blob: c6d3c327cc24c0c6a444390c4642bab749f90b82 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 or MIT
/* Copyright 2019 Collabora ltd. */
#include <linux/clk.h>
#include <linux/devfreq.h>
#include <linux/devfreq_cooling.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <drm/drm_managed.h>
#include "panthor_devfreq.h"
#include "panthor_device.h"
/**
* struct panthor_devfreq - Device frequency management
*/
struct panthor_devfreq {
/** @devfreq: devfreq device. */
struct devfreq *devfreq;
/** @gov_data: Governor data. */
struct devfreq_simple_ondemand_data gov_data;
/** @busy_time: Busy time. */
ktime_t busy_time;
/** @idle_time: Idle time. */
ktime_t idle_time;
/** @time_last_update: Last update time. */
ktime_t time_last_update;
/** @last_busy_state: True if the GPU was busy last time we updated the state. */
bool last_busy_state;
/**
* @lock: Lock used to protect busy_time, idle_time, time_last_update and
* last_busy_state.
*
* These fields can be accessed concurrently by panthor_devfreq_get_dev_status()
* and panthor_devfreq_record_{busy,idle}().
*/
spinlock_t lock;
};
static void panthor_devfreq_update_utilization(struct panthor_devfreq *pdevfreq)
{
ktime_t now, last;
now = ktime_get();
last = pdevfreq->time_last_update;
if (pdevfreq->last_busy_state)
pdevfreq->busy_time += ktime_sub(now, last);
else
pdevfreq->idle_time += ktime_sub(now, last);
pdevfreq->time_last_update = now;
}
static int panthor_devfreq_target(struct device *dev, unsigned long *freq,
u32 flags)
{
struct dev_pm_opp *opp;
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp))
return PTR_ERR(opp);
dev_pm_opp_put(opp);
return dev_pm_opp_set_rate(dev, *freq);
}
static void panthor_devfreq_reset(struct panthor_devfreq *pdevfreq)
{
pdevfreq->busy_time = 0;
pdevfreq->idle_time = 0;
pdevfreq->time_last_update = ktime_get();
}
static int panthor_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *status)
{
struct panthor_device *ptdev = dev_get_drvdata(dev);
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
unsigned long irqflags;
status->current_frequency = clk_get_rate(ptdev->clks.core);
spin_lock_irqsave(&pdevfreq->lock, irqflags);
panthor_devfreq_update_utilization(pdevfreq);
status->total_time = ktime_to_ns(ktime_add(pdevfreq->busy_time,
pdevfreq->idle_time));
status->busy_time = ktime_to_ns(pdevfreq->busy_time);
panthor_devfreq_reset(pdevfreq);
spin_unlock_irqrestore(&pdevfreq->lock, irqflags);
drm_dbg(&ptdev->base, "busy %lu total %lu %lu %% freq %lu MHz\n",
status->busy_time, status->total_time,
status->busy_time / (status->total_time / 100),
status->current_frequency / 1000 / 1000);
return 0;
}
static struct devfreq_dev_profile panthor_devfreq_profile = {
.timer = DEVFREQ_TIMER_DELAYED,
.polling_ms = 50, /* ~3 frames */
.target = panthor_devfreq_target,
.get_dev_status = panthor_devfreq_get_dev_status,
};
int panthor_devfreq_init(struct panthor_device *ptdev)
{
/* There's actually 2 regulators (mali and sram), but the OPP core only
* supports one.
*
* We assume the sram regulator is coupled with the mali one and let
* the coupling logic deal with voltage updates.
*/
static const char * const reg_names[] = { "mali", NULL };
struct thermal_cooling_device *cooling;
struct device *dev = ptdev->base.dev;
struct panthor_devfreq *pdevfreq;
struct dev_pm_opp *opp;
unsigned long cur_freq;
int ret;
pdevfreq = drmm_kzalloc(&ptdev->base, sizeof(*ptdev->devfreq), GFP_KERNEL);
if (!pdevfreq)
return -ENOMEM;
ptdev->devfreq = pdevfreq;
ret = devm_pm_opp_set_regulators(dev, reg_names);
if (ret) {
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "Couldn't set OPP regulators\n");
return ret;
}
ret = devm_pm_opp_of_add_table(dev);
if (ret)
return ret;
spin_lock_init(&pdevfreq->lock);
panthor_devfreq_reset(pdevfreq);
cur_freq = clk_get_rate(ptdev->clks.core);
opp = devfreq_recommended_opp(dev, &cur_freq, 0);
if (IS_ERR(opp))
return PTR_ERR(opp);
panthor_devfreq_profile.initial_freq = cur_freq;
/* Regulator coupling only takes care of synchronizing/balancing voltage
* updates, but the coupled regulator needs to be enabled manually.
*
* We use devm_regulator_get_enable_optional() and keep the sram supply
* enabled until the device is removed, just like we do for the mali
* supply, which is enabled when dev_pm_opp_set_opp(dev, opp) is called,
* and disabled when the opp_table is torn down, using the devm action.
*
* If we really care about disabling regulators on suspend, we should:
* - use devm_regulator_get_optional() here
* - call dev_pm_opp_set_opp(dev, NULL) before leaving this function
* (this disables the regulator passed to the OPP layer)
* - call dev_pm_opp_set_opp(dev, NULL) and
* regulator_disable(ptdev->regulators.sram) in
* panthor_devfreq_suspend()
* - call dev_pm_opp_set_opp(dev, default_opp) and
* regulator_enable(ptdev->regulators.sram) in
* panthor_devfreq_resume()
*
* But without knowing if it's beneficial or not (in term of power
* consumption), or how much it slows down the suspend/resume steps,
* let's just keep regulators enabled for the device lifetime.
*/
ret = devm_regulator_get_enable_optional(dev, "sram");
if (ret && ret != -ENODEV) {
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev, "Couldn't retrieve/enable sram supply\n");
return ret;
}
/*
* Set the recommend OPP this will enable and configure the regulator
* if any and will avoid a switch off by regulator_late_cleanup()
*/
ret = dev_pm_opp_set_opp(dev, opp);
if (ret) {
DRM_DEV_ERROR(dev, "Couldn't set recommended OPP\n");
return ret;
}
dev_pm_opp_put(opp);
/*
* Setup default thresholds for the simple_ondemand governor.
* The values are chosen based on experiments.
*/
pdevfreq->gov_data.upthreshold = 45;
pdevfreq->gov_data.downdifferential = 5;
pdevfreq->devfreq = devm_devfreq_add_device(dev, &panthor_devfreq_profile,
DEVFREQ_GOV_SIMPLE_ONDEMAND,
&pdevfreq->gov_data);
if (IS_ERR(pdevfreq->devfreq)) {
DRM_DEV_ERROR(dev, "Couldn't initialize GPU devfreq\n");
ret = PTR_ERR(pdevfreq->devfreq);
pdevfreq->devfreq = NULL;
return ret;
}
cooling = devfreq_cooling_em_register(pdevfreq->devfreq, NULL);
if (IS_ERR(cooling))
DRM_DEV_INFO(dev, "Failed to register cooling device\n");
return 0;
}
int panthor_devfreq_resume(struct panthor_device *ptdev)
{
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
if (!pdevfreq->devfreq)
return 0;
panthor_devfreq_reset(pdevfreq);
return devfreq_resume_device(pdevfreq->devfreq);
}
int panthor_devfreq_suspend(struct panthor_device *ptdev)
{
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
if (!pdevfreq->devfreq)
return 0;
return devfreq_suspend_device(pdevfreq->devfreq);
}
void panthor_devfreq_record_busy(struct panthor_device *ptdev)
{
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
unsigned long irqflags;
if (!pdevfreq->devfreq)
return;
spin_lock_irqsave(&pdevfreq->lock, irqflags);
panthor_devfreq_update_utilization(pdevfreq);
pdevfreq->last_busy_state = true;
spin_unlock_irqrestore(&pdevfreq->lock, irqflags);
}
void panthor_devfreq_record_idle(struct panthor_device *ptdev)
{
struct panthor_devfreq *pdevfreq = ptdev->devfreq;
unsigned long irqflags;
if (!pdevfreq->devfreq)
return;
spin_lock_irqsave(&pdevfreq->lock, irqflags);
panthor_devfreq_update_utilization(pdevfreq);
pdevfreq->last_busy_state = false;
spin_unlock_irqrestore(&pdevfreq->lock, irqflags);
}