| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright(C) 2015-2018 Linaro Limited. |
| * |
| * Author: Tor Jeremiassen <tor@ti.com> |
| * Author: Mathieu Poirier <mathieu.poirier@linaro.org> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/bitfield.h> |
| #include <linux/bitops.h> |
| #include <linux/coresight-pmu.h> |
| #include <linux/err.h> |
| #include <linux/log2.h> |
| #include <linux/types.h> |
| #include <linux/zalloc.h> |
| |
| #include <stdlib.h> |
| |
| #include "auxtrace.h" |
| #include "color.h" |
| #include "cs-etm.h" |
| #include "cs-etm-decoder/cs-etm-decoder.h" |
| #include "debug.h" |
| #include "dso.h" |
| #include "evlist.h" |
| #include "intlist.h" |
| #include "machine.h" |
| #include "map.h" |
| #include "perf.h" |
| #include "session.h" |
| #include "map_symbol.h" |
| #include "branch.h" |
| #include "symbol.h" |
| #include "tool.h" |
| #include "thread.h" |
| #include "thread-stack.h" |
| #include "tsc.h" |
| #include <tools/libc_compat.h> |
| #include "util/synthetic-events.h" |
| #include "util/util.h" |
| |
| struct cs_etm_auxtrace { |
| struct auxtrace auxtrace; |
| struct auxtrace_queues queues; |
| struct auxtrace_heap heap; |
| struct itrace_synth_opts synth_opts; |
| struct perf_session *session; |
| struct perf_tsc_conversion tc; |
| |
| /* |
| * Timeless has no timestamps in the trace so overlapping mmap lookups |
| * are less accurate but produces smaller trace data. We use context IDs |
| * in the trace instead of matching timestamps with fork records so |
| * they're not really needed in the general case. Overlapping mmaps |
| * happen in cases like between a fork and an exec. |
| */ |
| bool timeless_decoding; |
| |
| /* |
| * Per-thread ignores the trace channel ID and instead assumes that |
| * everything in a buffer comes from the same process regardless of |
| * which CPU it ran on. It also implies no context IDs so the TID is |
| * taken from the auxtrace buffer. |
| */ |
| bool per_thread_decoding; |
| bool snapshot_mode; |
| bool data_queued; |
| bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */ |
| |
| int num_cpu; |
| u64 latest_kernel_timestamp; |
| u32 auxtrace_type; |
| u64 branches_sample_type; |
| u64 branches_id; |
| u64 instructions_sample_type; |
| u64 instructions_sample_period; |
| u64 instructions_id; |
| u64 **metadata; |
| unsigned int pmu_type; |
| enum cs_etm_pid_fmt pid_fmt; |
| }; |
| |
| struct cs_etm_traceid_queue { |
| u8 trace_chan_id; |
| u64 period_instructions; |
| size_t last_branch_pos; |
| union perf_event *event_buf; |
| struct thread *thread; |
| struct thread *prev_packet_thread; |
| ocsd_ex_level prev_packet_el; |
| ocsd_ex_level el; |
| struct branch_stack *last_branch; |
| struct branch_stack *last_branch_rb; |
| struct cs_etm_packet *prev_packet; |
| struct cs_etm_packet *packet; |
| struct cs_etm_packet_queue packet_queue; |
| }; |
| |
| struct cs_etm_queue { |
| struct cs_etm_auxtrace *etm; |
| struct cs_etm_decoder *decoder; |
| struct auxtrace_buffer *buffer; |
| unsigned int queue_nr; |
| u8 pending_timestamp_chan_id; |
| u64 offset; |
| const unsigned char *buf; |
| size_t buf_len, buf_used; |
| /* Conversion between traceID and index in traceid_queues array */ |
| struct intlist *traceid_queues_list; |
| struct cs_etm_traceid_queue **traceid_queues; |
| }; |
| |
| /* RB tree for quick conversion between traceID and metadata pointers */ |
| static struct intlist *traceid_list; |
| |
| static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm); |
| static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, |
| pid_t tid); |
| static int cs_etm__get_data_block(struct cs_etm_queue *etmq); |
| static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); |
| |
| /* PTMs ETMIDR [11:8] set to b0011 */ |
| #define ETMIDR_PTM_VERSION 0x00000300 |
| |
| /* |
| * A struct auxtrace_heap_item only has a queue_nr and a timestamp to |
| * work with. One option is to modify to auxtrace_heap_XYZ() API or simply |
| * encode the etm queue number as the upper 16 bit and the channel as |
| * the lower 16 bit. |
| */ |
| #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ |
| (queue_nr << 16 | trace_chan_id) |
| #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) |
| #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) |
| |
| static u32 cs_etm__get_v7_protocol_version(u32 etmidr) |
| { |
| etmidr &= ETMIDR_PTM_VERSION; |
| |
| if (etmidr == ETMIDR_PTM_VERSION) |
| return CS_ETM_PROTO_PTM; |
| |
| return CS_ETM_PROTO_ETMV3; |
| } |
| |
| static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) |
| { |
| struct int_node *inode; |
| u64 *metadata; |
| |
| inode = intlist__find(traceid_list, trace_chan_id); |
| if (!inode) |
| return -EINVAL; |
| |
| metadata = inode->priv; |
| *magic = metadata[CS_ETM_MAGIC]; |
| return 0; |
| } |
| |
| int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) |
| { |
| struct int_node *inode; |
| u64 *metadata; |
| |
| inode = intlist__find(traceid_list, trace_chan_id); |
| if (!inode) |
| return -EINVAL; |
| |
| metadata = inode->priv; |
| *cpu = (int)metadata[CS_ETM_CPU]; |
| return 0; |
| } |
| |
| /* |
| * The returned PID format is presented as an enum: |
| * |
| * CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced. |
| * CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced. |
| * CS_ETM_PIDFMT_NONE: No context IDs |
| * |
| * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 |
| * are enabled at the same time when the session runs on an EL2 kernel. |
| * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be |
| * recorded in the trace data, the tool will selectively use |
| * CONTEXTIDR_EL2 as PID. |
| * |
| * The result is cached in etm->pid_fmt so this function only needs to be called |
| * when processing the aux info. |
| */ |
| static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata) |
| { |
| u64 val; |
| |
| if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { |
| val = metadata[CS_ETM_ETMCR]; |
| /* CONTEXTIDR is traced */ |
| if (val & BIT(ETM_OPT_CTXTID)) |
| return CS_ETM_PIDFMT_CTXTID; |
| } else { |
| val = metadata[CS_ETMV4_TRCCONFIGR]; |
| /* CONTEXTIDR_EL2 is traced */ |
| if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) |
| return CS_ETM_PIDFMT_CTXTID2; |
| /* CONTEXTIDR_EL1 is traced */ |
| else if (val & BIT(ETM4_CFG_BIT_CTXTID)) |
| return CS_ETM_PIDFMT_CTXTID; |
| } |
| |
| return CS_ETM_PIDFMT_NONE; |
| } |
| |
| enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq) |
| { |
| return etmq->etm->pid_fmt; |
| } |
| |
| static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata) |
| { |
| struct int_node *inode; |
| |
| /* Get an RB node for this CPU */ |
| inode = intlist__findnew(traceid_list, trace_chan_id); |
| |
| /* Something went wrong, no need to continue */ |
| if (!inode) |
| return -ENOMEM; |
| |
| /* |
| * The node for that CPU should not be taken. |
| * Back out if that's the case. |
| */ |
| if (inode->priv) |
| return -EINVAL; |
| |
| /* All good, associate the traceID with the metadata pointer */ |
| inode->priv = cpu_metadata; |
| |
| return 0; |
| } |
| |
| static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata) |
| { |
| u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; |
| |
| switch (cs_etm_magic) { |
| case __perf_cs_etmv3_magic: |
| *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] & |
| CORESIGHT_TRACE_ID_VAL_MASK); |
| break; |
| case __perf_cs_etmv4_magic: |
| case __perf_cs_ete_magic: |
| *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] & |
| CORESIGHT_TRACE_ID_VAL_MASK); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * update metadata trace ID from the value found in the AUX_HW_INFO packet. |
| * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present. |
| */ |
| static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata) |
| { |
| u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; |
| |
| switch (cs_etm_magic) { |
| case __perf_cs_etmv3_magic: |
| cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id; |
| break; |
| case __perf_cs_etmv4_magic: |
| case __perf_cs_ete_magic: |
| cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Get a metadata index for a specific cpu from an array. |
| * |
| */ |
| static int get_cpu_data_idx(struct cs_etm_auxtrace *etm, int cpu) |
| { |
| int i; |
| |
| for (i = 0; i < etm->num_cpu; i++) { |
| if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) { |
| return i; |
| } |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * Get a metadata for a specific cpu from an array. |
| * |
| */ |
| static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu) |
| { |
| int idx = get_cpu_data_idx(etm, cpu); |
| |
| return (idx != -1) ? etm->metadata[idx] : NULL; |
| } |
| |
| /* |
| * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event. |
| * |
| * The payload associates the Trace ID and the CPU. |
| * The routine is tolerant of seeing multiple packets with the same association, |
| * but a CPU / Trace ID association changing during a session is an error. |
| */ |
| static int cs_etm__process_aux_output_hw_id(struct perf_session *session, |
| union perf_event *event) |
| { |
| struct cs_etm_auxtrace *etm; |
| struct perf_sample sample; |
| struct int_node *inode; |
| struct evsel *evsel; |
| u64 *cpu_data; |
| u64 hw_id; |
| int cpu, version, err; |
| u8 trace_chan_id, curr_chan_id; |
| |
| /* extract and parse the HW ID */ |
| hw_id = event->aux_output_hw_id.hw_id; |
| version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id); |
| trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id); |
| |
| /* check that we can handle this version */ |
| if (version > CS_AUX_HW_ID_CURR_VERSION) |
| return -EINVAL; |
| |
| /* get access to the etm metadata */ |
| etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); |
| if (!etm || !etm->metadata) |
| return -EINVAL; |
| |
| /* parse the sample to get the CPU */ |
| evsel = evlist__event2evsel(session->evlist, event); |
| if (!evsel) |
| return -EINVAL; |
| err = evsel__parse_sample(evsel, event, &sample); |
| if (err) |
| return err; |
| cpu = sample.cpu; |
| if (cpu == -1) { |
| /* no CPU in the sample - possibly recorded with an old version of perf */ |
| pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record."); |
| return -EINVAL; |
| } |
| |
| /* See if the ID is mapped to a CPU, and it matches the current CPU */ |
| inode = intlist__find(traceid_list, trace_chan_id); |
| if (inode) { |
| cpu_data = inode->priv; |
| if ((int)cpu_data[CS_ETM_CPU] != cpu) { |
| pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n"); |
| return -EINVAL; |
| } |
| |
| /* check that the mapped ID matches */ |
| err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data); |
| if (err) |
| return err; |
| if (curr_chan_id != trace_chan_id) { |
| pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n"); |
| return -EINVAL; |
| } |
| |
| /* mapped and matched - return OK */ |
| return 0; |
| } |
| |
| cpu_data = get_cpu_data(etm, cpu); |
| if (cpu_data == NULL) |
| return err; |
| |
| /* not one we've seen before - lets map it */ |
| err = cs_etm__map_trace_id(trace_chan_id, cpu_data); |
| if (err) |
| return err; |
| |
| /* |
| * if we are picking up the association from the packet, need to plug |
| * the correct trace ID into the metadata for setting up decoders later. |
| */ |
| err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data); |
| return err; |
| } |
| |
| void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, |
| u8 trace_chan_id) |
| { |
| /* |
| * When a timestamp packet is encountered the backend code |
| * is stopped so that the front end has time to process packets |
| * that were accumulated in the traceID queue. Since there can |
| * be more than one channel per cs_etm_queue, we need to specify |
| * what traceID queue needs servicing. |
| */ |
| etmq->pending_timestamp_chan_id = trace_chan_id; |
| } |
| |
| static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, |
| u8 *trace_chan_id) |
| { |
| struct cs_etm_packet_queue *packet_queue; |
| |
| if (!etmq->pending_timestamp_chan_id) |
| return 0; |
| |
| if (trace_chan_id) |
| *trace_chan_id = etmq->pending_timestamp_chan_id; |
| |
| packet_queue = cs_etm__etmq_get_packet_queue(etmq, |
| etmq->pending_timestamp_chan_id); |
| if (!packet_queue) |
| return 0; |
| |
| /* Acknowledge pending status */ |
| etmq->pending_timestamp_chan_id = 0; |
| |
| /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ |
| return packet_queue->cs_timestamp; |
| } |
| |
| static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) |
| { |
| int i; |
| |
| queue->head = 0; |
| queue->tail = 0; |
| queue->packet_count = 0; |
| for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { |
| queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; |
| queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; |
| queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; |
| queue->packet_buffer[i].instr_count = 0; |
| queue->packet_buffer[i].last_instr_taken_branch = false; |
| queue->packet_buffer[i].last_instr_size = 0; |
| queue->packet_buffer[i].last_instr_type = 0; |
| queue->packet_buffer[i].last_instr_subtype = 0; |
| queue->packet_buffer[i].last_instr_cond = 0; |
| queue->packet_buffer[i].flags = 0; |
| queue->packet_buffer[i].exception_number = UINT32_MAX; |
| queue->packet_buffer[i].trace_chan_id = UINT8_MAX; |
| queue->packet_buffer[i].cpu = INT_MIN; |
| } |
| } |
| |
| static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) |
| { |
| int idx; |
| struct int_node *inode; |
| struct cs_etm_traceid_queue *tidq; |
| struct intlist *traceid_queues_list = etmq->traceid_queues_list; |
| |
| intlist__for_each_entry(inode, traceid_queues_list) { |
| idx = (int)(intptr_t)inode->priv; |
| tidq = etmq->traceid_queues[idx]; |
| cs_etm__clear_packet_queue(&tidq->packet_queue); |
| } |
| } |
| |
| static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq, |
| u8 trace_chan_id) |
| { |
| int rc = -ENOMEM; |
| struct auxtrace_queue *queue; |
| struct cs_etm_auxtrace *etm = etmq->etm; |
| |
| cs_etm__clear_packet_queue(&tidq->packet_queue); |
| |
| queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; |
| tidq->trace_chan_id = trace_chan_id; |
| tidq->el = tidq->prev_packet_el = ocsd_EL_unknown; |
| tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1, |
| queue->tid); |
| tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host); |
| |
| tidq->packet = zalloc(sizeof(struct cs_etm_packet)); |
| if (!tidq->packet) |
| goto out; |
| |
| tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); |
| if (!tidq->prev_packet) |
| goto out_free; |
| |
| if (etm->synth_opts.last_branch) { |
| size_t sz = sizeof(struct branch_stack); |
| |
| sz += etm->synth_opts.last_branch_sz * |
| sizeof(struct branch_entry); |
| tidq->last_branch = zalloc(sz); |
| if (!tidq->last_branch) |
| goto out_free; |
| tidq->last_branch_rb = zalloc(sz); |
| if (!tidq->last_branch_rb) |
| goto out_free; |
| } |
| |
| tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); |
| if (!tidq->event_buf) |
| goto out_free; |
| |
| return 0; |
| |
| out_free: |
| zfree(&tidq->last_branch_rb); |
| zfree(&tidq->last_branch); |
| zfree(&tidq->prev_packet); |
| zfree(&tidq->packet); |
| out: |
| return rc; |
| } |
| |
| static struct cs_etm_traceid_queue |
| *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) |
| { |
| int idx; |
| struct int_node *inode; |
| struct intlist *traceid_queues_list; |
| struct cs_etm_traceid_queue *tidq, **traceid_queues; |
| struct cs_etm_auxtrace *etm = etmq->etm; |
| |
| if (etm->per_thread_decoding) |
| trace_chan_id = CS_ETM_PER_THREAD_TRACEID; |
| |
| traceid_queues_list = etmq->traceid_queues_list; |
| |
| /* |
| * Check if the traceid_queue exist for this traceID by looking |
| * in the queue list. |
| */ |
| inode = intlist__find(traceid_queues_list, trace_chan_id); |
| if (inode) { |
| idx = (int)(intptr_t)inode->priv; |
| return etmq->traceid_queues[idx]; |
| } |
| |
| /* We couldn't find a traceid_queue for this traceID, allocate one */ |
| tidq = malloc(sizeof(*tidq)); |
| if (!tidq) |
| return NULL; |
| |
| memset(tidq, 0, sizeof(*tidq)); |
| |
| /* Get a valid index for the new traceid_queue */ |
| idx = intlist__nr_entries(traceid_queues_list); |
| /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ |
| inode = intlist__findnew(traceid_queues_list, trace_chan_id); |
| if (!inode) |
| goto out_free; |
| |
| /* Associate this traceID with this index */ |
| inode->priv = (void *)(intptr_t)idx; |
| |
| if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) |
| goto out_free; |
| |
| /* Grow the traceid_queues array by one unit */ |
| traceid_queues = etmq->traceid_queues; |
| traceid_queues = reallocarray(traceid_queues, |
| idx + 1, |
| sizeof(*traceid_queues)); |
| |
| /* |
| * On failure reallocarray() returns NULL and the original block of |
| * memory is left untouched. |
| */ |
| if (!traceid_queues) |
| goto out_free; |
| |
| traceid_queues[idx] = tidq; |
| etmq->traceid_queues = traceid_queues; |
| |
| return etmq->traceid_queues[idx]; |
| |
| out_free: |
| /* |
| * Function intlist__remove() removes the inode from the list |
| * and delete the memory associated to it. |
| */ |
| intlist__remove(traceid_queues_list, inode); |
| free(tidq); |
| |
| return NULL; |
| } |
| |
| struct cs_etm_packet_queue |
| *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) |
| { |
| struct cs_etm_traceid_queue *tidq; |
| |
| tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); |
| if (tidq) |
| return &tidq->packet_queue; |
| |
| return NULL; |
| } |
| |
| static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| struct cs_etm_packet *tmp; |
| |
| if (etm->synth_opts.branches || etm->synth_opts.last_branch || |
| etm->synth_opts.instructions) { |
| /* |
| * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for |
| * the next incoming packet. |
| * |
| * Threads and exception levels are also tracked for both the |
| * previous and current packets. This is because the previous |
| * packet is used for the 'from' IP for branch samples, so the |
| * thread at that time must also be assigned to that sample. |
| * Across discontinuity packets the thread can change, so by |
| * tracking the thread for the previous packet the branch sample |
| * will have the correct info. |
| */ |
| tmp = tidq->packet; |
| tidq->packet = tidq->prev_packet; |
| tidq->prev_packet = tmp; |
| tidq->prev_packet_el = tidq->el; |
| thread__put(tidq->prev_packet_thread); |
| tidq->prev_packet_thread = thread__get(tidq->thread); |
| } |
| } |
| |
| static void cs_etm__packet_dump(const char *pkt_string) |
| { |
| const char *color = PERF_COLOR_BLUE; |
| int len = strlen(pkt_string); |
| |
| if (len && (pkt_string[len-1] == '\n')) |
| color_fprintf(stdout, color, " %s", pkt_string); |
| else |
| color_fprintf(stdout, color, " %s\n", pkt_string); |
| |
| fflush(stdout); |
| } |
| |
| static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, |
| struct cs_etm_auxtrace *etm, int t_idx, |
| int m_idx, u32 etmidr) |
| { |
| u64 **metadata = etm->metadata; |
| |
| t_params[t_idx].protocol = cs_etm__get_v7_protocol_version(etmidr); |
| t_params[t_idx].etmv3.reg_ctrl = metadata[m_idx][CS_ETM_ETMCR]; |
| t_params[t_idx].etmv3.reg_trc_id = metadata[m_idx][CS_ETM_ETMTRACEIDR]; |
| } |
| |
| static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, |
| struct cs_etm_auxtrace *etm, int t_idx, |
| int m_idx) |
| { |
| u64 **metadata = etm->metadata; |
| |
| t_params[t_idx].protocol = CS_ETM_PROTO_ETMV4i; |
| t_params[t_idx].etmv4.reg_idr0 = metadata[m_idx][CS_ETMV4_TRCIDR0]; |
| t_params[t_idx].etmv4.reg_idr1 = metadata[m_idx][CS_ETMV4_TRCIDR1]; |
| t_params[t_idx].etmv4.reg_idr2 = metadata[m_idx][CS_ETMV4_TRCIDR2]; |
| t_params[t_idx].etmv4.reg_idr8 = metadata[m_idx][CS_ETMV4_TRCIDR8]; |
| t_params[t_idx].etmv4.reg_configr = metadata[m_idx][CS_ETMV4_TRCCONFIGR]; |
| t_params[t_idx].etmv4.reg_traceidr = metadata[m_idx][CS_ETMV4_TRCTRACEIDR]; |
| } |
| |
| static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, |
| struct cs_etm_auxtrace *etm, int t_idx, |
| int m_idx) |
| { |
| u64 **metadata = etm->metadata; |
| |
| t_params[t_idx].protocol = CS_ETM_PROTO_ETE; |
| t_params[t_idx].ete.reg_idr0 = metadata[m_idx][CS_ETE_TRCIDR0]; |
| t_params[t_idx].ete.reg_idr1 = metadata[m_idx][CS_ETE_TRCIDR1]; |
| t_params[t_idx].ete.reg_idr2 = metadata[m_idx][CS_ETE_TRCIDR2]; |
| t_params[t_idx].ete.reg_idr8 = metadata[m_idx][CS_ETE_TRCIDR8]; |
| t_params[t_idx].ete.reg_configr = metadata[m_idx][CS_ETE_TRCCONFIGR]; |
| t_params[t_idx].ete.reg_traceidr = metadata[m_idx][CS_ETE_TRCTRACEIDR]; |
| t_params[t_idx].ete.reg_devarch = metadata[m_idx][CS_ETE_TRCDEVARCH]; |
| } |
| |
| static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, |
| struct cs_etm_auxtrace *etm, |
| bool formatted, |
| int sample_cpu, |
| int decoders) |
| { |
| int t_idx, m_idx; |
| u32 etmidr; |
| u64 architecture; |
| |
| for (t_idx = 0; t_idx < decoders; t_idx++) { |
| if (formatted) |
| m_idx = t_idx; |
| else { |
| m_idx = get_cpu_data_idx(etm, sample_cpu); |
| if (m_idx == -1) { |
| pr_warning("CS_ETM: unknown CPU, falling back to first metadata\n"); |
| m_idx = 0; |
| } |
| } |
| |
| architecture = etm->metadata[m_idx][CS_ETM_MAGIC]; |
| |
| switch (architecture) { |
| case __perf_cs_etmv3_magic: |
| etmidr = etm->metadata[m_idx][CS_ETM_ETMIDR]; |
| cs_etm__set_trace_param_etmv3(t_params, etm, t_idx, m_idx, etmidr); |
| break; |
| case __perf_cs_etmv4_magic: |
| cs_etm__set_trace_param_etmv4(t_params, etm, t_idx, m_idx); |
| break; |
| case __perf_cs_ete_magic: |
| cs_etm__set_trace_param_ete(t_params, etm, t_idx, m_idx); |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, |
| struct cs_etm_queue *etmq, |
| enum cs_etm_decoder_operation mode, |
| bool formatted) |
| { |
| int ret = -EINVAL; |
| |
| if (!(mode < CS_ETM_OPERATION_MAX)) |
| goto out; |
| |
| d_params->packet_printer = cs_etm__packet_dump; |
| d_params->operation = mode; |
| d_params->data = etmq; |
| d_params->formatted = formatted; |
| d_params->fsyncs = false; |
| d_params->hsyncs = false; |
| d_params->frame_aligned = true; |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static void cs_etm__dump_event(struct cs_etm_queue *etmq, |
| struct auxtrace_buffer *buffer) |
| { |
| int ret; |
| const char *color = PERF_COLOR_BLUE; |
| size_t buffer_used = 0; |
| |
| fprintf(stdout, "\n"); |
| color_fprintf(stdout, color, |
| ". ... CoreSight %s Trace data: size %#zx bytes\n", |
| cs_etm_decoder__get_name(etmq->decoder), buffer->size); |
| |
| do { |
| size_t consumed; |
| |
| ret = cs_etm_decoder__process_data_block( |
| etmq->decoder, buffer->offset, |
| &((u8 *)buffer->data)[buffer_used], |
| buffer->size - buffer_used, &consumed); |
| if (ret) |
| break; |
| |
| buffer_used += consumed; |
| } while (buffer_used < buffer->size); |
| |
| cs_etm_decoder__reset(etmq->decoder); |
| } |
| |
| static int cs_etm__flush_events(struct perf_session *session, |
| struct perf_tool *tool) |
| { |
| struct cs_etm_auxtrace *etm = container_of(session->auxtrace, |
| struct cs_etm_auxtrace, |
| auxtrace); |
| if (dump_trace) |
| return 0; |
| |
| if (!tool->ordered_events) |
| return -EINVAL; |
| |
| if (etm->timeless_decoding) { |
| /* |
| * Pass tid = -1 to process all queues. But likely they will have |
| * already been processed on PERF_RECORD_EXIT anyway. |
| */ |
| return cs_etm__process_timeless_queues(etm, -1); |
| } |
| |
| return cs_etm__process_timestamped_queues(etm); |
| } |
| |
| static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) |
| { |
| int idx; |
| uintptr_t priv; |
| struct int_node *inode, *tmp; |
| struct cs_etm_traceid_queue *tidq; |
| struct intlist *traceid_queues_list = etmq->traceid_queues_list; |
| |
| intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { |
| priv = (uintptr_t)inode->priv; |
| idx = priv; |
| |
| /* Free this traceid_queue from the array */ |
| tidq = etmq->traceid_queues[idx]; |
| thread__zput(tidq->thread); |
| thread__zput(tidq->prev_packet_thread); |
| zfree(&tidq->event_buf); |
| zfree(&tidq->last_branch); |
| zfree(&tidq->last_branch_rb); |
| zfree(&tidq->prev_packet); |
| zfree(&tidq->packet); |
| zfree(&tidq); |
| |
| /* |
| * Function intlist__remove() removes the inode from the list |
| * and delete the memory associated to it. |
| */ |
| intlist__remove(traceid_queues_list, inode); |
| } |
| |
| /* Then the RB tree itself */ |
| intlist__delete(traceid_queues_list); |
| etmq->traceid_queues_list = NULL; |
| |
| /* finally free the traceid_queues array */ |
| zfree(&etmq->traceid_queues); |
| } |
| |
| static void cs_etm__free_queue(void *priv) |
| { |
| struct cs_etm_queue *etmq = priv; |
| |
| if (!etmq) |
| return; |
| |
| cs_etm_decoder__free(etmq->decoder); |
| cs_etm__free_traceid_queues(etmq); |
| free(etmq); |
| } |
| |
| static void cs_etm__free_events(struct perf_session *session) |
| { |
| unsigned int i; |
| struct cs_etm_auxtrace *aux = container_of(session->auxtrace, |
| struct cs_etm_auxtrace, |
| auxtrace); |
| struct auxtrace_queues *queues = &aux->queues; |
| |
| for (i = 0; i < queues->nr_queues; i++) { |
| cs_etm__free_queue(queues->queue_array[i].priv); |
| queues->queue_array[i].priv = NULL; |
| } |
| |
| auxtrace_queues__free(queues); |
| } |
| |
| static void cs_etm__free(struct perf_session *session) |
| { |
| int i; |
| struct int_node *inode, *tmp; |
| struct cs_etm_auxtrace *aux = container_of(session->auxtrace, |
| struct cs_etm_auxtrace, |
| auxtrace); |
| cs_etm__free_events(session); |
| session->auxtrace = NULL; |
| |
| /* First remove all traceID/metadata nodes for the RB tree */ |
| intlist__for_each_entry_safe(inode, tmp, traceid_list) |
| intlist__remove(traceid_list, inode); |
| /* Then the RB tree itself */ |
| intlist__delete(traceid_list); |
| |
| for (i = 0; i < aux->num_cpu; i++) |
| zfree(&aux->metadata[i]); |
| |
| zfree(&aux->metadata); |
| zfree(&aux); |
| } |
| |
| static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, |
| struct evsel *evsel) |
| { |
| struct cs_etm_auxtrace *aux = container_of(session->auxtrace, |
| struct cs_etm_auxtrace, |
| auxtrace); |
| |
| return evsel->core.attr.type == aux->pmu_type; |
| } |
| |
| static struct machine *cs_etm__get_machine(struct cs_etm_queue *etmq, |
| ocsd_ex_level el) |
| { |
| enum cs_etm_pid_fmt pid_fmt = cs_etm__get_pid_fmt(etmq); |
| |
| /* |
| * For any virtualisation based on nVHE (e.g. pKVM), or host kernels |
| * running at EL1 assume everything is the host. |
| */ |
| if (pid_fmt == CS_ETM_PIDFMT_CTXTID) |
| return &etmq->etm->session->machines.host; |
| |
| /* |
| * Not perfect, but otherwise assume anything in EL1 is the default |
| * guest, and everything else is the host. Distinguishing between guest |
| * and host userspaces isn't currently supported either. Neither is |
| * multiple guest support. All this does is reduce the likeliness of |
| * decode errors where we look into the host kernel maps when it should |
| * have been the guest maps. |
| */ |
| switch (el) { |
| case ocsd_EL1: |
| return machines__find_guest(&etmq->etm->session->machines, |
| DEFAULT_GUEST_KERNEL_ID); |
| case ocsd_EL3: |
| case ocsd_EL2: |
| case ocsd_EL0: |
| case ocsd_EL_unknown: |
| default: |
| return &etmq->etm->session->machines.host; |
| } |
| } |
| |
| static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address, |
| ocsd_ex_level el) |
| { |
| struct machine *machine = cs_etm__get_machine(etmq, el); |
| |
| if (address >= machine__kernel_start(machine)) { |
| if (machine__is_host(machine)) |
| return PERF_RECORD_MISC_KERNEL; |
| else |
| return PERF_RECORD_MISC_GUEST_KERNEL; |
| } else { |
| if (machine__is_host(machine)) |
| return PERF_RECORD_MISC_USER; |
| else { |
| /* |
| * Can't really happen at the moment because |
| * cs_etm__get_machine() will always return |
| * machines.host for any non EL1 trace. |
| */ |
| return PERF_RECORD_MISC_GUEST_USER; |
| } |
| } |
| } |
| |
| static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, |
| u64 address, size_t size, u8 *buffer, |
| const ocsd_mem_space_acc_t mem_space) |
| { |
| u8 cpumode; |
| u64 offset; |
| int len; |
| struct addr_location al; |
| struct dso *dso; |
| struct cs_etm_traceid_queue *tidq; |
| int ret = 0; |
| |
| if (!etmq) |
| return 0; |
| |
| addr_location__init(&al); |
| tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); |
| if (!tidq) |
| goto out; |
| |
| /* |
| * We've already tracked EL along side the PID in cs_etm__set_thread() |
| * so double check that it matches what OpenCSD thinks as well. It |
| * doesn't distinguish between EL0 and EL1 for this mem access callback |
| * so we had to do the extra tracking. Skip validation if it's any of |
| * the 'any' values. |
| */ |
| if (!(mem_space == OCSD_MEM_SPACE_ANY || |
| mem_space == OCSD_MEM_SPACE_N || mem_space == OCSD_MEM_SPACE_S)) { |
| if (mem_space & OCSD_MEM_SPACE_EL1N) { |
| /* Includes both non secure EL1 and EL0 */ |
| assert(tidq->el == ocsd_EL1 || tidq->el == ocsd_EL0); |
| } else if (mem_space & OCSD_MEM_SPACE_EL2) |
| assert(tidq->el == ocsd_EL2); |
| else if (mem_space & OCSD_MEM_SPACE_EL3) |
| assert(tidq->el == ocsd_EL3); |
| } |
| |
| cpumode = cs_etm__cpu_mode(etmq, address, tidq->el); |
| |
| if (!thread__find_map(tidq->thread, cpumode, address, &al)) |
| goto out; |
| |
| dso = map__dso(al.map); |
| if (!dso) |
| goto out; |
| |
| if (dso->data.status == DSO_DATA_STATUS_ERROR && |
| dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) |
| goto out; |
| |
| offset = map__map_ip(al.map, address); |
| |
| map__load(al.map); |
| |
| len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)), |
| offset, buffer, size); |
| |
| if (len <= 0) { |
| ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" |
| " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); |
| if (!dso->auxtrace_warned) { |
| pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", |
| address, |
| dso->long_name ? dso->long_name : "Unknown"); |
| dso->auxtrace_warned = true; |
| } |
| goto out; |
| } |
| ret = len; |
| out: |
| addr_location__exit(&al); |
| return ret; |
| } |
| |
| static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, |
| bool formatted, int sample_cpu) |
| { |
| struct cs_etm_decoder_params d_params; |
| struct cs_etm_trace_params *t_params = NULL; |
| struct cs_etm_queue *etmq; |
| /* |
| * Each queue can only contain data from one CPU when unformatted, so only one decoder is |
| * needed. |
| */ |
| int decoders = formatted ? etm->num_cpu : 1; |
| |
| etmq = zalloc(sizeof(*etmq)); |
| if (!etmq) |
| return NULL; |
| |
| etmq->traceid_queues_list = intlist__new(NULL); |
| if (!etmq->traceid_queues_list) |
| goto out_free; |
| |
| /* Use metadata to fill in trace parameters for trace decoder */ |
| t_params = zalloc(sizeof(*t_params) * decoders); |
| |
| if (!t_params) |
| goto out_free; |
| |
| if (cs_etm__init_trace_params(t_params, etm, formatted, sample_cpu, decoders)) |
| goto out_free; |
| |
| /* Set decoder parameters to decode trace packets */ |
| if (cs_etm__init_decoder_params(&d_params, etmq, |
| dump_trace ? CS_ETM_OPERATION_PRINT : |
| CS_ETM_OPERATION_DECODE, |
| formatted)) |
| goto out_free; |
| |
| etmq->decoder = cs_etm_decoder__new(decoders, &d_params, |
| t_params); |
| |
| if (!etmq->decoder) |
| goto out_free; |
| |
| /* |
| * Register a function to handle all memory accesses required by |
| * the trace decoder library. |
| */ |
| if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, |
| 0x0L, ((u64) -1L), |
| cs_etm__mem_access)) |
| goto out_free_decoder; |
| |
| zfree(&t_params); |
| return etmq; |
| |
| out_free_decoder: |
| cs_etm_decoder__free(etmq->decoder); |
| out_free: |
| intlist__delete(etmq->traceid_queues_list); |
| free(etmq); |
| |
| return NULL; |
| } |
| |
| static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, |
| struct auxtrace_queue *queue, |
| unsigned int queue_nr, |
| bool formatted, |
| int sample_cpu) |
| { |
| struct cs_etm_queue *etmq = queue->priv; |
| |
| if (list_empty(&queue->head) || etmq) |
| return 0; |
| |
| etmq = cs_etm__alloc_queue(etm, formatted, sample_cpu); |
| |
| if (!etmq) |
| return -ENOMEM; |
| |
| queue->priv = etmq; |
| etmq->etm = etm; |
| etmq->queue_nr = queue_nr; |
| etmq->offset = 0; |
| |
| return 0; |
| } |
| |
| static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, |
| struct cs_etm_queue *etmq, |
| unsigned int queue_nr) |
| { |
| int ret = 0; |
| unsigned int cs_queue_nr; |
| u8 trace_chan_id; |
| u64 cs_timestamp; |
| |
| /* |
| * We are under a CPU-wide trace scenario. As such we need to know |
| * when the code that generated the traces started to execute so that |
| * it can be correlated with execution on other CPUs. So we get a |
| * handle on the beginning of traces and decode until we find a |
| * timestamp. The timestamp is then added to the auxtrace min heap |
| * in order to know what nibble (of all the etmqs) to decode first. |
| */ |
| while (1) { |
| /* |
| * Fetch an aux_buffer from this etmq. Bail if no more |
| * blocks or an error has been encountered. |
| */ |
| ret = cs_etm__get_data_block(etmq); |
| if (ret <= 0) |
| goto out; |
| |
| /* |
| * Run decoder on the trace block. The decoder will stop when |
| * encountering a CS timestamp, a full packet queue or the end of |
| * trace for that block. |
| */ |
| ret = cs_etm__decode_data_block(etmq); |
| if (ret) |
| goto out; |
| |
| /* |
| * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all |
| * the timestamp calculation for us. |
| */ |
| cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); |
| |
| /* We found a timestamp, no need to continue. */ |
| if (cs_timestamp) |
| break; |
| |
| /* |
| * We didn't find a timestamp so empty all the traceid packet |
| * queues before looking for another timestamp packet, either |
| * in the current data block or a new one. Packets that were |
| * just decoded are useless since no timestamp has been |
| * associated with them. As such simply discard them. |
| */ |
| cs_etm__clear_all_packet_queues(etmq); |
| } |
| |
| /* |
| * We have a timestamp. Add it to the min heap to reflect when |
| * instructions conveyed by the range packets of this traceID queue |
| * started to execute. Once the same has been done for all the traceID |
| * queues of each etmq, redenring and decoding can start in |
| * chronological order. |
| * |
| * Note that packets decoded above are still in the traceID's packet |
| * queue and will be processed in cs_etm__process_timestamped_queues(). |
| */ |
| cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); |
| ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); |
| out: |
| return ret; |
| } |
| |
| static inline |
| void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| struct branch_stack *bs_src = tidq->last_branch_rb; |
| struct branch_stack *bs_dst = tidq->last_branch; |
| size_t nr = 0; |
| |
| /* |
| * Set the number of records before early exit: ->nr is used to |
| * determine how many branches to copy from ->entries. |
| */ |
| bs_dst->nr = bs_src->nr; |
| |
| /* |
| * Early exit when there is nothing to copy. |
| */ |
| if (!bs_src->nr) |
| return; |
| |
| /* |
| * As bs_src->entries is a circular buffer, we need to copy from it in |
| * two steps. First, copy the branches from the most recently inserted |
| * branch ->last_branch_pos until the end of bs_src->entries buffer. |
| */ |
| nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; |
| memcpy(&bs_dst->entries[0], |
| &bs_src->entries[tidq->last_branch_pos], |
| sizeof(struct branch_entry) * nr); |
| |
| /* |
| * If we wrapped around at least once, the branches from the beginning |
| * of the bs_src->entries buffer and until the ->last_branch_pos element |
| * are older valid branches: copy them over. The total number of |
| * branches copied over will be equal to the number of branches asked by |
| * the user in last_branch_sz. |
| */ |
| if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { |
| memcpy(&bs_dst->entries[nr], |
| &bs_src->entries[0], |
| sizeof(struct branch_entry) * tidq->last_branch_pos); |
| } |
| } |
| |
| static inline |
| void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) |
| { |
| tidq->last_branch_pos = 0; |
| tidq->last_branch_rb->nr = 0; |
| } |
| |
| static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, |
| u8 trace_chan_id, u64 addr) |
| { |
| u8 instrBytes[2]; |
| |
| cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes), |
| instrBytes, 0); |
| /* |
| * T32 instruction size is indicated by bits[15:11] of the first |
| * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 |
| * denote a 32-bit instruction. |
| */ |
| return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; |
| } |
| |
| static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) |
| { |
| /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ |
| if (packet->sample_type == CS_ETM_DISCONTINUITY) |
| return 0; |
| |
| return packet->start_addr; |
| } |
| |
| static inline |
| u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) |
| { |
| /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ |
| if (packet->sample_type == CS_ETM_DISCONTINUITY) |
| return 0; |
| |
| return packet->end_addr - packet->last_instr_size; |
| } |
| |
| static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, |
| u64 trace_chan_id, |
| const struct cs_etm_packet *packet, |
| u64 offset) |
| { |
| if (packet->isa == CS_ETM_ISA_T32) { |
| u64 addr = packet->start_addr; |
| |
| while (offset) { |
| addr += cs_etm__t32_instr_size(etmq, |
| trace_chan_id, addr); |
| offset--; |
| } |
| return addr; |
| } |
| |
| /* Assume a 4 byte instruction size (A32/A64) */ |
| return packet->start_addr + offset * 4; |
| } |
| |
| static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| struct branch_stack *bs = tidq->last_branch_rb; |
| struct branch_entry *be; |
| |
| /* |
| * The branches are recorded in a circular buffer in reverse |
| * chronological order: we start recording from the last element of the |
| * buffer down. After writing the first element of the stack, move the |
| * insert position back to the end of the buffer. |
| */ |
| if (!tidq->last_branch_pos) |
| tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; |
| |
| tidq->last_branch_pos -= 1; |
| |
| be = &bs->entries[tidq->last_branch_pos]; |
| be->from = cs_etm__last_executed_instr(tidq->prev_packet); |
| be->to = cs_etm__first_executed_instr(tidq->packet); |
| /* No support for mispredict */ |
| be->flags.mispred = 0; |
| be->flags.predicted = 1; |
| |
| /* |
| * Increment bs->nr until reaching the number of last branches asked by |
| * the user on the command line. |
| */ |
| if (bs->nr < etmq->etm->synth_opts.last_branch_sz) |
| bs->nr += 1; |
| } |
| |
| static int cs_etm__inject_event(union perf_event *event, |
| struct perf_sample *sample, u64 type) |
| { |
| event->header.size = perf_event__sample_event_size(sample, type, 0); |
| return perf_event__synthesize_sample(event, type, 0, sample); |
| } |
| |
| |
| static int |
| cs_etm__get_trace(struct cs_etm_queue *etmq) |
| { |
| struct auxtrace_buffer *aux_buffer = etmq->buffer; |
| struct auxtrace_buffer *old_buffer = aux_buffer; |
| struct auxtrace_queue *queue; |
| |
| queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; |
| |
| aux_buffer = auxtrace_buffer__next(queue, aux_buffer); |
| |
| /* If no more data, drop the previous auxtrace_buffer and return */ |
| if (!aux_buffer) { |
| if (old_buffer) |
| auxtrace_buffer__drop_data(old_buffer); |
| etmq->buf_len = 0; |
| return 0; |
| } |
| |
| etmq->buffer = aux_buffer; |
| |
| /* If the aux_buffer doesn't have data associated, try to load it */ |
| if (!aux_buffer->data) { |
| /* get the file desc associated with the perf data file */ |
| int fd = perf_data__fd(etmq->etm->session->data); |
| |
| aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); |
| if (!aux_buffer->data) |
| return -ENOMEM; |
| } |
| |
| /* If valid, drop the previous buffer */ |
| if (old_buffer) |
| auxtrace_buffer__drop_data(old_buffer); |
| |
| etmq->buf_used = 0; |
| etmq->buf_len = aux_buffer->size; |
| etmq->buf = aux_buffer->data; |
| |
| return etmq->buf_len; |
| } |
| |
| static void cs_etm__set_thread(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq, pid_t tid, |
| ocsd_ex_level el) |
| { |
| struct machine *machine = cs_etm__get_machine(etmq, el); |
| |
| if (tid != -1) { |
| thread__zput(tidq->thread); |
| tidq->thread = machine__find_thread(machine, -1, tid); |
| } |
| |
| /* Couldn't find a known thread */ |
| if (!tidq->thread) |
| tidq->thread = machine__idle_thread(machine); |
| |
| tidq->el = el; |
| } |
| |
| int cs_etm__etmq_set_tid_el(struct cs_etm_queue *etmq, pid_t tid, |
| u8 trace_chan_id, ocsd_ex_level el) |
| { |
| struct cs_etm_traceid_queue *tidq; |
| |
| tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); |
| if (!tidq) |
| return -EINVAL; |
| |
| cs_etm__set_thread(etmq, tidq, tid, el); |
| return 0; |
| } |
| |
| bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) |
| { |
| return !!etmq->etm->timeless_decoding; |
| } |
| |
| static void cs_etm__copy_insn(struct cs_etm_queue *etmq, |
| u64 trace_chan_id, |
| const struct cs_etm_packet *packet, |
| struct perf_sample *sample) |
| { |
| /* |
| * It's pointless to read instructions for the CS_ETM_DISCONTINUITY |
| * packet, so directly bail out with 'insn_len' = 0. |
| */ |
| if (packet->sample_type == CS_ETM_DISCONTINUITY) { |
| sample->insn_len = 0; |
| return; |
| } |
| |
| /* |
| * T32 instruction size might be 32-bit or 16-bit, decide by calling |
| * cs_etm__t32_instr_size(). |
| */ |
| if (packet->isa == CS_ETM_ISA_T32) |
| sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, |
| sample->ip); |
| /* Otherwise, A64 and A32 instruction size are always 32-bit. */ |
| else |
| sample->insn_len = 4; |
| |
| cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len, |
| (void *)sample->insn, 0); |
| } |
| |
| u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp) |
| { |
| struct cs_etm_auxtrace *etm = etmq->etm; |
| |
| if (etm->has_virtual_ts) |
| return tsc_to_perf_time(cs_timestamp, &etm->tc); |
| else |
| return cs_timestamp; |
| } |
| |
| static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| struct cs_etm_auxtrace *etm = etmq->etm; |
| struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue; |
| |
| if (!etm->timeless_decoding && etm->has_virtual_ts) |
| return packet_queue->cs_timestamp; |
| else |
| return etm->latest_kernel_timestamp; |
| } |
| |
| static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq, |
| u64 addr, u64 period) |
| { |
| int ret = 0; |
| struct cs_etm_auxtrace *etm = etmq->etm; |
| union perf_event *event = tidq->event_buf; |
| struct perf_sample sample = {.ip = 0,}; |
| |
| event->sample.header.type = PERF_RECORD_SAMPLE; |
| event->sample.header.misc = cs_etm__cpu_mode(etmq, addr, tidq->el); |
| event->sample.header.size = sizeof(struct perf_event_header); |
| |
| /* Set time field based on etm auxtrace config. */ |
| sample.time = cs_etm__resolve_sample_time(etmq, tidq); |
| |
| sample.ip = addr; |
| sample.pid = thread__pid(tidq->thread); |
| sample.tid = thread__tid(tidq->thread); |
| sample.id = etmq->etm->instructions_id; |
| sample.stream_id = etmq->etm->instructions_id; |
| sample.period = period; |
| sample.cpu = tidq->packet->cpu; |
| sample.flags = tidq->prev_packet->flags; |
| sample.cpumode = event->sample.header.misc; |
| |
| cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); |
| |
| if (etm->synth_opts.last_branch) |
| sample.branch_stack = tidq->last_branch; |
| |
| if (etm->synth_opts.inject) { |
| ret = cs_etm__inject_event(event, &sample, |
| etm->instructions_sample_type); |
| if (ret) |
| return ret; |
| } |
| |
| ret = perf_session__deliver_synth_event(etm->session, event, &sample); |
| |
| if (ret) |
| pr_err( |
| "CS ETM Trace: failed to deliver instruction event, error %d\n", |
| ret); |
| |
| return ret; |
| } |
| |
| /* |
| * The cs etm packet encodes an instruction range between a branch target |
| * and the next taken branch. Generate sample accordingly. |
| */ |
| static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| int ret = 0; |
| struct cs_etm_auxtrace *etm = etmq->etm; |
| struct perf_sample sample = {.ip = 0,}; |
| union perf_event *event = tidq->event_buf; |
| struct dummy_branch_stack { |
| u64 nr; |
| u64 hw_idx; |
| struct branch_entry entries; |
| } dummy_bs; |
| u64 ip; |
| |
| ip = cs_etm__last_executed_instr(tidq->prev_packet); |
| |
| event->sample.header.type = PERF_RECORD_SAMPLE; |
| event->sample.header.misc = cs_etm__cpu_mode(etmq, ip, |
| tidq->prev_packet_el); |
| event->sample.header.size = sizeof(struct perf_event_header); |
| |
| /* Set time field based on etm auxtrace config. */ |
| sample.time = cs_etm__resolve_sample_time(etmq, tidq); |
| |
| sample.ip = ip; |
| sample.pid = thread__pid(tidq->prev_packet_thread); |
| sample.tid = thread__tid(tidq->prev_packet_thread); |
| sample.addr = cs_etm__first_executed_instr(tidq->packet); |
| sample.id = etmq->etm->branches_id; |
| sample.stream_id = etmq->etm->branches_id; |
| sample.period = 1; |
| sample.cpu = tidq->packet->cpu; |
| sample.flags = tidq->prev_packet->flags; |
| sample.cpumode = event->sample.header.misc; |
| |
| cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, |
| &sample); |
| |
| /* |
| * perf report cannot handle events without a branch stack |
| */ |
| if (etm->synth_opts.last_branch) { |
| dummy_bs = (struct dummy_branch_stack){ |
| .nr = 1, |
| .hw_idx = -1ULL, |
| .entries = { |
| .from = sample.ip, |
| .to = sample.addr, |
| }, |
| }; |
| sample.branch_stack = (struct branch_stack *)&dummy_bs; |
| } |
| |
| if (etm->synth_opts.inject) { |
| ret = cs_etm__inject_event(event, &sample, |
| etm->branches_sample_type); |
| if (ret) |
| return ret; |
| } |
| |
| ret = perf_session__deliver_synth_event(etm->session, event, &sample); |
| |
| if (ret) |
| pr_err( |
| "CS ETM Trace: failed to deliver instruction event, error %d\n", |
| ret); |
| |
| return ret; |
| } |
| |
| struct cs_etm_synth { |
| struct perf_tool dummy_tool; |
| struct perf_session *session; |
| }; |
| |
| static int cs_etm__event_synth(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_sample *sample __maybe_unused, |
| struct machine *machine __maybe_unused) |
| { |
| struct cs_etm_synth *cs_etm_synth = |
| container_of(tool, struct cs_etm_synth, dummy_tool); |
| |
| return perf_session__deliver_synth_event(cs_etm_synth->session, |
| event, NULL); |
| } |
| |
| static int cs_etm__synth_event(struct perf_session *session, |
| struct perf_event_attr *attr, u64 id) |
| { |
| struct cs_etm_synth cs_etm_synth; |
| |
| memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); |
| cs_etm_synth.session = session; |
| |
| return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, |
| &id, cs_etm__event_synth); |
| } |
| |
| static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, |
| struct perf_session *session) |
| { |
| struct evlist *evlist = session->evlist; |
| struct evsel *evsel; |
| struct perf_event_attr attr; |
| bool found = false; |
| u64 id; |
| int err; |
| |
| evlist__for_each_entry(evlist, evsel) { |
| if (evsel->core.attr.type == etm->pmu_type) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| pr_debug("No selected events with CoreSight Trace data\n"); |
| return 0; |
| } |
| |
| memset(&attr, 0, sizeof(struct perf_event_attr)); |
| attr.size = sizeof(struct perf_event_attr); |
| attr.type = PERF_TYPE_HARDWARE; |
| attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; |
| attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | |
| PERF_SAMPLE_PERIOD; |
| if (etm->timeless_decoding) |
| attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; |
| else |
| attr.sample_type |= PERF_SAMPLE_TIME; |
| |
| attr.exclude_user = evsel->core.attr.exclude_user; |
| attr.exclude_kernel = evsel->core.attr.exclude_kernel; |
| attr.exclude_hv = evsel->core.attr.exclude_hv; |
| attr.exclude_host = evsel->core.attr.exclude_host; |
| attr.exclude_guest = evsel->core.attr.exclude_guest; |
| attr.sample_id_all = evsel->core.attr.sample_id_all; |
| attr.read_format = evsel->core.attr.read_format; |
| |
| /* create new id val to be a fixed offset from evsel id */ |
| id = evsel->core.id[0] + 1000000000; |
| |
| if (!id) |
| id = 1; |
| |
| if (etm->synth_opts.branches) { |
| attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; |
| attr.sample_period = 1; |
| attr.sample_type |= PERF_SAMPLE_ADDR; |
| err = cs_etm__synth_event(session, &attr, id); |
| if (err) |
| return err; |
| etm->branches_sample_type = attr.sample_type; |
| etm->branches_id = id; |
| id += 1; |
| attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; |
| } |
| |
| if (etm->synth_opts.last_branch) { |
| attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; |
| /* |
| * We don't use the hardware index, but the sample generation |
| * code uses the new format branch_stack with this field, |
| * so the event attributes must indicate that it's present. |
| */ |
| attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; |
| } |
| |
| if (etm->synth_opts.instructions) { |
| attr.config = PERF_COUNT_HW_INSTRUCTIONS; |
| attr.sample_period = etm->synth_opts.period; |
| etm->instructions_sample_period = attr.sample_period; |
| err = cs_etm__synth_event(session, &attr, id); |
| if (err) |
| return err; |
| etm->instructions_sample_type = attr.sample_type; |
| etm->instructions_id = id; |
| id += 1; |
| } |
| |
| return 0; |
| } |
| |
| static int cs_etm__sample(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| struct cs_etm_auxtrace *etm = etmq->etm; |
| int ret; |
| u8 trace_chan_id = tidq->trace_chan_id; |
| u64 instrs_prev; |
| |
| /* Get instructions remainder from previous packet */ |
| instrs_prev = tidq->period_instructions; |
| |
| tidq->period_instructions += tidq->packet->instr_count; |
| |
| /* |
| * Record a branch when the last instruction in |
| * PREV_PACKET is a branch. |
| */ |
| if (etm->synth_opts.last_branch && |
| tidq->prev_packet->sample_type == CS_ETM_RANGE && |
| tidq->prev_packet->last_instr_taken_branch) |
| cs_etm__update_last_branch_rb(etmq, tidq); |
| |
| if (etm->synth_opts.instructions && |
| tidq->period_instructions >= etm->instructions_sample_period) { |
| /* |
| * Emit instruction sample periodically |
| * TODO: allow period to be defined in cycles and clock time |
| */ |
| |
| /* |
| * Below diagram demonstrates the instruction samples |
| * generation flows: |
| * |
| * Instrs Instrs Instrs Instrs |
| * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) |
| * | | | | |
| * V V V V |
| * -------------------------------------------------- |
| * ^ ^ |
| * | | |
| * Period Period |
| * instructions(Pi) instructions(Pi') |
| * |
| * | | |
| * \---------------- -----------------/ |
| * V |
| * tidq->packet->instr_count |
| * |
| * Instrs Sample(n...) are the synthesised samples occurring |
| * every etm->instructions_sample_period instructions - as |
| * defined on the perf command line. Sample(n) is being the |
| * last sample before the current etm packet, n+1 to n+3 |
| * samples are generated from the current etm packet. |
| * |
| * tidq->packet->instr_count represents the number of |
| * instructions in the current etm packet. |
| * |
| * Period instructions (Pi) contains the number of |
| * instructions executed after the sample point(n) from the |
| * previous etm packet. This will always be less than |
| * etm->instructions_sample_period. |
| * |
| * When generate new samples, it combines with two parts |
| * instructions, one is the tail of the old packet and another |
| * is the head of the new coming packet, to generate |
| * sample(n+1); sample(n+2) and sample(n+3) consume the |
| * instructions with sample period. After sample(n+3), the rest |
| * instructions will be used by later packet and it is assigned |
| * to tidq->period_instructions for next round calculation. |
| */ |
| |
| /* |
| * Get the initial offset into the current packet instructions; |
| * entry conditions ensure that instrs_prev is less than |
| * etm->instructions_sample_period. |
| */ |
| u64 offset = etm->instructions_sample_period - instrs_prev; |
| u64 addr; |
| |
| /* Prepare last branches for instruction sample */ |
| if (etm->synth_opts.last_branch) |
| cs_etm__copy_last_branch_rb(etmq, tidq); |
| |
| while (tidq->period_instructions >= |
| etm->instructions_sample_period) { |
| /* |
| * Calculate the address of the sampled instruction (-1 |
| * as sample is reported as though instruction has just |
| * been executed, but PC has not advanced to next |
| * instruction) |
| */ |
| addr = cs_etm__instr_addr(etmq, trace_chan_id, |
| tidq->packet, offset - 1); |
| ret = cs_etm__synth_instruction_sample( |
| etmq, tidq, addr, |
| etm->instructions_sample_period); |
| if (ret) |
| return ret; |
| |
| offset += etm->instructions_sample_period; |
| tidq->period_instructions -= |
| etm->instructions_sample_period; |
| } |
| } |
| |
| if (etm->synth_opts.branches) { |
| bool generate_sample = false; |
| |
| /* Generate sample for tracing on packet */ |
| if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) |
| generate_sample = true; |
| |
| /* Generate sample for branch taken packet */ |
| if (tidq->prev_packet->sample_type == CS_ETM_RANGE && |
| tidq->prev_packet->last_instr_taken_branch) |
| generate_sample = true; |
| |
| if (generate_sample) { |
| ret = cs_etm__synth_branch_sample(etmq, tidq); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| cs_etm__packet_swap(etm, tidq); |
| |
| return 0; |
| } |
| |
| static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) |
| { |
| /* |
| * When the exception packet is inserted, whether the last instruction |
| * in previous range packet is taken branch or not, we need to force |
| * to set 'prev_packet->last_instr_taken_branch' to true. This ensures |
| * to generate branch sample for the instruction range before the |
| * exception is trapped to kernel or before the exception returning. |
| * |
| * The exception packet includes the dummy address values, so don't |
| * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful |
| * for generating instruction and branch samples. |
| */ |
| if (tidq->prev_packet->sample_type == CS_ETM_RANGE) |
| tidq->prev_packet->last_instr_taken_branch = true; |
| |
| return 0; |
| } |
| |
| static int cs_etm__flush(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| int err = 0; |
| struct cs_etm_auxtrace *etm = etmq->etm; |
| |
| /* Handle start tracing packet */ |
| if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) |
| goto swap_packet; |
| |
| if (etmq->etm->synth_opts.last_branch && |
| etmq->etm->synth_opts.instructions && |
| tidq->prev_packet->sample_type == CS_ETM_RANGE) { |
| u64 addr; |
| |
| /* Prepare last branches for instruction sample */ |
| cs_etm__copy_last_branch_rb(etmq, tidq); |
| |
| /* |
| * Generate a last branch event for the branches left in the |
| * circular buffer at the end of the trace. |
| * |
| * Use the address of the end of the last reported execution |
| * range |
| */ |
| addr = cs_etm__last_executed_instr(tidq->prev_packet); |
| |
| err = cs_etm__synth_instruction_sample( |
| etmq, tidq, addr, |
| tidq->period_instructions); |
| if (err) |
| return err; |
| |
| tidq->period_instructions = 0; |
| |
| } |
| |
| if (etm->synth_opts.branches && |
| tidq->prev_packet->sample_type == CS_ETM_RANGE) { |
| err = cs_etm__synth_branch_sample(etmq, tidq); |
| if (err) |
| return err; |
| } |
| |
| swap_packet: |
| cs_etm__packet_swap(etm, tidq); |
| |
| /* Reset last branches after flush the trace */ |
| if (etm->synth_opts.last_branch) |
| cs_etm__reset_last_branch_rb(tidq); |
| |
| return err; |
| } |
| |
| static int cs_etm__end_block(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| int err; |
| |
| /* |
| * It has no new packet coming and 'etmq->packet' contains the stale |
| * packet which was set at the previous time with packets swapping; |
| * so skip to generate branch sample to avoid stale packet. |
| * |
| * For this case only flush branch stack and generate a last branch |
| * event for the branches left in the circular buffer at the end of |
| * the trace. |
| */ |
| if (etmq->etm->synth_opts.last_branch && |
| etmq->etm->synth_opts.instructions && |
| tidq->prev_packet->sample_type == CS_ETM_RANGE) { |
| u64 addr; |
| |
| /* Prepare last branches for instruction sample */ |
| cs_etm__copy_last_branch_rb(etmq, tidq); |
| |
| /* |
| * Use the address of the end of the last reported execution |
| * range. |
| */ |
| addr = cs_etm__last_executed_instr(tidq->prev_packet); |
| |
| err = cs_etm__synth_instruction_sample( |
| etmq, tidq, addr, |
| tidq->period_instructions); |
| if (err) |
| return err; |
| |
| tidq->period_instructions = 0; |
| } |
| |
| return 0; |
| } |
| /* |
| * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue |
| * if need be. |
| * Returns: < 0 if error |
| * = 0 if no more auxtrace_buffer to read |
| * > 0 if the current buffer isn't empty yet |
| */ |
| static int cs_etm__get_data_block(struct cs_etm_queue *etmq) |
| { |
| int ret; |
| |
| if (!etmq->buf_len) { |
| ret = cs_etm__get_trace(etmq); |
| if (ret <= 0) |
| return ret; |
| /* |
| * We cannot assume consecutive blocks in the data file |
| * are contiguous, reset the decoder to force re-sync. |
| */ |
| ret = cs_etm_decoder__reset(etmq->decoder); |
| if (ret) |
| return ret; |
| } |
| |
| return etmq->buf_len; |
| } |
| |
| static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, |
| struct cs_etm_packet *packet, |
| u64 end_addr) |
| { |
| /* Initialise to keep compiler happy */ |
| u16 instr16 = 0; |
| u32 instr32 = 0; |
| u64 addr; |
| |
| switch (packet->isa) { |
| case CS_ETM_ISA_T32: |
| /* |
| * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: |
| * |
| * b'15 b'8 |
| * +-----------------+--------+ |
| * | 1 1 0 1 1 1 1 1 | imm8 | |
| * +-----------------+--------+ |
| * |
| * According to the specification, it only defines SVC for T32 |
| * with 16 bits instruction and has no definition for 32bits; |
| * so below only read 2 bytes as instruction size for T32. |
| */ |
| addr = end_addr - 2; |
| cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16), |
| (u8 *)&instr16, 0); |
| if ((instr16 & 0xFF00) == 0xDF00) |
| return true; |
| |
| break; |
| case CS_ETM_ISA_A32: |
| /* |
| * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: |
| * |
| * b'31 b'28 b'27 b'24 |
| * +---------+---------+-------------------------+ |
| * | !1111 | 1 1 1 1 | imm24 | |
| * +---------+---------+-------------------------+ |
| */ |
| addr = end_addr - 4; |
| cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), |
| (u8 *)&instr32, 0); |
| if ((instr32 & 0x0F000000) == 0x0F000000 && |
| (instr32 & 0xF0000000) != 0xF0000000) |
| return true; |
| |
| break; |
| case CS_ETM_ISA_A64: |
| /* |
| * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: |
| * |
| * b'31 b'21 b'4 b'0 |
| * +-----------------------+---------+-----------+ |
| * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | |
| * +-----------------------+---------+-----------+ |
| */ |
| addr = end_addr - 4; |
| cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), |
| (u8 *)&instr32, 0); |
| if ((instr32 & 0xFFE0001F) == 0xd4000001) |
| return true; |
| |
| break; |
| case CS_ETM_ISA_UNKNOWN: |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq, u64 magic) |
| { |
| u8 trace_chan_id = tidq->trace_chan_id; |
| struct cs_etm_packet *packet = tidq->packet; |
| struct cs_etm_packet *prev_packet = tidq->prev_packet; |
| |
| if (magic == __perf_cs_etmv3_magic) |
| if (packet->exception_number == CS_ETMV3_EXC_SVC) |
| return true; |
| |
| /* |
| * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and |
| * HVC cases; need to check if it's SVC instruction based on |
| * packet address. |
| */ |
| if (magic == __perf_cs_etmv4_magic) { |
| if (packet->exception_number == CS_ETMV4_EXC_CALL && |
| cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, |
| prev_packet->end_addr)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, |
| u64 magic) |
| { |
| struct cs_etm_packet *packet = tidq->packet; |
| |
| if (magic == __perf_cs_etmv3_magic) |
| if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || |
| packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || |
| packet->exception_number == CS_ETMV3_EXC_PE_RESET || |
| packet->exception_number == CS_ETMV3_EXC_IRQ || |
| packet->exception_number == CS_ETMV3_EXC_FIQ) |
| return true; |
| |
| if (magic == __perf_cs_etmv4_magic) |
| if (packet->exception_number == CS_ETMV4_EXC_RESET || |
| packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || |
| packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || |
| packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || |
| packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || |
| packet->exception_number == CS_ETMV4_EXC_IRQ || |
| packet->exception_number == CS_ETMV4_EXC_FIQ) |
| return true; |
| |
| return false; |
| } |
| |
| static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq, |
| u64 magic) |
| { |
| u8 trace_chan_id = tidq->trace_chan_id; |
| struct cs_etm_packet *packet = tidq->packet; |
| struct cs_etm_packet *prev_packet = tidq->prev_packet; |
| |
| if (magic == __perf_cs_etmv3_magic) |
| if (packet->exception_number == CS_ETMV3_EXC_SMC || |
| packet->exception_number == CS_ETMV3_EXC_HYP || |
| packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || |
| packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || |
| packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || |
| packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || |
| packet->exception_number == CS_ETMV3_EXC_GENERIC) |
| return true; |
| |
| if (magic == __perf_cs_etmv4_magic) { |
| if (packet->exception_number == CS_ETMV4_EXC_TRAP || |
| packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || |
| packet->exception_number == CS_ETMV4_EXC_INST_FAULT || |
| packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) |
| return true; |
| |
| /* |
| * For CS_ETMV4_EXC_CALL, except SVC other instructions |
| * (SMC, HVC) are taken as sync exceptions. |
| */ |
| if (packet->exception_number == CS_ETMV4_EXC_CALL && |
| !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, |
| prev_packet->end_addr)) |
| return true; |
| |
| /* |
| * ETMv4 has 5 bits for exception number; if the numbers |
| * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] |
| * they are implementation defined exceptions. |
| * |
| * For this case, simply take it as sync exception. |
| */ |
| if (packet->exception_number > CS_ETMV4_EXC_FIQ && |
| packet->exception_number <= CS_ETMV4_EXC_END) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| struct cs_etm_packet *packet = tidq->packet; |
| struct cs_etm_packet *prev_packet = tidq->prev_packet; |
| u8 trace_chan_id = tidq->trace_chan_id; |
| u64 magic; |
| int ret; |
| |
| switch (packet->sample_type) { |
| case CS_ETM_RANGE: |
| /* |
| * Immediate branch instruction without neither link nor |
| * return flag, it's normal branch instruction within |
| * the function. |
| */ |
| if (packet->last_instr_type == OCSD_INSTR_BR && |
| packet->last_instr_subtype == OCSD_S_INSTR_NONE) { |
| packet->flags = PERF_IP_FLAG_BRANCH; |
| |
| if (packet->last_instr_cond) |
| packet->flags |= PERF_IP_FLAG_CONDITIONAL; |
| } |
| |
| /* |
| * Immediate branch instruction with link (e.g. BL), this is |
| * branch instruction for function call. |
| */ |
| if (packet->last_instr_type == OCSD_INSTR_BR && |
| packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) |
| packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_CALL; |
| |
| /* |
| * Indirect branch instruction with link (e.g. BLR), this is |
| * branch instruction for function call. |
| */ |
| if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && |
| packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) |
| packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_CALL; |
| |
| /* |
| * Indirect branch instruction with subtype of |
| * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for |
| * function return for A32/T32. |
| */ |
| if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && |
| packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) |
| packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_RETURN; |
| |
| /* |
| * Indirect branch instruction without link (e.g. BR), usually |
| * this is used for function return, especially for functions |
| * within dynamic link lib. |
| */ |
| if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && |
| packet->last_instr_subtype == OCSD_S_INSTR_NONE) |
| packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_RETURN; |
| |
| /* Return instruction for function return. */ |
| if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && |
| packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) |
| packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_RETURN; |
| |
| /* |
| * Decoder might insert a discontinuity in the middle of |
| * instruction packets, fixup prev_packet with flag |
| * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. |
| */ |
| if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) |
| prev_packet->flags |= PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_TRACE_BEGIN; |
| |
| /* |
| * If the previous packet is an exception return packet |
| * and the return address just follows SVC instruction, |
| * it needs to calibrate the previous packet sample flags |
| * as PERF_IP_FLAG_SYSCALLRET. |
| */ |
| if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_RETURN | |
| PERF_IP_FLAG_INTERRUPT) && |
| cs_etm__is_svc_instr(etmq, trace_chan_id, |
| packet, packet->start_addr)) |
| prev_packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_RETURN | |
| PERF_IP_FLAG_SYSCALLRET; |
| break; |
| case CS_ETM_DISCONTINUITY: |
| /* |
| * The trace is discontinuous, if the previous packet is |
| * instruction packet, set flag PERF_IP_FLAG_TRACE_END |
| * for previous packet. |
| */ |
| if (prev_packet->sample_type == CS_ETM_RANGE) |
| prev_packet->flags |= PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_TRACE_END; |
| break; |
| case CS_ETM_EXCEPTION: |
| ret = cs_etm__get_magic(packet->trace_chan_id, &magic); |
| if (ret) |
| return ret; |
| |
| /* The exception is for system call. */ |
| if (cs_etm__is_syscall(etmq, tidq, magic)) |
| packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_CALL | |
| PERF_IP_FLAG_SYSCALLRET; |
| /* |
| * The exceptions are triggered by external signals from bus, |
| * interrupt controller, debug module, PE reset or halt. |
| */ |
| else if (cs_etm__is_async_exception(tidq, magic)) |
| packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_CALL | |
| PERF_IP_FLAG_ASYNC | |
| PERF_IP_FLAG_INTERRUPT; |
| /* |
| * Otherwise, exception is caused by trap, instruction & |
| * data fault, or alignment errors. |
| */ |
| else if (cs_etm__is_sync_exception(etmq, tidq, magic)) |
| packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_CALL | |
| PERF_IP_FLAG_INTERRUPT; |
| |
| /* |
| * When the exception packet is inserted, since exception |
| * packet is not used standalone for generating samples |
| * and it's affiliation to the previous instruction range |
| * packet; so set previous range packet flags to tell perf |
| * it is an exception taken branch. |
| */ |
| if (prev_packet->sample_type == CS_ETM_RANGE) |
| prev_packet->flags = packet->flags; |
| break; |
| case CS_ETM_EXCEPTION_RET: |
| /* |
| * When the exception return packet is inserted, since |
| * exception return packet is not used standalone for |
| * generating samples and it's affiliation to the previous |
| * instruction range packet; so set previous range packet |
| * flags to tell perf it is an exception return branch. |
| * |
| * The exception return can be for either system call or |
| * other exception types; unfortunately the packet doesn't |
| * contain exception type related info so we cannot decide |
| * the exception type purely based on exception return packet. |
| * If we record the exception number from exception packet and |
| * reuse it for exception return packet, this is not reliable |
| * due the trace can be discontinuity or the interrupt can |
| * be nested, thus the recorded exception number cannot be |
| * used for exception return packet for these two cases. |
| * |
| * For exception return packet, we only need to distinguish the |
| * packet is for system call or for other types. Thus the |
| * decision can be deferred when receive the next packet which |
| * contains the return address, based on the return address we |
| * can read out the previous instruction and check if it's a |
| * system call instruction and then calibrate the sample flag |
| * as needed. |
| */ |
| if (prev_packet->sample_type == CS_ETM_RANGE) |
| prev_packet->flags = PERF_IP_FLAG_BRANCH | |
| PERF_IP_FLAG_RETURN | |
| PERF_IP_FLAG_INTERRUPT; |
| break; |
| case CS_ETM_EMPTY: |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) |
| { |
| int ret = 0; |
| size_t processed = 0; |
| |
| /* |
| * Packets are decoded and added to the decoder's packet queue |
| * until the decoder packet processing callback has requested that |
| * processing stops or there is nothing left in the buffer. Normal |
| * operations that stop processing are a timestamp packet or a full |
| * decoder buffer queue. |
| */ |
| ret = cs_etm_decoder__process_data_block(etmq->decoder, |
| etmq->offset, |
| &etmq->buf[etmq->buf_used], |
| etmq->buf_len, |
| &processed); |
| if (ret) |
| goto out; |
| |
| etmq->offset += processed; |
| etmq->buf_used += processed; |
| etmq->buf_len -= processed; |
| |
| out: |
| return ret; |
| } |
| |
| static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, |
| struct cs_etm_traceid_queue *tidq) |
| { |
| int ret; |
| struct cs_etm_packet_queue *packet_queue; |
| |
| packet_queue = &tidq->packet_queue; |
| |
| /* Process each packet in this chunk */ |
| while (1) { |
| ret = cs_etm_decoder__get_packet(packet_queue, |
| tidq->packet); |
| if (ret <= 0) |
| /* |
| * Stop processing this chunk on |
| * end of data or error |
| */ |
| break; |
| |
| /* |
| * Since packet addresses are swapped in packet |
| * handling within below switch() statements, |
| * thus setting sample flags must be called |
| * prior to switch() statement to use address |
| * information before packets swapping. |
| */ |
| ret = cs_etm__set_sample_flags(etmq, tidq); |
| if (ret < 0) |
| break; |
| |
| switch (tidq->packet->sample_type) { |
| case CS_ETM_RANGE: |
| /* |
| * If the packet contains an instruction |
| * range, generate instruction sequence |
| * events. |
| */ |
| cs_etm__sample(etmq, tidq); |
| break; |
| case CS_ETM_EXCEPTION: |
| case CS_ETM_EXCEPTION_RET: |
| /* |
| * If the exception packet is coming, |
| * make sure the previous instruction |
| * range packet to be handled properly. |
| */ |
| cs_etm__exception(tidq); |
| break; |
| case CS_ETM_DISCONTINUITY: |
| /* |
| * Discontinuity in trace, flush |
| * previous branch stack |
| */ |
| cs_etm__flush(etmq, tidq); |
| break; |
| case CS_ETM_EMPTY: |
| /* |
| * Should not receive empty packet, |
| * report error. |
| */ |
| pr_err("CS ETM Trace: empty packet\n"); |
| return -EINVAL; |
| default: |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) |
| { |
| int idx; |
| struct int_node *inode; |
| struct cs_etm_traceid_queue *tidq; |
| struct intlist *traceid_queues_list = etmq->traceid_queues_list; |
| |
| intlist__for_each_entry(inode, traceid_queues_list) { |
| idx = (int)(intptr_t)inode->priv; |
| tidq = etmq->traceid_queues[idx]; |
| |
| /* Ignore return value */ |
| cs_etm__process_traceid_queue(etmq, tidq); |
| |
| /* |
| * Generate an instruction sample with the remaining |
| * branchstack entries. |
| */ |
| cs_etm__flush(etmq, tidq); |
| } |
| } |
| |
| static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq) |
| { |
| int err = 0; |
| struct cs_etm_traceid_queue *tidq; |
| |
| tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); |
| if (!tidq) |
| return -EINVAL; |
| |
| /* Go through each buffer in the queue and decode them one by one */ |
| while (1) { |
| err = cs_etm__get_data_block(etmq); |
| if (err <= 0) |
| return err; |
| |
| /* Run trace decoder until buffer consumed or end of trace */ |
| do { |
| err = cs_etm__decode_data_block(etmq); |
| if (err) |
| return err; |
| |
| /* |
| * Process each packet in this chunk, nothing to do if |
| * an error occurs other than hoping the next one will |
| * be better. |
| */ |
| err = cs_etm__process_traceid_queue(etmq, tidq); |
| |
| } while (etmq->buf_len); |
| |
| if (err == 0) |
| /* Flush any remaining branch stack entries */ |
| err = cs_etm__end_block(etmq, tidq); |
| } |
| |
| return err; |
| } |
| |
| static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq) |
| { |
| int idx, err = 0; |
| struct cs_etm_traceid_queue *tidq; |
| struct int_node *inode; |
| |
| /* Go through each buffer in the queue and decode them one by one */ |
| while (1) { |
| err = cs_etm__get_data_block(etmq); |
| if (err <= 0) |
| return err; |
| |
| /* Run trace decoder until buffer consumed or end of trace */ |
| do { |
| err = cs_etm__decode_data_block(etmq); |
| if (err) |
| return err; |
| |
| /* |
| * cs_etm__run_per_thread_timeless_decoder() runs on a |
| * single traceID queue because each TID has a separate |
| * buffer. But here in per-cpu mode we need to iterate |
| * over each channel instead. |
| */ |
| intlist__for_each_entry(inode, |
| etmq->traceid_queues_list) { |
| idx = (int)(intptr_t)inode->priv; |
| tidq = etmq->traceid_queues[idx]; |
| cs_etm__process_traceid_queue(etmq, tidq); |
| } |
| } while (etmq->buf_len); |
| |
| intlist__for_each_entry(inode, etmq->traceid_queues_list) { |
| idx = (int)(intptr_t)inode->priv; |
| tidq = etmq->traceid_queues[idx]; |
| /* Flush any remaining branch stack entries */ |
| err = cs_etm__end_block(etmq, tidq); |
| if (err) |
| return err; |
| } |
| } |
| |
| return err; |
| } |
| |
| static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, |
| pid_t tid) |
| { |
| unsigned int i; |
| struct auxtrace_queues *queues = &etm->queues; |
| |
| for (i = 0; i < queues->nr_queues; i++) { |
| struct auxtrace_queue *queue = &etm->queues.queue_array[i]; |
| struct cs_etm_queue *etmq = queue->priv; |
| struct cs_etm_traceid_queue *tidq; |
| |
| if (!etmq) |
| continue; |
| |
| if (etm->per_thread_decoding) { |
| tidq = cs_etm__etmq_get_traceid_queue( |
| etmq, CS_ETM_PER_THREAD_TRACEID); |
| |
| if (!tidq) |
| continue; |
| |
| if (tid == -1 || thread__tid(tidq->thread) == tid) |
| cs_etm__run_per_thread_timeless_decoder(etmq); |
| } else |
| cs_etm__run_per_cpu_timeless_decoder(etmq); |
| } |
| |
| return 0; |
| } |
| |
| static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm) |
| { |
| int ret = 0; |
| unsigned int cs_queue_nr, queue_nr, i; |
| u8 trace_chan_id; |
| u64 cs_timestamp; |
| struct auxtrace_queue *queue; |
| struct cs_etm_queue *etmq; |
| struct cs_etm_traceid_queue *tidq; |
| |
| /* |
| * Pre-populate the heap with one entry from each queue so that we can |
| * start processing in time order across all queues. |
| */ |
| for (i = 0; i < etm->queues.nr_queues; i++) { |
| etmq = etm->queues.queue_array[i].priv; |
| if (!etmq) |
| continue; |
| |
| ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); |
| if (ret) |
| return ret; |
| } |
| |
| while (1) { |
| if (!etm->heap.heap_cnt) |
| goto out; |
| |
| /* Take the entry at the top of the min heap */ |
| cs_queue_nr = etm->heap.heap_array[0].queue_nr; |
| queue_nr = TO_QUEUE_NR(cs_queue_nr); |
| trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); |
| queue = &etm->queues.queue_array[queue_nr]; |
| etmq = queue->priv; |
| |
| /* |
| * Remove the top entry from the heap since we are about |
| * to process it. |
| */ |
| auxtrace_heap__pop(&etm->heap); |
| |
| tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); |
| if (!tidq) { |
| /* |
| * No traceID queue has been allocated for this traceID, |
| * which means something somewhere went very wrong. No |
| * other choice than simply exit. |
| */ |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Packets associated with this timestamp are already in |
| * the etmq's traceID queue, so process them. |
| */ |
| ret = cs_etm__process_traceid_queue(etmq, tidq); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * Packets for this timestamp have been processed, time to |
| * move on to the next timestamp, fetching a new auxtrace_buffer |
| * if need be. |
| */ |
| refetch: |
| ret = cs_etm__get_data_block(etmq); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * No more auxtrace_buffers to process in this etmq, simply |
| * move on to another entry in the auxtrace_heap. |
| */ |
| if (!ret) |
| continue; |
| |
| ret = cs_etm__decode_data_block(etmq); |
| if (ret) |
| goto out; |
| |
| cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); |
| |
| if (!cs_timestamp) { |
| /* |
| * Function cs_etm__decode_data_block() returns when |
| * there is no more traces to decode in the current |
| * auxtrace_buffer OR when a timestamp has been |
| * encountered on any of the traceID queues. Since we |
| * did not get a timestamp, there is no more traces to |
| * process in this auxtrace_buffer. As such empty and |
| * flush all traceID queues. |
| */ |
| cs_etm__clear_all_traceid_queues(etmq); |
| |
| /* Fetch another auxtrace_buffer for this etmq */ |
| goto refetch; |
| } |
| |
| /* |
| * Add to the min heap the timestamp for packets that have |
| * just been decoded. They will be processed and synthesized |
| * during the next call to cs_etm__process_traceid_queue() for |
| * this queue/traceID. |
| */ |
| cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); |
| ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, |
| union perf_event *event) |
| { |
| struct thread *th; |
| |
| if (etm->timeless_decoding) |
| return 0; |
| |
| /* |
| * Add the tid/pid to the log so that we can get a match when we get a |
| * contextID from the decoder. Only track for the host: only kernel |
| * trace is supported for guests which wouldn't need pids so this should |
| * be fine. |
| */ |
| th = machine__findnew_thread(&etm->session->machines.host, |
| event->itrace_start.pid, |
| event->itrace_start.tid); |
| if (!th) |
| return -ENOMEM; |
| |
| thread__put(th); |
| |
| return 0; |
| } |
| |
| static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, |
| union perf_event *event) |
| { |
| struct thread *th; |
| bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; |
| |
| /* |
| * Context switch in per-thread mode are irrelevant since perf |
| * will start/stop tracing as the process is scheduled. |
| */ |
| if (etm->timeless_decoding) |
| return 0; |
| |
| /* |
| * SWITCH_IN events carry the next process to be switched out while |
| * SWITCH_OUT events carry the process to be switched in. As such |
| * we don't care about IN events. |
| */ |
| if (!out) |
| return 0; |
| |
| /* |
| * Add the tid/pid to the log so that we can get a match when we get a |
| * contextID from the decoder. Only track for the host: only kernel |
| * trace is supported for guests which wouldn't need pids so this should |
| * be fine. |
| */ |
| th = machine__findnew_thread(&etm->session->machines.host, |
| event->context_switch.next_prev_pid, |
| event->context_switch.next_prev_tid); |
| if (!th) |
| return -ENOMEM; |
| |
| thread__put(th); |
| |
| return 0; |
| } |
| |
| static int cs_etm__process_event(struct perf_session *session, |
| union perf_event *event, |
| struct perf_sample *sample, |
| struct perf_tool *tool) |
| { |
| struct cs_etm_auxtrace *etm = container_of(session->auxtrace, |
| struct cs_etm_auxtrace, |
| auxtrace); |
| |
| if (dump_trace) |
| return 0; |
| |
| if (!tool->ordered_events) { |
| pr_err("CoreSight ETM Trace requires ordered events\n"); |
| return -EINVAL; |
| } |
| |
| switch (event->header.type) { |
| case PERF_RECORD_EXIT: |
| /* |
| * Don't need to wait for cs_etm__flush_events() in per-thread mode to |
| * start the decode because we know there will be no more trace from |
| * this thread. All this does is emit samples earlier than waiting for |
| * the flush in other modes, but with timestamps it makes sense to wait |
| * for flush so that events from different threads are interleaved |
| * properly. |
| */ |
| if (etm->per_thread_decoding && etm->timeless_decoding) |
| return cs_etm__process_timeless_queues(etm, |
| event->fork.tid); |
| break; |
| |
| case PERF_RECORD_ITRACE_START: |
| return cs_etm__process_itrace_start(etm, event); |
| |
| case PERF_RECORD_SWITCH_CPU_WIDE: |
| return cs_etm__process_switch_cpu_wide(etm, event); |
| |
| case PERF_RECORD_AUX: |
| /* |
| * Record the latest kernel timestamp available in the header |
| * for samples so that synthesised samples occur from this point |
| * onwards. |
| */ |
| if (sample->time && (sample->time != (u64)-1)) |
| etm->latest_kernel_timestamp = sample->time; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static void dump_queued_data(struct cs_etm_auxtrace *etm, |
| struct perf_record_auxtrace *event) |
| { |
| struct auxtrace_buffer *buf; |
| unsigned int i; |
| /* |
| * Find all buffers with same reference in the queues and dump them. |
| * This is because the queues can contain multiple entries of the same |
| * buffer that were split on aux records. |
| */ |
| for (i = 0; i < etm->queues.nr_queues; ++i) |
| list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) |
| if (buf->reference == event->reference) |
| cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); |
| } |
| |
| static int cs_etm__process_auxtrace_event(struct perf_session *session, |
| union perf_event *event, |
| struct perf_tool *tool __maybe_unused) |
| { |
| struct cs_etm_auxtrace *etm = container_of(session->auxtrace, |
| struct cs_etm_auxtrace, |
| auxtrace); |
| if (!etm->data_queued) { |
| struct auxtrace_buffer *buffer; |
| off_t data_offset; |
| int fd = perf_data__fd(session->data); |
| bool is_pipe = perf_data__is_pipe(session->data); |
| int err; |
| int idx = event->auxtrace.idx; |
| |
| if (is_pipe) |
| data_offset = 0; |
| else { |
| data_offset = lseek(fd, 0, SEEK_CUR); |
| if (data_offset == -1) |
| return -errno; |
| } |
| |
| err = auxtrace_queues__add_event(&etm->queues, session, |
| event, data_offset, &buffer); |
| if (err) |
| return err; |
| |
| /* |
| * Knowing if the trace is formatted or not requires a lookup of |
| * the aux record so only works in non-piped mode where data is |
| * queued in cs_etm__queue_aux_records(). Always assume |
| * formatted in piped mode (true). |
| */ |
| err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], |
| idx, true, -1); |
| if (err) |
| return err; |
| |
| if (dump_trace) |
| if (auxtrace_buffer__get_data(buffer, fd)) { |
| cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); |
| auxtrace_buffer__put_data(buffer); |
| } |
| } else if (dump_trace) |
| dump_queued_data(etm, &event->auxtrace); |
| |
| return 0; |
| } |
| |
| static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm) |
| { |
| struct evsel *evsel; |
| struct evlist *evlist = etm->session->evlist; |
| |
| /* Override timeless mode with user input from --itrace=Z */ |
| if (etm->synth_opts.timeless_decoding) { |
| etm->timeless_decoding = true; |
| return 0; |
| } |
| |
| /* |
| * Find the cs_etm evsel and look at what its timestamp setting was |
| */ |
| evlist__for_each_entry(evlist, evsel) |
| if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) { |
| etm->timeless_decoding = |
| !(evsel->core.attr.config & BIT(ETM_OPT_TS)); |
| return 0; |
| } |
| |
| pr_err("CS ETM: Couldn't find ETM evsel\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Read a single cpu parameter block from the auxtrace_info priv block. |
| * |
| * For version 1 there is a per cpu nr_params entry. If we are handling |
| * version 1 file, then there may be less, the same, or more params |
| * indicated by this value than the compile time number we understand. |
| * |
| * For a version 0 info block, there are a fixed number, and we need to |
| * fill out the nr_param value in the metadata we create. |
| */ |
| static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, |
| int out_blk_size, int nr_params_v0) |
| { |
| u64 *metadata = NULL; |
| int hdr_version; |
| int nr_in_params, nr_out_params, nr_cmn_params; |
| int i, k; |
| |
| metadata = zalloc(sizeof(*metadata) * out_blk_size); |
| if (!metadata) |
| return NULL; |
| |
| /* read block current index & version */ |
| i = *buff_in_offset; |
| hdr_version = buff_in[CS_HEADER_VERSION]; |
| |
| if (!hdr_version) { |
| /* read version 0 info block into a version 1 metadata block */ |
| nr_in_params = nr_params_v0; |
| metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; |
| metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; |
| metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; |
| /* remaining block params at offset +1 from source */ |
| for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) |
| metadata[k + 1] = buff_in[i + k]; |
| /* version 0 has 2 common params */ |
| nr_cmn_params = 2; |
| } else { |
| /* read version 1 info block - input and output nr_params may differ */ |
| /* version 1 has 3 common params */ |
| nr_cmn_params = 3; |
| nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; |
| |
| /* if input has more params than output - skip excess */ |
| nr_out_params = nr_in_params + nr_cmn_params; |
| if (nr_out_params > out_blk_size) |
| nr_out_params = out_blk_size; |
| |
| for (k = CS_ETM_MAGIC; k < nr_out_params; k++) |
| metadata[k] = buff_in[i + k]; |
| |
| /* record the actual nr params we copied */ |
| metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; |
| } |
| |
| /* adjust in offset by number of in params used */ |
| i += nr_in_params + nr_cmn_params; |
| *buff_in_offset = i; |
| return metadata; |
| } |
| |
| /** |
| * Puts a fragment of an auxtrace buffer into the auxtrace queues based |
| * on the bounds of aux_event, if it matches with the buffer that's at |
| * file_offset. |
| * |
| * Normally, whole auxtrace buffers would be added to the queue. But we |
| * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder |
| * is reset across each buffer, so splitting the buffers up in advance has |
| * the same effect. |
| */ |
| static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, |
| struct perf_record_aux *aux_event, struct perf_sample *sample) |
| { |
| int err; |
| char buf[PERF_SAMPLE_MAX_SIZE]; |
| union perf_event *auxtrace_event_union; |
| struct perf_record_auxtrace *auxtrace_event; |
| union perf_event auxtrace_fragment; |
| __u64 aux_offset, aux_size; |
| __u32 idx; |
| bool formatted; |
| |
| struct cs_etm_auxtrace *etm = container_of(session->auxtrace, |
| struct cs_etm_auxtrace, |
| auxtrace); |
| |
| /* |
| * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got |
| * from looping through the auxtrace index. |
| */ |
| err = perf_session__peek_event(session, file_offset, buf, |
| PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); |
| if (err) |
| return err; |
| auxtrace_event = &auxtrace_event_union->auxtrace; |
| if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) |
| return -EINVAL; |
| |
| if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || |
| auxtrace_event->header.size != sz) { |
| return -EINVAL; |
| } |
| |
| /* |
| * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See |
| * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a |
| * CPU as we set this always for the AUX_OUTPUT_HW_ID event. |
| * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1. |
| * Return 'not found' if mismatch. |
| */ |
| if (auxtrace_event->cpu == (__u32) -1) { |
| etm->per_thread_decoding = true; |
| if (auxtrace_event->tid != sample->tid) |
| return 1; |
| } else if (auxtrace_event->cpu != sample->cpu) { |
| if (etm->per_thread_decoding) { |
| /* |
| * Found a per-cpu buffer after a per-thread one was |
| * already found |
| */ |
| pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n"); |
| return -EINVAL; |
| } |
| return 1; |
| } |
| |
| if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { |
| /* |
| * Clamp size in snapshot mode. The buffer size is clamped in |
| * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect |
| * the buffer size. |
| */ |
| aux_size = min(aux_event->aux_size, auxtrace_event->size); |
| |
| /* |
| * In this mode, the head also points to the end of the buffer so aux_offset |
| * needs to have the size subtracted so it points to the beginning as in normal mode |
| */ |
| aux_offset = aux_event->aux_offset - aux_size; |
| } else { |
| aux_size = aux_event->aux_size; |
| aux_offset = aux_event->aux_offset; |
| } |
| |
| if (aux_offset >= auxtrace_event->offset && |
| aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { |
| /* |
| * If this AUX event was inside this buffer somewhere, create a new auxtrace event |
| * based on the sizes of the aux event, and queue that fragment. |
| */ |
| auxtrace_fragment.auxtrace = *auxtrace_event; |
| auxtrace_fragment.auxtrace.size = aux_size; |
| auxtrace_fragment.auxtrace.offset = aux_offset; |
| file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; |
| |
| pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 |
| " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); |
| err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, |
| file_offset, NULL); |
| if (err) |
| return err; |
| |
| idx = auxtrace_event->idx; |
| formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); |
| return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], |
| idx, formatted, sample->cpu); |
| } |
| |
| /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ |
| return 1; |
| } |
| |
| static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event, |
| u64 offset __maybe_unused, void *data __maybe_unused) |
| { |
| /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */ |
| if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) { |
| (*(int *)data)++; /* increment found count */ |
| return cs_etm__process_aux_output_hw_id(session, event); |
| } |
| return 0; |
| } |
| |
| static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, |
| u64 offset __maybe_unused, void *data __maybe_unused) |
| { |
| struct perf_sample sample; |
| int ret; |
| struct auxtrace_index_entry *ent; |
| struct auxtrace_index *auxtrace_index; |
| struct evsel *evsel; |
| size_t i; |
| |
| /* Don't care about any other events, we're only queuing buffers for AUX events */ |
| if (event->header.type != PERF_RECORD_AUX) |
| return 0; |
| |
| if (event->header.size < sizeof(struct perf_record_aux)) |
| return -EINVAL; |
| |
| /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ |
| if (!event->aux.aux_size) |
| return 0; |
| |
| /* |
| * Parse the sample, we need the sample_id_all data that comes after the event so that the |
| * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. |
| */ |
| evsel = evlist__event2evsel(session->evlist, event); |
| if (!evsel) |
| return -EINVAL; |
| ret = evsel__parse_sample(evsel, event, &sample); |
| if (ret) |
| return ret; |
| |
| /* |
| * Loop through the auxtrace index to find the buffer that matches up with this aux event. |
| */ |
| list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { |
| for (i = 0; i < auxtrace_index->nr; i++) { |
| ent = &auxtrace_index->entries[i]; |
| ret = cs_etm__queue_aux_fragment(session, ent->file_offset, |
| ent->sz, &event->aux, &sample); |
| /* |
| * Stop search on error or successful values. Continue search on |
| * 1 ('not found') |
| */ |
| if (ret != 1) |
| return ret; |
| } |
| } |
| |
| /* |
| * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but |
| * don't exit with an error because it will still be possible to decode other aux records. |
| */ |
| pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 |
| " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); |
| return 0; |
| } |
| |
| static int cs_etm__queue_aux_records(struct perf_session *session) |
| { |
| struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, |
| struct auxtrace_index, list); |
| if (index && index->nr > 0) |
| return perf_session__peek_events(session, session->header.data_offset, |
| session->header.data_size, |
| cs_etm__queue_aux_records_cb, NULL); |
| |
| /* |
| * We would get here if there are no entries in the index (either no auxtrace |
| * buffers or no index at all). Fail silently as there is the possibility of |
| * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still |
| * false. |
| * |
| * In that scenario, buffers will not be split by AUX records. |
| */ |
| return 0; |
| } |
| |
| #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \ |
| (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1)) |
| |
| /* |
| * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual |
| * timestamps). |
| */ |
| static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu) |
| { |
| int j; |
| |
| for (j = 0; j < num_cpu; j++) { |
| switch (metadata[j][CS_ETM_MAGIC]) { |
| case __perf_cs_etmv4_magic: |
| if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1) |
| return false; |
| break; |
| case __perf_cs_ete_magic: |
| if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1) |
| return false; |
| break; |
| default: |
| /* Unknown / unsupported magic number. */ |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* map trace ids to correct metadata block, from information in metadata */ |
| static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata) |
| { |
| u64 cs_etm_magic; |
| u8 trace_chan_id; |
| int i, err; |
| |
| for (i = 0; i < num_cpu; i++) { |
| cs_etm_magic = metadata[i][CS_ETM_MAGIC]; |
| switch (cs_etm_magic) { |
| case __perf_cs_etmv3_magic: |
| metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; |
| trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]); |
| break; |
| case __perf_cs_etmv4_magic: |
| case __perf_cs_ete_magic: |
| metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; |
| trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]); |
| break; |
| default: |
| /* unknown magic number */ |
| return -EINVAL; |
| } |
| err = cs_etm__map_trace_id(trace_chan_id, metadata[i]); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| /* |
| * If we found AUX_HW_ID packets, then set any metadata marked as unused to the |
| * unused value to reduce the number of unneeded decoders created. |
| */ |
| static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata) |
| { |
| u64 cs_etm_magic; |
| int i; |
| |
| for (i = 0; i < num_cpu; i++) { |
| cs_etm_magic = metadata[i][CS_ETM_MAGIC]; |
| switch (cs_etm_magic) { |
| case __perf_cs_etmv3_magic: |
| if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) |
| metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; |
| break; |
| case __perf_cs_etmv4_magic: |
| case __perf_cs_ete_magic: |
| if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) |
| metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; |
| break; |
| default: |
| /* unknown magic number */ |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| int cs_etm__process_auxtrace_info_full(union perf_event *event, |
| struct perf_session *session) |
| { |
| struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; |
| struct cs_etm_auxtrace *etm = NULL; |
| struct perf_record_time_conv *tc = &session->time_conv; |
| int event_header_size = sizeof(struct perf_event_header); |
| int total_size = auxtrace_info->header.size; |
| int priv_size = 0; |
| int num_cpu; |
| int err = 0; |
| int aux_hw_id_found; |
| int i, j; |
| u64 *ptr = NULL; |
| u64 **metadata = NULL; |
| |
| /* |
| * Create an RB tree for traceID-metadata tuple. Since the conversion |
| * has to be made for each packet that gets decoded, optimizing access |
| * in anything other than a sequential array is worth doing. |
| */ |
| traceid_list = intlist__new(NULL); |
| if (!traceid_list) |
| return -ENOMEM; |
| |
| /* First the global part */ |
| ptr = (u64 *) auxtrace_info->priv; |
| num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff; |
| metadata = zalloc(sizeof(*metadata) * num_cpu); |
| if (!metadata) { |
| err = -ENOMEM; |
| goto err_free_traceid_list; |
| } |
| |
| /* Start parsing after the common part of the header */ |
| i = CS_HEADER_VERSION_MAX; |
| |
| /* |
| * The metadata is stored in the auxtrace_info section and encodes |
| * the configuration of the ARM embedded trace macrocell which is |
| * required by the trace decoder to properly decode the trace due |
| * to its highly compressed nature. |
| */ |
| for (j = 0; j < num_cpu; j++) { |
| if (ptr[i] == __perf_cs_etmv3_magic) { |
| metadata[j] = |
| cs_etm__create_meta_blk(ptr, &i, |
| CS_ETM_PRIV_MAX, |
| CS_ETM_NR_TRC_PARAMS_V0); |
| } else if (ptr[i] == __perf_cs_etmv4_magic) { |
| metadata[j] = |
| cs_etm__create_meta_blk(ptr, &i, |
| CS_ETMV4_PRIV_MAX, |
| CS_ETMV4_NR_TRC_PARAMS_V0); |
| } else if (ptr[i] == __perf_cs_ete_magic) { |
| metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); |
| } else { |
| ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", |
| ptr[i]); |
| err = -EINVAL; |
| goto err_free_metadata; |
| } |
| |
| if (!metadata[j]) { |
| err = -ENOMEM; |
| goto err_free_metadata; |
| } |
| } |
| |
| /* |
| * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and |
| * CS_ETMV4_PRIV_MAX mark how many double words are in the |
| * global metadata, and each cpu's metadata respectively. |
| * The following tests if the correct number of double words was |
| * present in the auxtrace info section. |
| */ |
| priv_size = total_size - event_header_size - INFO_HEADER_SIZE; |
| if (i * 8 != priv_size) { |
| err = -EINVAL; |
| goto err_free_metadata; |
| } |
| |
| etm = zalloc(sizeof(*etm)); |
| |
| if (!etm) { |
| err = -ENOMEM; |
| goto err_free_metadata; |
| } |
| |
| /* |
| * As all the ETMs run at the same exception level, the system should |
| * have the same PID format crossing CPUs. So cache the PID format |
| * and reuse it for sequential decoding. |
| */ |
| etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]); |
| |
| err = auxtrace_queues__init(&etm->queues); |
| if (err) |
| goto err_free_etm; |
| |
| if (session->itrace_synth_opts->set) { |
| etm->synth_opts = *session->itrace_synth_opts; |
| } else { |
| itrace_synth_opts__set_default(&etm->synth_opts, |
| session->itrace_synth_opts->default_no_sample); |
| etm->synth_opts.callchain = false; |
| } |
| |
| etm->session = session; |
| |
| etm->num_cpu = num_cpu; |
| etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); |
| etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0); |
| etm->metadata = metadata; |
| etm->auxtrace_type = auxtrace_info->type; |
| |
| /* Use virtual timestamps if all ETMs report ts_source = 1 */ |
| etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu); |
| |
| if (!etm->has_virtual_ts) |
| ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n" |
| "The time field of the samples will not be set accurately.\n\n"); |
| |
| etm->auxtrace.process_event = cs_etm__process_event; |
| etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; |
| etm->auxtrace.flush_events = cs_etm__flush_events; |
| etm->auxtrace.free_events = cs_etm__free_events; |
| etm->auxtrace.free = cs_etm__free; |
| etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; |
| session->auxtrace = &etm->auxtrace; |
| |
| err = cs_etm__setup_timeless_decoding(etm); |
| if (err) |
| return err; |
| |
| etm->tc.time_shift = tc->time_shift; |
| etm->tc.time_mult = tc->time_mult; |
| etm->tc.time_zero = tc->time_zero; |
| if (event_contains(*tc, time_cycles)) { |
| etm->tc.time_cycles = tc->time_cycles; |
| etm->tc.time_mask = tc->time_mask; |
| etm->tc.cap_user_time_zero = tc->cap_user_time_zero; |
| etm->tc.cap_user_time_short = tc->cap_user_time_short; |
| } |
| err = cs_etm__synth_events(etm, session); |
| if (err) |
| goto err_free_queues; |
| |
| /* |
| * Map Trace ID values to CPU metadata. |
| * |
| * Trace metadata will always contain Trace ID values from the legacy algorithm. If the |
| * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata |
| * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set. |
| * |
| * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use |
| * the same IDs as the old algorithm as far as is possible, unless there are clashes |
| * in which case a different value will be used. This means an older perf may still |
| * be able to record and read files generate on a newer system. |
| * |
| * For a perf able to interpret AUX_HW_ID packets we first check for the presence of |
| * those packets. If they are there then the values will be mapped and plugged into |
| * the metadata. We then set any remaining metadata values with the used flag to a |
| * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required. |
| * |
| * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel |
| * then we map Trace ID values to CPU directly from the metadata - clearing any unused |
| * flags if present. |
| */ |
| |
| /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */ |
| aux_hw_id_found = 0; |
| err = perf_session__peek_events(session, session->header.data_offset, |
| session->header.data_size, |
| cs_etm__process_aux_hw_id_cb, &aux_hw_id_found); |
| if (err) |
| goto err_free_queues; |
| |
| /* if HW ID found then clear any unused metadata ID values */ |
| if (aux_hw_id_found) |
| err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata); |
| /* otherwise, this is a file with metadata values only, map from metadata */ |
| else |
| err = cs_etm__map_trace_ids_metadata(num_cpu, metadata); |
| |
| if (err) |
| goto err_free_queues; |
| |
| err = cs_etm__queue_aux_records(session); |
| if (err) |
| goto err_free_queues; |
| |
| etm->data_queued = etm->queues.populated; |
| return 0; |
| |
| err_free_queues: |
| auxtrace_queues__free(&etm->queues); |
| session->auxtrace = NULL; |
| err_free_etm: |
| zfree(&etm); |
| err_free_metadata: |
| /* No need to check @metadata[j], free(NULL) is supported */ |
| for (j = 0; j < num_cpu; j++) |
| zfree(&metadata[j]); |
| zfree(&metadata); |
| err_free_traceid_list: |
| intlist__delete(traceid_list); |
| return err; |
| } |