port = ap->private_data; |
| union cvmx_mio_boot_reg_timx reg_tim; |
| int T; |
| struct ata_timing timing; |
| |
| unsigned int div; |
| int use_iordy; |
| int trh; |
| int pause; |
| /* These names are timing parameters from the ATA spec */ |
| int t2; |
| |
| /* |
| * A divisor value of four will overflow the timing fields at |
| * clock rates greater than 800MHz |
| */ |
| if (octeon_get_io_clock_rate() <= 800000000) |
| div = 4; |
| else |
| div = 8; |
| T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate()); |
| |
| BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T)); |
| |
| t2 = timing.active; |
| if (t2) |
| t2--; |
| |
| trh = ns_to_tim_reg(div, 20); |
| if (trh) |
| trh--; |
| |
| pause = (int)timing.cycle - (int)timing.active - |
| (int)timing.setup - trh; |
| if (pause < 0) |
| pause = 0; |
| if (pause) |
| pause--; |
| |
| octeon_cf_set_boot_reg_cfg(cf_port->cs0, div); |
| if (cf_port->is_true_ide) |
| /* True IDE mode, program both chip selects. */ |
| octeon_cf_set_boot_reg_cfg(cf_port->cs1, div); |
| |
| |
| use_iordy = ata_pio_need_iordy(dev); |
| |
| reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0)); |
| /* Disable page mode */ |
| reg_tim.s.pagem = 0; |
| /* Enable dynamic timing */ |
| reg_tim.s.waitm = use_iordy; |
| /* Pages are disabled */ |
| reg_tim.s.pages = 0; |
| /* We don't use multiplexed address mode */ |
| reg_tim.s.ale = 0; |
| /* Not used */ |
| reg_tim.s.page = 0; |
| /* Time after IORDY to coninue to assert the data */ |
| reg_tim.s.wait = 0; |
| /* Time to wait to complete the cycle. */ |
| reg_tim.s.pause = pause; |
| /* How long to hold after a write to de-assert CE. */ |
| reg_tim.s.wr_hld = trh; |
| /* How long to wait after a read to de-assert CE. */ |
| reg_tim.s.rd_hld = trh; |
| /* How long write enable is asserted */ |
| reg_tim.s.we = t2; |
| /* How long read enable is asserted */ |
| reg_tim.s.oe = t2; |
| /* Time after CE that read/write starts */ |
| reg_tim.s.ce = ns_to_tim_reg(div, 5); |
| /* Time before CE that address is valid */ |
| reg_tim.s.adr = 0; |
| |
| /* Program the bootbus region timing for the data port chip select. */ |
| cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64); |
| if (cf_port->is_true_ide) |
| /* True IDE mode, program both chip selects. */ |
| cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1), |
| reg_tim.u64); |
| } |
| |
| static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev) |
| { |
| struct octeon_cf_port *cf_port = ap->private_data; |
| union cvmx_mio_boot_pin_defs pin_defs; |
| union cvmx_mio_boot_dma_timx dma_tim; |
| unsigned int oe_a; |
| unsigned int oe_n; |
| unsigned int dma_ackh; |
| unsigned int dma_arq; |
| unsigned int pause; |
| unsigned int T0, Tkr, Td; |
| unsigned int tim_mult; |
| int c; |
| |
| const struct ata_timing *timing; |
| |
| timing = ata_timing_find_mode(dev->dma_mode); |
| T0 = timing->cycle; |
| Td = timing->active; |
| Tkr = timing->recover; |
| dma_ackh = timing->dmack_hold; |
| |
| dma_tim.u64 = 0; |
| /* dma_tim.s.tim_mult = 0 --> 4x */ |
| tim_mult = 4; |
| |
| /* not spec'ed, value in eclocks, not affected by tim_mult */ |
| dma_arq = 8; |
| pause = 25 - dma_arq * 1000 / |
| (octeon_get_io_clock_rate() / 1000000); /* Tz */ |
| |
| oe_a = Td; |
| /* Tkr from cf spec, lengthened to meet T0 */ |
| oe_n = max(T0 - oe_a, Tkr); |
| |
| pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS); |
| |
| /* DMA channel number. */ |
| c = (cf_port->dma_base & 8) >> 3; |
| |
| /* Invert the polarity if the default is 0*/ |
| dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1; |
| |
| dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n); |
| dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a); |
| |
| /* |
| * This is tI, C.F. spec. says 0, but Sony CF card requires |
| * more, we use 20 nS. |
| */ |
| dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20); |
| dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh); |
| |
| dma_tim.s.dmarq = dma_arq; |
| dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause); |
| |
| dma_tim.s.rd_dly = 0; /* Sample right on edge */ |
| |
| /* writes only */ |
| dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n); |
| dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a); |
| |
| ata_dev_dbg(dev, "ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60, |
| ns_to_tim_reg(tim_mult, 60)); |
| ata_dev_dbg(dev, "oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n", |
| dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, |
| dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause); |
| |
| cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64); |
| } |
| |
| /** |
| * Handle an 8 bit I/O request. |
| * |
| * @qc: Queued command |
| * @buffer: Data buffer |
| * @buflen: Length of the buffer. |
| * @rw: True to write. |
| */ |
| static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc, |
| unsigned char *buffer, |
| unsigned int buflen, |
| int rw) |
| { |
| struct ata_port *ap = qc->dev->link->ap; |
| void __iomem *data_addr = ap->ioaddr.data_addr; |
| unsigned long words; |
| int count; |
| |
| words = buflen; |
| if (rw) { |
| count = 16; |
| while (words--) { |
| iowrite8(*buffer, data_addr); |
| buffer++; |
| /* |
| * Every 16 writes do a read so the bootbus |
| * FIFO doesn't fill up. |
| */ |
| if (--count == 0) { |
| ioread8(ap->ioaddr.altstatus_addr); |
| count = 16; |
| } |
| } |
| } else { |
| ioread8_rep(data_addr, buffer, words); |
| } |
| return buflen; |
| } |
| |
| /** |
| * Handle a 16 bit I/O request. |
| * |
| * @qc: Queued command |
| * @buffer: Data buffer |
| * @buflen: Length of the buffer. |
| * @rw: True to write. |
| */ |
| static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc, |
| unsigned char *buffer, |
| unsigned int buflen, |
| int rw) |
| { |
| struct ata_port *ap = qc->dev->link->ap; |
| void __iomem *data_addr = ap->ioaddr.data_addr; |
| unsigned long words; |
| int count; |
| |
| words = buflen / 2; |
| if (rw) { |
| count = 16; |
| while (words--) { |
| iowrite16(*(uint16_t *)buffer, data_addr); |
| buffer += sizeof(uint16_t); |
| /* |
| * Every 16 writes do a read so the bootbus |
| * FIFO doesn't fill up. |
| */ |
| if (--count == 0) { |
| ioread8(ap->ioaddr.altstatus_addr); |
| count = 16; |
| } |
| } |
| } else { |
| while (words--) { |
| *(uint16_t *)buffer = ioread16(data_addr); |
| buffer += sizeof(uint16_t); |
| } |
| } |
| /* Transfer trailing 1 byte, if any. */ |
| if (unlikely(buflen & 0x01)) { |
| __le16 align_buf[1] = { 0 }; |
| |
| if (rw == READ) { |
| align_buf[0] = cpu_to_le16(ioread16(data_addr)); |
| memcpy(buffer, align_buf, 1); |
| } else { |
| memcpy(align_buf, buffer, 1); |
| iowrite16(le16_to_cpu(align_buf[0]), data_addr); |
| } |
| words++; |
| } |
| return buflen; |
| } |
| |
| /** |
| * Read the taskfile for 16bit non-True IDE only. |
| */ |
| static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf) |
| { |
| u16 blob; |
| /* The base of the registers is at ioaddr.data_addr. */ |
| void __iomem *base = ap->ioaddr.data_addr; |
| |
| blob = __raw_readw(base + 0xc); |
| tf->error = blob >> 8; |
| |
| blob = __raw_readw(base + 2); |
| tf->nsect = blob & 0xff; |
| tf->lbal = blob >> 8; |
| |
| blob = __raw_readw(base + 4); |
| tf->lbam = blob & 0xff; |
| tf->lbah = blob >> 8; |
| |
| blob = __raw_readw(base + 6); |
| tf->device = blob & 0xff; |
| tf->status = blob >> 8; |
| |
| if (tf->flags & ATA_TFLAG_LBA48) { |
| if (likely(ap->ioaddr.ctl_addr)) { |
| iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr); |
| |
| blob = __raw_readw(base + 0xc); |
| tf->hob_feature = blob >> 8; |
| |
| blob = __raw_readw(base + 2); |
| tf->hob_nsect = blob & 0xff; |
| tf->hob_lbal = blob >> 8; |
| |
| blob = __raw_readw(base + 4); |
| tf->hob_lbam = blob & 0xff; |
| tf->hob_lbah = blob >> 8; |
| |
| iowrite8(tf->ctl, ap->ioaddr.ctl_addr); |
| ap->last_ctl = tf->ctl; |
| } else { |
| WARN_ON(1); |
| } |
| } |
| } |
| |
| static u8 octeon_cf_check_status16(struct ata_port *ap) |
| { |
| u16 blob; |
| void __iomem *base = ap->ioaddr.data_addr; |
| |
| blob = __raw_readw(base + 6); |
| return blob >> 8; |
| } |
| |
| static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes, |
| unsigned long deadline) |
| { |
| struct ata_port *ap = link->ap; |
| void __iomem *base = ap->ioaddr.data_addr; |
| int rc; |
| u8 err; |
| |
| __raw_writew(ap->ctl, base + 0xe); |
| udelay(20); |
| __raw_writew(ap->ctl | ATA_SRST, base + 0xe); |
| udelay(20); |
| __raw_writew(ap->ctl, base + 0xe); |
| |
| rc = ata_sff_wait_after_reset(link, 1, deadline); |
| if (rc) { |
| ata_link_err(link, "SRST failed (errno=%d)\n", rc); |
| return rc; |
| } |
| |
| /* determine by signature whether we have ATA or ATAPI devices */ |
| classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err); |
| return 0; |
| } |
| |
| /** |
| * Load the taskfile for 16bit non-True IDE only. The device_addr is |
| * not loaded, we do this as part of octeon_cf_exec_command16. |
| */ |
| static void octeon_cf_tf_load16(struct ata_port *ap, |
| const struct ata_taskfile *tf) |
| { |
| unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; |
| /* The base of the registers is at ioaddr.data_addr. */ |
| void __iomem *base = ap->ioaddr.data_addr; |
| |
| if (tf->ctl != ap->last_ctl) { |
| iowrite8(tf->ctl, ap->ioaddr.ctl_addr); |
| ap->last_ctl = tf->ctl; |
| ata_wait_idle(ap); |
| } |
| if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { |
| __raw_writew(tf->hob_feature << 8, base + 0xc); |
| __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2); |
| __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4); |
| } |
| if (is_addr) { |
| __raw_writew(tf->feature << 8, base + 0xc); |
| __raw_writew(tf->nsect | tf->lbal << 8, base + 2); |
| __raw_writew(tf->lbam | tf->lbah << 8, base + 4); |
| } |
| ata_wait_idle(ap); |
| } |
| |
| |
| static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device) |
| { |
| /* There is only one device, do nothing. */ |
| return; |
| } |
| |
| /* |
| * Issue ATA command to host controller. The device_addr is also sent |
| * as it must be written in a combined write with the command. |
| */ |
| static void octeon_cf_exec_command16(struct ata_port *ap, |
| const struct ata_taskfile *tf) |
| { |
| /* The base of the registers is at ioaddr.data_addr. */ |
| void __iomem *base = ap->ioaddr.data_addr; |
| u16 blob = 0; |
| |
| if (tf->flags & ATA_TFLAG_DEVICE) |
| blob = tf->device; |
| |
| blob |= (tf->command << 8); |
| __raw_writew(blob, base + 6); |
| |
| ata_wait_idle(ap); |
| } |
| |
| static void octeon_cf_ata_port_noaction(struct ata_port *ap) |
| { |
| } |
| |
| static void octeon_cf_dma_setup(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct octeon_cf_port *cf_port; |
| |
| cf_port = ap->private_data; |
| /* issue r/w command */ |
| qc->cursg = qc->sg; |
| cf_port->dma_finished = 0; |
| ap->ops->sff_exec_command(ap, &qc->tf); |
| } |
| |
| /** |
| * Start a DMA transfer that was already setup |
| * |
| * @qc: Information about the DMA |
| */ |
| static void octeon_cf_dma_start(struct ata_queued_cmd *qc) |
| { |
| struct octeon_cf_port *cf_port = qc->ap->private_data; |
| union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg; |
| union cvmx_mio_boot_dma_intx mio_boot_dma_int; |
| struct scatterlist *sg; |
| |
| /* Get the scatter list entry we need to DMA into */ |
| sg = qc->cursg; |
| BUG_ON(!sg); |
| |
| /* |
| * Clear the DMA complete status. |
| */ |
| mio_boot_dma_int.u64 = 0; |
| mio_boot_dma_int.s.done = 1; |
| cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64); |
| |
| /* Enable the interrupt. */ |
| cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64); |
| |
| /* Set the direction of the DMA */ |
| mio_boot_dma_cfg.u64 = 0; |
| #ifdef __LITTLE_ENDIAN |
| mio_boot_dma_cfg.s.endian = 1; |
| #endif |
| mio_boot_dma_cfg.s.en = 1; |
| mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0); |
| |
| /* |
| * Don't stop the DMA if the device deasserts DMARQ. Many |
| * compact flashes deassert DMARQ for a short time between |
| * sectors. Instead of stopping and restarting the DMA, we'll |
| * let the hardware do it. If the DMA is really stopped early |
| * due to an error condition, a later timeout will force us to |
| * stop. |
| */ |
| mio_boot_dma_cfg.s.clr = 0; |
| |
| /* Size is specified in 16bit words and minus one notation */ |
| mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1; |
| |
| /* We need to swap the high and low bytes of every 16 bits */ |
| mio_boot_dma_cfg.s.swap8 = 1; |
| |
| mio_boot_dma_cfg.s.adr = sg_dma_address(sg); |
| |
| cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64); |
| } |
| |
| /** |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host lock) |
| * |
| */ |
| static unsigned int octeon_cf_dma_finished(struct ata_port *ap, |
| struct ata_queued_cmd *qc) |
| { |
| struct ata_eh_info *ehi = &ap->link.eh_info; |
| struct octeon_cf_port *cf_port = ap->private_data; |
| union cvmx_mio_boot_dma_cfgx dma_cfg; |
| union cvmx_mio_boot_dma_intx dma_int; |
| u8 status; |
| |
| trace_ata_bmdma_stop(ap, &qc->tf, qc->tag); |
| |
| if (ap->hsm_task_state != HSM_ST_LAST) |
| return 0; |
| |
| dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); |
| if (dma_cfg.s.size != 0xfffff) { |
| /* Error, the transfer was not complete. */ |
| qc->err_mask |= AC_ERR_HOST_BUS; |
| ap->hsm_task_state = HSM_ST_ERR; |
| } |
| |
| /* Stop and clear the dma engine. */ |
| dma_cfg.u64 = 0; |
| dma_cfg.s.size = -1; |
| cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); |
| |
| /* Disable the interrupt. */ |
| dma_int.u64 = 0; |
| cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); |
| |
| /* Clear the DMA complete status */ |
| dma_int.s.done = 1; |
| cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); |
| |
| status = ap->ops->sff_check_status(ap); |
| |
| ata_sff_hsm_move(ap, qc, status, 0); |
| |
| if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA)) |
| ata_ehi_push_desc(ehi, "DMA stat 0x%x", status); |
| |
| return 1; |
| } |
| |
| /* |
| * Check if any queued commands have more DMAs, if so start the next |
| * transfer, else do end of transfer handling. |
| */ |
| static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance) |
| { |
| struct ata_host *host = dev_instance; |
| struct octeon_cf_port *cf_port; |
| int i; |
| unsigned int handled = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| for (i = 0; i < host->n_ports; i++) { |
| u8 status; |
| struct ata_port *ap; |
| struct ata_queued_cmd *qc; |
| union cvmx_mio_boot_dma_intx dma_int; |
| union cvmx_mio_boot_dma_cfgx dma_cfg; |
| |
| ap = host->ports[i]; |
| cf_port = ap->private_data; |
| |
| dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT); |
| dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); |
| |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| |
| if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING)) |
| continue; |
| |
| if (dma_int.s.done && !dma_cfg.s.en) { |
| if (!sg_is_last(qc->cursg)) { |
| qc->cursg = sg_next(qc->cursg); |
| handled = 1; |
| trace_ata_bmdma_start(ap, &qc->tf, qc->tag); |
| octeon_cf_dma_start(qc); |
| continue; |
| } else { |
| cf_port->dma_finished = 1; |
| } |
| } |
| if (!cf_port->dma_finished) |
| continue; |
| status = ioread8(ap->ioaddr.altstatus_addr); |
| if (status & (ATA_BUSY | ATA_DRQ)) { |
| /* |
| * We are busy, try to handle it later. This |
| * is the DMA finished interrupt, and it could |
| * take a little while for the card to be |
| * ready for more commands. |
| */ |
| /* Clear DMA irq. */ |
| dma_int.u64 = 0; |
| dma_int.s.done = 1; |
| cvmx_write_csr(cf_port->dma_base + DMA_INT, |
| dma_int.u64); |
| hrtimer_start_range_ns(&cf_port->delayed_finish, |
| ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL), |
| OCTEON_CF_BUSY_POLL_INTERVAL / 5, |
| HRTIMER_MODE_REL); |
| handled = 1; |
| } else { |
| handled |= octeon_cf_dma_finished(ap, qc); |
| } |
| } |
| spin_unlock_irqrestore(&host->lock, flags); |
| return IRQ_RETVAL(handled); |
| } |
| |
| static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt) |
| { |
| struct octeon_cf_port *cf_port = container_of(hrt, |
| struct octeon_cf_port, |
| delayed_finish); |
| struct ata_port *ap = cf_port->ap; |
| struct ata_host *host = ap->host; |
| struct ata_queued_cmd *qc; |
| unsigned long flags; |
| u8 status; |
| enum hrtimer_restart rv = HRTIMER_NORESTART; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| /* |
| * If the port is not waiting for completion, it must have |
| * handled it previously. The hsm_task_state is |
| * protected by host->lock. |
| */ |
| if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished) |
| goto out; |
| |
| status = ioread8(ap->ioaddr.altstatus_addr); |
| if (status & (ATA_BUSY | ATA_DRQ)) { |
| /* Still busy, try again. */ |
| hrtimer_forward_now(hrt, |
| ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL)); |
| rv = HRTIMER_RESTART; |
| goto out; |
| } |
| qc = ata_qc_from_tag(ap, ap->link.active_tag); |
| if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) |
| octeon_cf_dma_finished(ap, qc); |
| out: |
| spin_unlock_irqrestore(&host->lock, flags); |
| return rv; |
| } |
| |
| static void octeon_cf_dev_config(struct ata_device *dev) |
| { |
| /* |
| * A maximum of 2^20 - 1 16 bit transfers are possible with |
| * the bootbus DMA. So we need to throttle max_sectors to |
| * (2^12 - 1 == 4095) to assure that this can never happen. |
| */ |
| dev->max_sectors = min(dev->max_sectors, 4095U); |
| } |
| |
| /* |
| * We don't do ATAPI DMA so return 0. |
| */ |
| static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc) |
| { |
| return 0; |
| } |
| |
| static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| switch (qc->tf.protocol) { |
| case ATA_PROT_DMA: |
| WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); |
| |
| trace_ata_tf_load(ap, &qc->tf); |
| ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ |
| trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); |
| octeon_cf_dma_setup(qc); /* set up dma */ |
| trace_ata_bmdma_start(ap, &qc->tf, qc->tag); |
| octeon_cf_dma_start(qc); /* initiate dma */ |
| ap->hsm_task_state = HSM_ST_LAST; |
| break; |
| |
| case ATAPI_PROT_DMA: |
| dev_err(ap->dev, "Error, ATAPI not supported\n"); |
| BUG(); |
| |
| default: |
| return ata_sff_qc_issue(qc); |
| } |
| |
| return 0; |
| } |
| |
| static struct ata_port_operations octeon_cf_ops = { |
| .inherits = &ata_sff_port_ops, |
| .check_atapi_dma = octeon_cf_check_atapi_dma, |
| .qc_prep = ata_noop_qc_prep, |
| .qc_issue = octeon_cf_qc_issue, |
| .sff_dev_select = octeon_cf_dev_select, |
| .sff_irq_on = octeon_cf_ata_port_noaction, |
| .sff_irq_clear = octeon_cf_ata_port_noaction, |
| .cable_detect = ata_cable_40wire, |
| .set_piomode = octeon_cf_set_piomode, |
| .set_dmamode = octeon_cf_set_dmamode, |
| .dev_config = octeon_cf_dev_config, |
| }; |
| |
| static int octeon_cf_probe(struct platform_device *pdev) |
| { |
| struct resource *res_cs0, *res_cs1; |
| |
| bool is_16bit; |
| const __be32 *cs_num; |
| struct property *reg_prop; |
| int n_addr, n_size, reg_len; |
| struct device_node *node; |
| void __iomem *cs0; |
| void __iomem *cs1 = NULL; |
| struct ata_host *host; |
| struct ata_port *ap; |
| int irq = 0; |
| irq_handler_t irq_handler = NULL; |
| void __iomem *base; |
| struct octeon_cf_port *cf_port; |
| int rv = -ENOMEM; |
| u32 bus_width; |
| |
| node = pdev->dev.of_node; |
| if (node == NULL) |
| return -EINVAL; |
| |
| cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL); |
| if (!cf_port) |
| return -ENOMEM; |
| |
| cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide"); |
| |
| if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0) |
| is_16bit = (bus_width == 16); |
| else |
| is_16bit = false; |
| |
| n_addr = of_n_addr_cells(node); |
| n_size = of_n_size_cells(node); |
| |
| reg_prop = of_find_property(node, "reg", ®_len); |
| if (!reg_prop || reg_len < sizeof(__be32)) |
| return -EINVAL; |
| |
| cs_num = reg_prop->value; |
| cf_port->cs0 = be32_to_cpup(cs_num); |
| |
| if (cf_port->is_true_ide) { |
| struct device_node *dma_node; |
| dma_node = of_parse_phandle(node, |
| "cavium,dma-engine-handle", 0); |
| if (dma_node) { |
| struct platform_device *dma_dev; |
| dma_dev = of_find_device_by_node(dma_node); |
| if (dma_dev) { |
| struct resource *res_dma; |
| int i; |
| res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0); |
| if (!res_dma) { |
| of_node_put(dma_node); |
| return -EINVAL; |
| } |
| cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start, |
| resource_size(res_dma)); |
| if (!cf_port->dma_base) { |
| of_node_put(dma_node); |
| return -EINVAL; |
| } |
| |
| i = platform_get_irq(dma_dev, 0); |
| if (i > 0) { |
| irq = i; |
| irq_handler = octeon_cf_interrupt; |
| } |
| } |
| of_node_put(dma_node); |
| } |
| res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!res_cs1) |
| return -EINVAL; |
| |
| cs1 = devm_ioremap(&pdev->dev, res_cs1->start, |
| resource_size(res_cs1)); |
| if (!cs1) |
| return rv; |
| |
| if (reg_len < (n_addr + n_size + 1) * sizeof(__be32)) |
| return -EINVAL; |
| |
| cs_num += n_addr + n_size; |
| cf_port->cs1 = be32_to_cpup(cs_num); |
| } |
| |
| res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res_cs0) |
| return -EINVAL; |
| |
| cs0 = devm_ioremap(&pdev->dev, res_cs0->start, |
| resource_size(res_cs0)); |
| if (!cs0) |
| return rv; |
| |
| /* allocate host */ |
| host = ata_host_alloc(&pdev->dev, 1); |
| if (!host) |
| return rv; |
| |
| ap = host->ports[0]; |
| ap->private_data = cf_port; |
| pdev->dev.platform_data = cf_port; |
| cf_port->ap = ap; |
| ap->ops = &octeon_cf_ops; |
| ap->pio_mask = ATA_PIO6; |
| ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING; |
| |
| if (!is_16bit) { |
| base = cs0 + 0x800; |
| ap->ioaddr.cmd_addr = base; |
| ata_sff_std_ports(&ap->ioaddr); |
| |
| ap->ioaddr.altstatus_addr = base + 0xe; |
| ap->ioaddr.ctl_addr = base + 0xe; |
| octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8; |
| } else if (cf_port->is_true_ide) { |
| base = cs0; |
| ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1; |
| ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1); |
| ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1; |
| ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1; |
| ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1; |
| ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1; |
| ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1; |
| ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1; |
| ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1; |
| ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1; |
| ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1; |
| ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1; |
| ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1; |
| octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; |
| |
| ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0; |
| |
| /* True IDE mode needs a timer to poll for not-busy. */ |
| hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL); |
| cf_port->delayed_finish.function = octeon_cf_delayed_finish; |
| } else { |
| /* 16 bit but not True IDE */ |
| base = cs0 + 0x800; |
| octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; |
| octeon_cf_ops.softreset = octeon_cf_softreset16; |
| octeon_cf_ops.sff_check_status = octeon_cf_check_status16; |
| octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16; |
| octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16; |
| octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16; |
| |
| ap->ioaddr.data_addr = base + ATA_REG_DATA; |
| ap->ioaddr.nsect_addr = base + ATA_REG_NSECT; |
| ap->ioaddr.lbal_addr = base + ATA_REG_LBAL; |
| ap->ioaddr.ctl_addr = base + 0xe; |
| ap->ioaddr.altstatus_addr = base + 0xe; |
| } |
| cf_port->c0 = ap->ioaddr.ctl_addr; |
| |
| rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); |
| if (rv) |
| return rv; |
| |
| ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr); |
| |
| dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n", |
| is_16bit ? 16 : 8, |
| cf_port->is_true_ide ? ", True IDE" : ""); |
| |
| return ata_host_activate(host, irq, irq_handler, |
| IRQF_SHARED, &octeon_cf_sht); |
| } |
| |
| static void octeon_cf_shutdown(struct device *dev) |
| { |
| union cvmx_mio_boot_dma_cfgx dma_cfg; |
| union cvmx_mio_boot_dma_intx dma_int; |
| |
| struct octeon_cf_port *cf_port = dev_get_platdata(dev); |
| |
| if (cf_port->dma_base) { |
| /* Stop and clear the dma engine. */ |
| dma_cfg.u64 = 0; |
| dma_cfg.s.size = -1; |
| cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); |
| |
| /* Disable the interrupt. */ |
| dma_int.u64 = 0; |
| cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); |
| |
| /* Clear the DMA complete status */ |
| dma_int.s.done = 1; |
| cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); |
| |
| __raw_writeb(0, cf_port->c0); |
| udelay(20); |
| __raw_writeb(ATA_SRST, cf_port->c0); |
| udelay(20); |
| __raw_writeb(0, cf_port->c0); |
| mdelay(100); |
| } |
| } |
| |
| static const struct of_device_id octeon_cf_match[] = { |
| { .compatible = "cavium,ebt3000-compact-flash", }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, octeon_cf_match); |
| |
| static struct platform_driver octeon_cf_driver = { |
| .probe = octeon_cf_probe, |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = octeon_cf_match, |
| .shutdown = octeon_cf_shutdown |
| }, |
| }; |
| |
| static int __init octeon_cf_init(void) |
| { |
| return platform_driver_register(&octeon_cf_driver); |
| } |
| |
| |
| MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); |
| MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_ALIAS("platform:" DRV_NAME); |
| |
| module_init(octeon_cf_init); |