| /* |
| * linux/arch/arm/kernel/smp.c |
| * |
| * Copyright (C) 2002 ARM Limited, All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/config.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/cache.h> |
| #include <linux/profile.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/seq_file.h> |
| |
| #include <asm/atomic.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cpu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/processor.h> |
| #include <asm/tlbflush.h> |
| #include <asm/ptrace.h> |
| |
| /* |
| * bitmask of present and online CPUs. |
| * The present bitmask indicates that the CPU is physically present. |
| * The online bitmask indicates that the CPU is up and running. |
| */ |
| cpumask_t cpu_present_mask; |
| cpumask_t cpu_online_map; |
| |
| /* |
| * as from 2.5, kernels no longer have an init_tasks structure |
| * so we need some other way of telling a new secondary core |
| * where to place its SVC stack |
| */ |
| struct secondary_data secondary_data; |
| |
| /* |
| * structures for inter-processor calls |
| * - A collection of single bit ipi messages. |
| */ |
| struct ipi_data { |
| spinlock_t lock; |
| unsigned long ipi_count; |
| unsigned long bits; |
| }; |
| |
| static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { |
| .lock = SPIN_LOCK_UNLOCKED, |
| }; |
| |
| enum ipi_msg_type { |
| IPI_TIMER, |
| IPI_RESCHEDULE, |
| IPI_CALL_FUNC, |
| IPI_CPU_STOP, |
| }; |
| |
| struct smp_call_struct { |
| void (*func)(void *info); |
| void *info; |
| int wait; |
| cpumask_t pending; |
| cpumask_t unfinished; |
| }; |
| |
| static struct smp_call_struct * volatile smp_call_function_data; |
| static DEFINE_SPINLOCK(smp_call_function_lock); |
| |
| int __init __cpu_up(unsigned int cpu) |
| { |
| struct task_struct *idle; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| int ret; |
| |
| /* |
| * Spawn a new process manually. Grab a pointer to |
| * its task struct so we can mess with it |
| */ |
| idle = fork_idle(cpu); |
| if (IS_ERR(idle)) { |
| printk(KERN_ERR "CPU%u: fork() failed\n", cpu); |
| return PTR_ERR(idle); |
| } |
| |
| /* |
| * Allocate initial page tables to allow the new CPU to |
| * enable the MMU safely. This essentially means a set |
| * of our "standard" page tables, with the addition of |
| * a 1:1 mapping for the physical address of the kernel. |
| */ |
| pgd = pgd_alloc(&init_mm); |
| pmd = pmd_offset(pgd, PHYS_OFFSET); |
| *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | |
| PMD_TYPE_SECT | PMD_SECT_AP_WRITE); |
| |
| /* |
| * We need to tell the secondary core where to find |
| * its stack and the page tables. |
| */ |
| secondary_data.stack = (void *)idle->thread_info + THREAD_SIZE - 8; |
| secondary_data.pgdir = virt_to_phys(pgd); |
| wmb(); |
| |
| /* |
| * Now bring the CPU into our world. |
| */ |
| ret = boot_secondary(cpu, idle); |
| if (ret == 0) { |
| unsigned long timeout; |
| |
| /* |
| * CPU was successfully started, wait for it |
| * to come online or time out. |
| */ |
| timeout = jiffies + HZ; |
| while (time_before(jiffies, timeout)) { |
| if (cpu_online(cpu)) |
| break; |
| |
| udelay(10); |
| barrier(); |
| } |
| |
| if (!cpu_online(cpu)) |
| ret = -EIO; |
| } |
| |
| secondary_data.stack = 0; |
| secondary_data.pgdir = 0; |
| |
| *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0); |
| pgd_free(pgd); |
| |
| if (ret) { |
| printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); |
| |
| /* |
| * FIXME: We need to clean up the new idle thread. --rmk |
| */ |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This is the secondary CPU boot entry. We're using this CPUs |
| * idle thread stack, but a set of temporary page tables. |
| */ |
| asmlinkage void __init secondary_start_kernel(void) |
| { |
| struct mm_struct *mm = &init_mm; |
| unsigned int cpu = smp_processor_id(); |
| |
| printk("CPU%u: Booted secondary processor\n", cpu); |
| |
| /* |
| * All kernel threads share the same mm context; grab a |
| * reference and switch to it. |
| */ |
| atomic_inc(&mm->mm_users); |
| atomic_inc(&mm->mm_count); |
| current->active_mm = mm; |
| cpu_set(cpu, mm->cpu_vm_mask); |
| cpu_switch_mm(mm->pgd, mm); |
| enter_lazy_tlb(mm, current); |
| |
| cpu_init(); |
| |
| /* |
| * Give the platform a chance to do its own initialisation. |
| */ |
| platform_secondary_init(cpu); |
| |
| /* |
| * Enable local interrupts. |
| */ |
| local_irq_enable(); |
| local_fiq_enable(); |
| |
| calibrate_delay(); |
| |
| smp_store_cpu_info(cpu); |
| |
| /* |
| * OK, now it's safe to let the boot CPU continue |
| */ |
| cpu_set(cpu, cpu_online_map); |
| |
| /* |
| * OK, it's off to the idle thread for us |
| */ |
| cpu_idle(); |
| } |
| |
| /* |
| * Called by both boot and secondaries to move global data into |
| * per-processor storage. |
| */ |
| void __init smp_store_cpu_info(unsigned int cpuid) |
| { |
| struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); |
| |
| cpu_info->loops_per_jiffy = loops_per_jiffy; |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| int cpu; |
| unsigned long bogosum = 0; |
| |
| for_each_online_cpu(cpu) |
| bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; |
| |
| printk(KERN_INFO "SMP: Total of %d processors activated " |
| "(%lu.%02lu BogoMIPS).\n", |
| num_online_cpus(), |
| bogosum / (500000/HZ), |
| (bogosum / (5000/HZ)) % 100); |
| } |
| |
| void __init smp_prepare_boot_cpu(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| cpu_set(cpu, cpu_present_mask); |
| cpu_set(cpu, cpu_online_map); |
| } |
| |
| static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) |
| { |
| unsigned long flags; |
| unsigned int cpu; |
| |
| local_irq_save(flags); |
| |
| for_each_cpu_mask(cpu, callmap) { |
| struct ipi_data *ipi = &per_cpu(ipi_data, cpu); |
| |
| spin_lock(&ipi->lock); |
| ipi->bits |= 1 << msg; |
| spin_unlock(&ipi->lock); |
| } |
| |
| /* |
| * Call the platform specific cross-CPU call function. |
| */ |
| smp_cross_call(callmap); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * You must not call this function with disabled interrupts, from a |
| * hardware interrupt handler, nor from a bottom half handler. |
| */ |
| int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry, |
| int wait, cpumask_t callmap) |
| { |
| struct smp_call_struct data; |
| unsigned long timeout; |
| int ret = 0; |
| |
| data.func = func; |
| data.info = info; |
| data.wait = wait; |
| |
| cpu_clear(smp_processor_id(), callmap); |
| if (cpus_empty(callmap)) |
| goto out; |
| |
| data.pending = callmap; |
| if (wait) |
| data.unfinished = callmap; |
| |
| /* |
| * try to get the mutex on smp_call_function_data |
| */ |
| spin_lock(&smp_call_function_lock); |
| smp_call_function_data = &data; |
| |
| send_ipi_message(callmap, IPI_CALL_FUNC); |
| |
| timeout = jiffies + HZ; |
| while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) |
| barrier(); |
| |
| /* |
| * did we time out? |
| */ |
| if (!cpus_empty(data.pending)) { |
| /* |
| * this may be causing our panic - report it |
| */ |
| printk(KERN_CRIT |
| "CPU%u: smp_call_function timeout for %p(%p)\n" |
| " callmap %lx pending %lx, %swait\n", |
| smp_processor_id(), func, info, callmap, data.pending, |
| wait ? "" : "no "); |
| |
| /* |
| * TRACE |
| */ |
| timeout = jiffies + (5 * HZ); |
| while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) |
| barrier(); |
| |
| if (cpus_empty(data.pending)) |
| printk(KERN_CRIT " RESOLVED\n"); |
| else |
| printk(KERN_CRIT " STILL STUCK\n"); |
| } |
| |
| /* |
| * whatever happened, we're done with the data, so release it |
| */ |
| smp_call_function_data = NULL; |
| spin_unlock(&smp_call_function_lock); |
| |
| if (!cpus_empty(data.pending)) { |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| if (wait) |
| while (!cpus_empty(data.unfinished)) |
| barrier(); |
| out: |
| |
| return 0; |
| } |
| |
| int smp_call_function(void (*func)(void *info), void *info, int retry, |
| int wait) |
| { |
| return smp_call_function_on_cpu(func, info, retry, wait, |
| cpu_online_map); |
| } |
| |
| void show_ipi_list(struct seq_file *p) |
| { |
| unsigned int cpu; |
| |
| seq_puts(p, "IPI:"); |
| |
| for_each_online_cpu(cpu) |
| seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); |
| |
| seq_putc(p, '\n'); |
| } |
| |
| static void ipi_timer(struct pt_regs *regs) |
| { |
| int user = user_mode(regs); |
| |
| irq_enter(); |
| profile_tick(CPU_PROFILING, regs); |
| update_process_times(user); |
| irq_exit(); |
| } |
| |
| /* |
| * ipi_call_function - handle IPI from smp_call_function() |
| * |
| * Note that we copy data out of the cross-call structure and then |
| * let the caller know that we're here and have done with their data |
| */ |
| static void ipi_call_function(unsigned int cpu) |
| { |
| struct smp_call_struct *data = smp_call_function_data; |
| void (*func)(void *info) = data->func; |
| void *info = data->info; |
| int wait = data->wait; |
| |
| cpu_clear(cpu, data->pending); |
| |
| func(info); |
| |
| if (wait) |
| cpu_clear(cpu, data->unfinished); |
| } |
| |
| static DEFINE_SPINLOCK(stop_lock); |
| |
| /* |
| * ipi_cpu_stop - handle IPI from smp_send_stop() |
| */ |
| static void ipi_cpu_stop(unsigned int cpu) |
| { |
| spin_lock(&stop_lock); |
| printk(KERN_CRIT "CPU%u: stopping\n", cpu); |
| dump_stack(); |
| spin_unlock(&stop_lock); |
| |
| cpu_clear(cpu, cpu_online_map); |
| |
| local_fiq_disable(); |
| local_irq_disable(); |
| |
| while (1) |
| cpu_relax(); |
| } |
| |
| /* |
| * Main handler for inter-processor interrupts |
| * |
| * For ARM, the ipimask now only identifies a single |
| * category of IPI (Bit 1 IPIs have been replaced by a |
| * different mechanism): |
| * |
| * Bit 0 - Inter-processor function call |
| */ |
| void do_IPI(struct pt_regs *regs) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct ipi_data *ipi = &per_cpu(ipi_data, cpu); |
| |
| ipi->ipi_count++; |
| |
| for (;;) { |
| unsigned long msgs; |
| |
| spin_lock(&ipi->lock); |
| msgs = ipi->bits; |
| ipi->bits = 0; |
| spin_unlock(&ipi->lock); |
| |
| if (!msgs) |
| break; |
| |
| do { |
| unsigned nextmsg; |
| |
| nextmsg = msgs & -msgs; |
| msgs &= ~nextmsg; |
| nextmsg = ffz(~nextmsg); |
| |
| switch (nextmsg) { |
| case IPI_TIMER: |
| ipi_timer(regs); |
| break; |
| |
| case IPI_RESCHEDULE: |
| /* |
| * nothing more to do - eveything is |
| * done on the interrupt return path |
| */ |
| break; |
| |
| case IPI_CALL_FUNC: |
| ipi_call_function(cpu); |
| break; |
| |
| case IPI_CPU_STOP: |
| ipi_cpu_stop(cpu); |
| break; |
| |
| default: |
| printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", |
| cpu, nextmsg); |
| break; |
| } |
| } while (msgs); |
| } |
| } |
| |
| void smp_send_reschedule(int cpu) |
| { |
| send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); |
| } |
| |
| void smp_send_timer(void) |
| { |
| cpumask_t mask = cpu_online_map; |
| cpu_clear(smp_processor_id(), mask); |
| send_ipi_message(mask, IPI_TIMER); |
| } |
| |
| void smp_send_stop(void) |
| { |
| cpumask_t mask = cpu_online_map; |
| cpu_clear(smp_processor_id(), mask); |
| send_ipi_message(mask, IPI_CPU_STOP); |
| } |
| |
| /* |
| * not supported here |
| */ |
| int __init setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |