| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * intel_hdmi_audio.c - Intel HDMI audio driver |
| * |
| * Copyright (C) 2016 Intel Corp |
| * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com> |
| * Ramesh Babu K V <ramesh.babu@intel.com> |
| * Vaibhav Agarwal <vaibhav.agarwal@intel.com> |
| * Jerome Anand <jerome.anand@intel.com> |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * ALSA driver for Intel HDMI audio |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/platform_device.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/delay.h> |
| #include <sound/core.h> |
| #include <sound/asoundef.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include <sound/initval.h> |
| #include <sound/control.h> |
| #include <sound/jack.h> |
| #include <drm/drm_edid.h> |
| #include <drm/intel_lpe_audio.h> |
| #include "intel_hdmi_audio.h" |
| |
| #define for_each_pipe(card_ctx, pipe) \ |
| for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++) |
| #define for_each_port(card_ctx, port) \ |
| for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++) |
| |
| /*standard module options for ALSA. This module supports only one card*/ |
| static int hdmi_card_index = SNDRV_DEFAULT_IDX1; |
| static char *hdmi_card_id = SNDRV_DEFAULT_STR1; |
| static bool single_port; |
| |
| module_param_named(index, hdmi_card_index, int, 0444); |
| MODULE_PARM_DESC(index, |
| "Index value for INTEL Intel HDMI Audio controller."); |
| module_param_named(id, hdmi_card_id, charp, 0444); |
| MODULE_PARM_DESC(id, |
| "ID string for INTEL Intel HDMI Audio controller."); |
| module_param(single_port, bool, 0444); |
| MODULE_PARM_DESC(single_port, |
| "Single-port mode (for compatibility)"); |
| |
| /* |
| * ELD SA bits in the CEA Speaker Allocation data block |
| */ |
| static const int eld_speaker_allocation_bits[] = { |
| [0] = FL | FR, |
| [1] = LFE, |
| [2] = FC, |
| [3] = RL | RR, |
| [4] = RC, |
| [5] = FLC | FRC, |
| [6] = RLC | RRC, |
| /* the following are not defined in ELD yet */ |
| [7] = 0, |
| }; |
| |
| /* |
| * This is an ordered list! |
| * |
| * The preceding ones have better chances to be selected by |
| * hdmi_channel_allocation(). |
| */ |
| static struct cea_channel_speaker_allocation channel_allocations[] = { |
| /* channel: 7 6 5 4 3 2 1 0 */ |
| { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } }, |
| /* 2.1 */ |
| { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } }, |
| /* Dolby Surround */ |
| { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } }, |
| /* surround40 */ |
| { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } }, |
| /* surround41 */ |
| { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } }, |
| /* surround50 */ |
| { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } }, |
| /* surround51 */ |
| { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } }, |
| /* 6.1 */ |
| { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } }, |
| /* surround71 */ |
| { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } }, |
| |
| { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } }, |
| { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } }, |
| { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } }, |
| { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } }, |
| { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } }, |
| { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } }, |
| { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } }, |
| { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } }, |
| { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } }, |
| { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } }, |
| { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } }, |
| { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } }, |
| { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } }, |
| { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } }, |
| { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } }, |
| { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } }, |
| { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } }, |
| { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } }, |
| { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } }, |
| { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } }, |
| { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } }, |
| { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } }, |
| { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } }, |
| }; |
| |
| static const struct channel_map_table map_tables[] = { |
| { SNDRV_CHMAP_FL, 0x00, FL }, |
| { SNDRV_CHMAP_FR, 0x01, FR }, |
| { SNDRV_CHMAP_RL, 0x04, RL }, |
| { SNDRV_CHMAP_RR, 0x05, RR }, |
| { SNDRV_CHMAP_LFE, 0x02, LFE }, |
| { SNDRV_CHMAP_FC, 0x03, FC }, |
| { SNDRV_CHMAP_RLC, 0x06, RLC }, |
| { SNDRV_CHMAP_RRC, 0x07, RRC }, |
| {} /* terminator */ |
| }; |
| |
| /* hardware capability structure */ |
| static const struct snd_pcm_hardware had_pcm_hardware = { |
| .info = (SNDRV_PCM_INFO_INTERLEAVED | |
| SNDRV_PCM_INFO_MMAP | |
| SNDRV_PCM_INFO_MMAP_VALID | |
| SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), |
| .formats = (SNDRV_PCM_FMTBIT_S16_LE | |
| SNDRV_PCM_FMTBIT_S24_LE | |
| SNDRV_PCM_FMTBIT_S32_LE), |
| .rates = SNDRV_PCM_RATE_32000 | |
| SNDRV_PCM_RATE_44100 | |
| SNDRV_PCM_RATE_48000 | |
| SNDRV_PCM_RATE_88200 | |
| SNDRV_PCM_RATE_96000 | |
| SNDRV_PCM_RATE_176400 | |
| SNDRV_PCM_RATE_192000, |
| .rate_min = HAD_MIN_RATE, |
| .rate_max = HAD_MAX_RATE, |
| .channels_min = HAD_MIN_CHANNEL, |
| .channels_max = HAD_MAX_CHANNEL, |
| .buffer_bytes_max = HAD_MAX_BUFFER, |
| .period_bytes_min = HAD_MIN_PERIOD_BYTES, |
| .period_bytes_max = HAD_MAX_PERIOD_BYTES, |
| .periods_min = HAD_MIN_PERIODS, |
| .periods_max = HAD_MAX_PERIODS, |
| .fifo_size = HAD_FIFO_SIZE, |
| }; |
| |
| /* Get the active PCM substream; |
| * Call had_substream_put() for unreferecing. |
| * Don't call this inside had_spinlock, as it takes by itself |
| */ |
| static struct snd_pcm_substream * |
| had_substream_get(struct snd_intelhad *intelhaddata) |
| { |
| struct snd_pcm_substream *substream; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&intelhaddata->had_spinlock, flags); |
| substream = intelhaddata->stream_info.substream; |
| if (substream) |
| intelhaddata->stream_info.substream_refcount++; |
| spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); |
| return substream; |
| } |
| |
| /* Unref the active PCM substream; |
| * Don't call this inside had_spinlock, as it takes by itself |
| */ |
| static void had_substream_put(struct snd_intelhad *intelhaddata) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&intelhaddata->had_spinlock, flags); |
| intelhaddata->stream_info.substream_refcount--; |
| spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); |
| } |
| |
| static u32 had_config_offset(int pipe) |
| { |
| switch (pipe) { |
| default: |
| case 0: |
| return AUDIO_HDMI_CONFIG_A; |
| case 1: |
| return AUDIO_HDMI_CONFIG_B; |
| case 2: |
| return AUDIO_HDMI_CONFIG_C; |
| } |
| } |
| |
| /* Register access functions */ |
| static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx, |
| int pipe, u32 reg) |
| { |
| return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg); |
| } |
| |
| static void had_write_register_raw(struct snd_intelhad_card *card_ctx, |
| int pipe, u32 reg, u32 val) |
| { |
| iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg); |
| } |
| |
| static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val) |
| { |
| if (!ctx->connected) |
| *val = 0; |
| else |
| *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg); |
| } |
| |
| static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val) |
| { |
| if (ctx->connected) |
| had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val); |
| } |
| |
| /* |
| * enable / disable audio configuration |
| * |
| * The normal read/modify should not directly be used on VLV2 for |
| * updating AUD_CONFIG register. |
| * This is because: |
| * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2 |
| * HDMI IP. As a result a read-modify of AUD_CONFIG register will always |
| * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the |
| * register. This field should be 1xy binary for configuration with 6 or |
| * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio) |
| * causes the "channels" field to be updated as 0xy binary resulting in |
| * bad audio. The fix is to always write the AUD_CONFIG[6:4] with |
| * appropriate value when doing read-modify of AUD_CONFIG register. |
| */ |
| static void had_enable_audio(struct snd_intelhad *intelhaddata, |
| bool enable) |
| { |
| /* update the cached value */ |
| intelhaddata->aud_config.regx.aud_en = enable; |
| had_write_register(intelhaddata, AUD_CONFIG, |
| intelhaddata->aud_config.regval); |
| } |
| |
| /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */ |
| static void had_ack_irqs(struct snd_intelhad *ctx) |
| { |
| u32 status_reg; |
| |
| if (!ctx->connected) |
| return; |
| had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); |
| status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN; |
| had_write_register(ctx, AUD_HDMI_STATUS, status_reg); |
| had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); |
| } |
| |
| /* Reset buffer pointers */ |
| static void had_reset_audio(struct snd_intelhad *intelhaddata) |
| { |
| had_write_register(intelhaddata, AUD_HDMI_STATUS, |
| AUD_HDMI_STATUSG_MASK_FUNCRST); |
| had_write_register(intelhaddata, AUD_HDMI_STATUS, 0); |
| } |
| |
| /* |
| * initialize audio channel status registers |
| * This function is called in the prepare callback |
| */ |
| static int had_prog_status_reg(struct snd_pcm_substream *substream, |
| struct snd_intelhad *intelhaddata) |
| { |
| union aud_ch_status_0 ch_stat0 = {.regval = 0}; |
| union aud_ch_status_1 ch_stat1 = {.regval = 0}; |
| |
| ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits & |
| IEC958_AES0_NONAUDIO) >> 1; |
| ch_stat0.regx.clk_acc = (intelhaddata->aes_bits & |
| IEC958_AES3_CON_CLOCK) >> 4; |
| |
| switch (substream->runtime->rate) { |
| case AUD_SAMPLE_RATE_32: |
| ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ; |
| break; |
| |
| case AUD_SAMPLE_RATE_44_1: |
| ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ; |
| break; |
| case AUD_SAMPLE_RATE_48: |
| ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ; |
| break; |
| case AUD_SAMPLE_RATE_88_2: |
| ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ; |
| break; |
| case AUD_SAMPLE_RATE_96: |
| ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ; |
| break; |
| case AUD_SAMPLE_RATE_176_4: |
| ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ; |
| break; |
| case AUD_SAMPLE_RATE_192: |
| ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ; |
| break; |
| |
| default: |
| /* control should never come here */ |
| return -EINVAL; |
| } |
| |
| had_write_register(intelhaddata, |
| AUD_CH_STATUS_0, ch_stat0.regval); |
| |
| switch (substream->runtime->format) { |
| case SNDRV_PCM_FORMAT_S16_LE: |
| ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20; |
| ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS; |
| break; |
| case SNDRV_PCM_FORMAT_S24_LE: |
| case SNDRV_PCM_FORMAT_S32_LE: |
| ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24; |
| ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| had_write_register(intelhaddata, |
| AUD_CH_STATUS_1, ch_stat1.regval); |
| return 0; |
| } |
| |
| /* |
| * function to initialize audio |
| * registers and buffer configuration registers |
| * This function is called in the prepare callback |
| */ |
| static int had_init_audio_ctrl(struct snd_pcm_substream *substream, |
| struct snd_intelhad *intelhaddata) |
| { |
| union aud_cfg cfg_val = {.regval = 0}; |
| union aud_buf_config buf_cfg = {.regval = 0}; |
| u8 channels; |
| |
| had_prog_status_reg(substream, intelhaddata); |
| |
| buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD; |
| buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD; |
| buf_cfg.regx.aud_delay = 0; |
| had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval); |
| |
| channels = substream->runtime->channels; |
| cfg_val.regx.num_ch = channels - 2; |
| if (channels <= 2) |
| cfg_val.regx.layout = LAYOUT0; |
| else |
| cfg_val.regx.layout = LAYOUT1; |
| |
| if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE) |
| cfg_val.regx.packet_mode = 1; |
| |
| if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE) |
| cfg_val.regx.left_align = 1; |
| |
| cfg_val.regx.val_bit = 1; |
| |
| /* fix up the DP bits */ |
| if (intelhaddata->dp_output) { |
| cfg_val.regx.dp_modei = 1; |
| cfg_val.regx.set = 1; |
| } |
| |
| had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval); |
| intelhaddata->aud_config = cfg_val; |
| return 0; |
| } |
| |
| /* |
| * Compute derived values in channel_allocations[]. |
| */ |
| static void init_channel_allocations(void) |
| { |
| int i, j; |
| struct cea_channel_speaker_allocation *p; |
| |
| for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { |
| p = channel_allocations + i; |
| p->channels = 0; |
| p->spk_mask = 0; |
| for (j = 0; j < ARRAY_SIZE(p->speakers); j++) |
| if (p->speakers[j]) { |
| p->channels++; |
| p->spk_mask |= p->speakers[j]; |
| } |
| } |
| } |
| |
| /* |
| * The transformation takes two steps: |
| * |
| * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask |
| * spk_mask => (channel_allocations[]) => ai->CA |
| * |
| * TODO: it could select the wrong CA from multiple candidates. |
| */ |
| static int had_channel_allocation(struct snd_intelhad *intelhaddata, |
| int channels) |
| { |
| int i; |
| int ca = 0; |
| int spk_mask = 0; |
| |
| /* |
| * CA defaults to 0 for basic stereo audio |
| */ |
| if (channels <= 2) |
| return 0; |
| |
| /* |
| * expand ELD's speaker allocation mask |
| * |
| * ELD tells the speaker mask in a compact(paired) form, |
| * expand ELD's notions to match the ones used by Audio InfoFrame. |
| */ |
| |
| for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { |
| if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) |
| spk_mask |= eld_speaker_allocation_bits[i]; |
| } |
| |
| /* search for the first working match in the CA table */ |
| for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { |
| if (channels == channel_allocations[i].channels && |
| (spk_mask & channel_allocations[i].spk_mask) == |
| channel_allocations[i].spk_mask) { |
| ca = channel_allocations[i].ca_index; |
| break; |
| } |
| } |
| |
| dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels); |
| |
| return ca; |
| } |
| |
| /* from speaker bit mask to ALSA API channel position */ |
| static int spk_to_chmap(int spk) |
| { |
| const struct channel_map_table *t = map_tables; |
| |
| for (; t->map; t++) { |
| if (t->spk_mask == spk) |
| return t->map; |
| } |
| return 0; |
| } |
| |
| static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata) |
| { |
| int i, c; |
| int spk_mask = 0; |
| struct snd_pcm_chmap_elem *chmap; |
| u8 eld_high, eld_high_mask = 0xF0; |
| u8 high_msb; |
| |
| kfree(intelhaddata->chmap->chmap); |
| intelhaddata->chmap->chmap = NULL; |
| |
| chmap = kzalloc(sizeof(*chmap), GFP_KERNEL); |
| if (!chmap) |
| return; |
| |
| dev_dbg(intelhaddata->dev, "eld speaker = %x\n", |
| intelhaddata->eld[DRM_ELD_SPEAKER]); |
| |
| /* WA: Fix the max channel supported to 8 */ |
| |
| /* |
| * Sink may support more than 8 channels, if eld_high has more than |
| * one bit set. SOC supports max 8 channels. |
| * Refer eld_speaker_allocation_bits, for sink speaker allocation |
| */ |
| |
| /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */ |
| eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask; |
| if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) { |
| /* eld_high & (eld_high-1): if more than 1 bit set */ |
| /* 0x1F: 7 channels */ |
| for (i = 1; i < 4; i++) { |
| high_msb = eld_high & (0x80 >> i); |
| if (high_msb) { |
| intelhaddata->eld[DRM_ELD_SPEAKER] &= |
| high_msb | 0xF; |
| break; |
| } |
| } |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { |
| if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) |
| spk_mask |= eld_speaker_allocation_bits[i]; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { |
| if (spk_mask == channel_allocations[i].spk_mask) { |
| for (c = 0; c < channel_allocations[i].channels; c++) { |
| chmap->map[c] = spk_to_chmap( |
| channel_allocations[i].speakers[ |
| (MAX_SPEAKERS - 1) - c]); |
| } |
| chmap->channels = channel_allocations[i].channels; |
| intelhaddata->chmap->chmap = chmap; |
| break; |
| } |
| } |
| if (i >= ARRAY_SIZE(channel_allocations)) |
| kfree(chmap); |
| } |
| |
| /* |
| * ALSA API channel-map control callbacks |
| */ |
| static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_info *uinfo) |
| { |
| uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; |
| uinfo->count = HAD_MAX_CHANNEL; |
| uinfo->value.integer.min = 0; |
| uinfo->value.integer.max = SNDRV_CHMAP_LAST; |
| return 0; |
| } |
| |
| static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); |
| struct snd_intelhad *intelhaddata = info->private_data; |
| int i; |
| const struct snd_pcm_chmap_elem *chmap; |
| |
| memset(ucontrol->value.integer.value, 0, |
| sizeof(long) * HAD_MAX_CHANNEL); |
| mutex_lock(&intelhaddata->mutex); |
| if (!intelhaddata->chmap->chmap) { |
| mutex_unlock(&intelhaddata->mutex); |
| return 0; |
| } |
| |
| chmap = intelhaddata->chmap->chmap; |
| for (i = 0; i < chmap->channels; i++) |
| ucontrol->value.integer.value[i] = chmap->map[i]; |
| mutex_unlock(&intelhaddata->mutex); |
| |
| return 0; |
| } |
| |
| static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata, |
| struct snd_pcm *pcm) |
| { |
| int err; |
| |
| err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, |
| NULL, 0, (unsigned long)intelhaddata, |
| &intelhaddata->chmap); |
| if (err < 0) |
| return err; |
| |
| intelhaddata->chmap->private_data = intelhaddata; |
| intelhaddata->chmap->kctl->info = had_chmap_ctl_info; |
| intelhaddata->chmap->kctl->get = had_chmap_ctl_get; |
| intelhaddata->chmap->chmap = NULL; |
| return 0; |
| } |
| |
| /* |
| * Initialize Data Island Packets registers |
| * This function is called in the prepare callback |
| */ |
| static void had_prog_dip(struct snd_pcm_substream *substream, |
| struct snd_intelhad *intelhaddata) |
| { |
| int i; |
| union aud_ctrl_st ctrl_state = {.regval = 0}; |
| union aud_info_frame2 frame2 = {.regval = 0}; |
| union aud_info_frame3 frame3 = {.regval = 0}; |
| u8 checksum = 0; |
| u32 info_frame; |
| int channels; |
| int ca; |
| |
| channels = substream->runtime->channels; |
| |
| had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); |
| |
| ca = had_channel_allocation(intelhaddata, channels); |
| if (intelhaddata->dp_output) { |
| info_frame = DP_INFO_FRAME_WORD1; |
| frame2.regval = (substream->runtime->channels - 1) | (ca << 24); |
| } else { |
| info_frame = HDMI_INFO_FRAME_WORD1; |
| frame2.regx.chnl_cnt = substream->runtime->channels - 1; |
| frame3.regx.chnl_alloc = ca; |
| |
| /* Calculte the byte wide checksum for all valid DIP words */ |
| for (i = 0; i < BYTES_PER_WORD; i++) |
| checksum += (info_frame >> (i * 8)) & 0xff; |
| for (i = 0; i < BYTES_PER_WORD; i++) |
| checksum += (frame2.regval >> (i * 8)) & 0xff; |
| for (i = 0; i < BYTES_PER_WORD; i++) |
| checksum += (frame3.regval >> (i * 8)) & 0xff; |
| |
| frame2.regx.chksum = -(checksum); |
| } |
| |
| had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame); |
| had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval); |
| had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval); |
| |
| /* program remaining DIP words with zero */ |
| for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++) |
| had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0); |
| |
| ctrl_state.regx.dip_freq = 1; |
| ctrl_state.regx.dip_en_sta = 1; |
| had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); |
| } |
| |
| static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate) |
| { |
| u32 maud_val; |
| |
| /* Select maud according to DP 1.2 spec */ |
| if (link_rate == DP_2_7_GHZ) { |
| switch (aud_samp_freq) { |
| case AUD_SAMPLE_RATE_32: |
| maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_44_1: |
| maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_48: |
| maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_88_2: |
| maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_96: |
| maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_176_4: |
| maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL; |
| break; |
| |
| case HAD_MAX_RATE: |
| maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL; |
| break; |
| |
| default: |
| maud_val = -EINVAL; |
| break; |
| } |
| } else if (link_rate == DP_1_62_GHZ) { |
| switch (aud_samp_freq) { |
| case AUD_SAMPLE_RATE_32: |
| maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_44_1: |
| maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_48: |
| maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_88_2: |
| maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_96: |
| maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL; |
| break; |
| |
| case AUD_SAMPLE_RATE_176_4: |
| maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL; |
| break; |
| |
| case HAD_MAX_RATE: |
| maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL; |
| break; |
| |
| default: |
| maud_val = -EINVAL; |
| break; |
| } |
| } else |
| maud_val = -EINVAL; |
| |
| return maud_val; |
| } |
| |
| /* |
| * Program HDMI audio CTS value |
| * |
| * @aud_samp_freq: sampling frequency of audio data |
| * @tmds: sampling frequency of the display data |
| * @link_rate: DP link rate |
| * @n_param: N value, depends on aud_samp_freq |
| * @intelhaddata: substream private data |
| * |
| * Program CTS register based on the audio and display sampling frequency |
| */ |
| static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate, |
| u32 n_param, struct snd_intelhad *intelhaddata) |
| { |
| u32 cts_val; |
| u64 dividend, divisor; |
| |
| if (intelhaddata->dp_output) { |
| /* Substitute cts_val with Maud according to DP 1.2 spec*/ |
| cts_val = had_calculate_maud_value(aud_samp_freq, link_rate); |
| } else { |
| /* Calculate CTS according to HDMI 1.3a spec*/ |
| dividend = (u64)tmds * n_param*1000; |
| divisor = 128 * aud_samp_freq; |
| cts_val = div64_u64(dividend, divisor); |
| } |
| dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n", |
| tmds, n_param, cts_val); |
| had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val)); |
| } |
| |
| static int had_calculate_n_value(u32 aud_samp_freq) |
| { |
| int n_val; |
| |
| /* Select N according to HDMI 1.3a spec*/ |
| switch (aud_samp_freq) { |
| case AUD_SAMPLE_RATE_32: |
| n_val = 4096; |
| break; |
| |
| case AUD_SAMPLE_RATE_44_1: |
| n_val = 6272; |
| break; |
| |
| case AUD_SAMPLE_RATE_48: |
| n_val = 6144; |
| break; |
| |
| case AUD_SAMPLE_RATE_88_2: |
| n_val = 12544; |
| break; |
| |
| case AUD_SAMPLE_RATE_96: |
| n_val = 12288; |
| break; |
| |
| case AUD_SAMPLE_RATE_176_4: |
| n_val = 25088; |
| break; |
| |
| case HAD_MAX_RATE: |
| n_val = 24576; |
| break; |
| |
| default: |
| n_val = -EINVAL; |
| break; |
| } |
| return n_val; |
| } |
| |
| /* |
| * Program HDMI audio N value |
| * |
| * @aud_samp_freq: sampling frequency of audio data |
| * @n_param: N value, depends on aud_samp_freq |
| * @intelhaddata: substream private data |
| * |
| * This function is called in the prepare callback. |
| * It programs based on the audio and display sampling frequency |
| */ |
| static int had_prog_n(u32 aud_samp_freq, u32 *n_param, |
| struct snd_intelhad *intelhaddata) |
| { |
| int n_val; |
| |
| if (intelhaddata->dp_output) { |
| /* |
| * According to DP specs, Maud and Naud values hold |
| * a relationship, which is stated as: |
| * Maud/Naud = 512 * fs / f_LS_Clk |
| * where, fs is the sampling frequency of the audio stream |
| * and Naud is 32768 for Async clock. |
| */ |
| |
| n_val = DP_NAUD_VAL; |
| } else |
| n_val = had_calculate_n_value(aud_samp_freq); |
| |
| if (n_val < 0) |
| return n_val; |
| |
| had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val)); |
| *n_param = n_val; |
| return 0; |
| } |
| |
| /* |
| * PCM ring buffer handling |
| * |
| * The hardware provides a ring buffer with the fixed 4 buffer descriptors |
| * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping |
| * moves at each period elapsed. The below illustrates how it works: |
| * |
| * At time=0 |
| * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| |
| * BD | 0 | 1 | 2 | 3 | |
| * |
| * At time=1 (period elapsed) |
| * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| |
| * BD | 1 | 2 | 3 | 0 | |
| * |
| * At time=2 (second period elapsed) |
| * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| |
| * BD | 2 | 3 | 0 | 1 | |
| * |
| * The bd_head field points to the index of the BD to be read. It's also the |
| * position to be filled at next. The pcm_head and the pcm_filled fields |
| * point to the indices of the current position and of the next position to |
| * be filled, respectively. For PCM buffer there are both _head and _filled |
| * because they may be difference when nperiods > 4. For example, in the |
| * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5: |
| * |
| * pcm_head (=1) --v v-- pcm_filled (=5) |
| * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| |
| * BD | 1 | 2 | 3 | 0 | |
| * bd_head (=1) --^ ^-- next to fill (= bd_head) |
| * |
| * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that |
| * the hardware skips those BDs in the loop. |
| * |
| * An exceptional setup is the case with nperiods=1. Since we have to update |
| * BDs after finishing one BD processing, we'd need at least two BDs, where |
| * both BDs point to the same content, the same address, the same size of the |
| * whole PCM buffer. |
| */ |
| |
| #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH) |
| #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH) |
| |
| /* Set up a buffer descriptor at the "filled" position */ |
| static void had_prog_bd(struct snd_pcm_substream *substream, |
| struct snd_intelhad *intelhaddata) |
| { |
| int idx = intelhaddata->bd_head; |
| int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes; |
| u32 addr = substream->runtime->dma_addr + ofs; |
| |
| addr |= AUD_BUF_VALID; |
| if (!substream->runtime->no_period_wakeup) |
| addr |= AUD_BUF_INTR_EN; |
| had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr); |
| had_write_register(intelhaddata, AUD_BUF_LEN(idx), |
| intelhaddata->period_bytes); |
| |
| /* advance the indices to the next */ |
| intelhaddata->bd_head++; |
| intelhaddata->bd_head %= intelhaddata->num_bds; |
| intelhaddata->pcmbuf_filled++; |
| intelhaddata->pcmbuf_filled %= substream->runtime->periods; |
| } |
| |
| /* invalidate a buffer descriptor with the given index */ |
| static void had_invalidate_bd(struct snd_intelhad *intelhaddata, |
| int idx) |
| { |
| had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0); |
| had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0); |
| } |
| |
| /* Initial programming of ring buffer */ |
| static void had_init_ringbuf(struct snd_pcm_substream *substream, |
| struct snd_intelhad *intelhaddata) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| int i, num_periods; |
| |
| num_periods = runtime->periods; |
| intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS); |
| /* set the minimum 2 BDs for num_periods=1 */ |
| intelhaddata->num_bds = max(intelhaddata->num_bds, 2U); |
| intelhaddata->period_bytes = |
| frames_to_bytes(runtime, runtime->period_size); |
| WARN_ON(intelhaddata->period_bytes & 0x3f); |
| |
| intelhaddata->bd_head = 0; |
| intelhaddata->pcmbuf_head = 0; |
| intelhaddata->pcmbuf_filled = 0; |
| |
| for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) { |
| if (i < intelhaddata->num_bds) |
| had_prog_bd(substream, intelhaddata); |
| else /* invalidate the rest */ |
| had_invalidate_bd(intelhaddata, i); |
| } |
| |
| intelhaddata->bd_head = 0; /* reset at head again before starting */ |
| } |
| |
| /* process a bd, advance to the next */ |
| static void had_advance_ringbuf(struct snd_pcm_substream *substream, |
| struct snd_intelhad *intelhaddata) |
| { |
| int num_periods = substream->runtime->periods; |
| |
| /* reprogram the next buffer */ |
| had_prog_bd(substream, intelhaddata); |
| |
| /* proceed to next */ |
| intelhaddata->pcmbuf_head++; |
| intelhaddata->pcmbuf_head %= num_periods; |
| } |
| |
| /* process the current BD(s); |
| * returns the current PCM buffer byte position, or -EPIPE for underrun. |
| */ |
| static int had_process_ringbuf(struct snd_pcm_substream *substream, |
| struct snd_intelhad *intelhaddata) |
| { |
| int len, processed; |
| unsigned long flags; |
| |
| processed = 0; |
| spin_lock_irqsave(&intelhaddata->had_spinlock, flags); |
| for (;;) { |
| /* get the remaining bytes on the buffer */ |
| had_read_register(intelhaddata, |
| AUD_BUF_LEN(intelhaddata->bd_head), |
| &len); |
| if (len < 0 || len > intelhaddata->period_bytes) { |
| dev_dbg(intelhaddata->dev, "Invalid buf length %d\n", |
| len); |
| len = -EPIPE; |
| goto out; |
| } |
| |
| if (len > 0) /* OK, this is the current buffer */ |
| break; |
| |
| /* len=0 => already empty, check the next buffer */ |
| if (++processed >= intelhaddata->num_bds) { |
| len = -EPIPE; /* all empty? - report underrun */ |
| goto out; |
| } |
| had_advance_ringbuf(substream, intelhaddata); |
| } |
| |
| len = intelhaddata->period_bytes - len; |
| len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head; |
| out: |
| spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); |
| return len; |
| } |
| |
| /* called from irq handler */ |
| static void had_process_buffer_done(struct snd_intelhad *intelhaddata) |
| { |
| struct snd_pcm_substream *substream; |
| |
| substream = had_substream_get(intelhaddata); |
| if (!substream) |
| return; /* no stream? - bail out */ |
| |
| if (!intelhaddata->connected) { |
| snd_pcm_stop_xrun(substream); |
| goto out; /* disconnected? - bail out */ |
| } |
| |
| /* process or stop the stream */ |
| if (had_process_ringbuf(substream, intelhaddata) < 0) |
| snd_pcm_stop_xrun(substream); |
| else |
| snd_pcm_period_elapsed(substream); |
| |
| out: |
| had_substream_put(intelhaddata); |
| } |
| |
| /* |
| * The interrupt status 'sticky' bits might not be cleared by |
| * setting '1' to that bit once... |
| */ |
| static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata) |
| { |
| int i; |
| u32 val; |
| |
| for (i = 0; i < 100; i++) { |
| /* clear bit30, 31 AUD_HDMI_STATUS */ |
| had_read_register(intelhaddata, AUD_HDMI_STATUS, &val); |
| if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN)) |
| return; |
| udelay(100); |
| cond_resched(); |
| had_write_register(intelhaddata, AUD_HDMI_STATUS, val); |
| } |
| dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n"); |
| } |
| |
| /* Perform some reset procedure after stopping the stream; |
| * this is called from prepare or hw_free callbacks once after trigger STOP |
| * or underrun has been processed in order to settle down the h/w state. |
| */ |
| static int had_pcm_sync_stop(struct snd_pcm_substream *substream) |
| { |
| struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream); |
| |
| if (!intelhaddata->connected) |
| return 0; |
| |
| /* Reset buffer pointers */ |
| had_reset_audio(intelhaddata); |
| wait_clear_underrun_bit(intelhaddata); |
| return 0; |
| } |
| |
| /* called from irq handler */ |
| static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata) |
| { |
| struct snd_pcm_substream *substream; |
| |
| /* Report UNDERRUN error to above layers */ |
| substream = had_substream_get(intelhaddata); |
| if (substream) { |
| snd_pcm_stop_xrun(substream); |
| had_substream_put(intelhaddata); |
| } |
| } |
| |
| /* |
| * ALSA PCM open callback |
| */ |
| static int had_pcm_open(struct snd_pcm_substream *substream) |
| { |
| struct snd_intelhad *intelhaddata; |
| struct snd_pcm_runtime *runtime; |
| int retval; |
| |
| intelhaddata = snd_pcm_substream_chip(substream); |
| runtime = substream->runtime; |
| |
| pm_runtime_get_sync(intelhaddata->dev); |
| |
| /* set the runtime hw parameter with local snd_pcm_hardware struct */ |
| runtime->hw = had_pcm_hardware; |
| |
| retval = snd_pcm_hw_constraint_integer(runtime, |
| SNDRV_PCM_HW_PARAM_PERIODS); |
| if (retval < 0) |
| goto error; |
| |
| /* Make sure, that the period size is always aligned |
| * 64byte boundary |
| */ |
| retval = snd_pcm_hw_constraint_step(substream->runtime, 0, |
| SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64); |
| if (retval < 0) |
| goto error; |
| |
| retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); |
| if (retval < 0) |
| goto error; |
| |
| /* expose PCM substream */ |
| spin_lock_irq(&intelhaddata->had_spinlock); |
| intelhaddata->stream_info.substream = substream; |
| intelhaddata->stream_info.substream_refcount++; |
| spin_unlock_irq(&intelhaddata->had_spinlock); |
| |
| return retval; |
| error: |
| pm_runtime_mark_last_busy(intelhaddata->dev); |
| pm_runtime_put_autosuspend(intelhaddata->dev); |
| return retval; |
| } |
| |
| /* |
| * ALSA PCM close callback |
| */ |
| static int had_pcm_close(struct snd_pcm_substream *substream) |
| { |
| struct snd_intelhad *intelhaddata; |
| |
| intelhaddata = snd_pcm_substream_chip(substream); |
| |
| /* unreference and sync with the pending PCM accesses */ |
| spin_lock_irq(&intelhaddata->had_spinlock); |
| intelhaddata->stream_info.substream = NULL; |
| intelhaddata->stream_info.substream_refcount--; |
| while (intelhaddata->stream_info.substream_refcount > 0) { |
| spin_unlock_irq(&intelhaddata->had_spinlock); |
| cpu_relax(); |
| spin_lock_irq(&intelhaddata->had_spinlock); |
| } |
| spin_unlock_irq(&intelhaddata->had_spinlock); |
| |
| pm_runtime_mark_last_busy(intelhaddata->dev); |
| pm_runtime_put_autosuspend(intelhaddata->dev); |
| return 0; |
| } |
| |
| /* |
| * ALSA PCM hw_params callback |
| */ |
| static int had_pcm_hw_params(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *hw_params) |
| { |
| struct snd_intelhad *intelhaddata; |
| int buf_size; |
| |
| intelhaddata = snd_pcm_substream_chip(substream); |
| buf_size = params_buffer_bytes(hw_params); |
| dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n", |
| __func__, buf_size); |
| return 0; |
| } |
| |
| /* |
| * ALSA PCM trigger callback |
| */ |
| static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd) |
| { |
| int retval = 0; |
| struct snd_intelhad *intelhaddata; |
| |
| intelhaddata = snd_pcm_substream_chip(substream); |
| |
| spin_lock(&intelhaddata->had_spinlock); |
| switch (cmd) { |
| case SNDRV_PCM_TRIGGER_START: |
| case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: |
| case SNDRV_PCM_TRIGGER_RESUME: |
| /* Enable Audio */ |
| had_ack_irqs(intelhaddata); /* FIXME: do we need this? */ |
| had_enable_audio(intelhaddata, true); |
| break; |
| |
| case SNDRV_PCM_TRIGGER_STOP: |
| case SNDRV_PCM_TRIGGER_PAUSE_PUSH: |
| /* Disable Audio */ |
| had_enable_audio(intelhaddata, false); |
| break; |
| |
| default: |
| retval = -EINVAL; |
| } |
| spin_unlock(&intelhaddata->had_spinlock); |
| return retval; |
| } |
| |
| /* |
| * ALSA PCM prepare callback |
| */ |
| static int had_pcm_prepare(struct snd_pcm_substream *substream) |
| { |
| int retval; |
| u32 disp_samp_freq, n_param; |
| u32 link_rate = 0; |
| struct snd_intelhad *intelhaddata; |
| struct snd_pcm_runtime *runtime; |
| |
| intelhaddata = snd_pcm_substream_chip(substream); |
| runtime = substream->runtime; |
| |
| dev_dbg(intelhaddata->dev, "period_size=%d\n", |
| (int)frames_to_bytes(runtime, runtime->period_size)); |
| dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods); |
| dev_dbg(intelhaddata->dev, "buffer_size=%d\n", |
| (int)snd_pcm_lib_buffer_bytes(substream)); |
| dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate); |
| dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels); |
| |
| /* Get N value in KHz */ |
| disp_samp_freq = intelhaddata->tmds_clock_speed; |
| |
| retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); |
| if (retval) { |
| dev_err(intelhaddata->dev, |
| "programming N value failed %#x\n", retval); |
| goto prep_end; |
| } |
| |
| if (intelhaddata->dp_output) |
| link_rate = intelhaddata->link_rate; |
| |
| had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, |
| n_param, intelhaddata); |
| |
| had_prog_dip(substream, intelhaddata); |
| |
| retval = had_init_audio_ctrl(substream, intelhaddata); |
| |
| /* Prog buffer address */ |
| had_init_ringbuf(substream, intelhaddata); |
| |
| /* |
| * Program channel mapping in following order: |
| * FL, FR, C, LFE, RL, RR |
| */ |
| |
| had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER); |
| |
| prep_end: |
| return retval; |
| } |
| |
| /* |
| * ALSA PCM pointer callback |
| */ |
| static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream) |
| { |
| struct snd_intelhad *intelhaddata; |
| int len; |
| |
| intelhaddata = snd_pcm_substream_chip(substream); |
| |
| if (!intelhaddata->connected) |
| return SNDRV_PCM_POS_XRUN; |
| |
| len = had_process_ringbuf(substream, intelhaddata); |
| if (len < 0) |
| return SNDRV_PCM_POS_XRUN; |
| len = bytes_to_frames(substream->runtime, len); |
| /* wrapping may happen when periods=1 */ |
| len %= substream->runtime->buffer_size; |
| return len; |
| } |
| |
| /* |
| * ALSA PCM ops |
| */ |
| static const struct snd_pcm_ops had_pcm_ops = { |
| .open = had_pcm_open, |
| .close = had_pcm_close, |
| .hw_params = had_pcm_hw_params, |
| .prepare = had_pcm_prepare, |
| .trigger = had_pcm_trigger, |
| .sync_stop = had_pcm_sync_stop, |
| .pointer = had_pcm_pointer, |
| }; |
| |
| /* process mode change of the running stream; called in mutex */ |
| static int had_process_mode_change(struct snd_intelhad *intelhaddata) |
| { |
| struct snd_pcm_substream *substream; |
| int retval = 0; |
| u32 disp_samp_freq, n_param; |
| u32 link_rate = 0; |
| |
| substream = had_substream_get(intelhaddata); |
| if (!substream) |
| return 0; |
| |
| /* Disable Audio */ |
| had_enable_audio(intelhaddata, false); |
| |
| /* Update CTS value */ |
| disp_samp_freq = intelhaddata->tmds_clock_speed; |
| |
| retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); |
| if (retval) { |
| dev_err(intelhaddata->dev, |
| "programming N value failed %#x\n", retval); |
| goto out; |
| } |
| |
| if (intelhaddata->dp_output) |
| link_rate = intelhaddata->link_rate; |
| |
| had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, |
| n_param, intelhaddata); |
| |
| /* Enable Audio */ |
| had_enable_audio(intelhaddata, true); |
| |
| out: |
| had_substream_put(intelhaddata); |
| return retval; |
| } |
| |
| /* process hot plug, called from wq with mutex locked */ |
| static void had_process_hot_plug(struct snd_intelhad *intelhaddata) |
| { |
| struct snd_pcm_substream *substream; |
| |
| spin_lock_irq(&intelhaddata->had_spinlock); |
| if (intelhaddata->connected) { |
| dev_dbg(intelhaddata->dev, "Device already connected\n"); |
| spin_unlock_irq(&intelhaddata->had_spinlock); |
| return; |
| } |
| |
| /* Disable Audio */ |
| had_enable_audio(intelhaddata, false); |
| |
| intelhaddata->connected = true; |
| dev_dbg(intelhaddata->dev, |
| "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n", |
| __func__, __LINE__); |
| spin_unlock_irq(&intelhaddata->had_spinlock); |
| |
| had_build_channel_allocation_map(intelhaddata); |
| |
| /* Report to above ALSA layer */ |
| substream = had_substream_get(intelhaddata); |
| if (substream) { |
| snd_pcm_stop_xrun(substream); |
| had_substream_put(intelhaddata); |
| } |
| |
| snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT); |
| } |
| |
| /* process hot unplug, called from wq with mutex locked */ |
| static void had_process_hot_unplug(struct snd_intelhad *intelhaddata) |
| { |
| struct snd_pcm_substream *substream; |
| |
| spin_lock_irq(&intelhaddata->had_spinlock); |
| if (!intelhaddata->connected) { |
| dev_dbg(intelhaddata->dev, "Device already disconnected\n"); |
| spin_unlock_irq(&intelhaddata->had_spinlock); |
| return; |
| |
| } |
| |
| /* Disable Audio */ |
| had_enable_audio(intelhaddata, false); |
| |
| intelhaddata->connected = false; |
| dev_dbg(intelhaddata->dev, |
| "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n", |
| __func__, __LINE__); |
| spin_unlock_irq(&intelhaddata->had_spinlock); |
| |
| kfree(intelhaddata->chmap->chmap); |
| intelhaddata->chmap->chmap = NULL; |
| |
| /* Report to above ALSA layer */ |
| substream = had_substream_get(intelhaddata); |
| if (substream) { |
| snd_pcm_stop_xrun(substream); |
| had_substream_put(intelhaddata); |
| } |
| |
| snd_jack_report(intelhaddata->jack, 0); |
| } |
| |
| /* |
| * ALSA iec958 and ELD controls |
| */ |
| |
| static int had_iec958_info(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_info *uinfo) |
| { |
| uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; |
| uinfo->count = 1; |
| return 0; |
| } |
| |
| static int had_iec958_get(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); |
| |
| mutex_lock(&intelhaddata->mutex); |
| ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff; |
| ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff; |
| ucontrol->value.iec958.status[2] = |
| (intelhaddata->aes_bits >> 16) & 0xff; |
| ucontrol->value.iec958.status[3] = |
| (intelhaddata->aes_bits >> 24) & 0xff; |
| mutex_unlock(&intelhaddata->mutex); |
| return 0; |
| } |
| |
| static int had_iec958_mask_get(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| ucontrol->value.iec958.status[0] = 0xff; |
| ucontrol->value.iec958.status[1] = 0xff; |
| ucontrol->value.iec958.status[2] = 0xff; |
| ucontrol->value.iec958.status[3] = 0xff; |
| return 0; |
| } |
| |
| static int had_iec958_put(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| unsigned int val; |
| struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); |
| int changed = 0; |
| |
| val = (ucontrol->value.iec958.status[0] << 0) | |
| (ucontrol->value.iec958.status[1] << 8) | |
| (ucontrol->value.iec958.status[2] << 16) | |
| (ucontrol->value.iec958.status[3] << 24); |
| mutex_lock(&intelhaddata->mutex); |
| if (intelhaddata->aes_bits != val) { |
| intelhaddata->aes_bits = val; |
| changed = 1; |
| } |
| mutex_unlock(&intelhaddata->mutex); |
| return changed; |
| } |
| |
| static int had_ctl_eld_info(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_info *uinfo) |
| { |
| uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; |
| uinfo->count = HDMI_MAX_ELD_BYTES; |
| return 0; |
| } |
| |
| static int had_ctl_eld_get(struct snd_kcontrol *kcontrol, |
| struct snd_ctl_elem_value *ucontrol) |
| { |
| struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); |
| |
| mutex_lock(&intelhaddata->mutex); |
| memcpy(ucontrol->value.bytes.data, intelhaddata->eld, |
| HDMI_MAX_ELD_BYTES); |
| mutex_unlock(&intelhaddata->mutex); |
| return 0; |
| } |
| |
| static const struct snd_kcontrol_new had_controls[] = { |
| { |
| .access = SNDRV_CTL_ELEM_ACCESS_READ, |
| .iface = SNDRV_CTL_ELEM_IFACE_PCM, |
| .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), |
| .info = had_iec958_info, /* shared */ |
| .get = had_iec958_mask_get, |
| }, |
| { |
| .iface = SNDRV_CTL_ELEM_IFACE_PCM, |
| .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), |
| .info = had_iec958_info, |
| .get = had_iec958_get, |
| .put = had_iec958_put, |
| }, |
| { |
| .access = (SNDRV_CTL_ELEM_ACCESS_READ | |
| SNDRV_CTL_ELEM_ACCESS_VOLATILE), |
| .iface = SNDRV_CTL_ELEM_IFACE_PCM, |
| .name = "ELD", |
| .info = had_ctl_eld_info, |
| .get = had_ctl_eld_get, |
| }, |
| }; |
| |
| /* |
| * audio interrupt handler |
| */ |
| static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id) |
| { |
| struct snd_intelhad_card *card_ctx = dev_id; |
| u32 audio_stat[3] = {}; |
| int pipe, port; |
| |
| for_each_pipe(card_ctx, pipe) { |
| /* use raw register access to ack IRQs even while disconnected */ |
| audio_stat[pipe] = had_read_register_raw(card_ctx, pipe, |
| AUD_HDMI_STATUS) & |
| (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE); |
| |
| if (audio_stat[pipe]) |
| had_write_register_raw(card_ctx, pipe, |
| AUD_HDMI_STATUS, audio_stat[pipe]); |
| } |
| |
| for_each_port(card_ctx, port) { |
| struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; |
| int pipe = ctx->pipe; |
| |
| if (pipe < 0) |
| continue; |
| |
| if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE) |
| had_process_buffer_done(ctx); |
| if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN) |
| had_process_buffer_underrun(ctx); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * monitor plug/unplug notification from i915; just kick off the work |
| */ |
| static void notify_audio_lpe(struct platform_device *pdev, int port) |
| { |
| struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev); |
| struct snd_intelhad *ctx; |
| |
| ctx = &card_ctx->pcm_ctx[single_port ? 0 : port]; |
| if (single_port) |
| ctx->port = port; |
| |
| schedule_work(&ctx->hdmi_audio_wq); |
| } |
| |
| /* the work to handle monitor hot plug/unplug */ |
| static void had_audio_wq(struct work_struct *work) |
| { |
| struct snd_intelhad *ctx = |
| container_of(work, struct snd_intelhad, hdmi_audio_wq); |
| struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data; |
| struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port]; |
| |
| pm_runtime_get_sync(ctx->dev); |
| mutex_lock(&ctx->mutex); |
| if (ppdata->pipe < 0) { |
| dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n", |
| __func__, ctx->port); |
| |
| memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */ |
| |
| ctx->dp_output = false; |
| ctx->tmds_clock_speed = 0; |
| ctx->link_rate = 0; |
| |
| /* Shut down the stream */ |
| had_process_hot_unplug(ctx); |
| |
| ctx->pipe = -1; |
| } else { |
| dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n", |
| __func__, ctx->port, ppdata->ls_clock); |
| |
| memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld)); |
| |
| ctx->dp_output = ppdata->dp_output; |
| if (ctx->dp_output) { |
| ctx->tmds_clock_speed = 0; |
| ctx->link_rate = ppdata->ls_clock; |
| } else { |
| ctx->tmds_clock_speed = ppdata->ls_clock; |
| ctx->link_rate = 0; |
| } |
| |
| /* |
| * Shut down the stream before we change |
| * the pipe assignment for this pcm device |
| */ |
| had_process_hot_plug(ctx); |
| |
| ctx->pipe = ppdata->pipe; |
| |
| /* Restart the stream if necessary */ |
| had_process_mode_change(ctx); |
| } |
| |
| mutex_unlock(&ctx->mutex); |
| pm_runtime_mark_last_busy(ctx->dev); |
| pm_runtime_put_autosuspend(ctx->dev); |
| } |
| |
| /* |
| * Jack interface |
| */ |
| static int had_create_jack(struct snd_intelhad *ctx, |
| struct snd_pcm *pcm) |
| { |
| char hdmi_str[32]; |
| int err; |
| |
| snprintf(hdmi_str, sizeof(hdmi_str), |
| "HDMI/DP,pcm=%d", pcm->device); |
| |
| err = snd_jack_new(ctx->card_ctx->card, hdmi_str, |
| SND_JACK_AVOUT, &ctx->jack, |
| true, false); |
| if (err < 0) |
| return err; |
| ctx->jack->private_data = ctx; |
| return 0; |
| } |
| |
| /* |
| * PM callbacks |
| */ |
| |
| static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev) |
| { |
| struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); |
| |
| snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev) |
| { |
| struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); |
| |
| pm_runtime_mark_last_busy(dev); |
| |
| snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0); |
| |
| return 0; |
| } |
| |
| /* release resources */ |
| static void hdmi_lpe_audio_free(struct snd_card *card) |
| { |
| struct snd_intelhad_card *card_ctx = card->private_data; |
| struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data; |
| int port; |
| |
| spin_lock_irq(&pdata->lpe_audio_slock); |
| pdata->notify_audio_lpe = NULL; |
| spin_unlock_irq(&pdata->lpe_audio_slock); |
| |
| for_each_port(card_ctx, port) { |
| struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; |
| |
| cancel_work_sync(&ctx->hdmi_audio_wq); |
| } |
| } |
| |
| /* |
| * hdmi_lpe_audio_probe - start bridge with i915 |
| * |
| * This function is called when the i915 driver creates the |
| * hdmi-lpe-audio platform device. |
| */ |
| static int hdmi_lpe_audio_probe(struct platform_device *pdev) |
| { |
| struct snd_card *card; |
| struct snd_intelhad_card *card_ctx; |
| struct snd_intelhad *ctx; |
| struct snd_pcm *pcm; |
| struct intel_hdmi_lpe_audio_pdata *pdata; |
| int irq; |
| struct resource *res_mmio; |
| int port, ret; |
| |
| pdata = pdev->dev.platform_data; |
| if (!pdata) { |
| dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* get resources */ |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res_mmio) { |
| dev_err(&pdev->dev, "Could not get IO_MEM resources\n"); |
| return -ENXIO; |
| } |
| |
| /* create a card instance with ALSA framework */ |
| ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id, |
| THIS_MODULE, sizeof(*card_ctx), &card); |
| if (ret) |
| return ret; |
| |
| card_ctx = card->private_data; |
| card_ctx->dev = &pdev->dev; |
| card_ctx->card = card; |
| strcpy(card->driver, INTEL_HAD); |
| strcpy(card->shortname, "Intel HDMI/DP LPE Audio"); |
| strcpy(card->longname, "Intel HDMI/DP LPE Audio"); |
| |
| card_ctx->irq = -1; |
| |
| card->private_free = hdmi_lpe_audio_free; |
| |
| platform_set_drvdata(pdev, card_ctx); |
| |
| card_ctx->num_pipes = pdata->num_pipes; |
| card_ctx->num_ports = single_port ? 1 : pdata->num_ports; |
| |
| for_each_port(card_ctx, port) { |
| ctx = &card_ctx->pcm_ctx[port]; |
| ctx->card_ctx = card_ctx; |
| ctx->dev = card_ctx->dev; |
| ctx->port = single_port ? -1 : port; |
| ctx->pipe = -1; |
| |
| spin_lock_init(&ctx->had_spinlock); |
| mutex_init(&ctx->mutex); |
| INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq); |
| } |
| |
| dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n", |
| __func__, (unsigned int)res_mmio->start, |
| (unsigned int)res_mmio->end); |
| |
| card_ctx->mmio_start = |
| devm_ioremap(&pdev->dev, res_mmio->start, |
| (size_t)(resource_size(res_mmio))); |
| if (!card_ctx->mmio_start) { |
| dev_err(&pdev->dev, "Could not get ioremap\n"); |
| return -EACCES; |
| } |
| |
| /* setup interrupt handler */ |
| ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler, |
| 0, pdev->name, card_ctx); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "request_irq failed\n"); |
| return ret; |
| } |
| |
| card_ctx->irq = irq; |
| |
| /* only 32bit addressable */ |
| ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (ret) |
| return ret; |
| |
| init_channel_allocations(); |
| |
| card_ctx->num_pipes = pdata->num_pipes; |
| card_ctx->num_ports = single_port ? 1 : pdata->num_ports; |
| |
| for_each_port(card_ctx, port) { |
| int i; |
| |
| ctx = &card_ctx->pcm_ctx[port]; |
| ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS, |
| MAX_CAP_STREAMS, &pcm); |
| if (ret) |
| return ret; |
| |
| /* setup private data which can be retrieved when required */ |
| pcm->private_data = ctx; |
| pcm->info_flags = 0; |
| strscpy(pcm->name, card->shortname, strlen(card->shortname)); |
| /* setup the ops for playback */ |
| snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops); |
| |
| /* allocate dma pages; |
| * try to allocate 600k buffer as default which is large enough |
| */ |
| snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC, |
| card->dev, HAD_DEFAULT_BUFFER, |
| HAD_MAX_BUFFER); |
| |
| /* create controls */ |
| for (i = 0; i < ARRAY_SIZE(had_controls); i++) { |
| struct snd_kcontrol *kctl; |
| |
| kctl = snd_ctl_new1(&had_controls[i], ctx); |
| if (!kctl) |
| return -ENOMEM; |
| |
| kctl->id.device = pcm->device; |
| |
| ret = snd_ctl_add(card, kctl); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Register channel map controls */ |
| ret = had_register_chmap_ctls(ctx, pcm); |
| if (ret < 0) |
| return ret; |
| |
| ret = had_create_jack(ctx, pcm); |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = snd_card_register(card); |
| if (ret) |
| return ret; |
| |
| spin_lock_irq(&pdata->lpe_audio_slock); |
| pdata->notify_audio_lpe = notify_audio_lpe; |
| spin_unlock_irq(&pdata->lpe_audio_slock); |
| |
| pm_runtime_use_autosuspend(&pdev->dev); |
| pm_runtime_mark_last_busy(&pdev->dev); |
| |
| dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__); |
| for_each_port(card_ctx, port) { |
| struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; |
| |
| schedule_work(&ctx->hdmi_audio_wq); |
| } |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops hdmi_lpe_audio_pm = { |
| SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume) |
| }; |
| |
| static struct platform_driver hdmi_lpe_audio_driver = { |
| .driver = { |
| .name = "hdmi-lpe-audio", |
| .pm = &hdmi_lpe_audio_pm, |
| }, |
| .probe = hdmi_lpe_audio_probe, |
| }; |
| |
| module_platform_driver(hdmi_lpe_audio_driver); |
| MODULE_ALIAS("platform:hdmi_lpe_audio"); |
| |
| MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>"); |
| MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>"); |
| MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>"); |
| MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>"); |
| MODULE_DESCRIPTION("Intel HDMI Audio driver"); |
| MODULE_LICENSE("GPL v2"); |