| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Common Performance counter support functions for PowerISA v2.07 processors. |
| * |
| * Copyright 2009 Paul Mackerras, IBM Corporation. |
| * Copyright 2013 Michael Ellerman, IBM Corporation. |
| * Copyright 2016 Madhavan Srinivasan, IBM Corporation. |
| */ |
| #include "isa207-common.h" |
| |
| PMU_FORMAT_ATTR(event, "config:0-49"); |
| PMU_FORMAT_ATTR(pmcxsel, "config:0-7"); |
| PMU_FORMAT_ATTR(mark, "config:8"); |
| PMU_FORMAT_ATTR(combine, "config:11"); |
| PMU_FORMAT_ATTR(unit, "config:12-15"); |
| PMU_FORMAT_ATTR(pmc, "config:16-19"); |
| PMU_FORMAT_ATTR(cache_sel, "config:20-23"); |
| PMU_FORMAT_ATTR(sample_mode, "config:24-28"); |
| PMU_FORMAT_ATTR(thresh_sel, "config:29-31"); |
| PMU_FORMAT_ATTR(thresh_stop, "config:32-35"); |
| PMU_FORMAT_ATTR(thresh_start, "config:36-39"); |
| PMU_FORMAT_ATTR(thresh_cmp, "config:40-49"); |
| |
| static struct attribute *isa207_pmu_format_attr[] = { |
| &format_attr_event.attr, |
| &format_attr_pmcxsel.attr, |
| &format_attr_mark.attr, |
| &format_attr_combine.attr, |
| &format_attr_unit.attr, |
| &format_attr_pmc.attr, |
| &format_attr_cache_sel.attr, |
| &format_attr_sample_mode.attr, |
| &format_attr_thresh_sel.attr, |
| &format_attr_thresh_stop.attr, |
| &format_attr_thresh_start.attr, |
| &format_attr_thresh_cmp.attr, |
| NULL, |
| }; |
| |
| struct attribute_group isa207_pmu_format_group = { |
| .name = "format", |
| .attrs = isa207_pmu_format_attr, |
| }; |
| |
| static inline bool event_is_fab_match(u64 event) |
| { |
| /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */ |
| event &= 0xff0fe; |
| |
| /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */ |
| return (event == 0x30056 || event == 0x4f052); |
| } |
| |
| static bool is_event_valid(u64 event) |
| { |
| u64 valid_mask = EVENT_VALID_MASK; |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| valid_mask = p10_EVENT_VALID_MASK; |
| else if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| valid_mask = p9_EVENT_VALID_MASK; |
| |
| return !(event & ~valid_mask); |
| } |
| |
| static inline bool is_event_marked(u64 event) |
| { |
| if (event & EVENT_IS_MARKED) |
| return true; |
| |
| return false; |
| } |
| |
| static unsigned long sdar_mod_val(u64 event) |
| { |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| return p10_SDAR_MODE(event); |
| |
| return p9_SDAR_MODE(event); |
| } |
| |
| static void mmcra_sdar_mode(u64 event, unsigned long *mmcra) |
| { |
| /* |
| * MMCRA[SDAR_MODE] specifices how the SDAR should be updated in |
| * continous sampling mode. |
| * |
| * Incase of Power8: |
| * MMCRA[SDAR_MODE] will be programmed as "0b01" for continous sampling |
| * mode and will be un-changed when setting MMCRA[63] (Marked events). |
| * |
| * Incase of Power9/power10: |
| * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'), |
| * or if group already have any marked events. |
| * For rest |
| * MMCRA[SDAR_MODE] will be set from event code. |
| * If sdar_mode from event is zero, default to 0b01. Hardware |
| * requires that we set a non-zero value. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE)) |
| *mmcra &= MMCRA_SDAR_MODE_NO_UPDATES; |
| else if (sdar_mod_val(event)) |
| *mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT; |
| else |
| *mmcra |= MMCRA_SDAR_MODE_DCACHE; |
| } else |
| *mmcra |= MMCRA_SDAR_MODE_TLB; |
| } |
| |
| static u64 p10_thresh_cmp_val(u64 value) |
| { |
| int exp = 0; |
| u64 result = value; |
| |
| if (!value) |
| return value; |
| |
| /* |
| * Incase of P10, thresh_cmp value is not part of raw event code |
| * and provided via attr.config1 parameter. To program threshold in MMCRA, |
| * take a 18 bit number N and shift right 2 places and increment |
| * the exponent E by 1 until the upper 10 bits of N are zero. |
| * Write E to the threshold exponent and write the lower 8 bits of N |
| * to the threshold mantissa. |
| * The max threshold that can be written is 261120. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| if (value > 261120) |
| value = 261120; |
| while ((64 - __builtin_clzl(value)) > 8) { |
| exp++; |
| value >>= 2; |
| } |
| |
| /* |
| * Note that it is invalid to write a mantissa with the |
| * upper 2 bits of mantissa being zero, unless the |
| * exponent is also zero. |
| */ |
| if (!(value & 0xC0) && exp) |
| result = 0; |
| else |
| result = (exp << 8) | value; |
| } |
| return result; |
| } |
| |
| static u64 thresh_cmp_val(u64 value) |
| { |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| value = p10_thresh_cmp_val(value); |
| |
| /* |
| * Since location of threshold compare bits in MMCRA |
| * is different for p8, using different shift value. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| return value << p9_MMCRA_THR_CMP_SHIFT; |
| else |
| return value << MMCRA_THR_CMP_SHIFT; |
| } |
| |
| static unsigned long combine_from_event(u64 event) |
| { |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| return p9_EVENT_COMBINE(event); |
| |
| return EVENT_COMBINE(event); |
| } |
| |
| static unsigned long combine_shift(unsigned long pmc) |
| { |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| return p9_MMCR1_COMBINE_SHIFT(pmc); |
| |
| return MMCR1_COMBINE_SHIFT(pmc); |
| } |
| |
| static inline bool event_is_threshold(u64 event) |
| { |
| return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK; |
| } |
| |
| static bool is_thresh_cmp_valid(u64 event) |
| { |
| unsigned int cmp, exp; |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| return p10_thresh_cmp_val(event) != 0; |
| |
| /* |
| * Check the mantissa upper two bits are not zero, unless the |
| * exponent is also zero. See the THRESH_CMP_MANTISSA doc. |
| */ |
| |
| cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK; |
| exp = cmp >> 7; |
| |
| if (exp && (cmp & 0x60) == 0) |
| return false; |
| |
| return true; |
| } |
| |
| static unsigned int dc_ic_rld_quad_l1_sel(u64 event) |
| { |
| unsigned int cache; |
| |
| cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK; |
| return cache; |
| } |
| |
| static inline u64 isa207_find_source(u64 idx, u32 sub_idx) |
| { |
| u64 ret = PERF_MEM_NA; |
| |
| switch(idx) { |
| case 0: |
| /* Nothing to do */ |
| break; |
| case 1: |
| ret = PH(LVL, L1) | LEVEL(L1) | P(SNOOP, HIT); |
| break; |
| case 2: |
| ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT); |
| break; |
| case 3: |
| ret = PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); |
| break; |
| case 4: |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| ret = P(SNOOP, HIT); |
| |
| if (sub_idx == 1) |
| ret |= PH(LVL, LOC_RAM) | LEVEL(RAM); |
| else if (sub_idx == 2 || sub_idx == 3) |
| ret |= P(LVL, HIT) | LEVEL(PMEM); |
| else if (sub_idx == 4) |
| ret |= PH(LVL, REM_RAM1) | REM | LEVEL(RAM) | P(HOPS, 2); |
| else if (sub_idx == 5 || sub_idx == 7) |
| ret |= P(LVL, HIT) | LEVEL(PMEM) | REM; |
| else if (sub_idx == 6) |
| ret |= PH(LVL, REM_RAM2) | REM | LEVEL(RAM) | P(HOPS, 3); |
| } else { |
| if (sub_idx <= 1) |
| ret = PH(LVL, LOC_RAM); |
| else if (sub_idx > 1 && sub_idx <= 2) |
| ret = PH(LVL, REM_RAM1); |
| else |
| ret = PH(LVL, REM_RAM2); |
| ret |= P(SNOOP, HIT); |
| } |
| break; |
| case 5: |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| ret = REM | P(HOPS, 0); |
| |
| if (sub_idx == 0 || sub_idx == 4) |
| ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT); |
| else if (sub_idx == 1 || sub_idx == 5) |
| ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM); |
| else if (sub_idx == 2 || sub_idx == 6) |
| ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); |
| else if (sub_idx == 3 || sub_idx == 7) |
| ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| } else { |
| if (sub_idx == 0) |
| ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0); |
| else if (sub_idx == 1) |
| ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0); |
| else if (sub_idx == 2 || sub_idx == 4) |
| ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0); |
| else if (sub_idx == 3 || sub_idx == 5) |
| ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0); |
| } |
| break; |
| case 6: |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| if (sub_idx == 0) |
| ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM | |
| P(SNOOP, HIT) | P(HOPS, 2); |
| else if (sub_idx == 1) |
| ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM | |
| P(SNOOP, HITM) | P(HOPS, 2); |
| else if (sub_idx == 2) |
| ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM | |
| P(SNOOP, HIT) | P(HOPS, 3); |
| else if (sub_idx == 3) |
| ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM | |
| P(SNOOP, HITM) | P(HOPS, 3); |
| } else { |
| ret = PH(LVL, REM_CCE2); |
| if (sub_idx == 0 || sub_idx == 2) |
| ret |= P(SNOOP, HIT); |
| else if (sub_idx == 1 || sub_idx == 3) |
| ret |= P(SNOOP, HITM); |
| } |
| break; |
| case 7: |
| ret = PM(LVL, L1); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags, |
| struct pt_regs *regs) |
| { |
| u64 idx; |
| u32 sub_idx; |
| u64 sier; |
| u64 val; |
| |
| /* Skip if no SIER support */ |
| if (!(flags & PPMU_HAS_SIER)) { |
| dsrc->val = 0; |
| return; |
| } |
| |
| sier = mfspr(SPRN_SIER); |
| val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT; |
| if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31))) |
| return; |
| |
| idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT; |
| sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT; |
| |
| dsrc->val = isa207_find_source(idx, sub_idx); |
| if (val == 7) { |
| u64 mmcra; |
| u32 op_type; |
| |
| /* |
| * Type 0b111 denotes either larx or stcx instruction. Use the |
| * MMCRA sampling bits [57:59] along with the type value |
| * to determine the exact instruction type. If the sampling |
| * criteria is neither load or store, set the type as default |
| * to NA. |
| */ |
| mmcra = mfspr(SPRN_MMCRA); |
| |
| op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK; |
| switch (op_type) { |
| case 5: |
| dsrc->val |= P(OP, LOAD); |
| break; |
| case 7: |
| dsrc->val |= P(OP, STORE); |
| break; |
| default: |
| dsrc->val |= P(OP, NA); |
| break; |
| } |
| } else { |
| dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE); |
| } |
| } |
| |
| void isa207_get_mem_weight(u64 *weight, u64 type) |
| { |
| union perf_sample_weight *weight_fields; |
| u64 weight_lat; |
| u64 mmcra = mfspr(SPRN_MMCRA); |
| u64 exp = MMCRA_THR_CTR_EXP(mmcra); |
| u64 mantissa = MMCRA_THR_CTR_MANT(mmcra); |
| u64 sier = mfspr(SPRN_SIER); |
| u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT; |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| mantissa = P10_MMCRA_THR_CTR_MANT(mmcra); |
| |
| if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31))) |
| weight_lat = 0; |
| else |
| weight_lat = mantissa << (2 * exp); |
| |
| /* |
| * Use 64 bit weight field (full) if sample type is |
| * WEIGHT. |
| * |
| * if sample type is WEIGHT_STRUCT: |
| * - store memory latency in the lower 32 bits. |
| * - For ISA v3.1, use remaining two 16 bit fields of |
| * perf_sample_weight to store cycle counter values |
| * from sier2. |
| */ |
| weight_fields = (union perf_sample_weight *)weight; |
| if (type & PERF_SAMPLE_WEIGHT) |
| weight_fields->full = weight_lat; |
| else { |
| weight_fields->var1_dw = (u32)weight_lat; |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2)); |
| weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2)); |
| } |
| } |
| } |
| |
| int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1) |
| { |
| unsigned int unit, pmc, cache, ebb; |
| unsigned long mask, value; |
| |
| mask = value = 0; |
| |
| if (!is_event_valid(event)) |
| return -1; |
| |
| pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; |
| unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK; |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| cache = (event >> EVENT_CACHE_SEL_SHIFT) & |
| p10_EVENT_CACHE_SEL_MASK; |
| else |
| cache = (event >> EVENT_CACHE_SEL_SHIFT) & |
| EVENT_CACHE_SEL_MASK; |
| ebb = (event >> EVENT_EBB_SHIFT) & EVENT_EBB_MASK; |
| |
| if (pmc) { |
| u64 base_event; |
| |
| if (pmc > 6) |
| return -1; |
| |
| /* Ignore Linux defined bits when checking event below */ |
| base_event = event & ~EVENT_LINUX_MASK; |
| |
| if (pmc >= 5 && base_event != 0x500fa && |
| base_event != 0x600f4) |
| return -1; |
| |
| mask |= CNST_PMC_MASK(pmc); |
| value |= CNST_PMC_VAL(pmc); |
| |
| /* |
| * PMC5 and PMC6 are used to count cycles and instructions and |
| * they do not support most of the constraint bits. Add a check |
| * to exclude PMC5/6 from most of the constraints except for |
| * EBB/BHRB. |
| */ |
| if (pmc >= 5) |
| goto ebb_bhrb; |
| } |
| |
| if (pmc <= 4) { |
| /* |
| * Add to number of counters in use. Note this includes events with |
| * a PMC of 0 - they still need a PMC, it's just assigned later. |
| * Don't count events on PMC 5 & 6, there is only one valid event |
| * on each of those counters, and they are handled above. |
| */ |
| mask |= CNST_NC_MASK; |
| value |= CNST_NC_VAL; |
| } |
| |
| if (unit >= 6 && unit <= 9) { |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| if (unit == 6) { |
| mask |= CNST_L2L3_GROUP_MASK; |
| value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT); |
| } |
| } else if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| mask |= CNST_CACHE_GROUP_MASK; |
| value |= CNST_CACHE_GROUP_VAL(event & 0xff); |
| |
| mask |= CNST_CACHE_PMC4_MASK; |
| if (pmc == 4) |
| value |= CNST_CACHE_PMC4_VAL; |
| } else if (cache & 0x7) { |
| /* |
| * L2/L3 events contain a cache selector field, which is |
| * supposed to be programmed into MMCRC. However MMCRC is only |
| * HV writable, and there is no API for guest kernels to modify |
| * it. The solution is for the hypervisor to initialise the |
| * field to zeroes, and for us to only ever allow events that |
| * have a cache selector of zero. The bank selector (bit 3) is |
| * irrelevant, as long as the rest of the value is 0. |
| */ |
| return -1; |
| } |
| |
| } else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) { |
| mask |= CNST_L1_QUAL_MASK; |
| value |= CNST_L1_QUAL_VAL(cache); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| mask |= CNST_RADIX_SCOPE_GROUP_MASK; |
| value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT); |
| } |
| |
| if (is_event_marked(event)) { |
| mask |= CNST_SAMPLE_MASK; |
| value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) { |
| mask |= CNST_THRESH_CTL_SEL_MASK; |
| value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT); |
| mask |= p10_CNST_THRESH_CMP_MASK; |
| value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1)); |
| } |
| } else if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| if (event_is_threshold(event) && is_thresh_cmp_valid(event)) { |
| mask |= CNST_THRESH_MASK; |
| value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT); |
| } |
| } else { |
| /* |
| * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC, |
| * the threshold control bits are used for the match value. |
| */ |
| if (event_is_fab_match(event)) { |
| mask |= CNST_FAB_MATCH_MASK; |
| value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT); |
| } else { |
| if (!is_thresh_cmp_valid(event)) |
| return -1; |
| |
| mask |= CNST_THRESH_MASK; |
| value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT); |
| } |
| } |
| |
| ebb_bhrb: |
| if (!pmc && ebb) |
| /* EBB events must specify the PMC */ |
| return -1; |
| |
| if (event & EVENT_WANTS_BHRB) { |
| if (!ebb) |
| /* Only EBB events can request BHRB */ |
| return -1; |
| |
| mask |= CNST_IFM_MASK; |
| value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT); |
| } |
| |
| /* |
| * All events must agree on EBB, either all request it or none. |
| * EBB events are pinned & exclusive, so this should never actually |
| * hit, but we leave it as a fallback in case. |
| */ |
| mask |= CNST_EBB_MASK; |
| value |= CNST_EBB_VAL(ebb); |
| |
| *maskp = mask; |
| *valp = value; |
| |
| return 0; |
| } |
| |
| int isa207_compute_mmcr(u64 event[], int n_ev, |
| unsigned int hwc[], struct mmcr_regs *mmcr, |
| struct perf_event *pevents[], u32 flags) |
| { |
| unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val; |
| unsigned long mmcr3; |
| unsigned int pmc, pmc_inuse; |
| int i; |
| |
| pmc_inuse = 0; |
| |
| /* First pass to count resource use */ |
| for (i = 0; i < n_ev; ++i) { |
| pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; |
| if (pmc) |
| pmc_inuse |= 1 << pmc; |
| } |
| |
| mmcra = mmcr1 = mmcr2 = mmcr3 = 0; |
| |
| /* |
| * Disable bhrb unless explicitly requested |
| * by setting MMCRA (BHRBRD) bit. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| mmcra |= MMCRA_BHRB_DISABLE; |
| |
| /* Second pass: assign PMCs, set all MMCR1 fields */ |
| for (i = 0; i < n_ev; ++i) { |
| pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK; |
| unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK; |
| combine = combine_from_event(event[i]); |
| psel = event[i] & EVENT_PSEL_MASK; |
| |
| if (!pmc) { |
| for (pmc = 1; pmc <= 4; ++pmc) { |
| if (!(pmc_inuse & (1 << pmc))) |
| break; |
| } |
| |
| pmc_inuse |= 1 << pmc; |
| } |
| |
| if (pmc <= 4) { |
| mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc); |
| mmcr1 |= combine << combine_shift(pmc); |
| mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc); |
| } |
| |
| /* In continuous sampling mode, update SDAR on TLB miss */ |
| mmcra_sdar_mode(event[i], &mmcra); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| cache = dc_ic_rld_quad_l1_sel(event[i]); |
| mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT; |
| } else { |
| if (event[i] & EVENT_IS_L1) { |
| cache = dc_ic_rld_quad_l1_sel(event[i]); |
| mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT; |
| } |
| } |
| |
| /* Set RADIX_SCOPE_QUAL bit */ |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) & |
| p10_EVENT_RADIX_SCOPE_QUAL_MASK; |
| mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT; |
| } |
| |
| if (is_event_marked(event[i])) { |
| mmcra |= MMCRA_SAMPLE_ENABLE; |
| |
| val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK; |
| if (val) { |
| mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT; |
| mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT; |
| } |
| } |
| |
| /* |
| * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC, |
| * the threshold bits are used for the match value. |
| */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) { |
| mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) & |
| EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT; |
| } else { |
| val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK; |
| mmcra |= val << MMCRA_THR_CTL_SHIFT; |
| val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK; |
| mmcra |= val << MMCRA_THR_SEL_SHIFT; |
| if (!cpu_has_feature(CPU_FTR_ARCH_31)) { |
| val = (event[i] >> EVENT_THR_CMP_SHIFT) & |
| EVENT_THR_CMP_MASK; |
| mmcra |= thresh_cmp_val(val); |
| } else if (flags & PPMU_HAS_ATTR_CONFIG1) { |
| val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) & |
| p10_EVENT_THR_CMP_MASK; |
| mmcra |= thresh_cmp_val(val); |
| } |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) { |
| val = (event[i] >> p10_L2L3_EVENT_SHIFT) & |
| p10_EVENT_L2L3_SEL_MASK; |
| mmcr2 |= val << p10_L2L3_SEL_SHIFT; |
| } |
| |
| if (event[i] & EVENT_WANTS_BHRB) { |
| val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK; |
| mmcra |= val << MMCRA_IFM_SHIFT; |
| } |
| |
| /* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */ |
| if (cpu_has_feature(CPU_FTR_ARCH_31) && |
| (has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB))) |
| mmcra &= ~MMCRA_BHRB_DISABLE; |
| |
| if (pevents[i]->attr.exclude_user) |
| mmcr2 |= MMCR2_FCP(pmc); |
| |
| if (pevents[i]->attr.exclude_hv) |
| mmcr2 |= MMCR2_FCH(pmc); |
| |
| if (pevents[i]->attr.exclude_kernel) { |
| if (cpu_has_feature(CPU_FTR_HVMODE)) |
| mmcr2 |= MMCR2_FCH(pmc); |
| else |
| mmcr2 |= MMCR2_FCS(pmc); |
| } |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) { |
| if (pmc <= 4) { |
| val = (event[i] >> p10_EVENT_MMCR3_SHIFT) & |
| p10_EVENT_MMCR3_MASK; |
| mmcr3 |= val << MMCR3_SHIFT(pmc); |
| } |
| } |
| |
| hwc[i] = pmc - 1; |
| } |
| |
| /* Return MMCRx values */ |
| mmcr->mmcr0 = 0; |
| |
| /* pmc_inuse is 1-based */ |
| if (pmc_inuse & 2) |
| mmcr->mmcr0 = MMCR0_PMC1CE; |
| |
| if (pmc_inuse & 0x7c) |
| mmcr->mmcr0 |= MMCR0_PMCjCE; |
| |
| /* If we're not using PMC 5 or 6, freeze them */ |
| if (!(pmc_inuse & 0x60)) |
| mmcr->mmcr0 |= MMCR0_FC56; |
| |
| /* |
| * Set mmcr0 (PMCCEXT) for p10 which |
| * will restrict access to group B registers |
| * when MMCR0 PMCC=0b00. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_31)) |
| mmcr->mmcr0 |= MMCR0_PMCCEXT; |
| |
| mmcr->mmcr1 = mmcr1; |
| mmcr->mmcra = mmcra; |
| mmcr->mmcr2 = mmcr2; |
| mmcr->mmcr3 = mmcr3; |
| |
| return 0; |
| } |
| |
| void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr) |
| { |
| if (pmc <= 3) |
| mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1)); |
| } |
| |
| static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size) |
| { |
| int i, j; |
| |
| for (i = 0; i < size; ++i) { |
| if (event < ev_alt[i][0]) |
| break; |
| |
| for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j) |
| if (event == ev_alt[i][j]) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags, |
| const unsigned int ev_alt[][MAX_ALT]) |
| { |
| int i, j, num_alt = 0; |
| u64 alt_event; |
| |
| alt[num_alt++] = event; |
| i = find_alternative(event, ev_alt, size); |
| if (i >= 0) { |
| /* Filter out the original event, it's already in alt[0] */ |
| for (j = 0; j < MAX_ALT; ++j) { |
| alt_event = ev_alt[i][j]; |
| if (alt_event && alt_event != event) |
| alt[num_alt++] = alt_event; |
| } |
| } |
| |
| if (flags & PPMU_ONLY_COUNT_RUN) { |
| /* |
| * We're only counting in RUN state, so PM_CYC is equivalent to |
| * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL. |
| */ |
| j = num_alt; |
| for (i = 0; i < num_alt; ++i) { |
| switch (alt[i]) { |
| case 0x1e: /* PMC_CYC */ |
| alt[j++] = 0x600f4; /* PM_RUN_CYC */ |
| break; |
| case 0x600f4: |
| alt[j++] = 0x1e; |
| break; |
| case 0x2: /* PM_INST_CMPL */ |
| alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */ |
| break; |
| case 0x500fa: |
| alt[j++] = 0x2; |
| break; |
| } |
| } |
| num_alt = j; |
| } |
| |
| return num_alt; |
| } |
| |
| int isa3XX_check_attr_config(struct perf_event *ev) |
| { |
| u64 val, sample_mode; |
| u64 event = ev->attr.config; |
| |
| val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK; |
| sample_mode = val & 0x3; |
| |
| /* |
| * MMCRA[61:62] is Random Sampling Mode (SM). |
| * value of 0b11 is reserved. |
| */ |
| if (sample_mode == 0x3) |
| return -EINVAL; |
| |
| /* |
| * Check for all reserved value |
| * Source: Performance Monitoring Unit User Guide |
| */ |
| switch (val) { |
| case 0x5: |
| case 0x9: |
| case 0xD: |
| case 0x19: |
| case 0x1D: |
| case 0x1A: |
| case 0x1E: |
| return -EINVAL; |
| } |
| |
| /* |
| * MMCRA[48:51]/[52:55]) Threshold Start/Stop |
| * Events Selection. |
| * 0b11110000/0b00001111 is reserved. |
| */ |
| val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK; |
| if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF)) |
| return -EINVAL; |
| |
| return 0; |
| } |