| // SPDX-License-Identifier: GPL-2.0-only OR MIT |
| /* Copyright (c) 2023 Imagination Technologies Ltd. */ |
| |
| #include <drm/drm_managed.h> |
| #include <drm/gpu_scheduler.h> |
| |
| #include "pvr_cccb.h" |
| #include "pvr_context.h" |
| #include "pvr_device.h" |
| #include "pvr_drv.h" |
| #include "pvr_job.h" |
| #include "pvr_queue.h" |
| #include "pvr_vm.h" |
| |
| #include "pvr_rogue_fwif_client.h" |
| |
| #define MAX_DEADLINE_MS 30000 |
| |
| #define CTX_COMPUTE_CCCB_SIZE_LOG2 15 |
| #define CTX_FRAG_CCCB_SIZE_LOG2 15 |
| #define CTX_GEOM_CCCB_SIZE_LOG2 15 |
| #define CTX_TRANSFER_CCCB_SIZE_LOG2 15 |
| |
| static int get_xfer_ctx_state_size(struct pvr_device *pvr_dev) |
| { |
| u32 num_isp_store_registers; |
| |
| if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) { |
| num_isp_store_registers = 1; |
| } else { |
| int err; |
| |
| err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers); |
| if (WARN_ON(err)) |
| return err; |
| } |
| |
| return sizeof(struct rogue_fwif_frag_ctx_state) + |
| (num_isp_store_registers * |
| sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0])); |
| } |
| |
| static int get_frag_ctx_state_size(struct pvr_device *pvr_dev) |
| { |
| u32 num_isp_store_registers; |
| int err; |
| |
| if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) { |
| err = PVR_FEATURE_VALUE(pvr_dev, num_raster_pipes, &num_isp_store_registers); |
| if (WARN_ON(err)) |
| return err; |
| |
| if (PVR_HAS_FEATURE(pvr_dev, gpu_multicore_support)) { |
| u32 xpu_max_slaves; |
| |
| err = PVR_FEATURE_VALUE(pvr_dev, xpu_max_slaves, &xpu_max_slaves); |
| if (WARN_ON(err)) |
| return err; |
| |
| num_isp_store_registers *= (1 + xpu_max_slaves); |
| } |
| } else { |
| err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers); |
| if (WARN_ON(err)) |
| return err; |
| } |
| |
| return sizeof(struct rogue_fwif_frag_ctx_state) + |
| (num_isp_store_registers * |
| sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0])); |
| } |
| |
| static int get_ctx_state_size(struct pvr_device *pvr_dev, enum drm_pvr_job_type type) |
| { |
| switch (type) { |
| case DRM_PVR_JOB_TYPE_GEOMETRY: |
| return sizeof(struct rogue_fwif_geom_ctx_state); |
| case DRM_PVR_JOB_TYPE_FRAGMENT: |
| return get_frag_ctx_state_size(pvr_dev); |
| case DRM_PVR_JOB_TYPE_COMPUTE: |
| return sizeof(struct rogue_fwif_compute_ctx_state); |
| case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: |
| return get_xfer_ctx_state_size(pvr_dev); |
| } |
| |
| WARN(1, "Invalid queue type"); |
| return -EINVAL; |
| } |
| |
| static u32 get_ctx_offset(enum drm_pvr_job_type type) |
| { |
| switch (type) { |
| case DRM_PVR_JOB_TYPE_GEOMETRY: |
| return offsetof(struct rogue_fwif_fwrendercontext, geom_context); |
| case DRM_PVR_JOB_TYPE_FRAGMENT: |
| return offsetof(struct rogue_fwif_fwrendercontext, frag_context); |
| case DRM_PVR_JOB_TYPE_COMPUTE: |
| return offsetof(struct rogue_fwif_fwcomputecontext, cdm_context); |
| case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: |
| return offsetof(struct rogue_fwif_fwtransfercontext, tq_context); |
| } |
| |
| return 0; |
| } |
| |
| static const char * |
| pvr_queue_fence_get_driver_name(struct dma_fence *f) |
| { |
| return PVR_DRIVER_NAME; |
| } |
| |
| static void pvr_queue_fence_release(struct dma_fence *f) |
| { |
| struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); |
| |
| pvr_context_put(fence->queue->ctx); |
| dma_fence_free(f); |
| } |
| |
| static const char * |
| pvr_queue_job_fence_get_timeline_name(struct dma_fence *f) |
| { |
| struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); |
| |
| switch (fence->queue->type) { |
| case DRM_PVR_JOB_TYPE_GEOMETRY: |
| return "geometry"; |
| |
| case DRM_PVR_JOB_TYPE_FRAGMENT: |
| return "fragment"; |
| |
| case DRM_PVR_JOB_TYPE_COMPUTE: |
| return "compute"; |
| |
| case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: |
| return "transfer"; |
| } |
| |
| WARN(1, "Invalid queue type"); |
| return "invalid"; |
| } |
| |
| static const char * |
| pvr_queue_cccb_fence_get_timeline_name(struct dma_fence *f) |
| { |
| struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); |
| |
| switch (fence->queue->type) { |
| case DRM_PVR_JOB_TYPE_GEOMETRY: |
| return "geometry-cccb"; |
| |
| case DRM_PVR_JOB_TYPE_FRAGMENT: |
| return "fragment-cccb"; |
| |
| case DRM_PVR_JOB_TYPE_COMPUTE: |
| return "compute-cccb"; |
| |
| case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: |
| return "transfer-cccb"; |
| } |
| |
| WARN(1, "Invalid queue type"); |
| return "invalid"; |
| } |
| |
| static const struct dma_fence_ops pvr_queue_job_fence_ops = { |
| .get_driver_name = pvr_queue_fence_get_driver_name, |
| .get_timeline_name = pvr_queue_job_fence_get_timeline_name, |
| .release = pvr_queue_fence_release, |
| }; |
| |
| /** |
| * to_pvr_queue_job_fence() - Return a pvr_queue_fence object if the fence is |
| * backed by a UFO. |
| * @f: The dma_fence to turn into a pvr_queue_fence. |
| * |
| * Return: |
| * * A non-NULL pvr_queue_fence object if the dma_fence is backed by a UFO, or |
| * * NULL otherwise. |
| */ |
| static struct pvr_queue_fence * |
| to_pvr_queue_job_fence(struct dma_fence *f) |
| { |
| struct drm_sched_fence *sched_fence = to_drm_sched_fence(f); |
| |
| if (sched_fence) |
| f = sched_fence->parent; |
| |
| if (f && f->ops == &pvr_queue_job_fence_ops) |
| return container_of(f, struct pvr_queue_fence, base); |
| |
| return NULL; |
| } |
| |
| static const struct dma_fence_ops pvr_queue_cccb_fence_ops = { |
| .get_driver_name = pvr_queue_fence_get_driver_name, |
| .get_timeline_name = pvr_queue_cccb_fence_get_timeline_name, |
| .release = pvr_queue_fence_release, |
| }; |
| |
| /** |
| * pvr_queue_fence_put() - Put wrapper for pvr_queue_fence objects. |
| * @f: The dma_fence object to put. |
| * |
| * If the pvr_queue_fence has been initialized, we call dma_fence_put(), |
| * otherwise we free the object with dma_fence_free(). This allows us |
| * to do the right thing before and after pvr_queue_fence_init() had been |
| * called. |
| */ |
| static void pvr_queue_fence_put(struct dma_fence *f) |
| { |
| if (!f) |
| return; |
| |
| if (WARN_ON(f->ops && |
| f->ops != &pvr_queue_cccb_fence_ops && |
| f->ops != &pvr_queue_job_fence_ops)) |
| return; |
| |
| /* If the fence hasn't been initialized yet, free the object directly. */ |
| if (f->ops) |
| dma_fence_put(f); |
| else |
| dma_fence_free(f); |
| } |
| |
| /** |
| * pvr_queue_fence_alloc() - Allocate a pvr_queue_fence fence object |
| * |
| * Call this function to allocate job CCCB and done fences. This only |
| * allocates the objects. Initialization happens when the underlying |
| * dma_fence object is to be returned to drm_sched (in prepare_job() or |
| * run_job()). |
| * |
| * Return: |
| * * A valid pointer if the allocation succeeds, or |
| * * NULL if the allocation fails. |
| */ |
| static struct dma_fence * |
| pvr_queue_fence_alloc(void) |
| { |
| struct pvr_queue_fence *fence; |
| |
| fence = kzalloc(sizeof(*fence), GFP_KERNEL); |
| if (!fence) |
| return NULL; |
| |
| return &fence->base; |
| } |
| |
| /** |
| * pvr_queue_fence_init() - Initializes a pvr_queue_fence object. |
| * @f: The fence to initialize |
| * @queue: The queue this fence belongs to. |
| * @fence_ops: The fence operations. |
| * @fence_ctx: The fence context. |
| * |
| * Wrapper around dma_fence_init() that takes care of initializing the |
| * pvr_queue_fence::queue field too. |
| */ |
| static void |
| pvr_queue_fence_init(struct dma_fence *f, |
| struct pvr_queue *queue, |
| const struct dma_fence_ops *fence_ops, |
| struct pvr_queue_fence_ctx *fence_ctx) |
| { |
| struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); |
| |
| pvr_context_get(queue->ctx); |
| fence->queue = queue; |
| dma_fence_init(&fence->base, fence_ops, |
| &fence_ctx->lock, fence_ctx->id, |
| atomic_inc_return(&fence_ctx->seqno)); |
| } |
| |
| /** |
| * pvr_queue_cccb_fence_init() - Initializes a CCCB fence object. |
| * @fence: The fence to initialize. |
| * @queue: The queue this fence belongs to. |
| * |
| * Initializes a fence that can be used to wait for CCCB space. |
| * |
| * Should be called in the ::prepare_job() path, so the fence returned to |
| * drm_sched is valid. |
| */ |
| static void |
| pvr_queue_cccb_fence_init(struct dma_fence *fence, struct pvr_queue *queue) |
| { |
| pvr_queue_fence_init(fence, queue, &pvr_queue_cccb_fence_ops, |
| &queue->cccb_fence_ctx.base); |
| } |
| |
| /** |
| * pvr_queue_job_fence_init() - Initializes a job done fence object. |
| * @fence: The fence to initialize. |
| * @queue: The queue this fence belongs to. |
| * |
| * Initializes a fence that will be signaled when the GPU is done executing |
| * a job. |
| * |
| * Should be called *before* the ::run_job() path, so the fence is initialised |
| * before being placed in the pending_list. |
| */ |
| static void |
| pvr_queue_job_fence_init(struct dma_fence *fence, struct pvr_queue *queue) |
| { |
| pvr_queue_fence_init(fence, queue, &pvr_queue_job_fence_ops, |
| &queue->job_fence_ctx); |
| } |
| |
| /** |
| * pvr_queue_fence_ctx_init() - Queue fence context initialization. |
| * @fence_ctx: The context to initialize |
| */ |
| static void |
| pvr_queue_fence_ctx_init(struct pvr_queue_fence_ctx *fence_ctx) |
| { |
| spin_lock_init(&fence_ctx->lock); |
| fence_ctx->id = dma_fence_context_alloc(1); |
| atomic_set(&fence_ctx->seqno, 0); |
| } |
| |
| static u32 ufo_cmds_size(u32 elem_count) |
| { |
| /* We can pass at most ROGUE_FWIF_CCB_CMD_MAX_UFOS per UFO-related command. */ |
| u32 full_cmd_count = elem_count / ROGUE_FWIF_CCB_CMD_MAX_UFOS; |
| u32 remaining_elems = elem_count % ROGUE_FWIF_CCB_CMD_MAX_UFOS; |
| u32 size = full_cmd_count * |
| pvr_cccb_get_size_of_cmd_with_hdr(ROGUE_FWIF_CCB_CMD_MAX_UFOS * |
| sizeof(struct rogue_fwif_ufo)); |
| |
| if (remaining_elems) { |
| size += pvr_cccb_get_size_of_cmd_with_hdr(remaining_elems * |
| sizeof(struct rogue_fwif_ufo)); |
| } |
| |
| return size; |
| } |
| |
| static u32 job_cmds_size(struct pvr_job *job, u32 ufo_wait_count) |
| { |
| /* One UFO cmd for the fence signaling, one UFO cmd per native fence native, |
| * and a command for the job itself. |
| */ |
| return ufo_cmds_size(1) + ufo_cmds_size(ufo_wait_count) + |
| pvr_cccb_get_size_of_cmd_with_hdr(job->cmd_len); |
| } |
| |
| /** |
| * job_count_remaining_native_deps() - Count the number of non-signaled native dependencies. |
| * @job: Job to operate on. |
| * |
| * Returns: Number of non-signaled native deps remaining. |
| */ |
| static unsigned long job_count_remaining_native_deps(struct pvr_job *job) |
| { |
| unsigned long remaining_count = 0; |
| struct dma_fence *fence = NULL; |
| unsigned long index; |
| |
| xa_for_each(&job->base.dependencies, index, fence) { |
| struct pvr_queue_fence *jfence; |
| |
| jfence = to_pvr_queue_job_fence(fence); |
| if (!jfence) |
| continue; |
| |
| if (!dma_fence_is_signaled(&jfence->base)) |
| remaining_count++; |
| } |
| |
| return remaining_count; |
| } |
| |
| /** |
| * pvr_queue_get_job_cccb_fence() - Get the CCCB fence attached to a job. |
| * @queue: The queue this job will be submitted to. |
| * @job: The job to get the CCCB fence on. |
| * |
| * The CCCB fence is a synchronization primitive allowing us to delay job |
| * submission until there's enough space in the CCCB to submit the job. |
| * |
| * Return: |
| * * NULL if there's enough space in the CCCB to submit this job, or |
| * * A valid dma_fence object otherwise. |
| */ |
| static struct dma_fence * |
| pvr_queue_get_job_cccb_fence(struct pvr_queue *queue, struct pvr_job *job) |
| { |
| struct pvr_queue_fence *cccb_fence; |
| unsigned int native_deps_remaining; |
| |
| /* If the fence is NULL, that means we already checked that we had |
| * enough space in the cccb for our job. |
| */ |
| if (!job->cccb_fence) |
| return NULL; |
| |
| mutex_lock(&queue->cccb_fence_ctx.job_lock); |
| |
| /* Count remaining native dependencies and check if the job fits in the CCCB. */ |
| native_deps_remaining = job_count_remaining_native_deps(job); |
| if (pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) { |
| pvr_queue_fence_put(job->cccb_fence); |
| job->cccb_fence = NULL; |
| goto out_unlock; |
| } |
| |
| /* There should be no job attached to the CCCB fence context: |
| * drm_sched_entity guarantees that jobs are submitted one at a time. |
| */ |
| if (WARN_ON(queue->cccb_fence_ctx.job)) |
| pvr_job_put(queue->cccb_fence_ctx.job); |
| |
| queue->cccb_fence_ctx.job = pvr_job_get(job); |
| |
| /* Initialize the fence before returning it. */ |
| cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base); |
| if (!WARN_ON(cccb_fence->queue)) |
| pvr_queue_cccb_fence_init(job->cccb_fence, queue); |
| |
| out_unlock: |
| mutex_unlock(&queue->cccb_fence_ctx.job_lock); |
| |
| return dma_fence_get(job->cccb_fence); |
| } |
| |
| /** |
| * pvr_queue_get_job_kccb_fence() - Get the KCCB fence attached to a job. |
| * @queue: The queue this job will be submitted to. |
| * @job: The job to get the KCCB fence on. |
| * |
| * The KCCB fence is a synchronization primitive allowing us to delay job |
| * submission until there's enough space in the KCCB to submit the job. |
| * |
| * Return: |
| * * NULL if there's enough space in the KCCB to submit this job, or |
| * * A valid dma_fence object otherwise. |
| */ |
| static struct dma_fence * |
| pvr_queue_get_job_kccb_fence(struct pvr_queue *queue, struct pvr_job *job) |
| { |
| struct pvr_device *pvr_dev = queue->ctx->pvr_dev; |
| struct dma_fence *kccb_fence = NULL; |
| |
| /* If the fence is NULL, that means we already checked that we had |
| * enough space in the KCCB for our job. |
| */ |
| if (!job->kccb_fence) |
| return NULL; |
| |
| if (!WARN_ON(job->kccb_fence->ops)) { |
| kccb_fence = pvr_kccb_reserve_slot(pvr_dev, job->kccb_fence); |
| job->kccb_fence = NULL; |
| } |
| |
| return kccb_fence; |
| } |
| |
| static struct dma_fence * |
| pvr_queue_get_paired_frag_job_dep(struct pvr_queue *queue, struct pvr_job *job) |
| { |
| struct pvr_job *frag_job = job->type == DRM_PVR_JOB_TYPE_GEOMETRY ? |
| job->paired_job : NULL; |
| struct dma_fence *f; |
| unsigned long index; |
| |
| if (!frag_job) |
| return NULL; |
| |
| xa_for_each(&frag_job->base.dependencies, index, f) { |
| /* Skip already signaled fences. */ |
| if (dma_fence_is_signaled(f)) |
| continue; |
| |
| /* Skip our own fence. */ |
| if (f == &job->base.s_fence->scheduled) |
| continue; |
| |
| return dma_fence_get(f); |
| } |
| |
| return frag_job->base.sched->ops->prepare_job(&frag_job->base, &queue->entity); |
| } |
| |
| /** |
| * pvr_queue_prepare_job() - Return the next internal dependencies expressed as a dma_fence. |
| * @sched_job: The job to query the next internal dependency on |
| * @s_entity: The entity this job is queue on. |
| * |
| * After iterating over drm_sched_job::dependencies, drm_sched let the driver return |
| * its own internal dependencies. We use this function to return our internal dependencies. |
| */ |
| static struct dma_fence * |
| pvr_queue_prepare_job(struct drm_sched_job *sched_job, |
| struct drm_sched_entity *s_entity) |
| { |
| struct pvr_job *job = container_of(sched_job, struct pvr_job, base); |
| struct pvr_queue *queue = container_of(s_entity, struct pvr_queue, entity); |
| struct dma_fence *internal_dep = NULL; |
| |
| /* |
| * Initialize the done_fence, so we can signal it. This must be done |
| * here because otherwise by the time of run_job() the job will end up |
| * in the pending list without a valid fence. |
| */ |
| if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) { |
| /* |
| * This will be called on a paired fragment job after being |
| * submitted to firmware. We can tell if this is the case and |
| * bail early from whether run_job() has been called on the |
| * geometry job, which would issue a pm ref. |
| */ |
| if (job->paired_job->has_pm_ref) |
| return NULL; |
| |
| /* |
| * In this case we need to use the job's own ctx to initialise |
| * the done_fence. The other steps are done in the ctx of the |
| * paired geometry job. |
| */ |
| pvr_queue_job_fence_init(job->done_fence, |
| job->ctx->queues.fragment); |
| } else { |
| pvr_queue_job_fence_init(job->done_fence, queue); |
| } |
| |
| /* CCCB fence is used to make sure we have enough space in the CCCB to |
| * submit our commands. |
| */ |
| internal_dep = pvr_queue_get_job_cccb_fence(queue, job); |
| |
| /* KCCB fence is used to make sure we have a KCCB slot to queue our |
| * CMD_KICK. |
| */ |
| if (!internal_dep) |
| internal_dep = pvr_queue_get_job_kccb_fence(queue, job); |
| |
| /* Any extra internal dependency should be added here, using the following |
| * pattern: |
| * |
| * if (!internal_dep) |
| * internal_dep = pvr_queue_get_job_xxxx_fence(queue, job); |
| */ |
| |
| /* The paired job fence should come last, when everything else is ready. */ |
| if (!internal_dep) |
| internal_dep = pvr_queue_get_paired_frag_job_dep(queue, job); |
| |
| return internal_dep; |
| } |
| |
| /** |
| * pvr_queue_update_active_state_locked() - Update the queue active state. |
| * @queue: Queue to update the state on. |
| * |
| * Locked version of pvr_queue_update_active_state(). Must be called with |
| * pvr_device::queue::lock held. |
| */ |
| static void pvr_queue_update_active_state_locked(struct pvr_queue *queue) |
| { |
| struct pvr_device *pvr_dev = queue->ctx->pvr_dev; |
| |
| lockdep_assert_held(&pvr_dev->queues.lock); |
| |
| /* The queue is temporary out of any list when it's being reset, |
| * we don't want a call to pvr_queue_update_active_state_locked() |
| * to re-insert it behind our back. |
| */ |
| if (list_empty(&queue->node)) |
| return; |
| |
| if (!atomic_read(&queue->in_flight_job_count)) |
| list_move_tail(&queue->node, &pvr_dev->queues.idle); |
| else |
| list_move_tail(&queue->node, &pvr_dev->queues.active); |
| } |
| |
| /** |
| * pvr_queue_update_active_state() - Update the queue active state. |
| * @queue: Queue to update the state on. |
| * |
| * Active state is based on the in_flight_job_count value. |
| * |
| * Updating the active state implies moving the queue in or out of the |
| * active queue list, which also defines whether the queue is checked |
| * or not when a FW event is received. |
| * |
| * This function should be called any time a job is submitted or it done |
| * fence is signaled. |
| */ |
| static void pvr_queue_update_active_state(struct pvr_queue *queue) |
| { |
| struct pvr_device *pvr_dev = queue->ctx->pvr_dev; |
| |
| mutex_lock(&pvr_dev->queues.lock); |
| pvr_queue_update_active_state_locked(queue); |
| mutex_unlock(&pvr_dev->queues.lock); |
| } |
| |
| static void pvr_queue_submit_job_to_cccb(struct pvr_job *job) |
| { |
| struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler); |
| struct rogue_fwif_ufo ufos[ROGUE_FWIF_CCB_CMD_MAX_UFOS]; |
| struct pvr_cccb *cccb = &queue->cccb; |
| struct pvr_queue_fence *jfence; |
| struct dma_fence *fence; |
| unsigned long index; |
| u32 ufo_count = 0; |
| |
| /* We need to add the queue to the active list before updating the CCCB, |
| * otherwise we might miss the FW event informing us that something |
| * happened on this queue. |
| */ |
| atomic_inc(&queue->in_flight_job_count); |
| pvr_queue_update_active_state(queue); |
| |
| xa_for_each(&job->base.dependencies, index, fence) { |
| jfence = to_pvr_queue_job_fence(fence); |
| if (!jfence) |
| continue; |
| |
| /* Skip the partial render fence, we will place it at the end. */ |
| if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job && |
| &job->paired_job->base.s_fence->scheduled == fence) |
| continue; |
| |
| if (dma_fence_is_signaled(&jfence->base)) |
| continue; |
| |
| pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj, |
| &ufos[ufo_count].addr); |
| ufos[ufo_count++].value = jfence->base.seqno; |
| |
| if (ufo_count == ARRAY_SIZE(ufos)) { |
| pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR, |
| sizeof(ufos), ufos, 0, 0); |
| ufo_count = 0; |
| } |
| } |
| |
| /* Partial render fence goes last. */ |
| if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) { |
| jfence = to_pvr_queue_job_fence(job->paired_job->done_fence); |
| if (!WARN_ON(!jfence)) { |
| pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj, |
| &ufos[ufo_count].addr); |
| ufos[ufo_count++].value = job->paired_job->done_fence->seqno; |
| } |
| } |
| |
| if (ufo_count) { |
| pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR, |
| sizeof(ufos[0]) * ufo_count, ufos, 0, 0); |
| } |
| |
| if (job->type == DRM_PVR_JOB_TYPE_GEOMETRY && job->paired_job) { |
| struct rogue_fwif_cmd_geom *cmd = job->cmd; |
| |
| /* Reference value for the partial render test is the current queue fence |
| * seqno minus one. |
| */ |
| pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, |
| &cmd->partial_render_geom_frag_fence.addr); |
| cmd->partial_render_geom_frag_fence.value = job->done_fence->seqno - 1; |
| } |
| |
| /* Submit job to FW */ |
| pvr_cccb_write_command_with_header(cccb, job->fw_ccb_cmd_type, job->cmd_len, job->cmd, |
| job->id, job->id); |
| |
| /* Signal the job fence. */ |
| pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, &ufos[0].addr); |
| ufos[0].value = job->done_fence->seqno; |
| pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_UPDATE, |
| sizeof(ufos[0]), ufos, 0, 0); |
| } |
| |
| /** |
| * pvr_queue_run_job() - Submit a job to the FW. |
| * @sched_job: The job to submit. |
| * |
| * This function is called when all non-native dependencies have been met and |
| * when the commands resulting from this job are guaranteed to fit in the CCCB. |
| */ |
| static struct dma_fence *pvr_queue_run_job(struct drm_sched_job *sched_job) |
| { |
| struct pvr_job *job = container_of(sched_job, struct pvr_job, base); |
| struct pvr_device *pvr_dev = job->pvr_dev; |
| int err; |
| |
| /* The fragment job is issued along the geometry job when we use combined |
| * geom+frag kicks. When we get there, we should simply return the |
| * done_fence that's been initialized earlier. |
| */ |
| if (job->paired_job && job->type == DRM_PVR_JOB_TYPE_FRAGMENT && |
| job->done_fence->ops) { |
| return dma_fence_get(job->done_fence); |
| } |
| |
| /* The only kind of jobs that can be paired are geometry and fragment, and |
| * we bail out early if we see a fragment job that's paired with a geomtry |
| * job. |
| * Paired jobs must also target the same context and point to the same |
| * HWRT. |
| */ |
| if (WARN_ON(job->paired_job && |
| (job->type != DRM_PVR_JOB_TYPE_GEOMETRY || |
| job->paired_job->type != DRM_PVR_JOB_TYPE_FRAGMENT || |
| job->hwrt != job->paired_job->hwrt || |
| job->ctx != job->paired_job->ctx))) |
| return ERR_PTR(-EINVAL); |
| |
| err = pvr_job_get_pm_ref(job); |
| if (WARN_ON(err)) |
| return ERR_PTR(err); |
| |
| if (job->paired_job) { |
| err = pvr_job_get_pm_ref(job->paired_job); |
| if (WARN_ON(err)) |
| return ERR_PTR(err); |
| } |
| |
| /* Submit our job to the CCCB */ |
| pvr_queue_submit_job_to_cccb(job); |
| |
| if (job->paired_job) { |
| struct pvr_job *geom_job = job; |
| struct pvr_job *frag_job = job->paired_job; |
| struct pvr_queue *geom_queue = job->ctx->queues.geometry; |
| struct pvr_queue *frag_queue = job->ctx->queues.fragment; |
| |
| /* Submit the fragment job along the geometry job and send a combined kick. */ |
| pvr_queue_submit_job_to_cccb(frag_job); |
| pvr_cccb_send_kccb_combined_kick(pvr_dev, |
| &geom_queue->cccb, &frag_queue->cccb, |
| pvr_context_get_fw_addr(geom_job->ctx) + |
| geom_queue->ctx_offset, |
| pvr_context_get_fw_addr(frag_job->ctx) + |
| frag_queue->ctx_offset, |
| job->hwrt, |
| frag_job->fw_ccb_cmd_type == |
| ROGUE_FWIF_CCB_CMD_TYPE_FRAG_PR); |
| } else { |
| struct pvr_queue *queue = container_of(job->base.sched, |
| struct pvr_queue, scheduler); |
| |
| pvr_cccb_send_kccb_kick(pvr_dev, &queue->cccb, |
| pvr_context_get_fw_addr(job->ctx) + queue->ctx_offset, |
| job->hwrt); |
| } |
| |
| return dma_fence_get(job->done_fence); |
| } |
| |
| static void pvr_queue_stop(struct pvr_queue *queue, struct pvr_job *bad_job) |
| { |
| drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); |
| } |
| |
| static void pvr_queue_start(struct pvr_queue *queue) |
| { |
| struct pvr_job *job; |
| |
| /* Make sure we CPU-signal the UFO object, so other queues don't get |
| * blocked waiting on it. |
| */ |
| *queue->timeline_ufo.value = atomic_read(&queue->job_fence_ctx.seqno); |
| |
| list_for_each_entry(job, &queue->scheduler.pending_list, base.list) { |
| if (dma_fence_is_signaled(job->done_fence)) { |
| /* Jobs might have completed after drm_sched_stop() was called. |
| * In that case, re-assign the parent field to the done_fence. |
| */ |
| WARN_ON(job->base.s_fence->parent); |
| job->base.s_fence->parent = dma_fence_get(job->done_fence); |
| } else { |
| /* If we had unfinished jobs, flag the entity as guilty so no |
| * new job can be submitted. |
| */ |
| atomic_set(&queue->ctx->faulty, 1); |
| } |
| } |
| |
| drm_sched_start(&queue->scheduler); |
| } |
| |
| /** |
| * pvr_queue_timedout_job() - Handle a job timeout event. |
| * @s_job: The job this timeout occurred on. |
| * |
| * FIXME: We don't do anything here to unblock the situation, we just stop+start |
| * the scheduler, and re-assign parent fences in the middle. |
| * |
| * Return: |
| * * DRM_GPU_SCHED_STAT_NOMINAL. |
| */ |
| static enum drm_gpu_sched_stat |
| pvr_queue_timedout_job(struct drm_sched_job *s_job) |
| { |
| struct drm_gpu_scheduler *sched = s_job->sched; |
| struct pvr_queue *queue = container_of(sched, struct pvr_queue, scheduler); |
| struct pvr_device *pvr_dev = queue->ctx->pvr_dev; |
| struct pvr_job *job; |
| u32 job_count = 0; |
| |
| dev_err(sched->dev, "Job timeout\n"); |
| |
| /* Before we stop the scheduler, make sure the queue is out of any list, so |
| * any call to pvr_queue_update_active_state_locked() that might happen |
| * until the scheduler is really stopped doesn't end up re-inserting the |
| * queue in the active list. This would cause |
| * pvr_queue_signal_done_fences() and drm_sched_stop() to race with each |
| * other when accessing the pending_list, since drm_sched_stop() doesn't |
| * grab the job_list_lock when modifying the list (it's assuming the |
| * only other accessor is the scheduler, and it's safe to not grab the |
| * lock since it's stopped). |
| */ |
| mutex_lock(&pvr_dev->queues.lock); |
| list_del_init(&queue->node); |
| mutex_unlock(&pvr_dev->queues.lock); |
| |
| drm_sched_stop(sched, s_job); |
| |
| /* Re-assign job parent fences. */ |
| list_for_each_entry(job, &sched->pending_list, base.list) { |
| job->base.s_fence->parent = dma_fence_get(job->done_fence); |
| job_count++; |
| } |
| WARN_ON(atomic_read(&queue->in_flight_job_count) != job_count); |
| |
| /* Re-insert the queue in the proper list, and kick a queue processing |
| * operation if there were jobs pending. |
| */ |
| mutex_lock(&pvr_dev->queues.lock); |
| if (!job_count) { |
| list_move_tail(&queue->node, &pvr_dev->queues.idle); |
| } else { |
| atomic_set(&queue->in_flight_job_count, job_count); |
| list_move_tail(&queue->node, &pvr_dev->queues.active); |
| pvr_queue_process(queue); |
| } |
| mutex_unlock(&pvr_dev->queues.lock); |
| |
| drm_sched_start(sched); |
| |
| return DRM_GPU_SCHED_STAT_NOMINAL; |
| } |
| |
| /** |
| * pvr_queue_free_job() - Release the reference the scheduler had on a job object. |
| * @sched_job: Job object to free. |
| */ |
| static void pvr_queue_free_job(struct drm_sched_job *sched_job) |
| { |
| struct pvr_job *job = container_of(sched_job, struct pvr_job, base); |
| |
| drm_sched_job_cleanup(sched_job); |
| job->paired_job = NULL; |
| pvr_job_put(job); |
| } |
| |
| static const struct drm_sched_backend_ops pvr_queue_sched_ops = { |
| .prepare_job = pvr_queue_prepare_job, |
| .run_job = pvr_queue_run_job, |
| .timedout_job = pvr_queue_timedout_job, |
| .free_job = pvr_queue_free_job, |
| }; |
| |
| /** |
| * pvr_queue_fence_is_ufo_backed() - Check if a dma_fence is backed by a UFO object |
| * @f: Fence to test. |
| * |
| * A UFO-backed fence is a fence that can be signaled or waited upon FW-side. |
| * pvr_job::done_fence objects are backed by the timeline UFO attached to the queue |
| * they are pushed to, but those fences are not directly exposed to the outside |
| * world, so we also need to check if the fence we're being passed is a |
| * drm_sched_fence that was coming from our driver. |
| */ |
| bool pvr_queue_fence_is_ufo_backed(struct dma_fence *f) |
| { |
| struct drm_sched_fence *sched_fence = f ? to_drm_sched_fence(f) : NULL; |
| |
| if (sched_fence && |
| sched_fence->sched->ops == &pvr_queue_sched_ops) |
| return true; |
| |
| if (f && f->ops == &pvr_queue_job_fence_ops) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * pvr_queue_signal_done_fences() - Signal done fences. |
| * @queue: Queue to check. |
| * |
| * Signal done fences of jobs whose seqno is less than the current value of |
| * the UFO object attached to the queue. |
| */ |
| static void |
| pvr_queue_signal_done_fences(struct pvr_queue *queue) |
| { |
| struct pvr_job *job, *tmp_job; |
| u32 cur_seqno; |
| |
| spin_lock(&queue->scheduler.job_list_lock); |
| cur_seqno = *queue->timeline_ufo.value; |
| list_for_each_entry_safe(job, tmp_job, &queue->scheduler.pending_list, base.list) { |
| if ((int)(cur_seqno - lower_32_bits(job->done_fence->seqno)) < 0) |
| break; |
| |
| if (!dma_fence_is_signaled(job->done_fence)) { |
| dma_fence_signal(job->done_fence); |
| pvr_job_release_pm_ref(job); |
| atomic_dec(&queue->in_flight_job_count); |
| } |
| } |
| spin_unlock(&queue->scheduler.job_list_lock); |
| } |
| |
| /** |
| * pvr_queue_check_job_waiting_for_cccb_space() - Check if the job waiting for CCCB space |
| * can be unblocked |
| * pushed to the CCCB |
| * @queue: Queue to check |
| * |
| * If we have a job waiting for CCCB, and this job now fits in the CCCB, we signal |
| * its CCCB fence, which should kick drm_sched. |
| */ |
| static void |
| pvr_queue_check_job_waiting_for_cccb_space(struct pvr_queue *queue) |
| { |
| struct pvr_queue_fence *cccb_fence; |
| u32 native_deps_remaining; |
| struct pvr_job *job; |
| |
| mutex_lock(&queue->cccb_fence_ctx.job_lock); |
| job = queue->cccb_fence_ctx.job; |
| if (!job) |
| goto out_unlock; |
| |
| /* If we have a job attached to the CCCB fence context, its CCCB fence |
| * shouldn't be NULL. |
| */ |
| if (WARN_ON(!job->cccb_fence)) { |
| job = NULL; |
| goto out_unlock; |
| } |
| |
| /* If we get there, CCCB fence has to be initialized. */ |
| cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base); |
| if (WARN_ON(!cccb_fence->queue)) { |
| job = NULL; |
| goto out_unlock; |
| } |
| |
| /* Evict signaled dependencies before checking for CCCB space. |
| * If the job fits, signal the CCCB fence, this should unblock |
| * the drm_sched_entity. |
| */ |
| native_deps_remaining = job_count_remaining_native_deps(job); |
| if (!pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) { |
| job = NULL; |
| goto out_unlock; |
| } |
| |
| dma_fence_signal(job->cccb_fence); |
| pvr_queue_fence_put(job->cccb_fence); |
| job->cccb_fence = NULL; |
| queue->cccb_fence_ctx.job = NULL; |
| |
| out_unlock: |
| mutex_unlock(&queue->cccb_fence_ctx.job_lock); |
| |
| pvr_job_put(job); |
| } |
| |
| /** |
| * pvr_queue_process() - Process events that happened on a queue. |
| * @queue: Queue to check |
| * |
| * Signal job fences and check if jobs waiting for CCCB space can be unblocked. |
| */ |
| void pvr_queue_process(struct pvr_queue *queue) |
| { |
| lockdep_assert_held(&queue->ctx->pvr_dev->queues.lock); |
| |
| pvr_queue_check_job_waiting_for_cccb_space(queue); |
| pvr_queue_signal_done_fences(queue); |
| pvr_queue_update_active_state_locked(queue); |
| } |
| |
| static u32 get_dm_type(struct pvr_queue *queue) |
| { |
| switch (queue->type) { |
| case DRM_PVR_JOB_TYPE_GEOMETRY: |
| return PVR_FWIF_DM_GEOM; |
| case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: |
| case DRM_PVR_JOB_TYPE_FRAGMENT: |
| return PVR_FWIF_DM_FRAG; |
| case DRM_PVR_JOB_TYPE_COMPUTE: |
| return PVR_FWIF_DM_CDM; |
| } |
| |
| return ~0; |
| } |
| |
| /** |
| * init_fw_context() - Initializes the queue part of a FW context. |
| * @queue: Queue object to initialize the FW context for. |
| * @fw_ctx_map: The FW context CPU mapping. |
| * |
| * FW contexts are containing various states, one of them being a per-queue state |
| * that needs to be initialized for each queue being exposed by a context. This |
| * function takes care of that. |
| */ |
| static void init_fw_context(struct pvr_queue *queue, void *fw_ctx_map) |
| { |
| struct pvr_context *ctx = queue->ctx; |
| struct pvr_fw_object *fw_mem_ctx_obj = pvr_vm_get_fw_mem_context(ctx->vm_ctx); |
| struct rogue_fwif_fwcommoncontext *cctx_fw; |
| struct pvr_cccb *cccb = &queue->cccb; |
| |
| cctx_fw = fw_ctx_map + queue->ctx_offset; |
| cctx_fw->ccbctl_fw_addr = cccb->ctrl_fw_addr; |
| cctx_fw->ccb_fw_addr = cccb->cccb_fw_addr; |
| |
| cctx_fw->dm = get_dm_type(queue); |
| cctx_fw->priority = ctx->priority; |
| cctx_fw->priority_seq_num = 0; |
| cctx_fw->max_deadline_ms = MAX_DEADLINE_MS; |
| cctx_fw->pid = task_tgid_nr(current); |
| cctx_fw->server_common_context_id = ctx->ctx_id; |
| |
| pvr_fw_object_get_fw_addr(fw_mem_ctx_obj, &cctx_fw->fw_mem_context_fw_addr); |
| |
| pvr_fw_object_get_fw_addr(queue->reg_state_obj, &cctx_fw->context_state_addr); |
| } |
| |
| /** |
| * pvr_queue_cleanup_fw_context() - Wait for the FW context to be idle and clean it up. |
| * @queue: Queue on FW context to clean up. |
| * |
| * Return: |
| * * 0 on success, |
| * * Any error returned by pvr_fw_structure_cleanup() otherwise. |
| */ |
| static int pvr_queue_cleanup_fw_context(struct pvr_queue *queue) |
| { |
| if (!queue->ctx->fw_obj) |
| return 0; |
| |
| return pvr_fw_structure_cleanup(queue->ctx->pvr_dev, |
| ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT, |
| queue->ctx->fw_obj, queue->ctx_offset); |
| } |
| |
| /** |
| * pvr_queue_job_init() - Initialize queue related fields in a pvr_job object. |
| * @job: The job to initialize. |
| * |
| * Bind the job to a queue and allocate memory to guarantee pvr_queue_job_arm() |
| * and pvr_queue_job_push() can't fail. We also make sure the context type is |
| * valid and the job can fit in the CCCB. |
| * |
| * Return: |
| * * 0 on success, or |
| * * An error code if something failed. |
| */ |
| int pvr_queue_job_init(struct pvr_job *job) |
| { |
| /* Fragment jobs need at least one native fence wait on the geometry job fence. */ |
| u32 min_native_dep_count = job->type == DRM_PVR_JOB_TYPE_FRAGMENT ? 1 : 0; |
| struct pvr_queue *queue; |
| int err; |
| |
| if (atomic_read(&job->ctx->faulty)) |
| return -EIO; |
| |
| queue = pvr_context_get_queue_for_job(job->ctx, job->type); |
| if (!queue) |
| return -EINVAL; |
| |
| if (!pvr_cccb_cmdseq_can_fit(&queue->cccb, job_cmds_size(job, min_native_dep_count))) |
| return -E2BIG; |
| |
| err = drm_sched_job_init(&job->base, &queue->entity, 1, THIS_MODULE); |
| if (err) |
| return err; |
| |
| job->cccb_fence = pvr_queue_fence_alloc(); |
| job->kccb_fence = pvr_kccb_fence_alloc(); |
| job->done_fence = pvr_queue_fence_alloc(); |
| if (!job->cccb_fence || !job->kccb_fence || !job->done_fence) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * pvr_queue_job_arm() - Arm a job object. |
| * @job: The job to arm. |
| * |
| * Initializes fences and return the drm_sched finished fence so it can |
| * be exposed to the outside world. Once this function is called, you should |
| * make sure the job is pushed using pvr_queue_job_push(), or guarantee that |
| * no one grabbed a reference to the returned fence. The latter can happen if |
| * we do multi-job submission, and something failed when creating/initializing |
| * a job. In that case, we know the fence didn't leave the driver, and we |
| * can thus guarantee nobody will wait on an dead fence object. |
| * |
| * Return: |
| * * A dma_fence object. |
| */ |
| struct dma_fence *pvr_queue_job_arm(struct pvr_job *job) |
| { |
| drm_sched_job_arm(&job->base); |
| |
| return &job->base.s_fence->finished; |
| } |
| |
| /** |
| * pvr_queue_job_cleanup() - Cleanup fence/scheduler related fields in the job object. |
| * @job: The job to cleanup. |
| * |
| * Should be called in the job release path. |
| */ |
| void pvr_queue_job_cleanup(struct pvr_job *job) |
| { |
| pvr_queue_fence_put(job->done_fence); |
| pvr_queue_fence_put(job->cccb_fence); |
| pvr_kccb_fence_put(job->kccb_fence); |
| |
| if (job->base.s_fence) |
| drm_sched_job_cleanup(&job->base); |
| } |
| |
| /** |
| * pvr_queue_job_push() - Push a job to its queue. |
| * @job: The job to push. |
| * |
| * Must be called after pvr_queue_job_init() and after all dependencies |
| * have been added to the job. This will effectively queue the job to |
| * the drm_sched_entity attached to the queue. We grab a reference on |
| * the job object, so the caller is free to drop its reference when it's |
| * done accessing the job object. |
| */ |
| void pvr_queue_job_push(struct pvr_job *job) |
| { |
| struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler); |
| |
| /* Keep track of the last queued job scheduled fence for combined submit. */ |
| dma_fence_put(queue->last_queued_job_scheduled_fence); |
| queue->last_queued_job_scheduled_fence = dma_fence_get(&job->base.s_fence->scheduled); |
| |
| pvr_job_get(job); |
| drm_sched_entity_push_job(&job->base); |
| } |
| |
| static void reg_state_init(void *cpu_ptr, void *priv) |
| { |
| struct pvr_queue *queue = priv; |
| |
| if (queue->type == DRM_PVR_JOB_TYPE_GEOMETRY) { |
| struct rogue_fwif_geom_ctx_state *geom_ctx_state_fw = cpu_ptr; |
| |
| geom_ctx_state_fw->geom_core[0].geom_reg_vdm_call_stack_pointer_init = |
| queue->callstack_addr; |
| } |
| } |
| |
| /** |
| * pvr_queue_create() - Create a queue object. |
| * @ctx: The context this queue will be attached to. |
| * @type: The type of jobs being pushed to this queue. |
| * @args: The arguments passed to the context creation function. |
| * @fw_ctx_map: CPU mapping of the FW context object. |
| * |
| * Create a queue object that will be used to queue and track jobs. |
| * |
| * Return: |
| * * A valid pointer to a pvr_queue object, or |
| * * An error pointer if the creation/initialization failed. |
| */ |
| struct pvr_queue *pvr_queue_create(struct pvr_context *ctx, |
| enum drm_pvr_job_type type, |
| struct drm_pvr_ioctl_create_context_args *args, |
| void *fw_ctx_map) |
| { |
| static const struct { |
| u32 cccb_size; |
| const char *name; |
| } props[] = { |
| [DRM_PVR_JOB_TYPE_GEOMETRY] = { |
| .cccb_size = CTX_GEOM_CCCB_SIZE_LOG2, |
| .name = "geometry", |
| }, |
| [DRM_PVR_JOB_TYPE_FRAGMENT] = { |
| .cccb_size = CTX_FRAG_CCCB_SIZE_LOG2, |
| .name = "fragment" |
| }, |
| [DRM_PVR_JOB_TYPE_COMPUTE] = { |
| .cccb_size = CTX_COMPUTE_CCCB_SIZE_LOG2, |
| .name = "compute" |
| }, |
| [DRM_PVR_JOB_TYPE_TRANSFER_FRAG] = { |
| .cccb_size = CTX_TRANSFER_CCCB_SIZE_LOG2, |
| .name = "transfer_frag" |
| }, |
| }; |
| struct pvr_device *pvr_dev = ctx->pvr_dev; |
| struct drm_gpu_scheduler *sched; |
| struct pvr_queue *queue; |
| int ctx_state_size, err; |
| void *cpu_map; |
| |
| if (WARN_ON(type >= sizeof(props))) |
| return ERR_PTR(-EINVAL); |
| |
| switch (ctx->type) { |
| case DRM_PVR_CTX_TYPE_RENDER: |
| if (type != DRM_PVR_JOB_TYPE_GEOMETRY && |
| type != DRM_PVR_JOB_TYPE_FRAGMENT) |
| return ERR_PTR(-EINVAL); |
| break; |
| case DRM_PVR_CTX_TYPE_COMPUTE: |
| if (type != DRM_PVR_JOB_TYPE_COMPUTE) |
| return ERR_PTR(-EINVAL); |
| break; |
| case DRM_PVR_CTX_TYPE_TRANSFER_FRAG: |
| if (type != DRM_PVR_JOB_TYPE_TRANSFER_FRAG) |
| return ERR_PTR(-EINVAL); |
| break; |
| default: |
| return ERR_PTR(-EINVAL); |
| } |
| |
| ctx_state_size = get_ctx_state_size(pvr_dev, type); |
| if (ctx_state_size < 0) |
| return ERR_PTR(ctx_state_size); |
| |
| queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
| if (!queue) |
| return ERR_PTR(-ENOMEM); |
| |
| queue->type = type; |
| queue->ctx_offset = get_ctx_offset(type); |
| queue->ctx = ctx; |
| queue->callstack_addr = args->callstack_addr; |
| sched = &queue->scheduler; |
| INIT_LIST_HEAD(&queue->node); |
| mutex_init(&queue->cccb_fence_ctx.job_lock); |
| pvr_queue_fence_ctx_init(&queue->cccb_fence_ctx.base); |
| pvr_queue_fence_ctx_init(&queue->job_fence_ctx); |
| |
| err = pvr_cccb_init(pvr_dev, &queue->cccb, props[type].cccb_size, props[type].name); |
| if (err) |
| goto err_free_queue; |
| |
| err = pvr_fw_object_create(pvr_dev, ctx_state_size, |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| reg_state_init, queue, &queue->reg_state_obj); |
| if (err) |
| goto err_cccb_fini; |
| |
| init_fw_context(queue, fw_ctx_map); |
| |
| if (type != DRM_PVR_JOB_TYPE_GEOMETRY && type != DRM_PVR_JOB_TYPE_FRAGMENT && |
| args->callstack_addr) { |
| err = -EINVAL; |
| goto err_release_reg_state; |
| } |
| |
| cpu_map = pvr_fw_object_create_and_map(pvr_dev, sizeof(*queue->timeline_ufo.value), |
| PVR_BO_FW_FLAGS_DEVICE_UNCACHED, |
| NULL, NULL, &queue->timeline_ufo.fw_obj); |
| if (IS_ERR(cpu_map)) { |
| err = PTR_ERR(cpu_map); |
| goto err_release_reg_state; |
| } |
| |
| queue->timeline_ufo.value = cpu_map; |
| |
| err = drm_sched_init(&queue->scheduler, |
| &pvr_queue_sched_ops, |
| pvr_dev->sched_wq, 1, 64 * 1024, 1, |
| msecs_to_jiffies(500), |
| pvr_dev->sched_wq, NULL, "pvr-queue", |
| pvr_dev->base.dev); |
| if (err) |
| goto err_release_ufo; |
| |
| err = drm_sched_entity_init(&queue->entity, |
| DRM_SCHED_PRIORITY_KERNEL, |
| &sched, 1, &ctx->faulty); |
| if (err) |
| goto err_sched_fini; |
| |
| mutex_lock(&pvr_dev->queues.lock); |
| list_add_tail(&queue->node, &pvr_dev->queues.idle); |
| mutex_unlock(&pvr_dev->queues.lock); |
| |
| return queue; |
| |
| err_sched_fini: |
| drm_sched_fini(&queue->scheduler); |
| |
| err_release_ufo: |
| pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj); |
| |
| err_release_reg_state: |
| pvr_fw_object_destroy(queue->reg_state_obj); |
| |
| err_cccb_fini: |
| pvr_cccb_fini(&queue->cccb); |
| |
| err_free_queue: |
| mutex_destroy(&queue->cccb_fence_ctx.job_lock); |
| kfree(queue); |
| |
| return ERR_PTR(err); |
| } |
| |
| void pvr_queue_device_pre_reset(struct pvr_device *pvr_dev) |
| { |
| struct pvr_queue *queue; |
| |
| mutex_lock(&pvr_dev->queues.lock); |
| list_for_each_entry(queue, &pvr_dev->queues.idle, node) |
| pvr_queue_stop(queue, NULL); |
| list_for_each_entry(queue, &pvr_dev->queues.active, node) |
| pvr_queue_stop(queue, NULL); |
| mutex_unlock(&pvr_dev->queues.lock); |
| } |
| |
| void pvr_queue_device_post_reset(struct pvr_device *pvr_dev) |
| { |
| struct pvr_queue *queue; |
| |
| mutex_lock(&pvr_dev->queues.lock); |
| list_for_each_entry(queue, &pvr_dev->queues.active, node) |
| pvr_queue_start(queue); |
| list_for_each_entry(queue, &pvr_dev->queues.idle, node) |
| pvr_queue_start(queue); |
| mutex_unlock(&pvr_dev->queues.lock); |
| } |
| |
| /** |
| * pvr_queue_kill() - Kill a queue. |
| * @queue: The queue to kill. |
| * |
| * Kill the queue so no new jobs can be pushed. Should be called when the |
| * context handle is destroyed. The queue object might last longer if jobs |
| * are still in flight and holding a reference to the context this queue |
| * belongs to. |
| */ |
| void pvr_queue_kill(struct pvr_queue *queue) |
| { |
| drm_sched_entity_destroy(&queue->entity); |
| dma_fence_put(queue->last_queued_job_scheduled_fence); |
| queue->last_queued_job_scheduled_fence = NULL; |
| } |
| |
| /** |
| * pvr_queue_destroy() - Destroy a queue. |
| * @queue: The queue to destroy. |
| * |
| * Cleanup the queue and free the resources attached to it. Should be |
| * called from the context release function. |
| */ |
| void pvr_queue_destroy(struct pvr_queue *queue) |
| { |
| if (!queue) |
| return; |
| |
| mutex_lock(&queue->ctx->pvr_dev->queues.lock); |
| list_del_init(&queue->node); |
| mutex_unlock(&queue->ctx->pvr_dev->queues.lock); |
| |
| drm_sched_fini(&queue->scheduler); |
| drm_sched_entity_fini(&queue->entity); |
| |
| if (WARN_ON(queue->last_queued_job_scheduled_fence)) |
| dma_fence_put(queue->last_queued_job_scheduled_fence); |
| |
| pvr_queue_cleanup_fw_context(queue); |
| |
| pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj); |
| pvr_fw_object_destroy(queue->reg_state_obj); |
| pvr_cccb_fini(&queue->cccb); |
| mutex_destroy(&queue->cccb_fence_ctx.job_lock); |
| kfree(queue); |
| } |
| |
| /** |
| * pvr_queue_device_init() - Device-level initialization of queue related fields. |
| * @pvr_dev: The device to initialize. |
| * |
| * Initializes all fields related to queue management in pvr_device. |
| * |
| * Return: |
| * * 0 on success, or |
| * * An error code on failure. |
| */ |
| int pvr_queue_device_init(struct pvr_device *pvr_dev) |
| { |
| int err; |
| |
| INIT_LIST_HEAD(&pvr_dev->queues.active); |
| INIT_LIST_HEAD(&pvr_dev->queues.idle); |
| err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_dev->queues.lock); |
| if (err) |
| return err; |
| |
| pvr_dev->sched_wq = alloc_workqueue("powervr-sched", WQ_UNBOUND, 0); |
| if (!pvr_dev->sched_wq) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * pvr_queue_device_fini() - Device-level cleanup of queue related fields. |
| * @pvr_dev: The device to cleanup. |
| * |
| * Cleanup/free all queue-related resources attached to a pvr_device object. |
| */ |
| void pvr_queue_device_fini(struct pvr_device *pvr_dev) |
| { |
| destroy_workqueue(pvr_dev->sched_wq); |
| } |