| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eugeni Dodonov <eugeni.dodonov@intel.com> |
| * |
| */ |
| |
| #include "i915_drv.h" |
| #include "intel_drv.h" |
| |
| /* HDMI/DVI modes ignore everything but the last 2 items. So we share |
| * them for both DP and FDI transports, allowing those ports to |
| * automatically adapt to HDMI connections as well |
| */ |
| static const u32 hsw_ddi_translations_dp[] = { |
| 0x00FFFFFF, 0x0006000E, /* DP parameters */ |
| 0x00D75FFF, 0x0005000A, |
| 0x00C30FFF, 0x00040006, |
| 0x80AAAFFF, 0x000B0000, |
| 0x00FFFFFF, 0x0005000A, |
| 0x00D75FFF, 0x000C0004, |
| 0x80C30FFF, 0x000B0000, |
| 0x00FFFFFF, 0x00040006, |
| 0x80D75FFF, 0x000B0000, |
| }; |
| |
| static const u32 hsw_ddi_translations_fdi[] = { |
| 0x00FFFFFF, 0x0007000E, /* FDI parameters */ |
| 0x00D75FFF, 0x000F000A, |
| 0x00C30FFF, 0x00060006, |
| 0x00AAAFFF, 0x001E0000, |
| 0x00FFFFFF, 0x000F000A, |
| 0x00D75FFF, 0x00160004, |
| 0x00C30FFF, 0x001E0000, |
| 0x00FFFFFF, 0x00060006, |
| 0x00D75FFF, 0x001E0000, |
| }; |
| |
| static const u32 hsw_ddi_translations_hdmi[] = { |
| /* Idx NT mV diff T mV diff db */ |
| 0x00FFFFFF, 0x0006000E, /* 0: 400 400 0 */ |
| 0x00E79FFF, 0x000E000C, /* 1: 400 500 2 */ |
| 0x00D75FFF, 0x0005000A, /* 2: 400 600 3.5 */ |
| 0x00FFFFFF, 0x0005000A, /* 3: 600 600 0 */ |
| 0x00E79FFF, 0x001D0007, /* 4: 600 750 2 */ |
| 0x00D75FFF, 0x000C0004, /* 5: 600 900 3.5 */ |
| 0x00FFFFFF, 0x00040006, /* 6: 800 800 0 */ |
| 0x80E79FFF, 0x00030002, /* 7: 800 1000 2 */ |
| 0x00FFFFFF, 0x00140005, /* 8: 850 850 0 */ |
| 0x00FFFFFF, 0x000C0004, /* 9: 900 900 0 */ |
| 0x00FFFFFF, 0x001C0003, /* 10: 950 950 0 */ |
| 0x80FFFFFF, 0x00030002, /* 11: 1000 1000 0 */ |
| }; |
| |
| static const u32 bdw_ddi_translations_edp[] = { |
| 0x00FFFFFF, 0x00000012, /* DP parameters */ |
| 0x00EBAFFF, 0x00020011, |
| 0x00C71FFF, 0x0006000F, |
| 0x00FFFFFF, 0x00020011, |
| 0x00DB6FFF, 0x0005000F, |
| 0x00BEEFFF, 0x000A000C, |
| 0x00FFFFFF, 0x0005000F, |
| 0x00DB6FFF, 0x000A000C, |
| 0x00FFFFFF, 0x000A000C, |
| 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/ |
| }; |
| |
| static const u32 bdw_ddi_translations_dp[] = { |
| 0x00FFFFFF, 0x0007000E, /* DP parameters */ |
| 0x00D75FFF, 0x000E000A, |
| 0x00BEFFFF, 0x00140006, |
| 0x00FFFFFF, 0x000E000A, |
| 0x00D75FFF, 0x00180004, |
| 0x80CB2FFF, 0x001B0002, |
| 0x00F7DFFF, 0x00180004, |
| 0x80D75FFF, 0x001B0002, |
| 0x80FFFFFF, 0x001B0002, |
| 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/ |
| }; |
| |
| static const u32 bdw_ddi_translations_fdi[] = { |
| 0x00FFFFFF, 0x0001000E, /* FDI parameters */ |
| 0x00D75FFF, 0x0004000A, |
| 0x00C30FFF, 0x00070006, |
| 0x00AAAFFF, 0x000C0000, |
| 0x00FFFFFF, 0x0004000A, |
| 0x00D75FFF, 0x00090004, |
| 0x00C30FFF, 0x000C0000, |
| 0x00FFFFFF, 0x00070006, |
| 0x00D75FFF, 0x000C0000, |
| 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/ |
| }; |
| |
| enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| int type = intel_encoder->type; |
| |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || |
| type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) { |
| struct intel_digital_port *intel_dig_port = |
| enc_to_dig_port(encoder); |
| return intel_dig_port->port; |
| |
| } else if (type == INTEL_OUTPUT_ANALOG) { |
| return PORT_E; |
| |
| } else { |
| DRM_ERROR("Invalid DDI encoder type %d\n", type); |
| BUG(); |
| } |
| } |
| |
| /* |
| * Starting with Haswell, DDI port buffers must be programmed with correct |
| * values in advance. The buffer values are different for FDI and DP modes, |
| * but the HDMI/DVI fields are shared among those. So we program the DDI |
| * in either FDI or DP modes only, as HDMI connections will work with both |
| * of those |
| */ |
| static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg; |
| int i; |
| int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift; |
| const u32 *ddi_translations_fdi; |
| const u32 *ddi_translations_dp; |
| const u32 *ddi_translations_edp; |
| const u32 *ddi_translations; |
| |
| if (IS_BROADWELL(dev)) { |
| ddi_translations_fdi = bdw_ddi_translations_fdi; |
| ddi_translations_dp = bdw_ddi_translations_dp; |
| ddi_translations_edp = bdw_ddi_translations_edp; |
| } else if (IS_HASWELL(dev)) { |
| ddi_translations_fdi = hsw_ddi_translations_fdi; |
| ddi_translations_dp = hsw_ddi_translations_dp; |
| ddi_translations_edp = hsw_ddi_translations_dp; |
| } else { |
| WARN(1, "ddi translation table missing\n"); |
| ddi_translations_edp = bdw_ddi_translations_dp; |
| ddi_translations_fdi = bdw_ddi_translations_fdi; |
| ddi_translations_dp = bdw_ddi_translations_dp; |
| } |
| |
| switch (port) { |
| case PORT_A: |
| ddi_translations = ddi_translations_edp; |
| break; |
| case PORT_B: |
| case PORT_C: |
| ddi_translations = ddi_translations_dp; |
| break; |
| case PORT_D: |
| if (intel_dpd_is_edp(dev)) |
| ddi_translations = ddi_translations_edp; |
| else |
| ddi_translations = ddi_translations_dp; |
| break; |
| case PORT_E: |
| ddi_translations = ddi_translations_fdi; |
| break; |
| default: |
| BUG(); |
| } |
| |
| for (i = 0, reg = DDI_BUF_TRANS(port); |
| i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) { |
| I915_WRITE(reg, ddi_translations[i]); |
| reg += 4; |
| } |
| /* Entry 9 is for HDMI: */ |
| for (i = 0; i < 2; i++) { |
| I915_WRITE(reg, hsw_ddi_translations_hdmi[hdmi_level * 2 + i]); |
| reg += 4; |
| } |
| } |
| |
| /* Program DDI buffers translations for DP. By default, program ports A-D in DP |
| * mode and port E for FDI. |
| */ |
| void intel_prepare_ddi(struct drm_device *dev) |
| { |
| int port; |
| |
| if (!HAS_DDI(dev)) |
| return; |
| |
| for (port = PORT_A; port <= PORT_E; port++) |
| intel_prepare_ddi_buffers(dev, port); |
| } |
| |
| static const long hsw_ddi_buf_ctl_values[] = { |
| DDI_BUF_EMP_400MV_0DB_HSW, |
| DDI_BUF_EMP_400MV_3_5DB_HSW, |
| DDI_BUF_EMP_400MV_6DB_HSW, |
| DDI_BUF_EMP_400MV_9_5DB_HSW, |
| DDI_BUF_EMP_600MV_0DB_HSW, |
| DDI_BUF_EMP_600MV_3_5DB_HSW, |
| DDI_BUF_EMP_600MV_6DB_HSW, |
| DDI_BUF_EMP_800MV_0DB_HSW, |
| DDI_BUF_EMP_800MV_3_5DB_HSW |
| }; |
| |
| static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv, |
| enum port port) |
| { |
| uint32_t reg = DDI_BUF_CTL(port); |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| udelay(1); |
| if (I915_READ(reg) & DDI_BUF_IS_IDLE) |
| return; |
| } |
| DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port)); |
| } |
| |
| /* Starting with Haswell, different DDI ports can work in FDI mode for |
| * connection to the PCH-located connectors. For this, it is necessary to train |
| * both the DDI port and PCH receiver for the desired DDI buffer settings. |
| * |
| * The recommended port to work in FDI mode is DDI E, which we use here. Also, |
| * please note that when FDI mode is active on DDI E, it shares 2 lines with |
| * DDI A (which is used for eDP) |
| */ |
| |
| void hsw_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| u32 temp, i, rx_ctl_val; |
| |
| /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the |
| * mode set "sequence for CRT port" document: |
| * - TP1 to TP2 time with the default value |
| * - FDI delay to 90h |
| * |
| * WaFDIAutoLinkSetTimingOverrride:hsw |
| */ |
| I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) | |
| FDI_RX_PWRDN_LANE0_VAL(2) | |
| FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); |
| |
| /* Enable the PCH Receiver FDI PLL */ |
| rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE | |
| FDI_RX_PLL_ENABLE | |
| FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); |
| I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); |
| POSTING_READ(_FDI_RXA_CTL); |
| udelay(220); |
| |
| /* Switch from Rawclk to PCDclk */ |
| rx_ctl_val |= FDI_PCDCLK; |
| I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); |
| |
| /* Configure Port Clock Select */ |
| I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel); |
| |
| /* Start the training iterating through available voltages and emphasis, |
| * testing each value twice. */ |
| for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) { |
| /* Configure DP_TP_CTL with auto-training */ |
| I915_WRITE(DP_TP_CTL(PORT_E), |
| DP_TP_CTL_FDI_AUTOTRAIN | |
| DP_TP_CTL_ENHANCED_FRAME_ENABLE | |
| DP_TP_CTL_LINK_TRAIN_PAT1 | |
| DP_TP_CTL_ENABLE); |
| |
| /* Configure and enable DDI_BUF_CTL for DDI E with next voltage. |
| * DDI E does not support port reversal, the functionality is |
| * achieved on the PCH side in FDI_RX_CTL, so no need to set the |
| * port reversal bit */ |
| I915_WRITE(DDI_BUF_CTL(PORT_E), |
| DDI_BUF_CTL_ENABLE | |
| ((intel_crtc->config.fdi_lanes - 1) << 1) | |
| hsw_ddi_buf_ctl_values[i / 2]); |
| POSTING_READ(DDI_BUF_CTL(PORT_E)); |
| |
| udelay(600); |
| |
| /* Program PCH FDI Receiver TU */ |
| I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64)); |
| |
| /* Enable PCH FDI Receiver with auto-training */ |
| rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO; |
| I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); |
| POSTING_READ(_FDI_RXA_CTL); |
| |
| /* Wait for FDI receiver lane calibration */ |
| udelay(30); |
| |
| /* Unset FDI_RX_MISC pwrdn lanes */ |
| temp = I915_READ(_FDI_RXA_MISC); |
| temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); |
| I915_WRITE(_FDI_RXA_MISC, temp); |
| POSTING_READ(_FDI_RXA_MISC); |
| |
| /* Wait for FDI auto training time */ |
| udelay(5); |
| |
| temp = I915_READ(DP_TP_STATUS(PORT_E)); |
| if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) { |
| DRM_DEBUG_KMS("FDI link training done on step %d\n", i); |
| |
| /* Enable normal pixel sending for FDI */ |
| I915_WRITE(DP_TP_CTL(PORT_E), |
| DP_TP_CTL_FDI_AUTOTRAIN | |
| DP_TP_CTL_LINK_TRAIN_NORMAL | |
| DP_TP_CTL_ENHANCED_FRAME_ENABLE | |
| DP_TP_CTL_ENABLE); |
| |
| return; |
| } |
| |
| temp = I915_READ(DDI_BUF_CTL(PORT_E)); |
| temp &= ~DDI_BUF_CTL_ENABLE; |
| I915_WRITE(DDI_BUF_CTL(PORT_E), temp); |
| POSTING_READ(DDI_BUF_CTL(PORT_E)); |
| |
| /* Disable DP_TP_CTL and FDI_RX_CTL and retry */ |
| temp = I915_READ(DP_TP_CTL(PORT_E)); |
| temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); |
| temp |= DP_TP_CTL_LINK_TRAIN_PAT1; |
| I915_WRITE(DP_TP_CTL(PORT_E), temp); |
| POSTING_READ(DP_TP_CTL(PORT_E)); |
| |
| intel_wait_ddi_buf_idle(dev_priv, PORT_E); |
| |
| rx_ctl_val &= ~FDI_RX_ENABLE; |
| I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); |
| POSTING_READ(_FDI_RXA_CTL); |
| |
| /* Reset FDI_RX_MISC pwrdn lanes */ |
| temp = I915_READ(_FDI_RXA_MISC); |
| temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); |
| temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); |
| I915_WRITE(_FDI_RXA_MISC, temp); |
| POSTING_READ(_FDI_RXA_MISC); |
| } |
| |
| DRM_ERROR("FDI link training failed!\n"); |
| } |
| |
| static void intel_ddi_mode_set(struct intel_encoder *encoder) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| int port = intel_ddi_get_encoder_port(encoder); |
| int pipe = crtc->pipe; |
| int type = encoder->type; |
| struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode; |
| |
| DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n", |
| port_name(port), pipe_name(pipe)); |
| |
| crtc->eld_vld = false; |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *intel_dig_port = |
| enc_to_dig_port(&encoder->base); |
| |
| intel_dp->DP = intel_dig_port->saved_port_bits | |
| DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW; |
| intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count); |
| |
| if (intel_dp->has_audio) { |
| DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n", |
| pipe_name(crtc->pipe)); |
| |
| /* write eld */ |
| DRM_DEBUG_DRIVER("DP audio: write eld information\n"); |
| intel_write_eld(&encoder->base, adjusted_mode); |
| } |
| } else if (type == INTEL_OUTPUT_HDMI) { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| |
| if (intel_hdmi->has_audio) { |
| /* Proper support for digital audio needs a new logic |
| * and a new set of registers, so we leave it for future |
| * patch bombing. |
| */ |
| DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n", |
| pipe_name(crtc->pipe)); |
| |
| /* write eld */ |
| DRM_DEBUG_DRIVER("HDMI audio: write eld information\n"); |
| intel_write_eld(&encoder->base, adjusted_mode); |
| } |
| |
| intel_hdmi->set_infoframes(&encoder->base, adjusted_mode); |
| } |
| } |
| |
| static struct intel_encoder * |
| intel_ddi_get_crtc_encoder(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *intel_encoder, *ret = NULL; |
| int num_encoders = 0; |
| |
| for_each_encoder_on_crtc(dev, crtc, intel_encoder) { |
| ret = intel_encoder; |
| num_encoders++; |
| } |
| |
| if (num_encoders != 1) |
| WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders, |
| pipe_name(intel_crtc->pipe)); |
| |
| BUG_ON(ret == NULL); |
| return ret; |
| } |
| |
| void intel_ddi_put_crtc_pll(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_ddi_plls *plls = &dev_priv->ddi_plls; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t val; |
| |
| switch (intel_crtc->ddi_pll_sel) { |
| case PORT_CLK_SEL_SPLL: |
| plls->spll_refcount--; |
| if (plls->spll_refcount == 0) { |
| DRM_DEBUG_KMS("Disabling SPLL\n"); |
| val = I915_READ(SPLL_CTL); |
| WARN_ON(!(val & SPLL_PLL_ENABLE)); |
| I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE); |
| POSTING_READ(SPLL_CTL); |
| } |
| break; |
| case PORT_CLK_SEL_WRPLL1: |
| plls->wrpll1_refcount--; |
| if (plls->wrpll1_refcount == 0) { |
| DRM_DEBUG_KMS("Disabling WRPLL 1\n"); |
| val = I915_READ(WRPLL_CTL1); |
| WARN_ON(!(val & WRPLL_PLL_ENABLE)); |
| I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE); |
| POSTING_READ(WRPLL_CTL1); |
| } |
| break; |
| case PORT_CLK_SEL_WRPLL2: |
| plls->wrpll2_refcount--; |
| if (plls->wrpll2_refcount == 0) { |
| DRM_DEBUG_KMS("Disabling WRPLL 2\n"); |
| val = I915_READ(WRPLL_CTL2); |
| WARN_ON(!(val & WRPLL_PLL_ENABLE)); |
| I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE); |
| POSTING_READ(WRPLL_CTL2); |
| } |
| break; |
| } |
| |
| WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n"); |
| WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n"); |
| WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n"); |
| |
| intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE; |
| } |
| |
| #define LC_FREQ 2700 |
| #define LC_FREQ_2K (LC_FREQ * 2000) |
| |
| #define P_MIN 2 |
| #define P_MAX 64 |
| #define P_INC 2 |
| |
| /* Constraints for PLL good behavior */ |
| #define REF_MIN 48 |
| #define REF_MAX 400 |
| #define VCO_MIN 2400 |
| #define VCO_MAX 4800 |
| |
| #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a)) |
| |
| struct wrpll_rnp { |
| unsigned p, n2, r2; |
| }; |
| |
| static unsigned wrpll_get_budget_for_freq(int clock) |
| { |
| unsigned budget; |
| |
| switch (clock) { |
| case 25175000: |
| case 25200000: |
| case 27000000: |
| case 27027000: |
| case 37762500: |
| case 37800000: |
| case 40500000: |
| case 40541000: |
| case 54000000: |
| case 54054000: |
| case 59341000: |
| case 59400000: |
| case 72000000: |
| case 74176000: |
| case 74250000: |
| case 81000000: |
| case 81081000: |
| case 89012000: |
| case 89100000: |
| case 108000000: |
| case 108108000: |
| case 111264000: |
| case 111375000: |
| case 148352000: |
| case 148500000: |
| case 162000000: |
| case 162162000: |
| case 222525000: |
| case 222750000: |
| case 296703000: |
| case 297000000: |
| budget = 0; |
| break; |
| case 233500000: |
| case 245250000: |
| case 247750000: |
| case 253250000: |
| case 298000000: |
| budget = 1500; |
| break; |
| case 169128000: |
| case 169500000: |
| case 179500000: |
| case 202000000: |
| budget = 2000; |
| break; |
| case 256250000: |
| case 262500000: |
| case 270000000: |
| case 272500000: |
| case 273750000: |
| case 280750000: |
| case 281250000: |
| case 286000000: |
| case 291750000: |
| budget = 4000; |
| break; |
| case 267250000: |
| case 268500000: |
| budget = 5000; |
| break; |
| default: |
| budget = 1000; |
| break; |
| } |
| |
| return budget; |
| } |
| |
| static void wrpll_update_rnp(uint64_t freq2k, unsigned budget, |
| unsigned r2, unsigned n2, unsigned p, |
| struct wrpll_rnp *best) |
| { |
| uint64_t a, b, c, d, diff, diff_best; |
| |
| /* No best (r,n,p) yet */ |
| if (best->p == 0) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| return; |
| } |
| |
| /* |
| * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to |
| * freq2k. |
| * |
| * delta = 1e6 * |
| * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / |
| * freq2k; |
| * |
| * and we would like delta <= budget. |
| * |
| * If the discrepancy is above the PPM-based budget, always prefer to |
| * improve upon the previous solution. However, if you're within the |
| * budget, try to maximize Ref * VCO, that is N / (P * R^2). |
| */ |
| a = freq2k * budget * p * r2; |
| b = freq2k * budget * best->p * best->r2; |
| diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2)); |
| diff_best = ABS_DIFF((freq2k * best->p * best->r2), |
| (LC_FREQ_2K * best->n2)); |
| c = 1000000 * diff; |
| d = 1000000 * diff_best; |
| |
| if (a < c && b < d) { |
| /* If both are above the budget, pick the closer */ |
| if (best->p * best->r2 * diff < p * r2 * diff_best) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } |
| } else if (a >= c && b < d) { |
| /* If A is below the threshold but B is above it? Update. */ |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } else if (a >= c && b >= d) { |
| /* Both are below the limit, so pick the higher n2/(r2*r2) */ |
| if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } |
| } |
| /* Otherwise a < c && b >= d, do nothing */ |
| } |
| |
| static void |
| intel_ddi_calculate_wrpll(int clock /* in Hz */, |
| unsigned *r2_out, unsigned *n2_out, unsigned *p_out) |
| { |
| uint64_t freq2k; |
| unsigned p, n2, r2; |
| struct wrpll_rnp best = { 0, 0, 0 }; |
| unsigned budget; |
| |
| freq2k = clock / 100; |
| |
| budget = wrpll_get_budget_for_freq(clock); |
| |
| /* Special case handling for 540 pixel clock: bypass WR PLL entirely |
| * and directly pass the LC PLL to it. */ |
| if (freq2k == 5400000) { |
| *n2_out = 2; |
| *p_out = 1; |
| *r2_out = 2; |
| return; |
| } |
| |
| /* |
| * Ref = LC_FREQ / R, where Ref is the actual reference input seen by |
| * the WR PLL. |
| * |
| * We want R so that REF_MIN <= Ref <= REF_MAX. |
| * Injecting R2 = 2 * R gives: |
| * REF_MAX * r2 > LC_FREQ * 2 and |
| * REF_MIN * r2 < LC_FREQ * 2 |
| * |
| * Which means the desired boundaries for r2 are: |
| * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN |
| * |
| */ |
| for (r2 = LC_FREQ * 2 / REF_MAX + 1; |
| r2 <= LC_FREQ * 2 / REF_MIN; |
| r2++) { |
| |
| /* |
| * VCO = N * Ref, that is: VCO = N * LC_FREQ / R |
| * |
| * Once again we want VCO_MIN <= VCO <= VCO_MAX. |
| * Injecting R2 = 2 * R and N2 = 2 * N, we get: |
| * VCO_MAX * r2 > n2 * LC_FREQ and |
| * VCO_MIN * r2 < n2 * LC_FREQ) |
| * |
| * Which means the desired boundaries for n2 are: |
| * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ |
| */ |
| for (n2 = VCO_MIN * r2 / LC_FREQ + 1; |
| n2 <= VCO_MAX * r2 / LC_FREQ; |
| n2++) { |
| |
| for (p = P_MIN; p <= P_MAX; p += P_INC) |
| wrpll_update_rnp(freq2k, budget, |
| r2, n2, p, &best); |
| } |
| } |
| |
| *n2_out = best.n2; |
| *p_out = best.p; |
| *r2_out = best.r2; |
| |
| DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n", |
| clock, *p_out, *n2_out, *r2_out); |
| } |
| |
| bool intel_ddi_pll_mode_set(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_ddi_plls *plls = &dev_priv->ddi_plls; |
| int type = intel_encoder->type; |
| enum pipe pipe = intel_crtc->pipe; |
| uint32_t reg, val; |
| int clock = intel_crtc->config.port_clock; |
| |
| /* TODO: reuse PLLs when possible (compare values) */ |
| |
| intel_ddi_put_crtc_pll(crtc); |
| |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| switch (intel_dp->link_bw) { |
| case DP_LINK_BW_1_62: |
| intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810; |
| break; |
| case DP_LINK_BW_2_7: |
| intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350; |
| break; |
| case DP_LINK_BW_5_4: |
| intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700; |
| break; |
| default: |
| DRM_ERROR("Link bandwidth %d unsupported\n", |
| intel_dp->link_bw); |
| return false; |
| } |
| |
| /* We don't need to turn any PLL on because we'll use LCPLL. */ |
| return true; |
| |
| } else if (type == INTEL_OUTPUT_HDMI) { |
| unsigned p, n2, r2; |
| |
| if (plls->wrpll1_refcount == 0) { |
| DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n", |
| pipe_name(pipe)); |
| plls->wrpll1_refcount++; |
| reg = WRPLL_CTL1; |
| intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1; |
| } else if (plls->wrpll2_refcount == 0) { |
| DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n", |
| pipe_name(pipe)); |
| plls->wrpll2_refcount++; |
| reg = WRPLL_CTL2; |
| intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2; |
| } else { |
| DRM_ERROR("No WRPLLs available!\n"); |
| return false; |
| } |
| |
| WARN(I915_READ(reg) & WRPLL_PLL_ENABLE, |
| "WRPLL already enabled\n"); |
| |
| intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p); |
| |
| val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 | |
| WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | |
| WRPLL_DIVIDER_POST(p); |
| |
| } else if (type == INTEL_OUTPUT_ANALOG) { |
| if (plls->spll_refcount == 0) { |
| DRM_DEBUG_KMS("Using SPLL on pipe %c\n", |
| pipe_name(pipe)); |
| plls->spll_refcount++; |
| reg = SPLL_CTL; |
| intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL; |
| } else { |
| DRM_ERROR("SPLL already in use\n"); |
| return false; |
| } |
| |
| WARN(I915_READ(reg) & SPLL_PLL_ENABLE, |
| "SPLL already enabled\n"); |
| |
| val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC; |
| |
| } else { |
| WARN(1, "Invalid DDI encoder type %d\n", type); |
| return false; |
| } |
| |
| I915_WRITE(reg, val); |
| udelay(20); |
| |
| return true; |
| } |
| |
| void intel_ddi_set_pipe_settings(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| int type = intel_encoder->type; |
| uint32_t temp; |
| |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { |
| |
| temp = TRANS_MSA_SYNC_CLK; |
| switch (intel_crtc->config.pipe_bpp) { |
| case 18: |
| temp |= TRANS_MSA_6_BPC; |
| break; |
| case 24: |
| temp |= TRANS_MSA_8_BPC; |
| break; |
| case 30: |
| temp |= TRANS_MSA_10_BPC; |
| break; |
| case 36: |
| temp |= TRANS_MSA_12_BPC; |
| break; |
| default: |
| BUG(); |
| } |
| I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp); |
| } |
| } |
| |
| void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe = intel_crtc->pipe; |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| int type = intel_encoder->type; |
| uint32_t temp; |
| |
| /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */ |
| temp = TRANS_DDI_FUNC_ENABLE; |
| temp |= TRANS_DDI_SELECT_PORT(port); |
| |
| switch (intel_crtc->config.pipe_bpp) { |
| case 18: |
| temp |= TRANS_DDI_BPC_6; |
| break; |
| case 24: |
| temp |= TRANS_DDI_BPC_8; |
| break; |
| case 30: |
| temp |= TRANS_DDI_BPC_10; |
| break; |
| case 36: |
| temp |= TRANS_DDI_BPC_12; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC) |
| temp |= TRANS_DDI_PVSYNC; |
| if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC) |
| temp |= TRANS_DDI_PHSYNC; |
| |
| if (cpu_transcoder == TRANSCODER_EDP) { |
| switch (pipe) { |
| case PIPE_A: |
| /* On Haswell, can only use the always-on power well for |
| * eDP when not using the panel fitter, and when not |
| * using motion blur mitigation (which we don't |
| * support). */ |
| if (IS_HASWELL(dev) && intel_crtc->config.pch_pfit.enabled) |
| temp |= TRANS_DDI_EDP_INPUT_A_ONOFF; |
| else |
| temp |= TRANS_DDI_EDP_INPUT_A_ON; |
| break; |
| case PIPE_B: |
| temp |= TRANS_DDI_EDP_INPUT_B_ONOFF; |
| break; |
| case PIPE_C: |
| temp |= TRANS_DDI_EDP_INPUT_C_ONOFF; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| } |
| |
| if (type == INTEL_OUTPUT_HDMI) { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| |
| if (intel_hdmi->has_hdmi_sink) |
| temp |= TRANS_DDI_MODE_SELECT_HDMI; |
| else |
| temp |= TRANS_DDI_MODE_SELECT_DVI; |
| |
| } else if (type == INTEL_OUTPUT_ANALOG) { |
| temp |= TRANS_DDI_MODE_SELECT_FDI; |
| temp |= (intel_crtc->config.fdi_lanes - 1) << 1; |
| |
| } else if (type == INTEL_OUTPUT_DISPLAYPORT || |
| type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| temp |= TRANS_DDI_MODE_SELECT_DP_SST; |
| |
| temp |= DDI_PORT_WIDTH(intel_dp->lane_count); |
| } else { |
| WARN(1, "Invalid encoder type %d for pipe %c\n", |
| intel_encoder->type, pipe_name(pipe)); |
| } |
| |
| I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); |
| } |
| |
| void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv, |
| enum transcoder cpu_transcoder) |
| { |
| uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); |
| uint32_t val = I915_READ(reg); |
| |
| val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK); |
| val |= TRANS_DDI_PORT_NONE; |
| I915_WRITE(reg, val); |
| } |
| |
| bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector) |
| { |
| struct drm_device *dev = intel_connector->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *intel_encoder = intel_connector->encoder; |
| int type = intel_connector->base.connector_type; |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| enum pipe pipe = 0; |
| enum transcoder cpu_transcoder; |
| uint32_t tmp; |
| |
| if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) |
| return false; |
| |
| if (port == PORT_A) |
| cpu_transcoder = TRANSCODER_EDP; |
| else |
| cpu_transcoder = (enum transcoder) pipe; |
| |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); |
| |
| switch (tmp & TRANS_DDI_MODE_SELECT_MASK) { |
| case TRANS_DDI_MODE_SELECT_HDMI: |
| case TRANS_DDI_MODE_SELECT_DVI: |
| return (type == DRM_MODE_CONNECTOR_HDMIA); |
| |
| case TRANS_DDI_MODE_SELECT_DP_SST: |
| if (type == DRM_MODE_CONNECTOR_eDP) |
| return true; |
| case TRANS_DDI_MODE_SELECT_DP_MST: |
| return (type == DRM_MODE_CONNECTOR_DisplayPort); |
| |
| case TRANS_DDI_MODE_SELECT_FDI: |
| return (type == DRM_MODE_CONNECTOR_VGA); |
| |
| default: |
| return false; |
| } |
| } |
| |
| bool intel_ddi_get_hw_state(struct intel_encoder *encoder, |
| enum pipe *pipe) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_ddi_get_encoder_port(encoder); |
| u32 tmp; |
| int i; |
| |
| tmp = I915_READ(DDI_BUF_CTL(port)); |
| |
| if (!(tmp & DDI_BUF_CTL_ENABLE)) |
| return false; |
| |
| if (port == PORT_A) { |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); |
| |
| switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { |
| case TRANS_DDI_EDP_INPUT_A_ON: |
| case TRANS_DDI_EDP_INPUT_A_ONOFF: |
| *pipe = PIPE_A; |
| break; |
| case TRANS_DDI_EDP_INPUT_B_ONOFF: |
| *pipe = PIPE_B; |
| break; |
| case TRANS_DDI_EDP_INPUT_C_ONOFF: |
| *pipe = PIPE_C; |
| break; |
| } |
| |
| return true; |
| } else { |
| for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) { |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(i)); |
| |
| if ((tmp & TRANS_DDI_PORT_MASK) |
| == TRANS_DDI_SELECT_PORT(port)) { |
| *pipe = i; |
| return true; |
| } |
| } |
| } |
| |
| DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port)); |
| |
| return false; |
| } |
| |
| static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| uint32_t temp, ret; |
| enum port port = I915_MAX_PORTS; |
| enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, |
| pipe); |
| int i; |
| |
| if (cpu_transcoder == TRANSCODER_EDP) { |
| port = PORT_A; |
| } else { |
| temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); |
| temp &= TRANS_DDI_PORT_MASK; |
| |
| for (i = PORT_B; i <= PORT_E; i++) |
| if (temp == TRANS_DDI_SELECT_PORT(i)) |
| port = i; |
| } |
| |
| if (port == I915_MAX_PORTS) { |
| WARN(1, "Pipe %c enabled on an unknown port\n", |
| pipe_name(pipe)); |
| ret = PORT_CLK_SEL_NONE; |
| } else { |
| ret = I915_READ(PORT_CLK_SEL(port)); |
| DRM_DEBUG_KMS("Pipe %c connected to port %c using clock " |
| "0x%08x\n", pipe_name(pipe), port_name(port), |
| ret); |
| } |
| |
| return ret; |
| } |
| |
| void intel_ddi_setup_hw_pll_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe; |
| struct intel_crtc *intel_crtc; |
| |
| for_each_pipe(pipe) { |
| intel_crtc = |
| to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); |
| |
| if (!intel_crtc->active) |
| continue; |
| |
| intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv, |
| pipe); |
| |
| switch (intel_crtc->ddi_pll_sel) { |
| case PORT_CLK_SEL_SPLL: |
| dev_priv->ddi_plls.spll_refcount++; |
| break; |
| case PORT_CLK_SEL_WRPLL1: |
| dev_priv->ddi_plls.wrpll1_refcount++; |
| break; |
| case PORT_CLK_SEL_WRPLL2: |
| dev_priv->ddi_plls.wrpll2_refcount++; |
| break; |
| } |
| } |
| } |
| |
| void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc) |
| { |
| struct drm_crtc *crtc = &intel_crtc->base; |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| |
| if (cpu_transcoder != TRANSCODER_EDP) |
| I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), |
| TRANS_CLK_SEL_PORT(port)); |
| } |
| |
| void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc) |
| { |
| struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| |
| if (cpu_transcoder != TRANSCODER_EDP) |
| I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), |
| TRANS_CLK_SEL_DISABLED); |
| } |
| |
| static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| int type = intel_encoder->type; |
| |
| if (type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| ironlake_edp_panel_vdd_on(intel_dp); |
| ironlake_edp_panel_on(intel_dp); |
| ironlake_edp_panel_vdd_off(intel_dp, true); |
| } |
| |
| WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE); |
| I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel); |
| |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_complete_link_train(intel_dp); |
| if (port != PORT_A) |
| intel_dp_stop_link_train(intel_dp); |
| } |
| } |
| |
| static void intel_ddi_post_disable(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| int type = intel_encoder->type; |
| uint32_t val; |
| bool wait = false; |
| |
| val = I915_READ(DDI_BUF_CTL(port)); |
| if (val & DDI_BUF_CTL_ENABLE) { |
| val &= ~DDI_BUF_CTL_ENABLE; |
| I915_WRITE(DDI_BUF_CTL(port), val); |
| wait = true; |
| } |
| |
| val = I915_READ(DP_TP_CTL(port)); |
| val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); |
| val |= DP_TP_CTL_LINK_TRAIN_PAT1; |
| I915_WRITE(DP_TP_CTL(port), val); |
| |
| if (wait) |
| intel_wait_ddi_buf_idle(dev_priv, port); |
| |
| if (type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| ironlake_edp_panel_vdd_on(intel_dp); |
| ironlake_edp_panel_off(intel_dp); |
| } |
| |
| I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE); |
| } |
| |
| static void intel_enable_ddi(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| int type = intel_encoder->type; |
| uint32_t tmp; |
| |
| if (type == INTEL_OUTPUT_HDMI) { |
| struct intel_digital_port *intel_dig_port = |
| enc_to_dig_port(encoder); |
| |
| /* In HDMI/DVI mode, the port width, and swing/emphasis values |
| * are ignored so nothing special needs to be done besides |
| * enabling the port. |
| */ |
| I915_WRITE(DDI_BUF_CTL(port), |
| intel_dig_port->saved_port_bits | |
| DDI_BUF_CTL_ENABLE); |
| } else if (type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| if (port == PORT_A) |
| intel_dp_stop_link_train(intel_dp); |
| |
| ironlake_edp_backlight_on(intel_dp); |
| intel_edp_psr_enable(intel_dp); |
| } |
| |
| if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) { |
| tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD); |
| tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4)); |
| I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp); |
| } |
| } |
| |
| static void intel_disable_ddi(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int type = intel_encoder->type; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t tmp; |
| |
| if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) { |
| tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD); |
| tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << |
| (pipe * 4)); |
| I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp); |
| } |
| |
| if (type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| intel_edp_psr_disable(intel_dp); |
| ironlake_edp_backlight_off(intel_dp); |
| } |
| } |
| |
| int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| uint32_t lcpll = I915_READ(LCPLL_CTL); |
| uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; |
| |
| if (lcpll & LCPLL_CD_SOURCE_FCLK) { |
| return 800000; |
| } else if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT) { |
| return 450000; |
| } else if (freq == LCPLL_CLK_FREQ_450) { |
| return 450000; |
| } else if (IS_HASWELL(dev)) { |
| if (IS_ULT(dev)) |
| return 337500; |
| else |
| return 540000; |
| } else { |
| if (freq == LCPLL_CLK_FREQ_54O_BDW) |
| return 540000; |
| else if (freq == LCPLL_CLK_FREQ_337_5_BDW) |
| return 337500; |
| else |
| return 675000; |
| } |
| } |
| |
| void intel_ddi_pll_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t val = I915_READ(LCPLL_CTL); |
| |
| /* The LCPLL register should be turned on by the BIOS. For now let's |
| * just check its state and print errors in case something is wrong. |
| * Don't even try to turn it on. |
| */ |
| |
| DRM_DEBUG_KMS("CDCLK running at %dKHz\n", |
| intel_ddi_get_cdclk_freq(dev_priv)); |
| |
| if (val & LCPLL_CD_SOURCE_FCLK) |
| DRM_ERROR("CDCLK source is not LCPLL\n"); |
| |
| if (val & LCPLL_PLL_DISABLE) |
| DRM_ERROR("LCPLL is disabled\n"); |
| } |
| |
| void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder) |
| { |
| struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| enum port port = intel_dig_port->port; |
| uint32_t val; |
| bool wait = false; |
| |
| if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) { |
| val = I915_READ(DDI_BUF_CTL(port)); |
| if (val & DDI_BUF_CTL_ENABLE) { |
| val &= ~DDI_BUF_CTL_ENABLE; |
| I915_WRITE(DDI_BUF_CTL(port), val); |
| wait = true; |
| } |
| |
| val = I915_READ(DP_TP_CTL(port)); |
| val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); |
| val |= DP_TP_CTL_LINK_TRAIN_PAT1; |
| I915_WRITE(DP_TP_CTL(port), val); |
| POSTING_READ(DP_TP_CTL(port)); |
| |
| if (wait) |
| intel_wait_ddi_buf_idle(dev_priv, port); |
| } |
| |
| val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST | |
| DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE; |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE; |
| I915_WRITE(DP_TP_CTL(port), val); |
| POSTING_READ(DP_TP_CTL(port)); |
| |
| intel_dp->DP |= DDI_BUF_CTL_ENABLE; |
| I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP); |
| POSTING_READ(DDI_BUF_CTL(port)); |
| |
| udelay(600); |
| } |
| |
| void intel_ddi_fdi_disable(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| uint32_t val; |
| |
| intel_ddi_post_disable(intel_encoder); |
| |
| val = I915_READ(_FDI_RXA_CTL); |
| val &= ~FDI_RX_ENABLE; |
| I915_WRITE(_FDI_RXA_CTL, val); |
| |
| val = I915_READ(_FDI_RXA_MISC); |
| val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); |
| val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); |
| I915_WRITE(_FDI_RXA_MISC, val); |
| |
| val = I915_READ(_FDI_RXA_CTL); |
| val &= ~FDI_PCDCLK; |
| I915_WRITE(_FDI_RXA_CTL, val); |
| |
| val = I915_READ(_FDI_RXA_CTL); |
| val &= ~FDI_RX_PLL_ENABLE; |
| I915_WRITE(_FDI_RXA_CTL, val); |
| } |
| |
| static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); |
| int type = intel_encoder->type; |
| |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) |
| intel_dp_check_link_status(intel_dp); |
| } |
| |
| void intel_ddi_get_config(struct intel_encoder *encoder, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| u32 temp, flags = 0; |
| |
| temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); |
| if (temp & TRANS_DDI_PHSYNC) |
| flags |= DRM_MODE_FLAG_PHSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NHSYNC; |
| if (temp & TRANS_DDI_PVSYNC) |
| flags |= DRM_MODE_FLAG_PVSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NVSYNC; |
| |
| pipe_config->adjusted_mode.flags |= flags; |
| |
| switch (temp & TRANS_DDI_BPC_MASK) { |
| case TRANS_DDI_BPC_6: |
| pipe_config->pipe_bpp = 18; |
| break; |
| case TRANS_DDI_BPC_8: |
| pipe_config->pipe_bpp = 24; |
| break; |
| case TRANS_DDI_BPC_10: |
| pipe_config->pipe_bpp = 30; |
| break; |
| case TRANS_DDI_BPC_12: |
| pipe_config->pipe_bpp = 36; |
| break; |
| default: |
| break; |
| } |
| |
| switch (temp & TRANS_DDI_MODE_SELECT_MASK) { |
| case TRANS_DDI_MODE_SELECT_HDMI: |
| case TRANS_DDI_MODE_SELECT_DVI: |
| case TRANS_DDI_MODE_SELECT_FDI: |
| break; |
| case TRANS_DDI_MODE_SELECT_DP_SST: |
| case TRANS_DDI_MODE_SELECT_DP_MST: |
| pipe_config->has_dp_encoder = true; |
| intel_dp_get_m_n(intel_crtc, pipe_config); |
| break; |
| default: |
| break; |
| } |
| |
| if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp && |
| pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { |
| /* |
| * This is a big fat ugly hack. |
| * |
| * Some machines in UEFI boot mode provide us a VBT that has 18 |
| * bpp and 1.62 GHz link bandwidth for eDP, which for reasons |
| * unknown we fail to light up. Yet the same BIOS boots up with |
| * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as |
| * max, not what it tells us to use. |
| * |
| * Note: This will still be broken if the eDP panel is not lit |
| * up by the BIOS, and thus we can't get the mode at module |
| * load. |
| */ |
| DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", |
| pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); |
| dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; |
| } |
| } |
| |
| static void intel_ddi_destroy(struct drm_encoder *encoder) |
| { |
| /* HDMI has nothing special to destroy, so we can go with this. */ |
| intel_dp_encoder_destroy(encoder); |
| } |
| |
| static bool intel_ddi_compute_config(struct intel_encoder *encoder, |
| struct intel_crtc_config *pipe_config) |
| { |
| int type = encoder->type; |
| int port = intel_ddi_get_encoder_port(encoder); |
| |
| WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n"); |
| |
| if (port == PORT_A) |
| pipe_config->cpu_transcoder = TRANSCODER_EDP; |
| |
| if (type == INTEL_OUTPUT_HDMI) |
| return intel_hdmi_compute_config(encoder, pipe_config); |
| else |
| return intel_dp_compute_config(encoder, pipe_config); |
| } |
| |
| static const struct drm_encoder_funcs intel_ddi_funcs = { |
| .destroy = intel_ddi_destroy, |
| }; |
| |
| static struct intel_connector * |
| intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port) |
| { |
| struct intel_connector *connector; |
| enum port port = intel_dig_port->port; |
| |
| connector = kzalloc(sizeof(*connector), GFP_KERNEL); |
| if (!connector) |
| return NULL; |
| |
| intel_dig_port->dp.output_reg = DDI_BUF_CTL(port); |
| if (!intel_dp_init_connector(intel_dig_port, connector)) { |
| kfree(connector); |
| return NULL; |
| } |
| |
| return connector; |
| } |
| |
| static struct intel_connector * |
| intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port) |
| { |
| struct intel_connector *connector; |
| enum port port = intel_dig_port->port; |
| |
| connector = kzalloc(sizeof(*connector), GFP_KERNEL); |
| if (!connector) |
| return NULL; |
| |
| intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port); |
| intel_hdmi_init_connector(intel_dig_port, connector); |
| |
| return connector; |
| } |
| |
| void intel_ddi_init(struct drm_device *dev, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port; |
| struct intel_encoder *intel_encoder; |
| struct drm_encoder *encoder; |
| struct intel_connector *hdmi_connector = NULL; |
| struct intel_connector *dp_connector = NULL; |
| bool init_hdmi, init_dp; |
| |
| init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi || |
| dev_priv->vbt.ddi_port_info[port].supports_hdmi); |
| init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp; |
| if (!init_dp && !init_hdmi) { |
| DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible\n", |
| port_name(port)); |
| init_hdmi = true; |
| init_dp = true; |
| } |
| |
| intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); |
| if (!intel_dig_port) |
| return; |
| |
| intel_encoder = &intel_dig_port->base; |
| encoder = &intel_encoder->base; |
| |
| drm_encoder_init(dev, encoder, &intel_ddi_funcs, |
| DRM_MODE_ENCODER_TMDS); |
| |
| intel_encoder->compute_config = intel_ddi_compute_config; |
| intel_encoder->mode_set = intel_ddi_mode_set; |
| intel_encoder->enable = intel_enable_ddi; |
| intel_encoder->pre_enable = intel_ddi_pre_enable; |
| intel_encoder->disable = intel_disable_ddi; |
| intel_encoder->post_disable = intel_ddi_post_disable; |
| intel_encoder->get_hw_state = intel_ddi_get_hw_state; |
| intel_encoder->get_config = intel_ddi_get_config; |
| |
| intel_dig_port->port = port; |
| intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) & |
| (DDI_BUF_PORT_REVERSAL | |
| DDI_A_4_LANES); |
| |
| intel_encoder->type = INTEL_OUTPUT_UNKNOWN; |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); |
| intel_encoder->cloneable = false; |
| intel_encoder->hot_plug = intel_ddi_hot_plug; |
| |
| if (init_dp) |
| dp_connector = intel_ddi_init_dp_connector(intel_dig_port); |
| |
| /* In theory we don't need the encoder->type check, but leave it just in |
| * case we have some really bad VBTs... */ |
| if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) |
| hdmi_connector = intel_ddi_init_hdmi_connector(intel_dig_port); |
| |
| if (!dp_connector && !hdmi_connector) { |
| drm_encoder_cleanup(encoder); |
| kfree(intel_dig_port); |
| } |
| } |